Theory PMLinHOL_shallow
section‹Shallow embedding of PML in HOL (maximal)\label{sec:pmlinhol_shallow_max}›
theory PMLinHOL_shallow
imports PMLinHOL_preliminaries
begin
type_synonym σ = "𝒲⇒ℛ⇒𝒱⇒𝗐⇒bool"
definition AtmS::"𝒮⇒σ" ("_⇧s") where "a⇧s ≡ λW R V w. V a w"
definition NegS::"σ⇒σ" ("¬⇧s") where "¬⇧s φ ≡ λW R V w. ¬(φ W R V w)"
definition ImpS::"σ⇒σ⇒σ" (infixr "⊃⇧s" 93) where "φ ⊃⇧s ψ ≡ λW R V w. (φ W R V w) ⟶ (ψ W R V w)"
definition BoxS::"σ⇒σ" ("□⇧s") where "□⇧s φ ≡ λW R V w. ∀v:W. R w v ⟶ (φ W R V v)"
definition OrS (infixr "∨⇧s" 92) where "φ ∨⇧s ψ ≡ ¬⇧sφ ⊃⇧s ψ"
definition AndS (infixr "∧⇧s" 95) where "φ ∧⇧s ψ ≡ ¬⇧s(φ ⊃⇧s ¬⇧sψ)"
definition DiaS ("◇⇧s") where "◇⇧sφ ≡ ¬⇧s (□⇧s (¬⇧sφ)) "
definition TopS ("⊤⇧s") where "⊤⇧s ≡p⇧s ⊃⇧s p⇧s"
definition BotS ("⊥⇧s") where "⊥⇧s ≡ ¬⇧s ⊤⇧s"
definition RelativeTruthS::"𝒲⇒ℛ⇒𝒱⇒𝗐⇒σ⇒bool" ("⟨_,_,_⟩,_⊨⇧s _") where "⟨W,R,V⟩,w ⊨⇧s φ ≡ φ W R V w"
definition ValS ("⊨⇧s _") where "⊨⇧s φ ≡ ∀W R V. ∀w:W. ⟨W,R,V⟩,w ⊨⇧s φ"
named_theorems DefS declare AtmS_def[DefS,simp] NegS_def[DefS,simp] ImpS_def[DefS,simp] BoxS_def[DefS,simp] OrS_def[DefS,simp] AndS_def[DefS,simp] DiaS_def[DefS,simp] TopS_def[DefS,simp] BotS_def[DefS,simp] RelativeTruthS_def[DefS,simp] ValS_def[DefS,simp]
end