Theory Boolean_Algebras
section ‹Boolean Algebras›
theory Boolean_Algebras
imports Lattices
begin
subsection ‹Abstract boolean algebra›
locale abstract_boolean_algebra = conj: abel_semigroup ‹(❙⊓)› + disj: abel_semigroup ‹(❙⊔)›
for conj :: ‹'a ⇒ 'a ⇒ 'a› (infixr ‹❙⊓› 70)
and disj :: ‹'a ⇒ 'a ⇒ 'a› (infixr ‹❙⊔› 65) +
fixes compl :: ‹'a ⇒ 'a› (‹❙- _› [81] 80)
and zero :: ‹'a› (‹❙0›)
and one :: ‹'a› (‹❙1›)
assumes conj_disj_distrib: ‹x ❙⊓ (y ❙⊔ z) = (x ❙⊓ y) ❙⊔ (x ❙⊓ z)›
and disj_conj_distrib: ‹x ❙⊔ (y ❙⊓ z) = (x ❙⊔ y) ❙⊓ (x ❙⊔ z)›
and conj_one_right: ‹x ❙⊓ ❙1 = x›
and disj_zero_right: ‹x ❙⊔ ❙0 = x›
and conj_cancel_right [simp]: ‹x ❙⊓ ❙- x = ❙0›
and disj_cancel_right [simp]: ‹x ❙⊔ ❙- x = ❙1›
begin
sublocale conj: semilattice_neutr ‹(❙⊓)› ‹❙1›
proof
show "x ❙⊓ ❙1 = x" for x
by (fact conj_one_right)
show "x ❙⊓ x = x" for x
proof -
have "x ❙⊓ x = (x ❙⊓ x) ❙⊔ ❙0"
by (simp add: disj_zero_right)
also have "… = (x ❙⊓ x) ❙⊔ (x ❙⊓ ❙- x)"
by simp
also have "… = x ❙⊓ (x ❙⊔ ❙- x)"
by (simp only: conj_disj_distrib)
also have "… = x ❙⊓ ❙1"
by simp
also have "… = x"
by (simp add: conj_one_right)
finally show ?thesis .
qed
qed
sublocale disj: semilattice_neutr ‹(❙⊔)› ‹❙0›
proof
show "x ❙⊔ ❙0 = x" for x
by (fact disj_zero_right)
show "x ❙⊔ x = x" for x
proof -
have "x ❙⊔ x = (x ❙⊔ x) ❙⊓ ❙1"
by simp
also have "… = (x ❙⊔ x) ❙⊓ (x ❙⊔ ❙- x)"
by simp
also have "… = x ❙⊔ (x ❙⊓ ❙- x)"
by (simp only: disj_conj_distrib)
also have "… = x ❙⊔ ❙0"
by simp
also have "… = x"
by (simp add: disj_zero_right)
finally show ?thesis .
qed
qed
subsubsection ‹Complement›
lemma complement_unique:
assumes 1: "a ❙⊓ x = ❙0"
assumes 2: "a ❙⊔ x = ❙1"
assumes 3: "a ❙⊓ y = ❙0"
assumes 4: "a ❙⊔ y = ❙1"
shows "x = y"
proof -
from 1 3 have "(a ❙⊓ x) ❙⊔ (x ❙⊓ y) = (a ❙⊓ y) ❙⊔ (x ❙⊓ y)"
by simp
then have "(x ❙⊓ a) ❙⊔ (x ❙⊓ y) = (y ❙⊓ a) ❙⊔ (y ❙⊓ x)"
by (simp add: ac_simps)
then have "x ❙⊓ (a ❙⊔ y) = y ❙⊓ (a ❙⊔ x)"
by (simp add: conj_disj_distrib)
with 2 4 have "x ❙⊓ ❙1 = y ❙⊓ ❙1"
by simp
then show "x = y"
by simp
qed
lemma compl_unique: "x ❙⊓ y = ❙0 ⟹ x ❙⊔ y = ❙1 ⟹ ❙- x = y"
by (rule complement_unique [OF conj_cancel_right disj_cancel_right])
lemma double_compl [simp]: "❙- (❙- x) = x"
proof (rule compl_unique)
show "❙- x ❙⊓ x = ❙0"
by (simp only: conj_cancel_right conj.commute)
show "❙- x ❙⊔ x = ❙1"
by (simp only: disj_cancel_right disj.commute)
qed
lemma compl_eq_compl_iff [simp]:
‹❙- x = ❙- y ⟷ x = y› (is ‹?P ⟷ ?Q›)
proof
assume ‹?Q›
then show ?P by simp
next
assume ‹?P›
then have ‹❙- (❙- x) = ❙- (❙- y)›
by simp
then show ?Q
by simp
qed
subsubsection ‹Conjunction›
lemma conj_zero_right [simp]: "x ❙⊓ ❙0 = ❙0"
using conj.left_idem conj_cancel_right by fastforce
lemma compl_one [simp]: "❙- ❙1 = ❙0"
by (rule compl_unique [OF conj_zero_right disj_zero_right])
lemma conj_zero_left [simp]: "❙0 ❙⊓ x = ❙0"
by (subst conj.commute) (rule conj_zero_right)
lemma conj_cancel_left [simp]: "❙- x ❙⊓ x = ❙0"
by (subst conj.commute) (rule conj_cancel_right)
lemma conj_disj_distrib2: "(y ❙⊔ z) ❙⊓ x = (y ❙⊓ x) ❙⊔ (z ❙⊓ x)"
by (simp only: conj.commute conj_disj_distrib)
lemmas conj_disj_distribs = conj_disj_distrib conj_disj_distrib2
subsubsection ‹Disjunction›
context
begin
interpretation dual: abstract_boolean_algebra ‹(❙⊔)› ‹(❙⊓)› compl ‹❙1› ‹❙0›
apply standard
apply (rule disj_conj_distrib)
apply (rule conj_disj_distrib)
apply simp_all
done
lemma disj_one_right [simp]: "x ❙⊔ ❙1 = ❙1"
by (fact dual.conj_zero_right)
lemma compl_zero [simp]: "❙- ❙0 = ❙1"
by (fact dual.compl_one)
lemma disj_one_left [simp]: "❙1 ❙⊔ x = ❙1"
by (fact dual.conj_zero_left)
lemma disj_cancel_left [simp]: "❙- x ❙⊔ x = ❙1"
by (fact dual.conj_cancel_left)
lemma disj_conj_distrib2: "(y ❙⊓ z) ❙⊔ x = (y ❙⊔ x) ❙⊓ (z ❙⊔ x)"
by (fact dual.conj_disj_distrib2)
lemmas disj_conj_distribs = disj_conj_distrib disj_conj_distrib2
end
subsubsection ‹De Morgan's Laws›
lemma de_Morgan_conj [simp]: "❙- (x ❙⊓ y) = ❙- x ❙⊔ ❙- y"
proof (rule compl_unique)
have "(x ❙⊓ y) ❙⊓ (❙- x ❙⊔ ❙- y) = ((x ❙⊓ y) ❙⊓ ❙- x) ❙⊔ ((x ❙⊓ y) ❙⊓ ❙- y)"
by (rule conj_disj_distrib)
also have "… = (y ❙⊓ (x ❙⊓ ❙- x)) ❙⊔ (x ❙⊓ (y ❙⊓ ❙- y))"
by (simp only: ac_simps)
finally show "(x ❙⊓ y) ❙⊓ (❙- x ❙⊔ ❙- y) = ❙0"
by (simp only: conj_cancel_right conj_zero_right disj_zero_right)
next
have "(x ❙⊓ y) ❙⊔ (❙- x ❙⊔ ❙- y) = (x ❙⊔ (❙- x ❙⊔ ❙- y)) ❙⊓ (y ❙⊔ (❙- x ❙⊔ ❙- y))"
by (rule disj_conj_distrib2)
also have "… = (❙- y ❙⊔ (x ❙⊔ ❙- x)) ❙⊓ (❙- x ❙⊔ (y ❙⊔ ❙- y))"
by (simp only: ac_simps)
finally show "(x ❙⊓ y) ❙⊔ (❙- x ❙⊔ ❙- y) = ❙1"
by (simp only: disj_cancel_right disj_one_right conj_one_right)
qed
context
begin
interpretation dual: abstract_boolean_algebra ‹(❙⊔)› ‹(❙⊓)› compl ‹❙1› ‹❙0›
apply standard
apply (rule disj_conj_distrib)
apply (rule conj_disj_distrib)
apply simp_all
done
lemma de_Morgan_disj [simp]: "❙- (x ❙⊔ y) = ❙- x ❙⊓ ❙- y"
by (fact dual.de_Morgan_conj)
end
end
subsection ‹Symmetric Difference›
locale abstract_boolean_algebra_sym_diff = abstract_boolean_algebra +
fixes xor :: ‹'a ⇒ 'a ⇒ 'a› (infixr ‹❙⊖› 65)
assumes xor_def : ‹x ❙⊖ y = (x ❙⊓ ❙- y) ❙⊔ (❙- x ❙⊓ y)›
begin
sublocale xor: comm_monoid xor ‹❙0›
proof
fix x y z :: 'a
let ?t = "(x ❙⊓ y ❙⊓ z) ❙⊔ (x ❙⊓ ❙- y ❙⊓ ❙- z) ❙⊔ (❙- x ❙⊓ y ❙⊓ ❙- z) ❙⊔ (❙- x ❙⊓ ❙- y ❙⊓ z)"
have "?t ❙⊔ (z ❙⊓ x ❙⊓ ❙- x) ❙⊔ (z ❙⊓ y ❙⊓ ❙- y) = ?t ❙⊔ (x ❙⊓ y ❙⊓ ❙- y) ❙⊔ (x ❙⊓ z ❙⊓ ❙- z)"
by (simp only: conj_cancel_right conj_zero_right)
then show "(x ❙⊖ y) ❙⊖ z = x ❙⊖ (y ❙⊖ z)"
by (simp only: xor_def de_Morgan_disj de_Morgan_conj double_compl)
(simp only: conj_disj_distribs conj_ac ac_simps)
show "x ❙⊖ y = y ❙⊖ x"
by (simp only: xor_def ac_simps)
show "x ❙⊖ ❙0 = x"
by (simp add: xor_def)
qed
lemma xor_def2:
‹x ❙⊖ y = (x ❙⊔ y) ❙⊓ (❙- x ❙⊔ ❙- y)›
proof -
note xor_def [of x y]
also have ‹x ❙⊓ ❙- y ❙⊔ ❙- x ❙⊓ y = ((x ❙⊔ ❙- x) ❙⊓ (❙- y ❙⊔ ❙- x)) ❙⊓ (x ❙⊔ y) ❙⊓ (❙- y ❙⊔ y)›
by (simp add: ac_simps disj_conj_distribs)
also have ‹… = (x ❙⊔ y) ❙⊓ (❙- x ❙⊔ ❙- y)›
by (simp add: ac_simps)
finally show ?thesis .
qed
lemma xor_one_right [simp]: "x ❙⊖ ❙1 = ❙- x"
by (simp only: xor_def compl_one conj_zero_right conj_one_right disj.left_neutral)
lemma xor_one_left [simp]: "❙1 ❙⊖ x = ❙- x"
using xor_one_right [of x] by (simp add: ac_simps)
lemma xor_self [simp]: "x ❙⊖ x = ❙0"
by (simp only: xor_def conj_cancel_right conj_cancel_left disj_zero_right)
lemma xor_left_self [simp]: "x ❙⊖ (x ❙⊖ y) = y"
by (simp only: xor.assoc [symmetric] xor_self xor.left_neutral)
lemma xor_compl_left [simp]: "❙- x ❙⊖ y = ❙- (x ❙⊖ y)"
by (simp add: ac_simps flip: xor_one_left)
lemma xor_compl_right [simp]: "x ❙⊖ ❙- y = ❙- (x ❙⊖ y)"
using xor.commute xor_compl_left by auto
lemma xor_cancel_right [simp]: "x ❙⊖ ❙- x = ❙1"
by (simp only: xor_compl_right xor_self compl_zero)
lemma xor_cancel_left [simp]: "❙- x ❙⊖ x = ❙1"
by (simp only: xor_compl_left xor_self compl_zero)
lemma conj_xor_distrib: "x ❙⊓ (y ❙⊖ z) = (x ❙⊓ y) ❙⊖ (x ❙⊓ z)"
proof -
have *: "(x ❙⊓ y ❙⊓ ❙- z) ❙⊔ (x ❙⊓ ❙- y ❙⊓ z) =
(y ❙⊓ x ❙⊓ ❙- x) ❙⊔ (z ❙⊓ x ❙⊓ ❙- x) ❙⊔ (x ❙⊓ y ❙⊓ ❙- z) ❙⊔ (x ❙⊓ ❙- y ❙⊓ z)"
by (simp only: conj_cancel_right conj_zero_right disj.left_neutral)
then show "x ❙⊓ (y ❙⊖ z) = (x ❙⊓ y) ❙⊖ (x ❙⊓ z)"
by (simp (no_asm_use) only:
xor_def de_Morgan_disj de_Morgan_conj double_compl
conj_disj_distribs ac_simps)
qed
lemma conj_xor_distrib2: "(y ❙⊖ z) ❙⊓ x = (y ❙⊓ x) ❙⊖ (z ❙⊓ x)"
by (simp add: conj.commute conj_xor_distrib)
lemmas conj_xor_distribs = conj_xor_distrib conj_xor_distrib2
end
subsection ‹Type classes›
class boolean_algebra = distrib_lattice + bounded_lattice + minus + uminus +
assumes inf_compl_bot: ‹x ⊓ - x = ⊥›
and sup_compl_top: ‹x ⊔ - x = ⊤›
assumes diff_eq: ‹x - y = x ⊓ - y›
begin
sublocale boolean_algebra: abstract_boolean_algebra ‹(⊓)› ‹(⊔)› uminus ⊥ ⊤
apply standard
apply (rule inf_sup_distrib1)
apply (rule sup_inf_distrib1)
apply (simp_all add: ac_simps inf_compl_bot sup_compl_top)
done
lemma compl_inf_bot: "- x ⊓ x = ⊥"
by (fact boolean_algebra.conj_cancel_left)
lemma compl_sup_top: "- x ⊔ x = ⊤"
by (fact boolean_algebra.disj_cancel_left)
lemma compl_unique:
assumes "x ⊓ y = ⊥"
and "x ⊔ y = ⊤"
shows "- x = y"
using assms by (rule boolean_algebra.compl_unique)
lemma double_compl: "- (- x) = x"
by (fact boolean_algebra.double_compl)
lemma compl_eq_compl_iff: "- x = - y ⟷ x = y"
by (fact boolean_algebra.compl_eq_compl_iff)
lemma compl_bot_eq: "- ⊥ = ⊤"
by (fact boolean_algebra.compl_zero)
lemma compl_top_eq: "- ⊤ = ⊥"
by (fact boolean_algebra.compl_one)
lemma compl_inf: "- (x ⊓ y) = - x ⊔ - y"
by (fact boolean_algebra.de_Morgan_conj)
lemma compl_sup: "- (x ⊔ y) = - x ⊓ - y"
by (fact boolean_algebra.de_Morgan_disj)
lemma compl_mono:
assumes "x ≤ y"
shows "- y ≤ - x"
proof -
from assms have "x ⊔ y = y" by (simp only: le_iff_sup)
then have "- (x ⊔ y) = - y" by simp
then have "- x ⊓ - y = - y" by simp
then have "- y ⊓ - x = - y" by (simp only: inf_commute)
then show ?thesis by (simp only: le_iff_inf)
qed
lemma compl_le_compl_iff [simp]: "- x ≤ - y ⟷ y ≤ x"
by (auto dest: compl_mono)
lemma compl_le_swap1:
assumes "y ≤ - x"
shows "x ≤ -y"
proof -
from assms have "- (- x) ≤ - y" by (simp only: compl_le_compl_iff)
then show ?thesis by simp
qed
lemma compl_le_swap2:
assumes "- y ≤ x"
shows "- x ≤ y"
proof -
from assms have "- x ≤ - (- y)" by (simp only: compl_le_compl_iff)
then show ?thesis by simp
qed
lemma compl_less_compl_iff [simp]: "- x < - y ⟷ y < x"
by (auto simp add: less_le)
lemma compl_less_swap1:
assumes "y < - x"
shows "x < - y"
proof -
from assms have "- (- x) < - y" by (simp only: compl_less_compl_iff)
then show ?thesis by simp
qed
lemma compl_less_swap2:
assumes "- y < x"
shows "- x < y"
proof -
from assms have "- x < - (- y)"
by (simp only: compl_less_compl_iff)
then show ?thesis by simp
qed
lemma sup_cancel_left1: ‹x ⊔ a ⊔ (- x ⊔ b) = ⊤›
by (simp add: ac_simps)
lemma sup_cancel_left2: ‹- x ⊔ a ⊔ (x ⊔ b) = ⊤›
by (simp add: ac_simps)
lemma inf_cancel_left1: ‹x ⊓ a ⊓ (- x ⊓ b) = ⊥›
by (simp add: ac_simps)
lemma inf_cancel_left2: ‹- x ⊓ a ⊓ (x ⊓ b) = ⊥›
by (simp add: ac_simps)
lemma sup_compl_top_left1 [simp]: ‹- x ⊔ (x ⊔ y) = ⊤›
by (simp add: sup_assoc [symmetric])
lemma sup_compl_top_left2 [simp]: ‹x ⊔ (- x ⊔ y) = ⊤›
using sup_compl_top_left1 [of "- x" y] by simp
lemma inf_compl_bot_left1 [simp]: ‹- x ⊓ (x ⊓ y) = ⊥›
by (simp add: inf_assoc [symmetric])
lemma inf_compl_bot_left2 [simp]: ‹x ⊓ (- x ⊓ y) = ⊥›
using inf_compl_bot_left1 [of "- x" y] by simp
lemma inf_compl_bot_right [simp]: ‹x ⊓ (y ⊓ - x) = ⊥›
by (subst inf_left_commute) simp
end
subsection ‹Lattice on \<^typ>‹bool››
instantiation bool :: boolean_algebra
begin
definition bool_Compl_def [simp]: "uminus = Not"
definition bool_diff_def [simp]: "A - B ⟷ A ∧ ¬ B"
definition [simp]: "P ⊓ Q ⟷ P ∧ Q"
definition [simp]: "P ⊔ Q ⟷ P ∨ Q"
instance by standard auto
end
lemma sup_boolI1: "P ⟹ P ⊔ Q"
by simp
lemma sup_boolI2: "Q ⟹ P ⊔ Q"
by simp
lemma sup_boolE: "P ⊔ Q ⟹ (P ⟹ R) ⟹ (Q ⟹ R) ⟹ R"
by auto
instance "fun" :: (type, boolean_algebra) boolean_algebra
by standard (rule ext, simp_all add: inf_compl_bot sup_compl_top diff_eq)+
subsection ‹Lattice on unary and binary predicates›
lemma inf1I: "A x ⟹ B x ⟹ (A ⊓ B) x"
by (simp add: inf_fun_def)
lemma inf2I: "A x y ⟹ B x y ⟹ (A ⊓ B) x y"
by (simp add: inf_fun_def)
lemma inf1E: "(A ⊓ B) x ⟹ (A x ⟹ B x ⟹ P) ⟹ P"
by (simp add: inf_fun_def)
lemma inf2E: "(A ⊓ B) x y ⟹ (A x y ⟹ B x y ⟹ P) ⟹ P"
by (simp add: inf_fun_def)
lemma inf1D1: "(A ⊓ B) x ⟹ A x"
by (rule inf1E)
lemma inf2D1: "(A ⊓ B) x y ⟹ A x y"
by (rule inf2E)
lemma inf1D2: "(A ⊓ B) x ⟹ B x"
by (rule inf1E)
lemma inf2D2: "(A ⊓ B) x y ⟹ B x y"
by (rule inf2E)
lemma sup1I1: "A x ⟹ (A ⊔ B) x"
by (simp add: sup_fun_def)
lemma sup2I1: "A x y ⟹ (A ⊔ B) x y"
by (simp add: sup_fun_def)
lemma sup1I2: "B x ⟹ (A ⊔ B) x"
by (simp add: sup_fun_def)
lemma sup2I2: "B x y ⟹ (A ⊔ B) x y"
by (simp add: sup_fun_def)
lemma sup1E: "(A ⊔ B) x ⟹ (A x ⟹ P) ⟹ (B x ⟹ P) ⟹ P"
by (simp add: sup_fun_def) iprover
lemma sup2E: "(A ⊔ B) x y ⟹ (A x y ⟹ P) ⟹ (B x y ⟹ P) ⟹ P"
by (simp add: sup_fun_def) iprover
text ‹ ┉ Classical introduction rule: no commitment to ‹A› vs ‹B›.›
lemma sup1CI: "(¬ B x ⟹ A x) ⟹ (A ⊔ B) x"
by (auto simp add: sup_fun_def)
lemma sup2CI: "(¬ B x y ⟹ A x y) ⟹ (A ⊔ B) x y"
by (auto simp add: sup_fun_def)
subsection ‹Simproc setup›
locale boolean_algebra_cancel
begin
lemma sup1: "(A::'a::semilattice_sup) ≡ sup k a ⟹ sup A b ≡ sup k (sup a b)"
by (simp only: ac_simps)
lemma sup2: "(B::'a::semilattice_sup) ≡ sup k b ⟹ sup a B ≡ sup k (sup a b)"
by (simp only: ac_simps)
lemma sup0: "(a::'a::bounded_semilattice_sup_bot) ≡ sup a bot"
by simp
lemma inf1: "(A::'a::semilattice_inf) ≡ inf k a ⟹ inf A b ≡ inf k (inf a b)"
by (simp only: ac_simps)
lemma inf2: "(B::'a::semilattice_inf) ≡ inf k b ⟹ inf a B ≡ inf k (inf a b)"
by (simp only: ac_simps)
lemma inf0: "(a::'a::bounded_semilattice_inf_top) ≡ inf a top"
by simp
end
ML_file ‹Tools/boolean_algebra_cancel.ML›
simproc_setup boolean_algebra_cancel_sup ("sup a b::'a::boolean_algebra") =
‹K (K (try Boolean_Algebra_Cancel.cancel_sup_conv))›
simproc_setup boolean_algebra_cancel_inf ("inf a b::'a::boolean_algebra") =
‹K (K (try Boolean_Algebra_Cancel.cancel_inf_conv))›
context boolean_algebra
begin
lemma shunt1: "(x ⊓ y ≤ z) ⟷ (x ≤ -y ⊔ z)"
proof
assume "x ⊓ y ≤ z"
hence "-y ⊔ (x ⊓ y) ≤ -y ⊔ z"
using sup.mono by blast
hence "-y ⊔ x ≤ -y ⊔ z"
by (simp add: sup_inf_distrib1)
thus "x ≤ -y ⊔ z"
by simp
next
assume "x ≤ -y ⊔ z"
hence "x ⊓ y ≤ (-y ⊔ z) ⊓ y"
using inf_mono by auto
thus "x ⊓ y ≤ z"
using inf.boundedE inf_sup_distrib2 by auto
qed
lemma shunt2: "(x ⊓ -y ≤ z) ⟷ (x ≤ y ⊔ z)"
by (simp add: shunt1)
lemma inf_shunt: "(x ⊓ y = ⊥) ⟷ (x ≤ - y)"
by (simp add: order.eq_iff shunt1)
lemma sup_shunt: "(x ⊔ y = ⊤) ⟷ (- x ≤ y)"
using inf_shunt [of ‹- x› ‹- y›, symmetric]
by (simp flip: compl_sup compl_top_eq)
lemma diff_shunt_var[simp]: "(x - y = ⊥) ⟷ (x ≤ y)"
by (simp add: diff_eq inf_shunt)
lemma diff_shunt[simp]: "(⊥ = x - y) ⟷ (x ≤ y)"
by (auto simp flip: diff_shunt_var)
lemma sup_neg_inf:
‹p ≤ q ⊔ r ⟷ p ⊓ -q ≤ r› (is ‹?P ⟷ ?Q›)
proof
assume ?P
then have ‹p ⊓ - q ≤ (q ⊔ r) ⊓ - q›
by (rule inf_mono) simp
then show ?Q
by (simp add: inf_sup_distrib2)
next
assume ?Q
then have ‹p ⊓ - q ⊔ q ≤ r ⊔ q›
by (rule sup_mono) simp
then show ?P
by (simp add: sup_inf_distrib ac_simps)
qed
end
end