Theory PMLinHOL_shallow_minimal_further_tests


theory PMLinHOL_shallow_minimal_further_tests    (* Christoph Benzmüller, 2025 *)
  imports PMLinHOL_shallow_minimal_tests 
begin 

―‹Implied modal principle›
lemma K_Dia: "m (m(φ m ψ)) m ((mφ) m mψ)" by auto 

―‹Example 6.10 of Sider (2009) Logic for Philosophy›
lemma T1a: "m mpm m ((mqm) m m(pm m qm))" by auto ―‹fast automation in meta-logic HOL›
lemma T1b: "m mpm m ((mqm) m m(pm m qm))" ―‹alternative interactive proof in modal object logic K› 
  proof -   
    have 1: "m pm m (qm m (pm m qm))" unfolding AndM_def using H1 H2 H3 MP by metis
    have 2: "m m(pm m (qm m (pm m qm)))" using 1 Nec by metis
    have 3: "m mpm m m(qm m (pm m qm))" using 2 Dist MP by metis
    have 4: "m (m(qm m (pm m qm))) m ((mqm) m m(pm m qm))" using K_Dia by metis
    have 5: "m mpm m ((mqm) m m(pm m qm))" using 3 4 H1 H2 MP by metis 
    thus ?thesis . 
  qed
end