Theory Map_Extra
section ‹ Map Type: extra functions and properties ›
theory Map_Extra
imports
Relation_Extra
"HOL-Library.Countable_Set"
"HOL-Library.Monad_Syntax"
"HOL-Library.AList"
begin
subsection ‹ Extensionality and Update ›
lemma : "f = g ⟷ (∀ x ∈ dom(f) ∪ dom(g). f x = g x)"
by (auto simp add: fun_eq_iff)
subsection ‹ Graphing Maps ›
:: "('a ⇀ 'b) ⇒ ('a ↔ 'b)" where
"map_graph f = {(x,y) | x y. f x = Some y}"
:: "('a ↔ 'b) ⇒ ('a ⇀ 'b)" where
"graph_map g = (λ x. if (x ∈ fst ` g) then Some (SOME y. (x,y) ∈ g) else None)"
:: "('a ↔ 'b) ⇀ ('a ⇀ 'b)" where
"graph_map' R = (if (functional R) then Some (graph_map R) else None)"
lemma : "(x, y) ∈ map_graph f ⟷ f(x) = Some y"
by (simp add: map_graph_def)
lemma [simp]: "functional (map_graph f)"
by (simp add:functional_def map_graph_def inj_on_def)
lemma [simp]: "countable (dom f) ⟹ countable (map_graph f)"
by (metis countable_image graph_def graph_eq_to_snd_dom map_graph_def)
lemma [simp]: "graph_map (map_graph f) = f"
by (force simp add:map_graph_def graph_map_def image_def)
lemma [simp]: "graph_map {} = Map.empty"
by (simp add:graph_map_def)
lemma [simp]: "⟦functional g; g``{x} ⊆ {y}⟧ ⟹ graph_map (insert (x,y) g) = (graph_map g)(x ↦ y)"
by (rule ext, auto simp add:graph_map_def)
lemma : "dom f = Domain(map_graph f)"
by (simp add: map_graph_def dom_def image_def)
lemma : "ran f = Range(map_graph f)"
by (simp add: map_graph_def ran_def image_def)
lemma : "functional (set xs) ⟹ graph_map (set xs) = map_of xs"
by (induct xs; force)
lemma :
"x ∈ dom(f) ⟹ (map_graph f)(x)⇩r = the (f x)"
by (auto simp add: rel_apply_def map_graph_def)
lemma :
"ran (x ++ y) ⊆ (ran x) ∪ (ran y)"
by (auto simp add:ran_def)
lemma : "finite (dom f) ⟹ finite (map_graph f)"
by (metis dom_map_graph finite_imageD fst_eq_Domain functional_def map_graph_functional)
lemma [simp]: "finite (dom f) ⟹ finite (ran f)"
by (metis finite_Range finite_dom_graph ran_map_graph)
lemma : "functional (insert a R) ⟹ functional R"
by (simp add: single_valued_def)
lemma Domain_insert: "Domain (insert a R) = insert (fst a) (Domain R)"
by (simp add: Domain_fst)
lemma : "⟦ finite R; functional R ⟧ ⟹ card R = card (Domain R)"
by (induct R rule: finite.induct, simp_all add: functional_insert card_insert_if Domain_insert finite_Domain)
(metis DiffD1 Diff_insert_absorb DomainE Map_Extra.Domain_insert insertI1 insert_Diff prod.collapse single_valued_def)
lemma [simp]: "functional g ⟹ map_graph (graph_map g) = g"
apply (simp add:map_graph_def graph_map_def functional_def, safe)
apply (metis (lifting, no_types) image_iff option.distinct(1) option.inject someI surjective_pairing)
apply (simp add:inj_on_def)
apply safe
apply (metis fst_conv snd_conv some_equality)
apply (metis (lifting) fst_conv image_iff)
done
lemma : "dom (graph_map R) = fst ` R"
by (simp add: graph_map_def dom_def)
lemma : "countable R ⟹ countable (dom (graph_map R))"
by (simp add: graph_map_dom)
lemma :
assumes "countable (dom f)"
shows "countable (ran f)"
proof -
have "countable (map_graph f)"
by (simp add: assms)
then have "countable (Range(map_graph f))"
by (simp add: Range_snd)
thus ?thesis
by (simp add: ran_map_graph)
qed
lemma [simp]:
"graph_map' (map_graph f) = Some f"
by (simp add: graph_map'_def)
lemma :
"inj map_graph"
by (metis injI map_graph_inv)
lemma : "f = g ⟷ map_graph f = map_graph g"
by (auto simp add: inj_eq map_graph_inj)
lemma : "f ⊆⇩m g ⟷ map_graph f ⊆ map_graph g"
by (force simp add: map_le_def map_graph_def)
lemma : "map_graph (g ∘⇩m f) = (map_graph f) O (map_graph g)"
by (metis graph_def graph_map_comp map_graph_def)
lemma : "R O map_graph f = (λ p. (fst p, the (f (snd p)))) ` (R ⊳⇩r dom(f))"
by (force simp add: map_graph_def relcomp_unfold rel_ranres_def image_def dom_def)
lemma : "map_graph (f(k ↦ v)) = insert (k, v) ((- {k}) ⊲⇩r map_graph f)"
by (simp add: map_graph_def rel_domres_def, safe, simp_all, metis option.sel)
subsection ‹ Map Application ›
:: "('a ⇀ 'b) ⇒ 'a ⇒ 'b" ("_'(_')⇩m" [999,0] 999) where
"map_apply = (λ f x. the (f x))"
subsection ‹ Map Membership ›
:: "'a × 'b ⇒ ('a ⇀ 'b) ⇒ bool" (infix "∈⇩m" 50) where
"(k, v) ∈⇩m m ⟷ m(k) = Some(v)"
lemma :
"⟦ ⋀ x y. (x, y) ∈⇩m A ⟷ (x, y) ∈⇩m B ⟧ ⟹ A = B"
by (rule ext, simp_all, metis not_None_eq)
lemma :
"(x, y) ∈⇩m A ⟷ (x ∈ dom A ∧ A(x)⇩m = y)"
by (auto simp add: map_apply_def)
lemma :
"f ⊆⇩m g ⟷ (∀ x y. (x,y) ∈⇩m f ⟶ (x,y) ∈⇩m g)"
by (force simp add: map_le_def)
subsection ‹ Preimage ›
:: "('a ⇀ 'b) ⇒ 'b set ⇒ 'a set" where
"preimage f B = {x ∈ dom(f). the(f(x)) ∈ B}"
lemma : "preimage f (ran f) = dom f"
by (auto simp add: preimage_def ran_def)
lemma : "dom (m ∘⇩m f) = preimage f (dom m)"
apply (simp add: dom_def preimage_def, safe, simp_all)
apply (meson map_comp_Some_iff)
apply (metis map_comp_def option.case_eq_if option.distinct(1))
done
lemma :
assumes "countable A" "inj_on f (preimage f A)"
shows "countable (preimage f A)"
proof -
obtain g :: "'a ⇒ nat" where g: "inj_on g A"
using assms(1) by blast
have "inj_on (g ∘ the ∘ f) (preimage f A)"
proof (rule inj_onI)
fix x y
assume "x ∈ preimage f A" "y ∈ preimage f A" "(g ∘ the ∘ f) x = (g ∘ the ∘ f) y"
with assms g show "x = y"
unfolding preimage_def by (metis (lifting) comp_apply domIff inj_onD mem_Collect_eq option.expand)
qed
thus ?thesis
by (simp add: countableI)
qed
subsection ‹ Minus operation for maps ›
:: "('a ⇀ 'b) ⇒ ('a ⇀ 'b) ⇒ ('a ⇀ 'b)" (infixl "--" 100)
where "map_minus f g = (λ x. if (f x = g x) then None else f x)"
lemma [simp]: "y ∈ dom(f -- g) ⟹ (f -- g)(y)⇩m = f(y)⇩m"
by (auto simp add: map_minus_def dom_def map_apply_def)
lemma :
"(x, y) ∈⇩m f ++ g ⟷ ((x ∉ dom(g) ∧ (x, y) ∈⇩m f) ∨ (x, y) ∈⇩m g)"
by (auto simp add: map_add_Some_iff)
lemma :
"(x, y) ∈⇩m f -- g ⟷ (x, y) ∈⇩m f ∧ (¬ (x, y) ∈⇩m g)"
by (auto simp add: map_minus_def)
lemma :
"dom(g) ∩ dom(h) = {} ⟹ (f -- g) ++ h = (f ++ h) -- g"
apply (rule map_ext)
apply (simp add: map_member_plus map_member_minus del: map_member.simps)
apply (auto simp add: map_member_alt_def)
done
lemma : "map_graph (f -- g) = map_graph f - map_graph g"
by (simp add: map_minus_def map_graph_def, safe, simp_all, (meson option.distinct(1))+)
lemma :
"⟦ h ⊆⇩m f; h ⊆⇩m g ⟧ ⟹ (f -- h = g -- h) = (f = g)"
by (auto simp add: map_eq_graph map_graph_minus map_le_graph)
subsection ‹ Map Bind ›
text ‹ Create some extra intro/elim rules to help dealing with proof about option bind. ›
lemma [elim!]:
"⟦ X >>= F = Some(v); ⋀ x. ⟦ X = Some(x); F(x) = Some(v) ⟧ ⟹ P ⟧ ⟹ P"
by (cases X, auto)
lemma [intro]:
"⟦ X = Some(x); F(x) = Some(y) ⟧ ⟹ X >>= F = Some(y)"
by (simp)
lemma [elim]: "⟦ (if c then Some(x) else None) = Some(y); ⟦ c; x = y ⟧ ⟹ P ⟧ ⟹ P"
by (cases c, auto)
subsection ‹ Range Restriction ›
text ‹ A range restriction operator; only domain restriction is provided in HOL. ›
:: "('a ⇀ 'b) ⇒ 'b set ⇒ 'a ⇀ 'b" ("_↿⇘_⇙" [111,110] 110) where
"ran_restrict_map f B = (λx. do { v <- f(x); if (v ∈ B) then Some(v) else None })"
lemma : "f↿⇘B⇙ = (λ x. if x ∈ dom(f) ∧ the(f(x)) ∈ B then f x else None)"
by (auto simp add: ran_restrict_map_def fun_eq_iff bind_eq_None_conv)
lemma [simp]: "f↿⇘{}⇙ = Map.empty"
by (simp add:ran_restrict_map_def)
lemma [simp]: "f↿⇘ran(f) ⇙ = f"
proof
fix x
show "(f↿⇘ran(f)⇙) x = f x"
proof (cases "f(x)")
case None
then show ?thesis by (simp add: ran_restrict_map_def ran_def)
next
case (Some a)
then show ?thesis by (auto simp add: ran_restrict_map_def ran_def)
qed
qed
lemma [simp]: "ran(f↿⇘B⇙) = ran(f) ∩ B"
by (force simp add:ran_restrict_map_def ran_def)
lemma : "dom(f↿⇘B⇙) ⊆ dom(f)"
by (auto simp add:ran_restrict_map_def dom_def)
lemma [intro]:
"finite(dom(f)) ⟹ finite(dom(f↿⇘B⇙))"
by (metis finite_subset dom_ran_restrict)
lemma [simp]: "dom (Some ∘ f) = UNIV"
by (auto)
lemma : "f↿⇘B⇙ |` A = (f |` A)↿⇘B⇙"
by (auto simp add: restrict_map_def ran_restrict_map_def)
lemma [simp]: "(f↿⇘A⇙)↿⇘B⇙ = f↿⇘(A ∩ B)⇙"
proof
fix x
show "((f↿⇘A⇙)↿⇘B⇙) x = (f↿⇘(A ∩ B)⇙) x"
proof (cases "f x")
case None
then show ?thesis by (simp add: ran_restrict_map_def)
next
case (Some a)
then show ?thesis by (simp add: ran_restrict_map_def fun_eq_iff option.case_eq_if)
qed
qed
lemma [simp]: "x ∈ dom g ⟹ (f ++ g) x = g x"
by (auto simp add:map_add_def dom_def)
lemma [simp]: "⟦ x ∉ dom g; x ∈ dom f ⟧ ⟹ (f ++ g) x = f x"
by (auto simp add:map_add_def dom_def)
lemma :
"f ++ g = (f |` (- dom g)) ++ g"
by (rule ext, auto simp add: map_add_def restrict_map_def)
subsection ‹ Map Inverse and Identity ›
:: "('a ⇀ 'b) ⇒ ('b ⇀ 'a)" where
"map_inv f ≡ λ y. if (y ∈ ran f) then Some (SOME x. f x = Some y) else None"
:: "'a set ⇒ ('a ⇀ 'a)" where
"map_id_on xs ≡ λ x. if (x ∈ xs) then Some x else None"
lemma [simp]:
"x ∈ xs ⟹ map_id_on xs x = Some x"
by (simp add:map_id_on_def)
lemma [simp]:
"x ∉ xs ⟹ map_id_on xs x = None"
by (simp add:map_id_on_def)
lemma [simp]: "dom (map_id_on xs) = xs"
by (simp add:dom_def map_id_on_def)
lemma [simp]: "ran (map_id_on xs) = xs"
by (force simp add:ran_def map_id_on_def)
lemma [simp]: "map_id_on UNIV = Some"
by (simp add:map_id_on_def)
lemma [simp]:
"inj_on (map_id_on xs) xs"
by (simp add:inj_on_def)
lemma :
"inj_on f (dom f) ⟹ inj_on (f |` A) (dom f ∩ A)"
by (auto simp add:inj_on_def)
lemma [simp]: "map_inv Map.empty = Map.empty"
by (simp add:map_inv_def)
lemma [simp]:
"map_inv (map_id_on xs) = map_id_on xs"
by (force simp add:map_inv_def map_id_on_def ran_def)
lemma [simp]: "map_inv Some = Some"
by (simp add:map_inv_def ran_def)
lemma [simp]:
"⟦ inj_on f (dom f); f x = Some y ⟧ ⟹ map_inv f y = Some x"
apply (simp add: map_inv_def, safe)
apply (rule some_equality)
apply (auto simp add:inj_on_def dom_def ran_def)
done
lemma [simp]:
"dom (map_inv f) = ran f"
by (auto simp add:map_inv_def)
lemma [simp]:
"inj_on f (dom f) ⟹ ran (map_inv f) = dom f"
apply (simp add:map_inv_def ran_def, safe)
apply (metis (mono_tags, lifting) verit_sko_ex')
apply (metis (mono_tags, lifting) domI domIff map_inv_def map_inv_f_f option.inject)
done
lemma : "f ` dom f = Some ` ran f"
by (auto simp add:dom_def ran_def image_def)
lemma [intro]:
"inj_on f (dom f) ⟹ inj_on (map_inv f) (ran f)"
apply (simp add:map_inv_def inj_on_def dom_def ran_def, safe)
apply (metis (mono_tags, lifting) option.sel someI_ex)
done
lemma : "inj_on f (dom f) ⟹ bij_betw f (dom f) (Some ` ran f)"
by (auto simp add:inj_on_def dom_def ran_def image_def bij_betw_def)
lemma [simp]:
assumes "inj_on f (dom f)"
shows "map_inv (map_inv f) = f"
proof -
from assms have "inj_on (map_inv f) (ran f)"
by auto
thus ?thesis
by (metis (no_types, lifting) ext assms domIff dom_map_inv map_inv_f_f option.collapse
ran_map_inv)
qed
lemma [intro]:
assumes "dom f ∩ ran f = {}" "inj_on f (dom f)"
shows "inj_on (map_inv f ++ f) (dom f ∪ ran f)"
proof (rule inj_onI)
fix x y
assume x:"x ∈ dom f ∪ ran f" and y:"y ∈ dom f ∪ ran f"
and f:"(map_inv f ++ f) x = (map_inv f ++ f) y"
show "x = y"
proof (cases "x ∈ dom f")
case True
then show ?thesis
by (metis assms(1,2) disjoint_iff_not_equal domD dom_left_map_add f inj_on_def
map_add_dom_app_simps(3) ranI ran_map_inv)
next
case False
then show ?thesis
by (metis (full_types) UnE assms(1,2) disjoint_iff domIff dom_left_map_add dom_map_inv
f inj_map_inv inj_on_def map_add_dom_app_simps(3) ran_map_inv ran_restrict_alt_def
ran_restrict_ran x)
qed
qed
lemma [intro]:
assumes "dom f = ran f" "inj_on f (dom f)"
shows "inj (Some ++ f)"
proof (rule injI)
fix x y
assume f:"(Some ++ f) x = (Some ++ f) y"
have bb: "bij_betw f (dom f) (Some ` ran f)"
using assms(2) inj_map_bij by blast
thus "x = y"
proof (cases "x ∈ dom f")
case True
then show ?thesis
by (metis assms(1,2) f inj_on_contraD map_add_dom_app_simps(1,3) ranI)
next
case False
then show ?thesis
by (metis assms(1) dom_left_map_add f map_add_dom_app_simps(3) option.inject
ranI)
qed
qed
lemma [intro]:
fixes f :: "'a ⇀ 'a"
assumes "dom f = ran f" "inj_on f (dom f)"
shows "bij_betw (Some ++ f) UNIV (range Some)"
proof -
have "range (Some ++ f) = range Some"
proof (rule set_eqI, rule iffI)
fix x
assume "x ∈ range (Some ++ f)"
thus "x ∈ range Some"
using image_iff by fastforce
next
fix x :: "'a option"
assume "x ∈ range Some"
thus "x ∈ range (Some ++ f)"
by (metis assms(1) dom_image_ran[of f] image_iff[of x f "dom f"] image_iff[of "Some _" Some "dom f"] image_iff[of x Some UNIV]
map_add_dom_app_simps(1)[of _ f Some] map_add_dom_app_simps(3)[of _ f Some] rangeI[of "Some ++ f"])
qed
thus ?thesis
by (metis assms(1,2) inj_completed_map inj_on_imp_bij_betw)
qed
lemma :
"bij_betw f a (Some ` b) ⟹ bij_betw (the ∘ f) a b"
apply (simp add:bij_betw_def)
apply (safe)
apply (metis (opaque_lifting, no_types) comp_inj_on_iff f_the_inv_into_f inj_on_inverseI option.sel)
apply (metis (opaque_lifting, no_types) image_iff option.sel)
apply (metis Option.these_def Some_image_these_eq image_image these_image_Some_eq)
done
lemma [simp]:
"m`(dom m ∩ dom n) = n`(dom m ∩ dom n) ⟹
ran(m++n) = ran n ∪ ran m"
apply (simp add:ran_def, safe, simp_all)
apply (metis)
apply (metis domI map_add_dom_app_simps(1))
apply (metis (no_types, opaque_lifting) IntI domI dom_left_map_add image_iff map_add_dom_app_simps(3))
done
lemma [simp]:
"⟦ length xs = length ys; distinct xs ⟧ ⟹ ran [xs [↦] ys] = set ys"
by (induct rule:list_induct2, simp_all)
lemma :
"⟦ inj_on f (dom f); inj_on g (dom g); ran f ∩ ran g = {} ⟧ ⟹
inj_on (f ++ g) (dom f ∪ dom g)"
apply (simp add:inj_on_def, safe, simp_all)
apply (metis (full_types) disjoint_iff_not_equal domI dom_left_map_add map_add_dom_app_simps(3) ranI)
apply (metis disjoint_iff_not_equal domI map_add_SomeD ranI)
apply (metis disjoint_iff_not_equal domIff map_add_Some_iff ranI)
apply (metis domI)
done
lemma :
assumes "inj_on f (dom f)" "inj_on g (dom g)"
"dom f ∩ dom g = {}" "ran f ∩ ran g = {}"
shows "map_inv (f ++ g) = map_inv f ++ map_inv g"
proof (rule ext)
from assms have minj: "inj_on (f ++ g) (dom (f ++ g))"
by (simp, metis inj_map_add sup_commute)
fix x
have "x ∈ ran g ⟹ map_inv (f ++ g) x = (map_inv f ++ map_inv g) x"
proof -
assume ran:"x ∈ ran g"
then obtain y where dom:"g y = Some x" "y ∈ dom g"
by (auto simp add:ran_def)
hence "(f ++ g) y = Some x"
by simp
with assms minj ran dom show "map_inv (f ++ g) x = (map_inv f ++ map_inv g) x"
by simp
qed
moreover have "⟦ x ∉ ran g; x ∈ ran f ⟧ ⟹ map_inv (f ++ g) x = (map_inv f ++ map_inv g) x"
proof -
assume ran:"x ∉ ran g" "x ∈ ran f"
with assms obtain y where dom:"f y = Some x" "y ∈ dom f" "y ∉ dom g"
by (auto simp add:ran_def)
with ran have "(f ++ g) y = Some x"
by (simp)
with assms minj ran dom show "map_inv (f ++ g) x = (map_inv f ++ map_inv g) x"
by simp
qed
moreover from assms minj have "⟦ x ∉ ran g; x ∉ ran f ⟧ ⟹ map_inv (f ++ g) x = (map_inv f ++ map_inv g) x"
apply (simp add:map_inv_def ran_def map_add_def)
apply (metis dom_left_map_add map_add_def map_add_dom_app_simps(3))
done
ultimately show "map_inv (f ++ g) x = (map_inv f ++ map_inv g) x"
by blast
qed
lemma :
assumes "inj_on f (dom f)"
shows "map_inv (f |` A) = (map_inv f) ↿⇘A⇙"
using assms
apply (simp add: map_inv_def restrict_map_def ran_restrict_map_def dom_def ran_def fun_eq_iff inj_on_def)
apply (safe intro!: some_equality)
apply (metis (mono_tags, lifting) someI_ex)+
done
lemma :
assumes "inj_on f (dom f)"
shows "map_inv (f ↿⇘A⇙) = (map_inv f) |` A"
using assms someI_ex by (force intro!: some_equality simp add: map_inv_def restrict_map_def ran_restrict_map_def dom_def ran_def fun_eq_iff inj_on_def)
lemma : "f(x ↦ y) = f ++ [x ↦ y]"
by (auto simp add: map_add_def)
lemma [simp]:
"x ∉ dom f ⟹ ([x ↦ y] ++ f) x = Some y"
by (simp add:map_add_def dom_def)
lemma : "Some ++ f = map_id_on (- dom f) ++ f"
proof
fix x
show "(Some ++ f) x = (map_id_on (- dom f) ++ f) x"
proof (cases "x ∈ dom f")
case True
then show ?thesis by simp
next
case False
then show ?thesis by simp
qed
qed
lemma :
"x ∉ set xs ⟹ x ∉ dom [xs [↦] ys]"
by (simp add:dom_def)
lemma :
"⟦ distinct xs; y ∉ set ys; length xs = length ys ⟧ ⟹
y ∉ ran ([xs [↦] ys])"
apply (simp add:map_upds_def)
apply (subgoal_tac "distinct (map fst (rev (zip xs ys)))")
apply (simp add:ran_distinct)
apply (metis (opaque_lifting, no_types) image_iff set_zip_rightD surjective_pairing)
apply (simp add:zip_rev[THEN sym])
done
lemma [dest]:
"⟦ length xs = length ys; distinct xs; ∀ y. [xs [↦] ys] x = Some y ⟧ ⟹ y ∈ set ys"
using ranI by fastforce
lemma [intro]:
"⟦ length xs = length ys; distinct xs; distinct ys; set xs ∩ set ys = {} ⟧ ⟹
inj_on [xs [↦] ys] (set xs)"
apply (induct rule:list_induct2)
apply (simp_all)
apply (rule conjI)
apply (rule inj_onI)
apply (metis fun_upd_def inj_on_contraD)
apply (metis image_iff ranI ran_maplets)
done
lemma [simp]: "map_inv [x ↦ y] = [y ↦ x]"
by (auto simp add:map_inv_def)
lemma :
assumes "inj_on f (dom f)" "inj_on g (dom g)"
"ran f ∩ ran g = {}"
shows "map_inv (f ++ g) = map_inv f↿⇘(- dom g)⇙ ++ map_inv g"
proof -
have "map_inv (f ++ g) = map_inv (f |` (- dom(g)) ++ g)"
by (metis map_add_restrict)
also have "... = map_inv (f |` (- dom g)) ++ map_inv g"
by (rule map_inv_add', simp_all add: assms restrict_map_inj_on)
(metis assms(3) disjoint_iff ranI ran_restrictD)
also have "... = map_inv f↿⇘(- dom g)⇙ ++ map_inv g"
by (simp add: map_inv_dom_res assms)
finally show ?thesis .
qed
lemma :
assumes "inj_on f (dom f)" "inj_on g (dom g)" "v ∉ ran f"
shows "map_inv (f(k ↦ v)) = (map_inv (f |` (- {k})))(v ↦ k)"
proof -
have "map_inv (f(k ↦ v)) = map_inv (f ++ [k ↦ v])"
by (auto)
also have "... = map_inv f↿⇘(- dom [k ↦ v])⇙ ++ map_inv [k ↦ v]"
by (rule map_inv_add, simp_all add: assms)
also have "... = (map_inv f↿⇘(- {k})⇙)(v ↦ k)"
by (simp)
also have "... = (map_inv (f |` (- {k})))(v ↦ k)"
by (simp add: assms(1) map_inv_dom_res)
finally show ?thesis .
qed
lemma [simp]:
"⟦ length xs = length ys; distinct xs; distinct ys; set xs ∩ set ys = {} ⟧ ⟹
map_inv [xs [↦] ys] = [ys [↦] xs]"
proof (induct rule:list_induct2)
case Nil
then show ?case by simp
next
case (Cons x xs y ys)
have "map_inv ([xs [↦] ys] ++ [x ↦ y]) = map_inv [xs [↦] ys] ++ map_inv [x ↦ y]"
proof (rule map_inv_add')
from Cons show "inj_on [xs [↦] ys] (dom [xs [↦] ys])" by auto
from Cons show "inj_on [x ↦ y] (dom [x ↦ y])" by auto
from Cons show "dom [xs [↦] ys] ∩ dom [x ↦ y] = {}" by auto
from Cons show "ran [xs [↦] ys] ∩ ran [x ↦ y] = {}" by auto
qed
with Cons show ?case
by (metis disjoint_iff distinct.simps(2) list.set_intros(2) map_inv_maplet map_update_as_add map_upds_Cons map_upds_twist)
qed
lemma [simp]:
"⟦ length xs = length ys; distinct xs; i < length ys ⟧ ⟹
[xs [↦] ys] (xs ! i) = Some (ys ! i)"
apply (induct arbitrary: i rule:list_induct2)
apply simp
using less_Suc_eq_0_disj apply auto
done
theorem :
assumes "inj_on f (dom f)" "ran f = dom f"
shows "inv (the ∘ (Some ++ f)) = the ∘ map_inv (Some ++ f)"
proof
fix x
show "(inv (the ∘ (Some ++ f))) x = (the ∘ map_inv (Some ++ f)) x"
proof (cases "x ∈ ran f")
case True
then obtain y where y:"f y = Some x"
by (metis dom_image_ran image_iff)
with assms show ?thesis
apply (simp add:map_add_Some map_inv_add' inv_def)
apply (rule some_equality)
apply simp
apply (metis (full_types) Compl_iff domIff inj_on_def map_add_Some map_add_dom_app_simps(2,3) map_id_dom option.exhaust_sel ranI)
done
next
case False
then show ?thesis
apply (simp add:map_add_Some map_inv_add' inv_def)
apply (rule some_equality)
apply (simp add: assms(1,2) map_inv_add')
apply (metis (no_types, opaque_lifting) Un_UNIV_right assms(1,2) dom_map_add inj_completed_map map_add_None map_add_Some map_id_dom map_id_on_UNIV map_inv_f_f option.exhaust_sel
option.sel)
done
qed
qed
lemma : "dom (g ∘⇩m f) ⊆ dom f"
by (metis (lifting, full_types) Collect_mono dom_def map_comp_simps(1))
lemma : "f ∘⇩m (g ∘⇩m h) = f ∘⇩m g ∘⇩m h"
proof
fix x
show "(f ∘⇩m (g ∘⇩m h)) x = (f ∘⇩m g ∘⇩m h) x"
proof (cases "h x")
case None thus ?thesis
by (auto simp add: map_comp_def)
next
case (Some y) thus ?thesis
by (auto simp add: map_comp_def)
qed
qed
lemma [simp]: "f ∘⇩m Some = f"
by (simp add: map_comp_def)
lemma [simp]: "Some ∘⇩m f = f"
proof
fix x
show "(Some ∘⇩m f) x = f x"
proof (cases "f x")
case None thus ?thesis
by (simp add: map_comp_def)
next
case (Some y) thus ?thesis
by (simp add: map_comp_def)
qed
qed
lemma [simp]: "(f ∘⇩m g) x = g(x) >>= f"
by (auto simp add: map_comp_def option.case_eq_if)
lemma : "inj_on f (dom f) ⟹ map_graph (map_inv f) = (map_graph f)¯"
by (simp add: map_graph_def, safe, simp_all, metis dom_map_inv inj_map_inv map_inv_f_f map_inv_map_inv)
subsection ‹ Merging of compatible maps ›
:: "('a ⇀ 'b) ⇒ ('a ⇀ 'b) ⇒ bool" (infixl "∥⇩m" 60) where
"comp_map f g = (∀ x ∈ dom(f) ∩ dom(g). the(f(x)) = the(g(x)))"
lemma : "Map.empty ∥⇩m f"
by (simp add: comp_map_def)
lemma : "f ∥⇩m f"
by (simp add: comp_map_def)
lemma : "f ∥⇩m g ⟹ g ∥⇩m f"
by (simp add: comp_map_def)
:: "('a ⇀ 'b) set ⇒ 'a ⇀ 'b" where
"merge fs =
(λ x. if (∃ f ∈ fs. x ∈ dom(f)) then (THE y. ∀ f ∈ fs. x ∈ dom(f) ⟶ f(x) = y) else None)"
lemma : "merge {} = Map.empty"
by (simp add: merge_def)
lemma : "merge {f} = f"
unfolding merge_def
by (auto simp add: fun_eq_iff domIff)
subsection ‹ Conversion between lists and maps ›
:: "'a list ⇒ (nat ⇀ 'a)" where
"map_of_list xs = (λ i. if (i < length xs) then Some (xs!i) else None)"
lemma [simp]: "map_of_list [] = Map.empty"
by (simp add: map_of_list_def)
lemma [simp]: "dom (map_of_list xs) = {0..<length xs}"
by (auto simp add: map_of_list_def dom_def)
lemma [simp]: "ran (map_of_list xs) = set xs"
apply (simp add: ran_def map_of_list_def)
apply (safe)
apply (force)
apply (meson in_set_conv_nth)
done
:: "(nat ⇀ 'a) ⇒ 'a list" where
"list_of_map f = (if (f = Map.empty) then [] else map (the ∘ f) [0 ..< Suc(GREATEST x. x ∈ dom f)])"
lemma [simp]: "list_of_map Map.empty = []"
by (simp add: list_of_map_def)
:: "(nat ⇀ 'a) ⇀ 'a list" where
"list_of_map' f = (if (∃ n. dom f = {0..<n}) then Some (list_of_map f) else None)"
lemma [simp]: "list_of_map (map_of_list xs) = xs"
proof (cases "xs = []")
case True thus ?thesis by (simp)
next
case False
moreover hence "(GREATEST x. x ∈ dom (map_of_list xs)) = length xs - 1"
by (auto intro: Greatest_equality)
moreover from False have "map_of_list xs ≠ Map.empty"
by (metis ran_empty ran_map_of_list set_empty)
ultimately show ?thesis
by (auto intro!:nth_equalityI simp add: list_of_map_def map_of_list_def fun_eq_iff)
qed
subsection ‹ Map Comprehension ›
text ‹ Map comprehension simply converts a relation built through set comprehension into a map. ›
syntax
"_Mapcompr" :: "'a ⇒ 'b ⇒ idts ⇒ bool ⇒ 'a ⇀ 'b" ("(1[_ ↦ _ |/_./ _])")
translations
"_Mapcompr F G xs P" == "CONST graph_map {(F, G) | xs. P}"
lemma :
"[x ↦ y | x y. (x, y) ∈⇩m f] = f"
apply (rule ext)
apply (simp add: graph_map_def, safe, simp_all)
apply (metis (mono_tags, lifting) Domain.DomainI fst_eq_Domain mem_Collect_eq old.prod.case option.distinct(1) option.expand option.sel)
done
lemma :
"[x ↦ F x y | x y. (x, y) ∈⇩m f] = (λ x. do { y ← f(x); Some(F x y) })"
apply (rule ext)
apply (auto simp add: graph_map_def image_Collect)
done
lemma [simp]:
"dom [x ↦ f x | x. P x] = {x. P x}"
by (force simp add: graph_map_dom image_Collect)
lemma [simp]:
"ran [x ↦ f x | x. P x] = {f x | x. P x}"
apply (simp add: graph_map_def ran_def, safe, simp_all)
apply blast
apply (metis (mono_tags, lifting) fst_eqD image_eqI mem_Collect_eq someI)
done
lemma [simp]:
"[x ↦ f x | x. P x] x = (if (P x) then Some (f x) else None)"
by (auto simp add: graph_map_def image_Collect)
subsection ‹ Sorted lists from maps ›
:: "('a::linorder ⇀ 'b) ⇒ ('a × 'b) list" where
"sorted_list_of_map f = map (λ k. (k, the (f k))) (sorted_list_of_set(dom(f)))"
lemma [simp]:
"sorted_list_of_map Map.empty = []"
by (simp add: sorted_list_of_map_def)
lemma :
assumes "finite(dom(f))"
shows "map_of (sorted_list_of_map f) = f"
proof -
obtain A where "finite A" "A = dom(f)"
by (simp add: assms)
thus ?thesis
proof (induct A rule: finite_induct)
case empty thus ?thesis
by (simp add: sorted_list_of_map_def, metis dom_empty empty_iff map_le_antisym map_le_def)
next
case (insert x A) thus ?thesis
by (simp add: assms sorted_list_of_map_def map_of_map_keys)
qed
qed
declare map_member.simps [simp del]
subsection ‹ Extra map lemmas ›
lemma :
"⟦ dom f = dom g; ∀ x∈dom(f). the(f x) = the(g x) ⟧ ⟹ f = g"
by (metis domIff map_le_antisym map_le_def option.expand)
lemma [simp]: "f |` dom f = f"
by (simp add: map_eqI)
lemma : "f |` (- dom f) = Map.empty"
by (metis dom_eq_empty_conv dom_restrict inf_compl_bot)
lemma :
"dom(f) ∩ A = {} ⟹ f |` (- A) = f"
by (simp add: restrict_map_def, rule ext, metis IntI domIff empty_iff)
lemma : "(f ++ g) |` A = (f |` A) ++ (g |` A)"
by (auto simp add: restrict_map_def map_add_def)
lemma :
assumes "f ++ h = g ++ h"
shows "(f |` (- dom h)) = (g |` (- dom h))"
proof -
have "h |` (- dom h) = Map.empty"
by (metis Compl_disjoint dom_eq_empty_conv dom_restrict)
then have f2: "f |` (- dom h) = (f ++ h) |` (- dom h)"
by (simp add: map_plus_restrict_dist)
have "h |` (- dom h) = Map.empty"
by (metis (no_types) Compl_disjoint dom_eq_empty_conv dom_restrict)
then show ?thesis
using f2 assms by (simp add: map_plus_restrict_dist)
qed
lemma :
"dom(f) = A ∪ B ⟹ (f |` A) ++ (f |` B) = f"
by (rule ext, auto simp add: map_add_def restrict_map_def option.case_eq_if)
lemma :
"f ⊆⇩m g ⟷ g |` dom(f) = f"
by (auto simp add: map_le_def restrict_map_def dom_def fun_eq_iff)
lemma :
"f ⊆⇩m g ⟹ f ++ (g -- f) = g"
by (simp add: map_le_def map_add_def map_minus_def fun_eq_iff option.case_eq_if)
(metis domIff)
lemma : "f ⊆⇩m g ⟷ (∃ h. dom(f) ∩ dom(h) = {} ∧ f ++ h = g)"
proof
assume "f ⊆⇩m g"
hence "dom f ∩ dom (g -- f) = {} ∧ f ++ (g -- f) = g"
by (metis (no_types, lifting) Int_emptyI domIff map_add_cancel map_le_def map_minus_def)
thus "∃h. dom f ∩ dom h = {} ∧ f ++ h = g" by blast
next
assume "∃h. dom f ∩ dom h = {} ∧ f ++ h = g"
thus "f ⊆⇩m g"
by (auto simp add: map_add_comm)
qed
lemma : "(∀ k ∈ dom m1 ∩ dom m2. m1(k) = m2(k)) ⟹ m1 ++ m2 = m2 ++ m1"
by (simp add: map_add_def option.case_eq_if fun_eq_iff)
(metis IntI domI)
lemma : "Q |` dom P = P |` dom Q ⟹ P ++ Q = Q ++ P"
by (metis IntD1 IntD2 map_add_comm_weak restrict_in)
lemma : "Q |` dom P = P |` dom Q ⟹ R |` (dom Q ∪ dom P) = (P ++ Q) |` dom R ⟹ R |` dom P = P |` dom R"
by (metis Int_commute Map.restrict_restrict Un_Int_eq(2) map_add_comm_weak' map_le_iff_map_add_commute map_le_via_restrict)
abbreviation " R ≡ rel_fun (=) (rel_option R)"
lemma :
"rel_map R f g ⟷ (dom(f) = dom(g) ∧ (∀ x∈dom(f). R (the (f x)) (the (g x))))"
apply (simp add: rel_fun_def, safe)
apply (metis not_None_eq option.rel_distinct(2))
apply (metis not_None_eq option.rel_distinct(1))
apply (metis option.rel_sel option.sel option.simps(3))
apply (metis domIff option.rel_sel)
done
end