Theory PMLinHOL_shallow_further_tests
theory PMLinHOL_shallow_further_tests
imports PMLinHOL_shallow_tests
begin
lemma K_Dia: "⊨⇧s (□⇧s(φ ⊃⇧s ψ)) ⊃⇧s ((◇⇧sφ) ⊃⇧s ◇⇧sψ)" by auto
lemma T1a:"⊨⇧s □⇧sp⇧s ⊃⇧s ((◇⇧sq⇧s) ⊃⇧s ◇⇧s (p⇧s ∧⇧s q⇧s))" by auto
lemma T1b: "⊨⇧s □⇧sp⇧s ⊃⇧s ((◇⇧sq⇧s) ⊃⇧s ◇⇧s (p⇧s ∧⇧s q⇧s))"
proof -
have 1: "⊨⇧s p⇧s ⊃⇧s (q⇧s ⊃⇧s (p⇧s ∧⇧s q⇧s))" unfolding AndS_def using H1 H2 H3 MP by metis
have 2: "⊨⇧s □⇧s(p⇧s ⊃⇧s (q⇧s ⊃⇧s (p⇧s ∧⇧s q⇧s)))" using 1 Nec by metis
have 3: "⊨⇧s □⇧sp⇧s ⊃⇧s □⇧s(q⇧s ⊃⇧s (p⇧s ∧⇧s q⇧s))" using 2 Dist MP by metis
have 4: "⊨⇧s (□⇧s(q⇧s ⊃⇧s (p⇧s ∧⇧s q⇧s))) ⊃⇧s ((◇⇧sq⇧s) ⊃⇧s ◇⇧s(p⇧s ∧⇧s q⇧s))" using K_Dia by metis
have 5: "⊨⇧s □⇧sp⇧s ⊃⇧s ((◇⇧sq⇧s) ⊃⇧s ◇⇧s (p⇧s ∧⇧s q⇧s))" using 3 4 H1 H2 MP by metis
thus ?thesis .
qed
end