Theory PMLinHOL_shallow

section‹Shallow embedding of PML in HOL (maximal)\label{sec:pmlinhol_shallow_max}›
 
theory PMLinHOL_shallow    (* Christoph Benzmüller, 2025 *)
  imports PMLinHOL_preliminaries 
begin

―‹Shallow embedding (of propositional modal logic in HOL)›
type_synonym σ = "𝒲𝒱𝗐bool"
definition AtmS::"𝒮σ" ("_s") where "as  λW R V w. V a w"
definition NegS::"σσ" ("¬s") where "¬s φ  λW R V w. ¬(φ W R V w)"
definition ImpS::"σσσ" (infixr "s" 93) where "φ s ψ  λW R V w. (φ W R V w)  (ψ W R V w)"
definition BoxS::"σσ" ("s") where "s φ  λW R V w. v:W. R w v  (φ W R V v)" 

―‹Further logical connectives as definitions›
definition OrS (infixr "s" 92) where "φ s ψ  ¬sφ s ψ"
definition AndS (infixr "s" 95) where "φ s ψ  ¬s(φ s ¬sψ)"
definition DiaS ("s") where "sφ  ¬s (s (¬sφ)) "
definition TopS ("s") where "s ps s ps"
definition BotS ("s") where "s  ¬s s"

―‹Definition of truth of a formula relative to a model ⟨W,R,V⟩› and possible world w›
definition RelativeTruthS::"𝒲𝒱𝗐σbool" ("_,_,_⟩,_s _") where "W,R,V⟩,w s φ  φ W R V w"

―‹Definition of validity›
definition ValS ("s _") where "s φ  W R V. w:W. W,R,V⟩,w s φ"

―‹Collection of definitions in a bag called DefS›
named_theorems DefS declare AtmS_def[DefS,simp] NegS_def[DefS,simp] ImpS_def[DefS,simp] BoxS_def[DefS,simp] OrS_def[DefS,simp] AndS_def[DefS,simp] DiaS_def[DefS,simp] TopS_def[DefS,simp] BotS_def[DefS,simp] RelativeTruthS_def[DefS,simp] ValS_def[DefS,simp]
end