Theory Jinja.Semilat
chapter ‹Bytecode Verifier \label{cha:bv}›
section ‹Semilattices›
theory Semilat
imports Main "HOL-Library.While_Combinator"
begin
type_synonym 'a ord    = "'a ⇒ 'a ⇒ bool"
type_synonym 'a binop  = "'a ⇒ 'a ⇒ 'a"
type_synonym 'a sl     = "'a set × 'a ord × 'a binop"
definition lesub :: "'a ⇒ 'a ord ⇒ 'a ⇒ bool"
  where "lesub x r y ⟷ r x y"
definition lesssub :: "'a ⇒ 'a ord ⇒ 'a ⇒ bool"
  where "lesssub x r y ⟷ lesub x r y ∧ x ≠ y"
definition plussub :: "'a ⇒ ('a ⇒ 'b ⇒ 'c) ⇒ 'b ⇒ 'c"
  where "plussub x f y = f x y"
notation (ASCII)
  "lesub"  (‹(_ /<='__ _)› [50, 1000, 51] 50) and
  "lesssub"  (‹(_ /<'__ _)› [50, 1000, 51] 50) and
  "plussub"  (‹(_ /+'__ _)› [65, 1000, 66] 65)
notation
  "lesub"  (‹(_ /⊑⇘_⇙ _)› [50, 0, 51] 50) and
  "lesssub"  (‹(_ /⊏⇘_⇙ _)› [50, 0, 51] 50) and
  "plussub"  (‹(_ /⊔⇘_⇙ _)› [65, 0, 66] 65)
abbreviation (input)
  lesub1 :: "'a ⇒ 'a ord ⇒ 'a ⇒ bool" (‹(_ /⊑⇩_ _)› [50, 1000, 51] 50)
  where "x ⊑⇩r y == x ⊑⇘r⇙ y"
abbreviation (input)
  lesssub1 :: "'a ⇒ 'a ord ⇒ 'a ⇒ bool" (‹(_ /⊏⇩_ _)› [50, 1000, 51] 50)
  where "x ⊏⇩r y == x ⊏⇘r⇙ y"
abbreviation (input)
  plussub1 :: "'a ⇒ ('a ⇒ 'b ⇒ 'c) ⇒ 'b ⇒ 'c" (‹(_ /⊔⇩_ _)› [65, 1000, 66] 65)
  where "x ⊔⇩f y == x ⊔⇘f⇙ y"
definition ord :: "('a × 'a) set ⇒ 'a ord"
where
  "ord r = (λx y. (x,y) ∈ r)"
definition order :: "'a ord ⇒ 'a set ⇒ bool"
where
  "order r A ⟷ (∀x∈A. x ⊑⇩r x) ∧ (∀x∈A. ∀y∈A. x ⊑⇩r y ∧ y ⊑⇩r x ⟶ x=y) ∧ (∀x∈A.  ∀y∈A. ∀z∈A. x ⊑⇩r y ∧ y ⊑⇩r z ⟶ x ⊑⇩r z)"
definition top :: "'a ord ⇒ 'a ⇒ bool"
where
  "top r T ⟷ (∀x. x ⊑⇩r T)"
  
definition acc :: "'a ord ⇒ bool"
where
  "acc r ⟷ wf {(y,x). x ⊏⇩r y}"
definition closed :: "'a set ⇒ 'a binop ⇒ bool"
where
  "closed A f ⟷ (∀x∈A. ∀y∈A. x ⊔⇩f y ∈ A)"
definition semilat :: "'a sl ⇒ bool"
where
  "semilat = (λ(A,r,f). order r A ∧ closed A f ∧ 
                       (∀x∈A. ∀y∈A. x ⊑⇩r x ⊔⇩f y) ∧
                       (∀x∈A. ∀y∈A. y ⊑⇩r x ⊔⇩f y) ∧
                       (∀x∈A. ∀y∈A. ∀z∈A. x ⊑⇩r z ∧ y ⊑⇩r z ⟶ x ⊔⇩f y ⊑⇩r z))"
definition is_ub :: "('a × 'a) set ⇒ 'a ⇒ 'a ⇒ 'a ⇒ bool"
where
  "is_ub r x y u ⟷ (x,u)∈r ∧ (y,u)∈r"
definition is_lub :: "('a × 'a) set ⇒ 'a ⇒ 'a ⇒ 'a ⇒ bool"
where
  "is_lub r x y u ⟷ is_ub r x y u ∧ (∀z. is_ub r x y z ⟶ (u,z)∈r)"
definition some_lub :: "('a × 'a) set ⇒ 'a ⇒ 'a ⇒ 'a"
where
  "some_lub r x y = (SOME z. is_lub r x y z)"
locale Semilat =
  fixes A :: "'a set"
  fixes r :: "'a ord"
  fixes f :: "'a binop"
  assumes semilat: "semilat (A, r, f)"
lemma order_refl [simp, intro]: "order r A ⟹ x ∈ A ⟹ x ⊑⇩r x"
   by (unfold order_def) (simp (no_asm_simp)) 
lemma order_antisym: "⟦ order r A; x ⊑⇩r y; y ⊑⇩r x; x ∈ A; y ∈ A ⟧ ⟹  x = y"
   by (unfold order_def) ( simp (no_asm_simp)) 
lemma order_trans: "⟦ order r A;  x ⊑⇩r y;  y ⊑⇩r z; x ∈ A; y ∈ A; z ∈ A ⟧ ⟹ x ⊑⇩r z"
   by (unfold order_def) blast 
lemma order_less_irrefl [intro, simp]: "order r A ⟹ x ∈ A ⟹ ¬ x ⊏⇩r x"
   by (unfold order_def lesssub_def) blast 
lemma order_less_trans: "⟦ order r A; x ⊏⇩r y; y ⊏⇩r z; x ∈ A; y ∈ A; z ∈ A ⟧ ⟹ x ⊏⇩r z"
   by (unfold order_def lesssub_def) blast 
lemma topD [simp, intro]: "top r T ⟹ x ⊑⇩r T"
   by (simp add: top_def) 
lemma top_le_conv [simp]: "⟦ order r A; top r T; x ∈ A; T ∈ A⟧ ⟹ (T ⊑⇩r x) = (x = T)"
   by (blast intro: order_antisym) 
lemma semilat_Def:
"semilat(A,r,f) ⟷ order r A ∧ closed A f ∧ 
                 (∀x∈A. ∀y∈A. x ⊑⇩r x ⊔⇩f y) ∧ 
                 (∀x∈A. ∀y∈A. y ⊑⇩r x ⊔⇩f y) ∧ 
                 (∀x∈A. ∀y∈A. ∀z∈A. x ⊑⇩r z ∧ y ⊑⇩r z ⟶ x ⊔⇩f y ⊑⇩r z)"
   by (unfold semilat_def) clarsimp 
lemma (in Semilat) orderI [simp, intro]: "order r A"
   using semilat by (simp add: semilat_Def) 
lemma (in Semilat) closedI [simp, intro]: "closed A f"
   using semilat by (simp add: semilat_Def) 
lemma closedD: "⟦ closed A f; x∈A; y∈A ⟧ ⟹ x ⊔⇩f y ∈ A"
   by (unfold closed_def) blast 
lemma closed_UNIV [simp]: "closed UNIV f"
   by (simp add: closed_def) 
lemma (in Semilat) closed_f [simp, intro]: "⟦x ∈ A; y ∈ A⟧  ⟹ x ⊔⇩f y ∈ A"
   by (simp add: closedD [OF closedI]) 
lemma (in Semilat) refl_r [intro, simp]: "x ∈ A ⟹ x ⊑⇩r x" by auto
lemma (in Semilat) antisym_r [intro?]: "⟦ x ⊑⇩r y; y ⊑⇩r x; x ∈ A; y ∈ A ⟧ ⟹ x = y"
   by (rule order_antisym) auto 
lemma (in Semilat) trans_r [trans, intro?]: "⟦x ⊑⇩r y; y ⊑⇩r z; x ∈ A; y ∈ A; z ∈ A ⟧ ⟹ x ⊑⇩r z"
   by (auto intro: order_trans) 
  
lemma (in Semilat) ub1 [simp, intro?]: "⟦ x ∈ A; y ∈ A ⟧ ⟹ x ⊑⇩r x ⊔⇩f y"
   by (insert semilat) (unfold semilat_Def, simp) 
lemma (in Semilat) ub2 [simp, intro?]: "⟦ x ∈ A; y ∈ A ⟧ ⟹ y ⊑⇩r x ⊔⇩f y"
   by (insert semilat) (unfold semilat_Def, simp) 
lemma (in Semilat) lub [simp, intro?]:
  "⟦ x ⊑⇩r z; y ⊑⇩r z; x ∈ A; y ∈ A; z ∈ A ⟧ ⟹ x ⊔⇩f y ⊑⇩r z"
   by (insert semilat) (unfold semilat_Def, simp) 
lemma (in Semilat) plus_le_conv [simp]:
  "⟦ x ∈ A; y ∈ A; z ∈ A ⟧ ⟹ (x ⊔⇩f y ⊑⇩r z) = (x ⊑⇩r z ∧ y ⊑⇩r z)"
   by (blast intro: ub1 ub2 lub order_trans) 
lemma (in Semilat) le_iff_plus_unchanged:
  assumes "x ∈ A" and "y ∈ A"
  shows "x ⊑⇩r y ⟷ x ⊔⇩f y = y" (is "?P ⟷ ?Q")
proof
  assume ?P
  with assms show ?Q by (blast intro: antisym_r lub ub2)
next
  assume ?Q
  then have "y = x ⊔⇘f⇙ y" by simp
  moreover from assms have "x ⊑⇘r⇙ x ⊔⇘f⇙ y" by simp
  ultimately show ?P by simp
qed
lemma (in Semilat) le_iff_plus_unchanged2:
  assumes "x ∈ A" and "y ∈ A"
  shows "x ⊑⇩r y ⟷ y ⊔⇩f x = y" (is "?P ⟷ ?Q")
proof
  assume ?P
  with assms show ?Q by (blast intro: antisym_r lub ub1)
next
  assume ?Q
  then have "y = y ⊔⇘f⇙ x" by simp
  moreover from assms have "x ⊑⇘r⇙ y ⊔⇘f⇙ x" by simp
  ultimately show ?P by simp
qed
lemma (in Semilat) plus_assoc [simp]:
  assumes a: "a ∈ A" and b: "b ∈ A" and c: "c ∈ A"
  shows "a ⊔⇩f (b ⊔⇩f c) = a ⊔⇩f b ⊔⇩f c"
proof -
  from a b have ab: "a ⊔⇩f b ∈ A" ..
  from this c have abc: "(a ⊔⇩f b) ⊔⇩f c ∈ A" ..
  from b c have bc: "b ⊔⇩f c ∈ A" ..
  from a this have abc': "a ⊔⇩f (b ⊔⇩f c) ∈ A" ..
  show ?thesis
  proof    
    show "a ⊔⇩f (b ⊔⇩f c) ⊑⇩r (a ⊔⇩f b) ⊔⇩f c"
    proof -
      from a b have 1: "a ⊑⇩r a ⊔⇩f b" .. 
      from ab c have 2: "… ⊑⇩r … ⊔⇩f c" ..
      with 1  have "a<": "a ⊑⇩r (a ⊔⇩f b) ⊔⇩f c" using a ab abc by (rule trans_r)
      from a b have 11: "b ⊑⇩r a ⊔⇩f b" ..
      hence "b<": "b ⊑⇩r (a ⊔⇩f b) ⊔⇩f c" using 2 b ab abc by (rule trans_r)
      from ab c have "c<": "c ⊑⇩r (a ⊔⇩f b) ⊔⇩f c" ..    
      from "b<" "c<" b c abc have "b ⊔⇩f c ⊑⇩r (a ⊔⇩f b) ⊔⇩f c" ..
      from "a<" this a bc abc show ?thesis ..
    qed
    show "(a ⊔⇩f b) ⊔⇩f c ⊑⇩r a ⊔⇩f (b ⊔⇩f c)" 
    proof -
      from b c have 3:"b ⊑⇩r b ⊔⇩f c" .. 
      from a bc have bc_abc: "… ⊑⇩r a ⊔⇩f …" ..
      with 3 have "b<": "b ⊑⇩r a ⊔⇩f (b ⊔⇩f c)"using b bc abc' by (rule trans_r)
      from b c have 4: "c ⊑⇩r b ⊔⇩f c" ..      
      hence "c<": "c ⊑⇩r a ⊔⇩f (b ⊔⇩f c)"using bc_abc c bc abc' by (rule trans_r)
      from a bc have "a<": "a ⊑⇩r a ⊔⇩f (b ⊔⇩f c)" ..
      from "a<" "b<" a b abc' have "a ⊔⇩f b ⊑⇩r a ⊔⇩f (b ⊔⇩f c)" ..
      from this "c<" ab c abc' show ?thesis ..
    qed
  next
    show "a ⊔⇘f⇙ (b ⊔⇘f⇙ c) ∈ A" using abc' by auto
  next
    show "a ⊔⇘f⇙ b ⊔⇘f⇙ c ∈ A" using abc by auto
  qed
qed
lemma (in Semilat) plus_com_lemma:
  "⟦a ∈ A; b ∈ A⟧ ⟹ a ⊔⇩f b ⊑⇩r b ⊔⇩f a"
proof -
  assume a: "a ∈ A" and b: "b ∈ A"  
  from b a have "a ⊑⇩r b ⊔⇩f a" .. 
  moreover from b a have "b ⊑⇩r b ⊔⇩f a" ..
  moreover note a b
  moreover from b a have "b ⊔⇩f a ∈ A" ..
  ultimately show ?thesis ..
qed
lemma (in Semilat) plus_commutative:
  "⟦a ∈ A; b ∈ A⟧ ⟹ a ⊔⇩f b = b ⊔⇩f a"
   by(blast intro: order_antisym plus_com_lemma) 
lemma is_lubD:
  "is_lub r x y u ⟹ is_ub r x y u ∧ (∀z. is_ub r x y z ⟶ (u,z) ∈ r)"
   by (simp add: is_lub_def) 
lemma is_ubI:
  "⟦ (x,u) ∈ r; (y,u) ∈ r ⟧ ⟹ is_ub r x y u"
   by (simp add: is_ub_def) 
lemma is_ubD:
  "is_ub r x y u ⟹ (x,u) ∈ r ∧ (y,u) ∈ r"
   by (simp add: is_ub_def) 
lemma is_lub_bigger1 [iff]:  
  "is_lub (r^* ) x y y = ((x,y)∈r^* )"
apply (unfold is_lub_def is_ub_def)
apply blast
done
lemma is_lub_bigger2 [iff]:
  "is_lub (r^* ) x y x = ((y,x)∈r^* )"
apply (unfold is_lub_def is_ub_def)
apply blast 
done
lemma extend_lub:
  "⟦ single_valued r; is_lub (r^* ) x y u; (x',x) ∈ r ⟧ 
  ⟹ ∃v. is_lub (r^* ) x' y v"
apply (unfold is_lub_def is_ub_def)
apply (case_tac "(y,x) ∈ r^*")
 apply (case_tac "(y,x') ∈ r^*")
  apply blast
 apply (blast elim: converse_rtranclE dest: single_valuedD)
apply (rule exI)
apply (rule conjI)
 apply (blast intro: converse_rtrancl_into_rtrancl dest: single_valuedD)
apply (blast intro: rtrancl_into_rtrancl converse_rtrancl_into_rtrancl 
             elim: converse_rtranclE dest: single_valuedD)
done
lemma single_valued_has_lubs [rule_format]:
  "⟦ single_valued r; (x,u) ∈ r^* ⟧ ⟹ (∀y. (y,u) ∈ r^* ⟶ 
  (∃z. is_lub (r^* ) x y z))"
apply (erule converse_rtrancl_induct)
 apply clarify
 apply (erule converse_rtrancl_induct)
  apply blast
 apply (blast intro: converse_rtrancl_into_rtrancl)
apply (blast intro: extend_lub)
done
lemma some_lub_conv:
  "⟦ acyclic r; is_lub (r^* ) x y u ⟧ ⟹ some_lub (r^* ) x y = u"
apply (simp only: some_lub_def is_lub_def)
apply (rule someI2)
 apply (simp only: is_lub_def)
apply (blast intro: antisymD dest!: acyclic_impl_antisym_rtrancl)
done
lemma is_lub_some_lub:
  "⟦ single_valued r; acyclic r; (x,u)∈r^*; (y,u)∈r^* ⟧ 
  ⟹ is_lub (r^* ) x y (some_lub (r^* ) x y)"
   by (fastforce dest: single_valued_has_lubs simp add: some_lub_conv) 
subsection‹An executable lub-finder›
definition exec_lub :: "('a * 'a) set ⇒ ('a ⇒ 'a) ⇒ 'a binop"
where
  "exec_lub r f x y = while (λz. (x,z) ∉ r⇧*) f y"
lemma exec_lub_refl: "exec_lub r f T T = T"
by (simp add: exec_lub_def while_unfold)
lemma acyclic_single_valued_finite:
 "⟦acyclic r; single_valued r; (x,y) ∈ r⇧*⟧
  ⟹ finite (r ∩ {a. (x, a) ∈ r⇧*} × {b. (b, y) ∈ r⇧*})"
apply(erule converse_rtrancl_induct)
 apply(rule_tac B = "{}" in finite_subset)
  apply(simp only:acyclic_def)
  apply(blast intro:rtrancl_into_trancl2 rtrancl_trancl_trancl)
 apply simp
apply(rename_tac x x')
apply(subgoal_tac "r ∩ {a. (x,a) ∈ r⇧*} × {b. (b,y) ∈ r⇧*} =
                   insert (x,x') (r ∩ {a. (x', a) ∈ r⇧*} × {b. (b, y) ∈ r⇧*})")
 apply simp
apply(blast intro:converse_rtrancl_into_rtrancl
            elim:converse_rtranclE dest:single_valuedD)
done
lemma exec_lub_conv:
  "⟦ acyclic r; ∀x y. (x,y) ∈ r ⟶ f x = y; is_lub (r⇧*) x y u ⟧ ⟹
  exec_lub r f x y = u"
apply(unfold exec_lub_def)
apply(rule_tac P = "λz. (y,z) ∈ r⇧* ∧ (z,u) ∈ r⇧*" and
               r = "(r ∩ {(a,b). (y,a) ∈ r⇧* ∧ (b,u) ∈ r⇧*})^-1" in while_rule)
    apply(blast dest: is_lubD is_ubD)
   apply(erule conjE)
   apply(erule_tac z = u in converse_rtranclE)
    apply(blast dest: is_lubD is_ubD)
   apply(blast dest:rtrancl_into_rtrancl)
  apply(rename_tac s)
  apply(subgoal_tac "is_ub (r⇧*) x y s")
   prefer 2 apply(simp add:is_ub_def)
  apply(subgoal_tac "(u, s) ∈ r⇧*")
   prefer 2 apply(blast dest:is_lubD)
  apply(erule converse_rtranclE)
   apply blast
  apply(simp only:acyclic_def)
  apply(blast intro:rtrancl_into_trancl2 rtrancl_trancl_trancl)
 apply(rule finite_acyclic_wf)
  apply simp
  apply(erule acyclic_single_valued_finite)
   apply(blast intro:single_valuedI)
  apply(simp add:is_lub_def is_ub_def)
 apply simp
 apply(erule acyclic_subset)
 apply blast
apply simp
apply(erule conjE)
apply(erule_tac z = u in converse_rtranclE)
 apply(blast dest: is_lubD is_ubD)
apply(blast dest:rtrancl_into_rtrancl)
done
lemma is_lub_exec_lub:
  "⟦ single_valued r; acyclic r; (x,u):r^*; (y,u):r^*; ∀x y. (x,y) ∈ r ⟶ f x = y ⟧
  ⟹ is_lub (r^* ) x y (exec_lub r f x y)"
   by (fastforce dest: single_valued_has_lubs simp add: exec_lub_conv) 
end