Theory Sestoft

theory Sestoft 
imports SestoftConf
begin

inductive step :: "conf  conf  bool" (infix "" 50) where
  app1:  "(Γ, App e x, S)  (Γ, e , Arg x # S)"
| app2:  "(Γ, Lam [y]. e, Arg x # S)  (Γ, e[y ::= x] , S)"
| var1:  "map_of Γ x = Some e  (Γ, Var x, S)  (delete x Γ, e , Upd x # S)"
| var2:  "x  domA Γ  isVal e  (Γ, e, Upd x # S)  ((x,e)# Γ, e , S)"
| let1:  "atom ` domA Δ ♯* Γ  atom ` domA Δ ♯* S
                            (Γ, Let Δ e, S)  (Δ@Γ, e , S)"
| if1:  "(Γ, scrut ? e1 : e2, S)  (Γ, scrut, Alts e1 e2 # S)"
| if2:  "(Γ, Bool b, Alts e1 e2 # S)  (Γ, if b then e1 else e2, S)"

abbreviation steps (infix "*" 50) where "steps  step**"

lemma SmartLet_stepI:
   "atom ` domA Δ ♯* Γ  atom ` domA Δ ♯* S  (Γ, SmartLet Δ e, S) *  (Δ@Γ, e , S)"
unfolding SmartLet_def by (auto intro: let1)

lemma lambda_var: "map_of Γ x = Some e  isVal e   (Γ, Var x, S) * ((x,e) # delete x Γ, e , S)"
  by (rule rtranclp_trans[OF r_into_rtranclp r_into_rtranclp])
     (auto intro: var1 var2)

lemma let1_closed:
  assumes "closed (Γ, Let Δ e, S)"
  assumes "domA Δ  domA Γ = {}"
  assumes "domA Δ  upds S = {}"
  shows "(Γ, Let Δ e, S)  (Δ@Γ, e , S)"
proof
  from domA Δ  domA Γ = {} and domA Δ  upds S = {}
  have "domA Δ  (domA Γ  upds S) = {}" by auto
  with closed _
  have "domA Δ  fv (Γ, S) = {}" by auto
  hence "atom ` domA Δ ♯* (Γ, S)"
    by (auto simp add: fresh_star_def fv_def fresh_def)
  thus "atom` domA Δ ♯* Γ" and "atom ` domA Δ ♯* S" by (auto simp add: fresh_star_Pair)
qed
  
text ‹An induction rule that skips the annoying case of a lambda taken off the heap›

lemma step_invariant_induction[consumes 4, case_names app1 app2 thunk lamvar var2 let1 if1 if2 refl trans]:
  assumes "c * c'"
  assumes "¬ boring_step c'"
  assumes "invariant (⇒) I"
  assumes "I c"
  assumes app1:  " Γ e x S . I (Γ, App e x, S)  P (Γ, App e x, S)  (Γ, e , Arg x # S)"
  assumes app2:  " Γ y e x S . I (Γ, Lam [y]. e, Arg x # S)  P (Γ, Lam [y]. e, Arg x # S) (Γ, e[y ::= x] , S)"
  assumes thunk:  " Γ x e S . map_of Γ x = Some e  ¬ isVal e  I (Γ, Var x, S)   P (Γ, Var x, S) (delete x Γ, e , Upd x # S)"
  assumes lamvar:  " Γ x e S . map_of Γ x = Some e  isVal e  I (Γ, Var x, S)  P (Γ, Var x, S) ((x,e) # delete x Γ, e , S)"
  assumes var2:  " Γ x e S . x  domA Γ  isVal e  I (Γ, e, Upd x # S)  P (Γ, e, Upd x # S) ((x,e)# Γ, e , S)"
  assumes let1:  " Δ Γ e S . atom ` domA Δ ♯* Γ  atom ` domA Δ ♯* S  I (Γ, Let Δ e, S)  P (Γ, Let Δ e, S) (Δ@Γ, e, S)"
  assumes if1:   "Γ scrut e1 e2 S. I  (Γ, scrut ? e1 : e2, S)  P (Γ, scrut ? e1 : e2, S) (Γ, scrut, Alts e1 e2 # S)"
  assumes if2:   "Γ b e1 e2 S. I  (Γ, Bool b, Alts e1 e2 # S)  P (Γ, Bool b, Alts e1 e2 # S) (Γ, if b then e1 else e2, S)"
  assumes refl: " c. P c c"
  assumes trans[trans]: " c c' c''. c * c'  c' * c''  P c c'  P c' c''  P c c''"
  shows "P c c'"
proof-
  from assms(1,3,4)
  have "P c c'  (boring_step c'  ( c''. c'  c''  P c c''))"
  proof(induction rule: rtranclp_invariant_induct)
  case base
    have "P c c" by (rule refl)
    thus ?case..
  next
  case (step y z)
    from step(5)
    show ?case
    proof
      assume "P c y"

      note t = trans[OF c * y r_into_rtranclp[where r = step, OF y  z]]
      
      from y  z
      show ?thesis
      proof (cases)
        case app1 hence "P y z" using assms(5) I y by metis
        with P c y show ?thesis by (metis t)
      next
        case app2 hence "P y z" using assms(6) I y by metis
        with P c y show ?thesis by (metis t)
      next
        case (var1 Γ x e S)
        show ?thesis
        proof (cases "isVal e")
          case False with var1 have "P y z" using assms(7) I y by metis
          with P c y show ?thesis by (metis t)
        next
          case True
          have *: "y * ((x,e) # delete x Γ, e , S)" using var1 True lambda_var by metis

          have "boring_step (delete x Γ, e, Upd x # S)" using True ..
          moreover
          have "P y ((x,e) # delete x Γ, e , S)" using var1 True assms(8) I y by metis
          with P c y have "P c ((x,e) # delete x Γ, e , S)" by (rule trans[OF c * y *])
          ultimately
          show ?thesis using var1(2,3) True by (auto elim!: step.cases)
        qed
      next
        case var2 hence "P y z" using assms(9) I y by metis
        with P c y show ?thesis by (metis t)
      next
        case let1 hence "P y z" using assms(10) I y by metis
        with P c y show ?thesis by (metis t)
      next
        case if1 hence "P y z" using assms(11) I y by metis
        with P c y show ?thesis by (metis t)
      next
        case if2 hence "P y z" using assms(12) I y by metis
        with P c y show ?thesis by (metis t)
      qed
    next
      assume "boring_step y  (c''. y  c''  P c c'')"
      with y  z
      have "P c z" by blast
      thus ?thesis..
    qed
  qed
  with assms(2)
  show ?thesis by auto
qed


lemma step_induction[consumes 2, case_names app1 app2 thunk lamvar var2 let1 if1 if2 refl trans]:
  assumes "c * c'"
  assumes "¬ boring_step c'"
  assumes app1:  " Γ e x S . P (Γ, App e x, S)  (Γ, e , Arg x # S)"
  assumes app2:  " Γ y e x S . P (Γ, Lam [y]. e, Arg x # S) (Γ, e[y ::= x] , S)"
  assumes thunk:  " Γ x e S . map_of Γ x = Some e  ¬ isVal e  P (Γ, Var x, S) (delete x Γ, e , Upd x # S)"
  assumes lamvar:  " Γ x e S . map_of Γ x = Some e  isVal e  P (Γ, Var x, S) ((x,e) # delete x Γ, e , S)"
  assumes var2:  " Γ x e S . x  domA Γ  isVal e  P (Γ, e, Upd x # S) ((x,e)# Γ, e , S)"
  assumes let1:  " Δ Γ e S . atom ` domA Δ ♯* Γ  atom ` domA Δ ♯* S  P (Γ, Let Δ e, S) (Δ@Γ, e, S)"
  assumes if1:   "Γ scrut e1 e2 S. P (Γ, scrut ? e1 : e2, S) (Γ, scrut, Alts e1 e2 # S)"
  assumes if2:   "Γ b e1 e2 S. P (Γ, Bool b, Alts e1 e2 # S) (Γ, if b then e1 else e2, S)"
  assumes refl: " c. P c c"
  assumes trans[trans]: " c c' c''. c * c'  c' * c''  P c c'  P c' c''  P c c''"
  shows "P c c'"
by (rule step_invariant_induction[OF _ _ invariant_True, simplified, OF assms])

subsubsection ‹Equivariance›

lemma step_eqvt[eqvt]: "step x y  step (π  x) (π  y)"
  apply (induction  rule: step.induct)
  apply (perm_simp, rule step.intros)
  apply (perm_simp, rule step.intros)
  apply (perm_simp, rule step.intros)
  apply (rule permute_boolE[where p = "-π"], simp add: pemute_minus_self)
  apply (perm_simp, rule step.intros)
  apply (rule permute_boolE[where p = "-π"], simp add: pemute_minus_self)
  apply (rule permute_boolE[where p = "-π"], simp add: pemute_minus_self)
  apply (perm_simp, rule step.intros)
  apply (rule permute_boolE[where p = "-π"], simp add: pemute_minus_self)
  apply (rule permute_boolE[where p = "-π"], simp add: pemute_minus_self)
  apply (perm_simp, rule step.intros)
  apply (perm_simp, rule step.intros)
  done  

subsubsection ‹Invariants›

lemma closed_invariant:
  "invariant step closed"
proof
  fix c c'
  assume "c  c'" and "closed c"
  thus "closed c'"
  by (induction rule: step.induct) (auto simp add: fv_subst_eq dest!: subsetD[OF fv_delete_subset] dest: subsetD[OF map_of_Some_fv_subset])
qed

lemma heap_upds_ok_invariant:
  "invariant step heap_upds_ok_conf"
proof
  fix c c'
  assume "c  c'" and "heap_upds_ok_conf c"
  thus "heap_upds_ok_conf c'"
  by (induction rule: step.induct) auto
qed

end