Theory PMLinHOL_shallow_minimal_further_tests
theory PMLinHOL_shallow_minimal_further_tests
imports PMLinHOL_shallow_minimal_tests
begin
lemma K_Dia: "⊨⇧m (□⇧m(φ ⊃⇧m ψ)) ⊃⇧m ((◇⇧mφ) ⊃⇧m ◇⇧mψ)" by auto
lemma T1a: "⊨⇧m □⇧mp⇧m ⊃⇧m ((◇⇧mq⇧m) ⊃⇧m ◇⇧m(p⇧m ∧⇧m q⇧m))" by auto
lemma T1b: "⊨⇧m □⇧mp⇧m ⊃⇧m ((◇⇧mq⇧m) ⊃⇧m ◇⇧m(p⇧m ∧⇧m q⇧m))"
proof -
have 1: "⊨⇧m p⇧m ⊃⇧m (q⇧m ⊃⇧m (p⇧m ∧⇧m q⇧m))" unfolding AndM_def using H1 H2 H3 MP by metis
have 2: "⊨⇧m □⇧m(p⇧m ⊃⇧m (q⇧m ⊃⇧m (p⇧m ∧⇧m q⇧m)))" using 1 Nec by metis
have 3: "⊨⇧m □⇧mp⇧m ⊃⇧m □⇧m(q⇧m ⊃⇧m (p⇧m ∧⇧m q⇧m))" using 2 Dist MP by metis
have 4: "⊨⇧m (□⇧m(q⇧m ⊃⇧m (p⇧m ∧⇧m q⇧m))) ⊃⇧m ((◇⇧mq⇧m) ⊃⇧m ◇⇧m(p⇧m ∧⇧m q⇧m))" using K_Dia by metis
have 5: "⊨⇧m □⇧mp⇧m ⊃⇧m ((◇⇧mq⇧m) ⊃⇧m ◇⇧m(p⇧m ∧⇧m q⇧m))" using 3 4 H1 H2 MP by metis
thus ?thesis .
qed
end