Theory PMLinHOL_shallow_tests
subsection‹Tests with the maximal shallow embedding›
theory PMLinHOL_shallow_tests
imports PMLinHOL_shallow
begin
lemma H1: "⊨⇧s φ ⊃⇧s (ψ ⊃⇧s φ)" by auto
lemma H2: "⊨⇧s (φ ⊃⇧s (ψ ⊃⇧s γ)) ⊃⇧s ((φ ⊃⇧s ψ) ⊃⇧s (φ ⊃⇧s γ)) " by auto
lemma H3: "⊨⇧s (¬⇧sφ⊃⇧s ¬⇧sψ) ⊃⇧s (ψ ⊃⇧s φ)" by auto
lemma MP: "⊨⇧s φ ⟹ ⊨⇧s (φ⊃⇧s ψ) ⟹ ⊨⇧s ψ" by auto
lemma HCderived1: "⊨⇧s (φ ⊃⇧s φ)"
proof -
have 1: "⊨⇧s φ ⊃⇧s ((ψ ⊃⇧s φ) ⊃⇧s φ)" using H1 by auto
have 2: "⊨⇧s (φ ⊃⇧s ((ψ ⊃⇧s φ) ⊃⇧s φ)) ⊃⇧s ((φ ⊃⇧s (ψ ⊃⇧s φ)) ⊃⇧s (φ ⊃⇧s φ))" using H2 by auto
have 3: "⊨⇧s (φ ⊃⇧s (ψ ⊃⇧s φ)) ⊃⇧s (φ ⊃⇧s φ)" using 1 2 MP by meson
have 4: "⊨⇧s φ ⊃⇧s (ψ⊃⇧s φ)" using H1 by auto
thus ?thesis using 3 4 MP by meson
qed
lemma HCderived2: "⊨⇧s φ ⊃⇧s (¬⇧sφ⊃⇧s ψ) " by (metis H1 H2 H3 MP)
lemma HCderived3: "⊨⇧s (¬⇧sφ⊃⇧s φ) ⊃⇧s φ" by (metis H1 H2 H3 MP)
lemma HCderived4: "⊨⇧s (φ ⊃⇧s ψ) ⊃⇧s (¬⇧sψ ⊃⇧s ¬⇧sφ) " by auto
lemma Nec: "⊨⇧s φ ⟹ ⊨⇧s □⇧sφ" by auto
lemma Dist:"⊨⇧s □⇧s(φ ⊃⇧s ψ) ⊃⇧s (□⇧sφ ⊃⇧s □⇧sψ) " by auto
lemma cM:"reflexive R ⟷ (∀φ W V. ∀w:W. ⟨W,R,V⟩,w ⊨⇧s □⇧sφ ⊃⇧s φ)" oops
lemma cBa: "symmetric R ⟶ (∀φ W V. ∀w:W. ⟨W,R,V⟩,w ⊨⇧s φ ⊃⇧s □⇧s(◇⇧sφ))" by auto
lemma cBb: "symmetric R ⟵ (∀φ W V. ∀w:W. ⟨W,R,V⟩,w ⊨⇧s φ ⊃⇧s □⇧s(◇⇧sφ))" oops
lemma c4a: "transitive R ⟶ (∀φ W V. ∀w:W. ⟨W,R,V⟩,w ⊨⇧s □⇧sφ ⊃⇧s □⇧s(□⇧sφ))" by (smt DefS)
lemma c4b: "transitive R ⟵ (∀φ W V. ∀w:W. ⟨W,R,V⟩,w ⊨⇧s □⇧sφ ⊃⇧s □⇧s(□⇧sφ))" oops
lemma "reflexive R ⟶ (∀φ W V. ∀w:W. ⟨W,R,V⟩,w ⊨⇧s □⇧sφ ⊃⇧s □⇧s(□⇧sφ))" nitpick[card 𝗐=3] oops
lemma "⊨⇧s φ ⊃⇧s □⇧sφ" nitpick[card 𝗐=2, card 𝒮= 1] oops
lemma "⊨⇧s □⇧s( □⇧sφ ⊃⇧s□⇧sψ) ∨⇧s □⇧s( □⇧sψ ⊃⇧s□⇧sφ)" oops
lemma "⊨⇧s (◇⇧s(□⇧s φ)) ⊃⇧s□⇧s(◇⇧s φ)" nitpick[card 𝗐=2] oops
lemma KB: "symmetric R ⟶ (∀φ ψ W V. ∀w:W. ⟨W,R,V⟩,w ⊨⇧s (◇⇧s(□⇧sφ)) ⊃⇧s□⇧s(◇⇧sφ))" by auto
lemma K4B: "symmetric R ∧ transitive R ⟶ (∀φ ψ W V. ∀w:W. ⟨W,R,V⟩,w ⊨⇧s □⇧s( □⇧sφ ⊃⇧s□⇧sψ) ∨⇧s □⇧s( □⇧sψ ⊃⇧s□⇧sφ))" by (smt DefS)
end