Theory Zeta_Laurent_Expansion

section ‹The Laurent series expansion of $\zeta$ at 1›
theory Zeta_Laurent_Expansion
  imports Zeta_Function
begin

text ‹
  In this section, we shall derive the Laurent series expansion of $\zeta(s)$ at $s = 1$, which
  is of the form 
    \[\zeta(s) = \frac{1}{s-1} + \sum_{n=0}^\infty \frac{(-1)^n\,\gamma_n}{n!} (s-1)^n\]
  where the $\gamma_n$ are the ‹Stieltjes constants›. Notably, $\gamma_0$ is equal to
  the Euler--Mascheroni constant $\gamma$.
›

subsection ‹Definition of the Stieltjes constants›

text ‹
  We define the Stieltjes constants by their infinite series form, since it is fairly
  easy to show the convergence of the series by the comparison test.
›
definition%important stieltjes_gamma :: "nat  'a :: real_algebra_1" where
  "stieltjes_gamma n =
     of_real (k. ln (k+1) ^ n / (k+1) - (ln (k+2) ^ (n+1) - ln (k+1) ^ (n + 1)) / (n + 1))"

lemma stieltjes_gamma_0 [simp]: "stieltjes_gamma 0 = euler_mascheroni"
  using euler_mascheroni_sum_real by (simp add: sums_iff stieltjes_gamma_def field_simps)

lemma stieltjes_gamma_summable:
  "summable (λk. ln (k+1) ^ n / (k+1) - (ln (k+2) ^ (n+1) - ln (k+1) ^ (n + 1)) / (n + 1))"
    (is "summable ?f")
proof (rule summable_comparison_test_bigo)
  (* TODO: good real_asymp example *)
  (* TODO: investigate how to make this more automatic *)
  have "eventually (λx::real. ln x ^ n - ln x ^ (n+1) * (inverse (ln x) * (1 + real n)) *
           inverse (real n + 1) = 0) at_top"
    using eventually_gt_at_top[of 1] by eventually_elim (auto simp: field_simps)
  thus "?f  O(λk. k powr (-3/2))"
    by real_asymp
qed (simp_all add: summable_real_powr_iff)

lemma of_real_stieltjes_gamma [simp]: "of_real (stieltjes_gamma k) = stieltjes_gamma k"
  by (simp add: stieltjes_gamma_def)

lemma sums_stieltjes_gamma:
  "(λk. ln (k+1) ^ n / (k+1) - (ln (k+2) ^ (n+1) - ln (k+1) ^ (n + 1)) / (n + 1))
     sums stieltjes_gamma n"
  using stieltjes_gamma_summable[of n] unfolding stieltjes_gamma_def by (simp add: summable_sums)

text ‹
  We can now derive the alternative definition of the Stieltjes constants as a limit.
  This limit can also be written in the Euler--MacLaurin-style form
  \[\lim\limits_{m\to\infty} \left(\sum\limits_{k=1}^m \frac{\ln^n k}{k} - 
       \int_1^m \frac{\ln^n x}{x}\,\text{d}x\right)\,,\]
  which is perhaps a bit more illuminating.
›
lemma stieltjes_gamma_real_limit_form:
  "(λm. (k = 1..m. ln (real k) ^ n / real k) - ln (real m) ^ (n + 1) / real (n + 1))
      stieltjes_gamma n"
proof -
  have "(λm::nat. k<m.  ln (k+1) ^ n / (k+1) - (ln (k+2) ^ (n+1) - ln (k+1) ^ (n + 1)) / (n + 1))
           stieltjes_gamma n"
    using sums_stieltjes_gamma[of n] by (simp add: add_ac sums_def)
  also have "(λm::nat. k<m.  ln (k+1) ^ n / (k+1) - (ln (k+2) ^ (n+1) - ln (k+1) ^ (n + 1)) / (n + 1)) =
        (λm::nat. (k=1..m. ln k ^ n / k) - ln (m + 1) ^ (n + 1) / (n + 1))"
    (is "?lhs = ?rhs")
  proof (rule ext, goal_cases)
    fix m :: nat
    have "(k<m. ln (k+1) ^ n / (k+1) - (ln (k+2) ^ (n+1) - ln (k+1) ^ (n + 1)) / (n + 1)) =
            (k<m. ln (k+1) ^ n / (k+1)) -
            (k<m. ln (Suc k+1) ^ (n+1) - ln (k+1) ^ (n + 1)) / (n + 1)"
      by (simp add: sum_subtractf flip: sum_divide_distrib)
    also have "(k<m. ln (k+1) ^ n / (k+1)) = (k=1..m. ln k ^ n / k)"
      by (rule sum.reindex_bij_witness[of _ "λk. k-1" Suc]) auto
    also have "(k<m. ln (Suc k+1) ^ (n+1) - ln (k+1) ^ (n + 1)) = ln (m + 1) ^ (n + 1)"
      by (subst sum_lessThan_telescope) simp_all
    finally show "?lhs m = ?rhs m" .
  qed
  finally have *: "(λm. (k = 1..m. ln k ^ n / k) - ln (m + 1) ^ (n + 1) / (n + 1))
                      stieltjes_gamma n" .
  have **: "(λm. ln (m + 1) ^ (n + 1) / (n + 1) - ln m ^ (n + 1) / (n + 1))  0"
    by real_asymp
  from tendsto_add[OF * **] show ?thesis by (simp add: algebra_simps)
qed

lemma stieltjes_gamma_limit_form:
  "(λm. of_real ((k=1..m. ln (real k) ^ n / real k) - ln (real m) ^ (n + 1) / real (n + 1)))
      (stieltjes_gamma n :: 'a :: real_normed_algebra_1)"
proof -
  have "(λm.  of_real ((k=1..m. ln (real k) ^ n / real k) - ln m ^ (n + 1) / real (n + 1)))
           (of_real (stieltjes_gamma n) :: 'a)"
    using stieltjes_gamma_real_limit_form[of n] by (intro tendsto_of_real) (auto simp: add_ac)
  thus ?thesis by simp
qed

lemma stieltjes_gamma_real_altdef:
  "(stieltjes_gamma n :: real) =
     lim (λm. (k = 1..m. ln (real k) ^ n / real k) -
              ln (real m) ^ (n + 1) / real (n + 1))"
  by (rule sym, rule limI, rule stieltjes_gamma_real_limit_form)


subsection ‹Proof of the Laurent expansion›

text ‹
  We shall follow the proof by Briggs and Chowla~cite"briggs55", which examines the entire
  function $g(s) = (2^{1-s}-1)\zeta(s)$. They determine the value of $g^{(k)}(1)$ in two
  different ways: First by the Dirichlet series of $g$ and then by its power series expansion 
  around 1. We shall do the same here.  
›

context
  fixes g and G1 G2 G2' G :: "complex fps" and A :: "nat  complex"
  defines "g  perzeta (1 / 2)"
  defines "G1  fps_shift 1 (fps_exp (-ln 2 :: complex) - 1)"
  defines "G2  fps_expansion (λs. (s - 1) * pre_zeta 1 s + 1) 1"
  defines "G2'  fps_expansion (pre_zeta 1) 1"
  defines "G  G1 * G2"
  defines "A  fps_nth G2"
begin

text @{term "G1"}, @{term "G2"}, @{term "G2'"}, and @{term "G2"} are the formal power series
  expansions of functions around s = 1› of the entire functions

     $(2^{1-s} - 1) / (s - 1)$, 

     $(s - 1) \zeta(s)$,

     $\zeta(s) - \frac{1}{s-1}$,

     $(2^{1-s}-1) \zeta(s)$,

  respectively.

  Our goal is to determine the coefficients of @{term G2'}, and we shall do so
  by determining the coefficients of @{term G2} (which are the same, but shifted by 1).
  This in turn will be done by determining the coefficients of @{term "G = G1 * G2"}.

  Note that $(2^{1-s} - 1) \zeta(s)$ is written as @{term "perzeta (1/2)"} in Isabelle
  (using the periodic ζ› function) and the analytic continuation of $\zeta(s) - \frac{1}{s-1}$
  is written as @{term "pre_zeta 1 s"} (@{const pre_zeta} is an artefact from the definition of
  @{const zeta}, which comes in useful here).
›

lemma stieltjes_gamma_aux1: "(λn. (-1)^(n+1) * ln(n+1)^k / (n+1)) sums ((-1)^k * (deriv^^k) g 1)"
proof -
  define H where "H = fds_perzeta (1 / 2)"
  have conv: "conv_abscissa H < 1" unfolding H_def
    by (rule le_less_trans[OF conv_abscissa_perzeta']) (use fraction_not_in_ints[of 2 1] in auto)
  have [simp]: "eval_fds H s = g s" if "Re s > 0" for s
    unfolding H_def g_def using fraction_not_in_ints[of 2 1] that
    by (subst perzeta_altdef2) auto
  have ev: "eventually (λs. s  {s. Re s > 0}) (nhds 1)"
    by (intro eventually_nhds_in_open open_halfspace_Re_gt) auto
  have [simp]: "(deriv ^^ k) (eval_fds H) 1 = (deriv ^^ k) g 1"
    by (intro higher_deriv_cong_ev eventually_mono[OF ev]) auto

  have "fds_converges ((fds_deriv ^^ k) H) 1"
    by (intro fds_converges le_less_trans[OF conv_abscissa_higher_deriv_le])
       (use conv in simp add: one_ereal_def)
  hence "(λn. fds_nth ((fds_deriv ^^ k) H) (n+1) / real (n+1)) sums eval_fds ((fds_deriv ^^ k) H) 1"
    by (simp add: fds_converges_altdef)
  also have "eval_fds ((fds_deriv ^^ k) H) 1 = (deriv ^^ k) (eval_fds H) 1"
    using conv by (intro eval_fds_higher_deriv) (auto simp: one_ereal_def)
  also have "(λn. fds_nth ((fds_deriv ^^ k) H) (n+1) / real (n+1)) =
               (λn. (-1)^k * (-1)^(n+1) * ln (real (n+1)) ^ k / (n+1))"
    by (auto simp: fds_nth_higher_deriv algebra_simps H_def fds_perzeta_one_half Ln_Reals_eq)
  finally have "(λn. (- 1) ^ k * complex_of_real ((-1)^(n+1) * ln (real (n+1)) ^ k / real (n+1))) sums
                   ((deriv ^^ k) g 1)" by (simp add: algebra_simps)

  hence "(λn. (-1)^k * ((-1)^k * complex_of_real ((-1)^(n+1) * ln (real (n+1)) ^ k / real (n+1)))) sums
                     ((-1)^k * (deriv ^^ k) g 1)" by (intro sums_mult)
  also have "(λn. (-1)^k * ((-1)^k * complex_of_real ((-1)^(n+1) * ln (real (n+1)) ^ k / real (n+1)))) =
             (λn. complex_of_real ((-1)^(n+1) * ln (real (n+1)) ^ k / real (n+1)))"
    by (intro ext) auto
  finally show ?thesis .
qed

lemma stieltjes_gamma_aux2: "(deriv^^k) g 1 = fact k * fps_nth G k" 
  and stieltjes_gamma_aux3: "G2 = fps_X * G2' + 1"
proof -
  have [simp]: "fps_conv_radius G1 = "
    using fps_conv_radius_diff[of "fps_exp (-Ln 2)" 1] by (simp add: G1_def)
  have "fps_conv_radius G2  "
    unfolding G2_def by (intro conv_radius_fps_expansion holomorphic_intros) auto
  hence [simp]: "fps_conv_radius G2 = "
    by simp
  have "fps_conv_radius G2'  "
    unfolding G2'_def by (intro conv_radius_fps_expansion holomorphic_intros) auto
  hence [simp]: "fps_conv_radius G2' = "
    by simp
  have [simp]: "fps_conv_radius G = "
    using fps_conv_radius_mult[of G1 G2] by (simp add: G_def)

  have eval_G1: "eval_fps G1 (s - 1) =
                   (if s = 1 then -ln 2 else (2 powr (1 - s) - 1) / (s - 1))" for s
      unfolding G1_def using fps_conv_radius_diff[of "fps_exp (-Ln 2)" 1]
      by (subst eval_fps_shift)
         (auto intro!: subdegree_geI simp: eval_fps_diff powr_def exp_diff exp_minus algebra_simps)
  have eval_G2: "eval_fps G2 (s - 1) = (s - 1) * pre_zeta 1 s + 1" for s
    unfolding G2_def by (subst eval_fps_expansion[where r = ]) (auto intro!: holomorphic_intros)
  have eval_G: "eval_fps G (s - 1) = g s" for s
    unfolding G_def by (simp add: eval_fps_mult eval_G1 eval_G2 g_def perzeta_one_half_left')
  have eval_G': "eval_fps G s = g (1 + s)" for s
    using eval_G[of "s + 1"] by (simp add: add_ac)
  have eval_G2': "eval_fps G2' (s - 1) = pre_zeta 1 s" for s
    unfolding G2'_def by (intro eval_fps_expansion[where r = ]) (auto intro!: holomorphic_intros)

  show "G2 = fps_X * G2' + 1"
  proof (intro eval_fps_eqD always_eventually allI)
    have *: "fps_conv_radius (fps_X * G2') = "
      using fps_conv_radius_mult[of fps_X G2'] by simp
    from * show "fps_conv_radius (fps_X * G2' + 1) > 0"
      using fps_conv_radius_add[of "fps_X * G2'" 1] by auto
    show "eval_fps G2 s = eval_fps (fps_X * G2' + 1) s" for s
      using * eval_G2[of "1 + s"] eval_G2'[of "1 + s"]
      by (simp add: eval_fps_add eval_fps_mult)
  qed auto

  have "G = fps_expansion g 1"
  proof (rule eval_fps_eqD)
    have "fps_conv_radius (fps_expansion g 1)  "
      using fraction_not_in_ints[of 2 1]
      by (intro conv_radius_fps_expansion) (auto intro!: holomorphic_intros simp: g_def)
    thus "fps_conv_radius (fps_expansion g 1) > 0" by simp
  next
    have "eval_fps (fps_expansion g 1) z = g (1 + z)" for z
      using fraction_not_in_ints[of 2 1]
      by (subst eval_fps_expansion'[where r = ]) (auto simp: g_def intro!: holomorphic_intros)
    thus "eventually (λz. eval_fps G z = eval_fps (fps_expansion g 1) z) (nhds 0)"
      by (simp add: eval_G')
  qed auto
  thus "(deriv ^^ k) g 1 = fact k * fps_nth G k"
    by (simp add: fps_eq_iff fps_expansion_def)
qed

lemma stieltjes_gamma_aux4: "fps_nth G k = (i=1..k+1. (-ln 2)^i * A (k-(i-1)) / fact i)"
proof -
  have "fps_nth G k = (ik. fps_nth G1 i * A (k - i))"
    unfolding G_def fps_mult_nth A_def by (intro sum.cong) auto
  also have " = (ik. (-ln 2)^(i+1) * A (k - i) / fact (i+1))"
    by (simp add: G1_def algebra_simps)
  also have " = (i=1..k+1. (-ln 2)^i * A (k-(i-1)) / fact i)"
    by (intro sum.reindex_bij_witness[of _ "λi. i-1" Suc]) (auto simp: Suc_diff_Suc)
  finally show ?thesis .
qed

lemma stieltjes_gamma_aux5: "(t<k. (k choose t) * Ln 2 ^ (k - t) * stieltjes_gamma t) -
             ln 2 ^ (k+1) / of_nat (k+1) = (-1) ^ k * (deriv ^^ k) g 1"
proof -
  define h where "h = (λk x. (n=1..x. ln(real n)^k / real n) -
                         ln (real x)^(k+1) / real(k+1) - stieltjes_gamma k)"
  have h_eq: "(n=1..x. ln n ^ k / n) = ln x^(k+1) / real (k+1) + stieltjes_gamma k + h k x"
    for k x :: nat by (simp add: h_def)
  define h' where "h' = (λx. t=0..k. (k choose t) * ln 2 ^ (k - t) * h t x)"
  define S1 where "S1 = (λx. (t=0..k. (k choose t) * ln 2 ^ (k - t) * ln x ^ (t + 1) / (t + 1)))"
  define S2 where "S2 = (λx. (t=0..k. (k choose t) * ln 2 ^ (k - t) * ln x ^ (t + 1) / (k + 1)))"

  have [THEN filterlim_compose, tendsto_intros]: "h t  0" for t
    using tendsto_diff[OF stieltjes_gamma_real_limit_form[of t] tendsto_const[of "stieltjes_gamma t"]]
    by (simp add: h_def)

  have eq: "(n=1..2 * x. (-1)^(n+1) * ln n ^ k / n) =
              ln 2 ^ (k+1) / real (k+1) -
              (t<k. (k choose t) * ln 2 ^ (k-t) * stieltjes_gamma t) + h k (2*x) - h' x"
    (is "?lhs x = ?rhs x") if "x > 0" for x :: nat
  proof -
    have "2 * (n=1..x. ln (2*n)^k/(2*n)) =
           (n=1..x. t=0..k. 1/n * (k choose t) * ln 2 ^ (k-t) * ln n ^ t)"
      unfolding sum_distrib_left
    proof (rule sum.cong)
      fix n :: nat assume n: "n  {1..x}"
      have "2 * (ln (2*n)^k / (2*n)) = 1/n * (ln n + ln 2) ^ k"
        using n by (simp add: ln_mult add_ac)
      also have "(ln n + ln 2) ^ k = (t=0..k. (k choose t) * ln 2 ^ (k-t) * ln n ^ t)"
        by (subst binomial_ring, rule sum.cong) auto
      also have "1/n *  = (t=0..k. 1/n * (k choose t) * ln 2 ^ (k-t) * ln n ^ t)"
        by (subst sum_distrib_left) (simp add: mult_ac)
      finally show "2 * (ln (2*n)^k / (2*n)) = " .
    qed auto
    also have " = (t=0..k. n=1..x. 1/n * (k choose t) * ln 2 ^ (k-t) * ln n ^ t)"
      by (rule sum.swap)
    also have " = (t=0..k. (k choose t) * ln 2 ^ (k - t) *
                      (ln x ^ (t+1) / (t+1) + stieltjes_gamma t + h t x))"
    proof (rule sum.cong)
      fix t :: nat assume t: "t  {0..k}"
      have "(n=1..x. 1/n * (k choose t) * ln 2 ^ (k-t) * ln n ^ t) =
            (k choose t) * ln 2 ^ (k - t) * (n=1..x. ln n ^ t / n)"
        by (subst sum_distrib_left) (simp add: mult_ac)
      also have "(n=1..x. ln n ^ t / n) = ln x ^ (t+1) / (t+1) + stieltjes_gamma t + h t x"
        using h_eq[of t] by simp
      finally show "(n=1..x. 1/n * (k choose t) * ln 2 ^ (k-t) * ln n ^ t) =
                      (k choose t) * ln 2 ^ (k - t) * " .
    qed simp_all
    also have " = (t=0..k. (k choose t) / (t + 1) * ln 2 ^ (k - t) * ln x ^ (t + 1)) +
                    (t=0..k. (k choose t) * ln 2 ^ (k - t) * stieltjes_gamma t) + h' x"
      by (simp add: ring_distribs sum.distrib h'_def)
    also have "(t=0..k. (k choose t) / (t + 1) * ln 2 ^ (k - t) * ln x ^ (t + 1)) =
               (t=0..k. (Suc k choose Suc t) / (k + 1) * ln 2 ^ (k - t) * ln x ^ (t + 1))"
    proof (intro sum.cong refl, goal_cases)
      case (1 t)
      have "of_nat (k choose t) * (of_nat (k + 1) :: real) = of_nat ((k choose t) * (k + 1))"
        by (simp only: of_nat_mult)
      also have "(k choose t) * (k + 1) = (Suc k choose Suc t) * (t + 1)"
        using Suc_times_binomial_eq[of k t] by (simp add: algebra_simps)
      also have "of_nat  = of_nat (Suc k choose Suc t) * (of_nat (t + 1) :: real)"
        by (simp only: of_nat_mult)
      finally have *: "of_nat (k choose t) / of_nat (t + 1) =
                         (of_nat (Suc k choose Suc t) / (k + 1) :: real)"
        by (simp add: divide_simps flip: of_nat_Suc del: binomial_Suc_Suc)
      show ?case by (simp only: *)
    qed
    also have " = (t=1..Suc k. (Suc k choose t) / (k + 1) * ln 2 ^ (Suc k - t) * ln x ^ t)"
      by (intro sum.reindex_bij_witness[of _ "λt. t-1" Suc]) auto
    also have "{1..Suc k} = {..Suc k} - {0}" by auto
    also have "(t. (Suc k choose t) / (k + 1) * ln 2 ^ (Suc k - t) * ln x ^ t) =
                 (tSuc k. (Suc k choose t) / (k + 1) * ln 2 ^ (Suc k - t) * ln x ^ t) -
                   ln 2 ^ Suc k / (k + 1)"
      by (subst sum_diff1) auto
    also have "(tSuc k. (Suc k choose t) / (k + 1) * ln 2 ^ (Suc k - t) * ln x ^ t) =
               (ln x + ln 2) ^ Suc k / (k + 1)"
      unfolding binomial_ring by (subst sum_divide_distrib) (auto simp: algebra_simps)
    also have "ln x + ln 2 = ln (2 * x)"
      using x > 0 by (simp add: ln_mult)
    finally have eq1: "2 * (n=1..x. ln (real (2*n))^k / real (2*n)) =
                         ln (real (2*x))^(k+1) / real (k+1) - ln 2^(k+1) / real (k+1) +
                         (t=0..k. (k choose t) * ln 2^(k - t) * stieltjes_gamma t) + h' x"
      by (simp add: algebra_simps)

    have eq2: "(n=1..2*x. ln n ^ k / n) = ln (real (2*x))^(k+1) / real (k+1) + stieltjes_gamma k + h k (2*x)"
      by (simp only: h_eq)

    have "(n=1..2*x. (-1)^(n+1) * ln n ^ k / n) =
          (n=1..2*x. ln n ^ k / n - 2 * (if even n then ln n ^ k / n else 0))"
      by (intro sum.cong) auto
    also have " = (n=1..2*x. ln n ^ k / n) -
                    2 * (n=1..2*x. if even n then ln n ^ k / n else 0)"
      by (simp only: sum_subtractf sum_distrib_left)
    also have "(n=1..2*x. if even n then ln n ^ k / n else 0) =
               (n | n  {1..2*x}  even n. ln n ^ k / n)"
      by (intro sum.mono_neutral_cong_right) auto
    also have " = (n=1..x. ln (real (2*n)) ^ k / real (2*n))"
      by (intro sum.reindex_bij_witness[of _ "λn. 2*n" "λn. n div 2"]) auto
    also have "(n=1..2*x. ln n ^ k / n) - 2 *  =
                 ln 2^(k+1) / real (k+1) -
                ((t=0..k. (k choose t) * ln 2^(k - t) * stieltjes_gamma t) - stieltjes_gamma k) +
                h k (2*x) - h' x"
      using arg_cong2[OF eq1 eq2, of "(-)"] by simp
    also have "{0..k} = insert k {..<k}" by auto
    also have "(t. (k choose t) * ln 2^(k - t) * stieltjes_gamma t) - stieltjes_gamma k =
                 (t<k. (k choose t) * ln 2^(k - t) * stieltjes_gamma t)"
      by (subst sum.insert) auto
    finally show ?thesis .
  qed

  have "?rhs  ln 2 ^ (k+1) / real (k+1) -
                            (t<k. (k choose t) * ln 2 ^ (k-t) * stieltjes_gamma t)"
    unfolding h'_def by (rule tendsto_eq_intros refl mult_nat_left_at_top filterlim_ident | simp)+
  moreover have "eventually (λx. ?rhs x = ?lhs x) sequentially"
    using eventually_gt_at_top[of 0] by eventually_elim (simp only: eq)
  ultimately have *: "?lhs  ln 2 ^ (k+1) / real (k+1) -
                                   (t<k. (k choose t) * ln 2 ^ (k-t) * stieltjes_gamma t)"
    by (rule Lim_transform_eventually)
  also have "(λx. n=1..2*x. (-1)^(n+1) * ln (real n)^k / real n) = 
             (λx. n<2*x. -((-1)^(n+1) * ln (real (n+1))^k / real (n+1)))"
    by (intro ext sum.reindex_bij_witness[of _ Suc "λn. n - 1"]) (auto simp: power_diff)
  also have " = (λx. -(n<2*x. ((-1)^(n+1) * ln (real (n+1))^k / real (n+1))))"
    by (subst sum_negf) auto
  finally have *: "  (ln 2 ^ (k+1) / real (k+1) -
                              (t<k. (k choose t) * ln 2 ^ (k - t) * stieltjes_gamma t))" .
  have lim1: "(λx. (n<2*x. complex_of_real ((-1)^(n+1) * ln (real (n+1))^k / real (n+1))))
               -(ln 2 ^ (k+1) / of_nat (k+1) -
                      (t<k. (k choose t) * ln 2 ^ (k - t) * stieltjes_gamma t))"
    (is "?lhs'  _")
    using tendsto_of_real[OF tendsto_minus[OF *], where ?'a = complex]
    by (simp add: Ln_Reals_eq)

  moreover have "?lhs'  ((- 1) ^ k * (deriv ^^ k) g 1)"
  proof -
    have **: "filterlim (λn::nat. 2 * n) sequentially sequentially" by real_asymp
    have "(λx. (n<2*x. complex_of_real ((-1)^(n+1) * ln (real (n+1))^k / real (n+1))))
               ((- 1) ^ k * (deriv ^^ k) g 1)"
      by (rule filterlim_compose[OF _ **]) (use stieltjes_gamma_aux1 in simp add: sums_def)
    thus ?thesis .
  qed

  ultimately have "-(ln 2 ^ (k+1) / of_nat (k+1) -
                      (t<k. (k choose t) * ln 2 ^ (k - t) * stieltjes_gamma t)) =
                   (-1) ^ k * (deriv ^^ k) g 1"
    by (rule LIMSEQ_unique)
  thus ?thesis by (simp add: Ln_Reals_eq)
qed

lemma stieltjes_gamma_aux6: "(t<k. (k choose t) * Ln 2 ^ (k - t) * stieltjes_gamma t) -
                  Ln 2 ^ (k + 1) / of_nat (k + 1) =
                (-1)^k * fact k * (i=1..k+1. (-Ln 2) ^ i * A (k-(i-1)) / fact i)"
proof -
  have "(t<k. (k choose t) * Ln 2 ^ (k - t) * stieltjes_gamma t) -
          Ln 2 ^ (k + 1) / of_nat (k + 1) = (- 1) ^ k * (deriv ^^ k) g 1"
    using stieltjes_gamma_aux5[of k] .
  also have "(deriv ^^ k) g 1 = fact k * fps_nth G k"
    by (rule stieltjes_gamma_aux2)
  also have "fps_nth G k = (i=1..k + 1. (-Ln 2) ^ i * A (k - (i - 1)) / fact i)"
    by (rule stieltjes_gamma_aux4)
  finally show ?thesis by (simp add: mult_ac)
qed

theorem higher_deriv_pre_zeta_1_1: "(deriv ^^ k) (pre_zeta 1) 1 = (-1) ^ k * stieltjes_gamma k"
proof -
  have eq: "A k = (if k = 0 then 1 else (-1)^(k+1) * stieltjes_gamma (k - 1) / fact (k - 1))" for k
  proof (induction k rule: less_induct)
    case (less k)
    show ?case
    proof (cases "k = 0")
      case True
      with stieltjes_gamma_aux6[of 0] show ?thesis by simp
    next
      case False
      have "k * Ln 2 * stieltjes_gamma (k - 1) +
             (t<k-1. (k choose t) * Ln 2 ^ (k - t) * stieltjes_gamma t) =
             (tinsert (k-1) {..<k-1}. (k choose t) * Ln 2 ^ (k - t) * stieltjes_gamma t)"
        using False by (subst sum.insert) auto
      also have "insert (k-1) {..<k-1} = {..<k}" using False by auto
      also have "(t<k. of_nat (k choose t) * Ln 2 ^ (k - t) * stieltjes_gamma t) =
              Ln 2 ^ (k + 1) / of_nat (k + 1) +
              (- 1) ^ k * fact k * (i = 1..k + 1. (- Ln 2) ^ i * A (k - (i - 1)) / fact i)"
        using stieltjes_gamma_aux6[of k] by (simp add: algebra_simps)
      also have "{1..k+1} = {1,k+1}  {2..k}" by auto
      also have "(- 1) ^ k * fact k * (i. (- Ln 2) ^ i * A (k - (i - 1)) / fact i) =
                 (i=2..k. (-1)^k * fact k * (- Ln 2) ^ i * A (k - (i - 1)) / fact i)
                   -Ln 2 * A k * (- 1) ^ k * fact k +
                   (-Ln 2)^(k+1) * A 0 / fact (k+1) * (- 1) ^ k * fact k"
        using False by (subst sum.union_disjoint)
                       (auto simp: algebra_simps sum_distrib_left sum_distrib_right)
      also have "(i=2..k. (-1)^k * fact k * (-Ln 2) ^ i * A (k-(i-1)) / fact i) =
                 (i<k-1. (k choose i) * Ln 2 ^ (k-i) * stieltjes_gamma i)"
        using False
        by (intro sum.reindex_bij_witness[of _ "λi. k - i" "λi. k - i"])
           (auto simp: binomial_fact Suc_diff_le less field_simps power_neg_one_If)
      finally have "k * Ln 2 * stieltjes_gamma (k - 1) =
                       (-1)^(k+1) * fact k * Ln 2 * A k"
        using False by (simp add: less power_minus')
      also have " * (-1)^(k+1) / fact k / Ln 2 = A k"
        by simp
      also have "k * Ln 2 * stieltjes_gamma (k - 1) * (-1)^(k+1) / fact k / Ln 2 =
                   (-1)^(k+1) * stieltjes_gamma (k - 1) / fact (k - 1)"
        using False by (simp add: field_simps fact_reduce)
      finally have "A k = (- 1) ^ (k + 1) * stieltjes_gamma (k - 1) / fact (k - 1)" ..
      thus ?thesis using False by simp
    qed
  qed
  
  have "fps_nth G2' k = fps_nth G2 (Suc k)"
    by (simp add: stieltjes_gamma_aux3)
  also have " = A (Suc k)"
    by (simp add: A_def)
  also have " = (-1) ^ k * stieltjes_gamma k / fact k"
    by (simp add: eq)
  finally show "(deriv ^^ k) (pre_zeta 1) 1 = (-1) ^ k * stieltjes_gamma k"
    by (simp add: G2'_def fps_eq_iff fps_expansion_def)
qed

corollary pre_zeta_1_1 [simp]: "pre_zeta 1 1 = euler_mascheroni"
  using higher_deriv_pre_zeta_1_1[of 0] by simp

corollary zeta_minus_pole_limit: "(λs. zeta s - 1 / (s - 1)) 1 euler_mascheroni"
proof (rule Lim_transform_eventually)
  show "eventually (λs. pre_zeta 1 s = zeta s - 1 / (s - 1)) (at 1)"
    by (auto simp: zeta_minus_pole_eq [symmetric] eventually_at_filter)
  have "isCont (pre_zeta 1) 1"
    by (intro continuous_intros) auto
  thus "pre_zeta 1 1 euler_mascheroni"
    by (simp add: isCont_def)
qed

corollary fps_expansion_pre_zeta_1_1:
  "fps_expansion (pre_zeta 1) 1 = Abs_fps (λn. (-1)^n * stieltjes_gamma n / fact n)"
  by (simp add: fps_expansion_def higher_deriv_pre_zeta_1_1)

end

end