Theory PMLinHOL_shallow_minimal
section‹Shallow embedding of PML in HOL (minimal)\label{sec:pmlinhol_shallow_min}›
theory PMLinHOL_shallow_minimal
imports PMLinHOL_preliminaries
begin
consts R::ℛ V::𝒱
type_synonym σ = "𝗐⇒bool"
definition AtmM::"𝒮⇒σ" ("_⇧m") where "a⇧m ≡ λw. V a w"
definition NegM::"σ⇒σ" ("¬⇧m") where "¬⇧m φ ≡ λw.¬φ w"
definition ImpM::"σ⇒σ⇒σ" (infixr "⊃⇧m" 93) where "φ ⊃⇧m ψ ≡ λw. φ w ⟶ ψ w"
definition BoxM::"σ⇒σ" ("□⇧m") where "□⇧m φ ≡ λw. ∀v. R w v ⟶ φ v"
definition OrM (infixr "∨⇧m" 92) where "φ ∨⇧m ψ ≡ ¬⇧mφ ⊃⇧m ψ"
definition AndM (infixr "∧⇧m" 95) where "φ ∧⇧m ψ ≡ ¬⇧m(φ ⊃⇧m ¬⇧mψ)"
definition DiaM ("◇⇧m_") where "◇⇧mφ ≡ ¬⇧m (□⇧m (¬⇧mφ)) "
definition TopM ("⊤⇧m") where "⊤⇧m ≡ p⇧m ⊃⇧m p⇧m"
definition BotM ("⊥⇧m") where "⊥⇧m ≡ ¬⇧m ⊤⇧m"
definition RelativeTruthM::"𝗐⇒σ⇒bool" ("_⊨⇧m _") where "w ⊨⇧m φ ≡ φ w"
definition ValM ("⊨⇧m _") where "⊨⇧m φ ≡ ∀w::𝗐. w ⊨⇧m φ"
named_theorems DefM declare AtmM_def[DefM,simp] NegM_def[DefM,simp] ImpM_def[DefM,simp] BoxM_def[DefM,simp] OrM_def[DefM,simp] AndM_def[DefM,simp] DiaM_def[DefM,simp] TopM_def[DefM,simp] BotM_def[DefM,simp] RelativeTruthM_def[DefM,simp] ValM_def[DefM,simp]
end