Theory Nominal2.Nominal2_Base
theory Nominal2_Base
imports "HOL-Library.Infinite_Set"
"HOL-Library.Multiset"
"HOL-Library.FSet"
FinFun.FinFun
keywords
"atom_decl" "equivariance" :: thy_decl
begin
declare [[typedef_overloaded]]
section ‹Atoms and Sorts›
text ‹A simple implementation for ‹atom_sorts› is strings.›
text ‹To deal with Church-like binding we use trees of
strings as sorts.›
datatype atom_sort = Sort "string" "atom_sort list"
datatype atom = Atom atom_sort nat
text ‹Basic projection function.›
primrec
sort_of :: "atom ⇒ atom_sort"
where
"sort_of (Atom s n) = s"
primrec
nat_of :: "atom ⇒ nat"
where
"nat_of (Atom s n) = n"
text ‹There are infinitely many atoms of each sort.›
lemma INFM_sort_of_eq:
shows "INFM a. sort_of a = s"
proof -
have "INFM i. sort_of (Atom s i) = s" by simp
moreover have "inj (Atom s)" by (simp add: inj_on_def)
ultimately show "INFM a. sort_of a = s" by (rule INFM_inj)
qed
lemma infinite_sort_of_eq:
shows "infinite {a. sort_of a = s}"
using INFM_sort_of_eq unfolding INFM_iff_infinite .
lemma atom_infinite [simp]:
shows "infinite (UNIV :: atom set)"
using subset_UNIV infinite_sort_of_eq
by (rule infinite_super)
lemma obtain_atom:
fixes X :: "atom set"
assumes X: "finite X"
obtains a where "a ∉ X" "sort_of a = s"
proof -
from X have "MOST a. a ∉ X"
unfolding MOST_iff_cofinite by simp
with INFM_sort_of_eq
have "INFM a. sort_of a = s ∧ a ∉ X"
by (rule INFM_conjI)
then obtain a where "a ∉ X" "sort_of a = s"
by (auto elim: INFM_E)
then show ?thesis ..
qed
lemma atom_components_eq_iff:
fixes a b :: atom
shows "a = b ⟷ sort_of a = sort_of b ∧ nat_of a = nat_of b"
by (induct a, induct b, simp)
section ‹Sort-Respecting Permutations›
definition
"perm ≡ {f. bij f ∧ finite {a. f a ≠ a} ∧ (∀a. sort_of (f a) = sort_of a)}"
typedef perm = "perm"
proof
show "id ∈ perm" unfolding perm_def by simp
qed
lemma permI:
assumes "bij f" and "MOST x. f x = x" and "⋀a. sort_of (f a) = sort_of a"
shows "f ∈ perm"
using assms unfolding perm_def MOST_iff_cofinite by simp
lemma perm_is_bij: "f ∈ perm ⟹ bij f"
unfolding perm_def by simp
lemma perm_is_finite: "f ∈ perm ⟹ finite {a. f a ≠ a}"
unfolding perm_def by simp
lemma perm_is_sort_respecting: "f ∈ perm ⟹ sort_of (f a) = sort_of a"
unfolding perm_def by simp
lemma perm_MOST: "f ∈ perm ⟹ MOST x. f x = x"
unfolding perm_def MOST_iff_cofinite by simp
lemma perm_id: "id ∈ perm"
unfolding perm_def by simp
lemma perm_comp:
assumes f: "f ∈ perm" and g: "g ∈ perm"
shows "(f ∘ g) ∈ perm"
apply (rule permI)
apply (rule bij_comp)
apply (rule perm_is_bij [OF g])
apply (rule perm_is_bij [OF f])
apply (rule MOST_rev_mp [OF perm_MOST [OF g]])
apply (rule MOST_rev_mp [OF perm_MOST [OF f]])
apply (simp)
apply (simp add: perm_is_sort_respecting [OF f])
apply (simp add: perm_is_sort_respecting [OF g])
done
lemma perm_inv:
assumes f: "f ∈ perm"
shows "(inv f) ∈ perm"
apply (rule permI)
apply (rule bij_imp_bij_inv)
apply (rule perm_is_bij [OF f])
apply (rule MOST_mono [OF perm_MOST [OF f]])
apply (erule subst, rule inv_f_f)
apply (rule bij_is_inj [OF perm_is_bij [OF f]])
apply (rule perm_is_sort_respecting [OF f, THEN sym, THEN trans])
apply (simp add: surj_f_inv_f [OF bij_is_surj [OF perm_is_bij [OF f]]])
done
lemma bij_Rep_perm: "bij (Rep_perm p)"
using Rep_perm [of p] unfolding perm_def by simp
lemma finite_Rep_perm: "finite {a. Rep_perm p a ≠ a}"
using Rep_perm [of p] unfolding perm_def by simp
lemma sort_of_Rep_perm: "sort_of (Rep_perm p a) = sort_of a"
using Rep_perm [of p] unfolding perm_def by simp
lemma Rep_perm_ext:
"Rep_perm p1 = Rep_perm p2 ⟹ p1 = p2"
by (simp add: fun_eq_iff Rep_perm_inject [symmetric])
instance perm :: size ..
subsection ‹Permutations form a (multiplicative) group›
instantiation perm :: group_add
begin
definition
"0 = Abs_perm id"
definition
"- p = Abs_perm (inv (Rep_perm p))"
definition
"p + q = Abs_perm (Rep_perm p ∘ Rep_perm q)"
definition
"(p1::perm) - p2 = p1 + - p2"
lemma Rep_perm_0: "Rep_perm 0 = id"
unfolding zero_perm_def
by (simp add: Abs_perm_inverse perm_id)
lemma Rep_perm_add:
"Rep_perm (p1 + p2) = Rep_perm p1 ∘ Rep_perm p2"
unfolding plus_perm_def
by (simp add: Abs_perm_inverse perm_comp Rep_perm)
lemma Rep_perm_uminus:
"Rep_perm (- p) = inv (Rep_perm p)"
unfolding uminus_perm_def
by (simp add: Abs_perm_inverse perm_inv Rep_perm)
instance
apply standard
unfolding Rep_perm_inject [symmetric]
unfolding minus_perm_def
unfolding Rep_perm_add
unfolding Rep_perm_uminus
unfolding Rep_perm_0
by (simp_all add: o_assoc inv_o_cancel [OF bij_is_inj [OF bij_Rep_perm]])
end
section ‹Implementation of swappings›
definition
swap :: "atom ⇒ atom ⇒ perm" ("'(_ ⇌ _')")
where
"(a ⇌ b) =
Abs_perm (if sort_of a = sort_of b
then (λc. if a = c then b else if b = c then a else c)
else id)"
lemma Rep_perm_swap:
"Rep_perm (a ⇌ b) =
(if sort_of a = sort_of b
then (λc. if a = c then b else if b = c then a else c)
else id)"
unfolding swap_def
apply (rule Abs_perm_inverse)
apply (rule permI)
apply (auto simp: bij_def inj_on_def surj_def)[1]
apply (rule MOST_rev_mp [OF MOST_neq(1) [of a]])
apply (rule MOST_rev_mp [OF MOST_neq(1) [of b]])
apply (simp)
apply (simp)
done
lemmas Rep_perm_simps =
Rep_perm_0
Rep_perm_add
Rep_perm_uminus
Rep_perm_swap
lemma swap_different_sorts [simp]:
"sort_of a ≠ sort_of b ⟹ (a ⇌ b) = 0"
by (rule Rep_perm_ext) (simp add: Rep_perm_simps)
lemma swap_cancel:
shows "(a ⇌ b) + (a ⇌ b) = 0"
and "(a ⇌ b) + (b ⇌ a) = 0"
by (rule_tac [!] Rep_perm_ext)
(simp_all add: Rep_perm_simps fun_eq_iff)
lemma swap_self [simp]:
"(a ⇌ a) = 0"
by (rule Rep_perm_ext, simp add: Rep_perm_simps fun_eq_iff)
lemma minus_swap [simp]:
"- (a ⇌ b) = (a ⇌ b)"
by (rule minus_unique [OF swap_cancel(1)])
lemma swap_commute:
"(a ⇌ b) = (b ⇌ a)"
by (rule Rep_perm_ext)
(simp add: Rep_perm_swap fun_eq_iff)
lemma swap_triple:
assumes "a ≠ b" and "c ≠ b"
assumes "sort_of a = sort_of b" "sort_of b = sort_of c"
shows "(a ⇌ c) + (b ⇌ c) + (a ⇌ c) = (a ⇌ b)"
using assms
by (rule_tac Rep_perm_ext)
(auto simp: Rep_perm_simps fun_eq_iff)
section ‹Permutation Types›
text ‹
Infix syntax for ‹permute› has higher precedence than
addition, but lower than unary minus.
›
class pt =
fixes permute :: "perm ⇒ 'a ⇒ 'a" ("_ ∙ _" [76, 75] 75)
assumes permute_zero [simp]: "0 ∙ x = x"
assumes permute_plus [simp]: "(p + q) ∙ x = p ∙ (q ∙ x)"
begin
lemma permute_diff [simp]:
shows "(p - q) ∙ x = p ∙ - q ∙ x"
using permute_plus [of p "- q" x] by simp
lemma permute_minus_cancel [simp]:
shows "p ∙ - p ∙ x = x"
and "- p ∙ p ∙ x = x"
unfolding permute_plus [symmetric] by simp_all
lemma permute_swap_cancel [simp]:
shows "(a ⇌ b) ∙ (a ⇌ b) ∙ x = x"
unfolding permute_plus [symmetric]
by (simp add: swap_cancel)
lemma permute_swap_cancel2 [simp]:
shows "(a ⇌ b) ∙ (b ⇌ a) ∙ x = x"
unfolding permute_plus [symmetric]
by (simp add: swap_commute)
lemma inj_permute [simp]:
shows "inj (permute p)"
by (rule inj_on_inverseI)
(rule permute_minus_cancel)
lemma surj_permute [simp]:
shows "surj (permute p)"
by (rule surjI, rule permute_minus_cancel)
lemma bij_permute [simp]:
shows "bij (permute p)"
by (rule bijI [OF inj_permute surj_permute])
lemma inv_permute:
shows "inv (permute p) = permute (- p)"
by (rule inv_equality) (simp_all)
lemma permute_minus:
shows "permute (- p) = inv (permute p)"
by (simp add: inv_permute)
lemma permute_eq_iff [simp]:
shows "p ∙ x = p ∙ y ⟷ x = y"
by (rule inj_permute [THEN inj_eq])
end
subsection ‹Permutations for atoms›
instantiation atom :: pt
begin
definition
"p ∙ a = (Rep_perm p) a"
instance
apply standard
apply(simp_all add: permute_atom_def Rep_perm_simps)
done
end
lemma sort_of_permute [simp]:
shows "sort_of (p ∙ a) = sort_of a"
unfolding permute_atom_def by (rule sort_of_Rep_perm)
lemma swap_atom:
shows "(a ⇌ b) ∙ c =
(if sort_of a = sort_of b
then (if c = a then b else if c = b then a else c) else c)"
unfolding permute_atom_def
by (simp add: Rep_perm_swap)
lemma swap_atom_simps [simp]:
"sort_of a = sort_of b ⟹ (a ⇌ b) ∙ a = b"
"sort_of a = sort_of b ⟹ (a ⇌ b) ∙ b = a"
"c ≠ a ⟹ c ≠ b ⟹ (a ⇌ b) ∙ c = c"
unfolding swap_atom by simp_all
lemma perm_eq_iff:
fixes p q :: "perm"
shows "p = q ⟷ (∀a::atom. p ∙ a = q ∙ a)"
unfolding permute_atom_def
by (metis Rep_perm_ext ext)
subsection ‹Permutations for permutations›
instantiation perm :: pt
begin
definition
"p ∙ q = p + q - p"
instance
apply standard
apply (simp add: permute_perm_def)
apply (simp add: permute_perm_def algebra_simps)
done
end
lemma permute_self:
shows "p ∙ p = p"
unfolding permute_perm_def
by (simp add: add.assoc)
lemma pemute_minus_self:
shows "- p ∙ p = p"
unfolding permute_perm_def
by (simp add: add.assoc)
subsection ‹Permutations for functions›
instantiation "fun" :: (pt, pt) pt
begin
definition
"p ∙ f = (λx. p ∙ (f (- p ∙ x)))"
instance
apply standard
apply (simp add: permute_fun_def)
apply (simp add: permute_fun_def minus_add)
done
end
lemma permute_fun_app_eq:
shows "p ∙ (f x) = (p ∙ f) (p ∙ x)"
unfolding permute_fun_def by simp
lemma permute_fun_comp:
shows "p ∙ f = (permute p) o f o (permute (-p))"
by (simp add: comp_def permute_fun_def)
subsection ‹Permutations for booleans›
instantiation bool :: pt
begin
definition "p ∙ (b::bool) = b"
instance
apply standard
apply(simp_all add: permute_bool_def)
done
end
lemma permute_boolE:
fixes P::"bool"
shows "p ∙ P ⟹ P"
by (simp add: permute_bool_def)
lemma permute_boolI:
fixes P::"bool"
shows "P ⟹ p ∙ P"
by(simp add: permute_bool_def)
subsection ‹Permutations for sets›
instantiation "set" :: (pt) pt
begin
definition
"p ∙ X = {p ∙ x | x. x ∈ X}"
instance
apply standard
apply (auto simp: permute_set_def)
done
end
lemma permute_set_eq:
shows "p ∙ X = {x. - p ∙ x ∈ X}"
unfolding permute_set_def
by (auto) (metis permute_minus_cancel(1))
lemma permute_set_eq_image:
shows "p ∙ X = permute p ` X"
unfolding permute_set_def by auto
lemma permute_set_eq_vimage:
shows "p ∙ X = permute (- p) -` X"
unfolding permute_set_eq vimage_def
by simp
lemma permute_finite [simp]:
shows "finite (p ∙ X) = finite X"
unfolding permute_set_eq_vimage
using bij_permute by (rule finite_vimage_iff)
lemma swap_set_not_in:
assumes a: "a ∉ S" "b ∉ S"
shows "(a ⇌ b) ∙ S = S"
unfolding permute_set_def
using a by (auto simp: swap_atom)
lemma swap_set_in:
assumes a: "a ∈ S" "b ∉ S" "sort_of a = sort_of b"
shows "(a ⇌ b) ∙ S ≠ S"
unfolding permute_set_def
using a by (auto simp: swap_atom)
lemma swap_set_in_eq:
assumes a: "a ∈ S" "b ∉ S" "sort_of a = sort_of b"
shows "(a ⇌ b) ∙ S = (S - {a}) ∪ {b}"
unfolding permute_set_def
using a by (auto simp: swap_atom)
lemma swap_set_both_in:
assumes a: "a ∈ S" "b ∈ S"
shows "(a ⇌ b) ∙ S = S"
unfolding permute_set_def
using a by (auto simp: swap_atom)
lemma mem_permute_iff:
shows "(p ∙ x) ∈ (p ∙ X) ⟷ x ∈ X"
unfolding permute_set_def
by auto
lemma empty_eqvt:
shows "p ∙ {} = {}"
unfolding permute_set_def
by (simp)
lemma insert_eqvt:
shows "p ∙ (insert x A) = insert (p ∙ x) (p ∙ A)"
unfolding permute_set_eq_image image_insert ..
subsection ‹Permutations for @{typ unit}›
instantiation unit :: pt
begin
definition "p ∙ (u::unit) = u"
instance
by standard (simp_all add: permute_unit_def)
end
subsection ‹Permutations for products›
instantiation prod :: (pt, pt) pt
begin
primrec
permute_prod
where
Pair_eqvt: "p ∙ (x, y) = (p ∙ x, p ∙ y)"
instance
by standard auto
end
subsection ‹Permutations for sums›
instantiation sum :: (pt, pt) pt
begin
primrec
permute_sum
where
Inl_eqvt: "p ∙ (Inl x) = Inl (p ∙ x)"
| Inr_eqvt: "p ∙ (Inr y) = Inr (p ∙ y)"
instance
by standard (case_tac [!] x, simp_all)
end
subsection ‹Permutations for @{typ "'a list"}›
instantiation list :: (pt) pt
begin
primrec
permute_list
where
Nil_eqvt: "p ∙ [] = []"
| Cons_eqvt: "p ∙ (x # xs) = p ∙ x # p ∙ xs"
instance
by standard (induct_tac [!] x, simp_all)
end
lemma set_eqvt:
shows "p ∙ (set xs) = set (p ∙ xs)"
by (induct xs) (simp_all add: empty_eqvt insert_eqvt)
subsection ‹Permutations for @{typ "'a option"}›
instantiation option :: (pt) pt
begin
primrec
permute_option
where
None_eqvt: "p ∙ None = None"
| Some_eqvt: "p ∙ (Some x) = Some (p ∙ x)"
instance
by standard (induct_tac [!] x, simp_all)
end
subsection ‹Permutations for @{typ "'a multiset"}›
instantiation multiset :: (pt) pt
begin
definition
"p ∙ M = {# p ∙ x. x :# M #}"
instance
proof
fix M :: "'a multiset" and p q :: "perm"
show "0 ∙ M = M"
unfolding permute_multiset_def
by (induct_tac M) (simp_all)
show "(p + q) ∙ M = p ∙ q ∙ M"
unfolding permute_multiset_def
by (induct_tac M) (simp_all)
qed
end
lemma permute_multiset [simp]:
fixes M N::"('a::pt) multiset"
shows "(p ∙ {#}) = ({#} ::('a::pt) multiset)"
and "(p ∙ add_mset x M) = add_mset (p ∙ x) (p ∙ M)"
and "(p ∙ (M + N)) = (p ∙ M) + (p ∙ N)"
unfolding permute_multiset_def
by (simp_all)
subsection ‹Permutations for @{typ "'a fset"}›
instantiation fset :: (pt) pt
begin
context includes fset.lifting begin
lift_definition
"permute_fset" :: "perm ⇒ 'a fset ⇒ 'a fset"
is "permute :: perm ⇒ 'a set ⇒ 'a set" by simp
end
context includes fset.lifting begin
instance
proof
fix x :: "'a fset" and p q :: "perm"
show "0 ∙ x = x" by transfer simp
show "(p + q) ∙ x = p ∙ q ∙ x" by transfer simp
qed
end
end
context includes fset.lifting
begin
lemma permute_fset [simp]:
fixes S::"('a::pt) fset"
shows "(p ∙ {||}) = ({||} ::('a::pt) fset)"
and "(p ∙ finsert x S) = finsert (p ∙ x) (p ∙ S)"
apply (transfer, simp add: empty_eqvt)
apply (transfer, simp add: insert_eqvt)
done
lemma fset_eqvt:
shows "p ∙ (fset S) = fset (p ∙ S)"
by transfer simp
end
subsection ‹Permutations for @{typ "('a, 'b) finfun"}›
instantiation finfun :: (pt, pt) pt
begin
lift_definition
permute_finfun :: "perm ⇒ ('a, 'b) finfun ⇒ ('a, 'b) finfun"
is
"permute :: perm ⇒ ('a ⇒ 'b) ⇒ ('a ⇒ 'b)"
apply(simp add: permute_fun_comp)
apply(rule finfun_right_compose)
apply(rule finfun_left_compose)
apply(assumption)
apply(simp)
done
instance
apply standard
apply(transfer)
apply(simp)
apply(transfer)
apply(simp)
done
end
subsection ‹Permutations for @{typ char}, @{typ nat}, and @{typ int}›
instantiation char :: pt
begin
definition "p ∙ (c::char) = c"
instance
by standard (simp_all add: permute_char_def)
end
instantiation nat :: pt
begin
definition "p ∙ (n::nat) = n"
instance
by standard (simp_all add: permute_nat_def)
end
instantiation int :: pt
begin
definition "p ∙ (i::int) = i"
instance
by standard (simp_all add: permute_int_def)
end
section ‹Pure types›
text ‹Pure types will have always empty support.›
class pure = pt +
assumes permute_pure: "p ∙ x = x"
text ‹Types @{typ unit} and @{typ bool} are pure.›
instance unit :: pure
proof qed (rule permute_unit_def)
instance bool :: pure
proof qed (rule permute_bool_def)
text ‹Other type constructors preserve purity.›
instance "fun" :: (pure, pure) pure
by standard (simp add: permute_fun_def permute_pure)
instance set :: (pure) pure
by standard (simp add: permute_set_def permute_pure)
instance prod :: (pure, pure) pure
by standard (induct_tac x, simp add: permute_pure)
instance sum :: (pure, pure) pure
by standard (induct_tac x, simp_all add: permute_pure)
instance list :: (pure) pure
by standard (induct_tac x, simp_all add: permute_pure)
instance option :: (pure) pure
by standard (induct_tac x, simp_all add: permute_pure)
subsection ‹Types @{typ char}, @{typ nat}, and @{typ int}›
instance char :: pure
proof qed (rule permute_char_def)
instance nat :: pure
proof qed (rule permute_nat_def)
instance int :: pure
proof qed (rule permute_int_def)
section ‹Infrastructure for Equivariance and ‹Perm_simp››
subsection ‹Basic functions about permutations›
ML_file ‹nominal_basics.ML›
subsection ‹Eqvt infrastructure›
text ‹Setup of the theorem attributes ‹eqvt› and ‹eqvt_raw›.›
ML_file ‹nominal_thmdecls.ML›
lemmas [eqvt] =
permute_prod.simps
permute_list.simps
permute_option.simps
permute_sum.simps
empty_eqvt insert_eqvt set_eqvt
permute_fset fset_eqvt
permute_multiset
subsection ‹‹perm_simp› infrastructure›
definition
"unpermute p = permute (- p)"
lemma eqvt_apply:
fixes f :: "'a::pt ⇒ 'b::pt"
and x :: "'a::pt"
shows "p ∙ (f x) ≡ (p ∙ f) (p ∙ x)"
unfolding permute_fun_def by simp
lemma eqvt_lambda:
fixes f :: "'a::pt ⇒ 'b::pt"
shows "p ∙ f ≡ (λx. p ∙ (f (unpermute p x)))"
unfolding permute_fun_def unpermute_def by simp
lemma eqvt_bound:
shows "p ∙ unpermute p x ≡ x"
unfolding unpermute_def by simp
text ‹provides ‹perm_simp› methods›
ML_file ‹nominal_permeq.ML›
method_setup perm_simp =
‹Nominal_Permeq.args_parser >> Nominal_Permeq.perm_simp_meth›
‹pushes permutations inside.›
method_setup perm_strict_simp =
‹Nominal_Permeq.args_parser >> Nominal_Permeq.perm_strict_simp_meth›
‹pushes permutations inside, raises an error if it cannot solve all permutations.›
simproc_setup perm_simproc ("p ∙ t") = ‹fn _ => fn ctxt => fn ctrm =>
case Thm.term_of (Thm.dest_arg ctrm) of
Free _ => NONE
| Var _ => NONE
| \<^Const_>‹permute _ for _ _› => NONE
| _ =>
let
val thm = Nominal_Permeq.eqvt_conv ctxt Nominal_Permeq.eqvt_strict_config ctrm
handle ERROR _ => Thm.reflexive ctrm
in
if Thm.is_reflexive thm then NONE else SOME(thm)
end
›
subsubsection ‹Equivariance for permutations and swapping›
lemma permute_eqvt:
shows "p ∙ (q ∙ x) = (p ∙ q) ∙ (p ∙ x)"
unfolding permute_perm_def by simp
lemma permute_eqvt_raw [eqvt_raw]:
shows "p ∙ permute ≡ permute"
apply(simp add: fun_eq_iff permute_fun_def)
apply(subst permute_eqvt)
apply(simp)
done
lemma zero_perm_eqvt [eqvt]:
shows "p ∙ (0::perm) = 0"
unfolding permute_perm_def by simp
lemma add_perm_eqvt [eqvt]:
fixes p p1 p2 :: perm
shows "p ∙ (p1 + p2) = p ∙ p1 + p ∙ p2"
unfolding permute_perm_def
by (simp add: perm_eq_iff)
lemma swap_eqvt [eqvt]:
shows "p ∙ (a ⇌ b) = (p ∙ a ⇌ p ∙ b)"
unfolding permute_perm_def
by (auto simp: swap_atom perm_eq_iff)
lemma uminus_eqvt [eqvt]:
fixes p q::"perm"
shows "p ∙ (- q) = - (p ∙ q)"
unfolding permute_perm_def
by (simp add: diff_add_eq_diff_diff_swap)
subsubsection ‹Equivariance of Logical Operators›
lemma eq_eqvt [eqvt]:
shows "p ∙ (x = y) ⟷ (p ∙ x) = (p ∙ y)"
unfolding permute_eq_iff permute_bool_def ..
lemma Not_eqvt [eqvt]:
shows "p ∙ (¬ A) ⟷ ¬ (p ∙ A)"
by (simp add: permute_bool_def)
lemma conj_eqvt [eqvt]:
shows "p ∙ (A ∧ B) ⟷ (p ∙ A) ∧ (p ∙ B)"
by (simp add: permute_bool_def)
lemma imp_eqvt [eqvt]:
shows "p ∙ (A ⟶ B) ⟷ (p ∙ A) ⟶ (p ∙ B)"
by (simp add: permute_bool_def)
declare imp_eqvt[folded HOL.induct_implies_def, eqvt]
lemma all_eqvt [eqvt]:
shows "p ∙ (∀x. P x) = (∀x. (p ∙ P) x)"
unfolding All_def
by (perm_simp) (rule refl)
declare all_eqvt[folded HOL.induct_forall_def, eqvt]
lemma ex_eqvt [eqvt]:
shows "p ∙ (∃x. P x) = (∃x. (p ∙ P) x)"
unfolding Ex_def
by (perm_simp) (rule refl)
lemma ex1_eqvt [eqvt]:
shows "p ∙ (∃!x. P x) = (∃!x. (p ∙ P) x)"
unfolding Ex1_def
by (perm_simp) (rule refl)
lemma if_eqvt [eqvt]:
shows "p ∙ (if b then x else y) = (if p ∙ b then p ∙ x else p ∙ y)"
by (simp add: permute_fun_def permute_bool_def)
lemma True_eqvt [eqvt]:
shows "p ∙ True = True"
unfolding permute_bool_def ..
lemma False_eqvt [eqvt]:
shows "p ∙ False = False"
unfolding permute_bool_def ..
lemma disj_eqvt [eqvt]:
shows "p ∙ (A ∨ B) ⟷ (p ∙ A) ∨ (p ∙ B)"
by (simp add: permute_bool_def)
lemma all_eqvt2:
shows "p ∙ (∀x. P x) = (∀x. p ∙ P (- p ∙ x))"
by (perm_simp add: permute_minus_cancel) (rule refl)
lemma ex_eqvt2:
shows "p ∙ (∃x. P x) = (∃x. p ∙ P (- p ∙ x))"
by (perm_simp add: permute_minus_cancel) (rule refl)
lemma ex1_eqvt2:
shows "p ∙ (∃!x. P x) = (∃!x. p ∙ P (- p ∙ x))"
by (perm_simp add: permute_minus_cancel) (rule refl)
lemma the_eqvt:
assumes unique: "∃!x. P x"
shows "(p ∙ (THE x. P x)) = (THE x. (p ∙ P) x)"
apply(rule the1_equality [symmetric])
apply(rule_tac p="-p" in permute_boolE)
apply(perm_simp add: permute_minus_cancel)
apply(rule unique)
apply(rule_tac p="-p" in permute_boolE)
apply(perm_simp add: permute_minus_cancel)
apply(rule theI'[OF unique])
done
lemma the_eqvt2:
assumes unique: "∃!x. P x"
shows "(p ∙ (THE x. P x)) = (THE x. p ∙ P (- p ∙ x))"
apply(rule the1_equality [symmetric])
apply(simp only: ex1_eqvt2[symmetric])
apply(simp add: permute_bool_def unique)
apply(simp add: permute_bool_def)
apply(rule theI'[OF unique])
done
subsubsection ‹Equivariance of Set operators›
lemma mem_eqvt [eqvt]:
shows "p ∙ (x ∈ A) ⟷ (p ∙ x) ∈ (p ∙ A)"
unfolding permute_bool_def permute_set_def
by (auto)
lemma Collect_eqvt [eqvt]:
shows "p ∙ {x. P x} = {x. (p ∙ P) x}"
unfolding permute_set_eq permute_fun_def
by (auto simp: permute_bool_def)
lemma Bex_eqvt [eqvt]:
shows "p ∙ (∃x ∈ S. P x) = (∃x ∈ (p ∙ S). (p ∙ P) x)"
unfolding Bex_def by simp
lemma Ball_eqvt [eqvt]:
shows "p ∙ (∀x ∈ S. P x) = (∀x ∈ (p ∙ S). (p ∙ P) x)"
unfolding Ball_def by simp
lemma image_eqvt [eqvt]:
shows "p ∙ (f ` A) = (p ∙ f) ` (p ∙ A)"
unfolding image_def by simp
lemma Image_eqvt [eqvt]:
shows "p ∙ (R `` A) = (p ∙ R) `` (p ∙ A)"
unfolding Image_def by simp
lemma UNIV_eqvt [eqvt]:
shows "p ∙ UNIV = UNIV"
unfolding UNIV_def
by (perm_simp) (rule refl)
lemma inter_eqvt [eqvt]:
shows "p ∙ (A ∩ B) = (p ∙ A) ∩ (p ∙ B)"
unfolding Int_def by simp
lemma Inter_eqvt [eqvt]:
shows "p ∙ ⋂S = ⋂(p ∙ S)"
unfolding Inter_eq by simp
lemma union_eqvt [eqvt]:
shows "p ∙ (A ∪ B) = (p ∙ A) ∪ (p ∙ B)"
unfolding Un_def by simp
lemma Union_eqvt [eqvt]:
shows "p ∙ ⋃A = ⋃(p ∙ A)"
unfolding Union_eq
by perm_simp rule
lemma Diff_eqvt [eqvt]:
fixes A B :: "'a::pt set"
shows "p ∙ (A - B) = (p ∙ A) - (p ∙ B)"
unfolding set_diff_eq by simp
lemma Compl_eqvt [eqvt]:
fixes A :: "'a::pt set"
shows "p ∙ (- A) = - (p ∙ A)"
unfolding Compl_eq_Diff_UNIV by simp
lemma subset_eqvt [eqvt]:
shows "p ∙ (S ⊆ T) ⟷ (p ∙ S) ⊆ (p ∙ T)"
unfolding subset_eq by simp
lemma psubset_eqvt [eqvt]:
shows "p ∙ (S ⊂ T) ⟷ (p ∙ S) ⊂ (p ∙ T)"
unfolding psubset_eq by simp
lemma vimage_eqvt [eqvt]:
shows "p ∙ (f -` A) = (p ∙ f) -` (p ∙ A)"
unfolding vimage_def by simp
lemma foldr_eqvt[eqvt]:
"p ∙ foldr f xs = foldr (p ∙ f) (p ∙ xs)"
apply(induct xs)
apply(simp_all)
apply(perm_simp exclude: foldr)
apply(simp)
done
lemma Sigma_eqvt:
shows "(p ∙ (X × Y)) = (p ∙ X) × (p ∙ Y)"
unfolding Sigma_def
by (perm_simp) (rule refl)
text ‹
In order to prove that lfp is equivariant we need two
auxiliary classes which specify that (<=) and
Inf are equivariant. Instances for bool and fun are
given.
›
class le_eqvt = pt +
assumes le_eqvt [eqvt]: "p ∙ (x ≤ y) = ((p ∙ x) ≤ (p ∙ (y :: 'a :: {order, pt})))"
class inf_eqvt = pt +
assumes inf_eqvt [eqvt]: "p ∙ (Inf X) = Inf (p ∙ (X :: 'a :: {complete_lattice, pt} set))"
instantiation bool :: le_eqvt
begin
instance
apply standard
unfolding le_bool_def
apply(perm_simp)
apply(rule refl)
done
end
instantiation "fun" :: (pt, le_eqvt) le_eqvt
begin
instance
apply standard
unfolding le_fun_def
apply(perm_simp)
apply(rule refl)
done
end
instantiation bool :: inf_eqvt
begin
instance
apply standard
unfolding Inf_bool_def
apply(perm_simp)
apply(rule refl)
done
end
instantiation "fun" :: (pt, inf_eqvt) inf_eqvt
begin
instance
apply standard
unfolding Inf_fun_def
apply(perm_simp)
apply(rule refl)
done
end
lemma lfp_eqvt [eqvt]:
fixes F::"('a ⇒ 'b) ⇒ ('a::pt ⇒ 'b::{inf_eqvt, le_eqvt})"
shows "p ∙ (lfp F) = lfp (p ∙ F)"
unfolding lfp_def
by simp
lemma finite_eqvt [eqvt]:
shows "p ∙ finite A = finite (p ∙ A)"
unfolding finite_def
by simp
lemma fun_upd_eqvt[eqvt]:
shows "p ∙ (f(x := y)) = (p ∙ f)((p ∙ x) := (p ∙ y))"
unfolding fun_upd_def
by simp
lemma comp_eqvt [eqvt]:
shows "p ∙ (f ∘ g) = (p ∙ f) ∘ (p ∙ g)"
unfolding comp_def
by simp
subsubsection ‹Equivariance for product operations›
lemma fst_eqvt [eqvt]:
shows "p ∙ (fst x) = fst (p ∙ x)"
by (cases x) simp
lemma snd_eqvt [eqvt]:
shows "p ∙ (snd x) = snd (p ∙ x)"
by (cases x) simp
lemma split_eqvt [eqvt]:
shows "p ∙ (case_prod P x) = case_prod (p ∙ P) (p ∙ x)"
unfolding split_def
by simp
subsubsection ‹Equivariance for list operations›
lemma append_eqvt [eqvt]:
shows "p ∙ (xs @ ys) = (p ∙ xs) @ (p ∙ ys)"
by (induct xs) auto
lemma rev_eqvt [eqvt]:
shows "p ∙ (rev xs) = rev (p ∙ xs)"
by (induct xs) (simp_all add: append_eqvt)
lemma map_eqvt [eqvt]:
shows "p ∙ (map f xs) = map (p ∙ f) (p ∙ xs)"
by (induct xs) (simp_all)
lemma removeAll_eqvt [eqvt]:
shows "p ∙ (removeAll x xs) = removeAll (p ∙ x) (p ∙ xs)"
by (induct xs) (auto)
lemma filter_eqvt [eqvt]:
shows "p ∙ (filter f xs) = filter (p ∙ f) (p ∙ xs)"
apply(induct xs)
apply(simp)
apply(simp only: filter.simps permute_list.simps if_eqvt)
apply(simp only: permute_fun_app_eq)
done
lemma distinct_eqvt [eqvt]:
shows "p ∙ (distinct xs) = distinct (p ∙ xs)"
apply(induct xs)
apply(simp add: permute_bool_def)
apply(simp add: conj_eqvt Not_eqvt mem_eqvt set_eqvt)
done
lemma length_eqvt [eqvt]:
shows "p ∙ (length xs) = length (p ∙ xs)"
by (induct xs) (simp_all add: permute_pure)
subsubsection ‹Equivariance for @{typ "'a option"}›
lemma map_option_eqvt[eqvt]:
shows "p ∙ (map_option f x) = map_option (p ∙ f) (p ∙ x)"
by (cases x) (simp_all)
subsubsection ‹Equivariance for @{typ "'a fset"}›
context includes fset.lifting begin
lemma in_fset_eqvt:
shows "(p ∙ (x |∈| S)) = ((p ∙ x) |∈| (p ∙ S))"
by transfer simp
lemma union_fset_eqvt [eqvt]:
shows "(p ∙ (S |∪| T)) = ((p ∙ S) |∪| (p ∙ T))"
by (induct S) (simp_all)
lemma inter_fset_eqvt [eqvt]:
shows "(p ∙ (S |∩| T)) = ((p ∙ S) |∩| (p ∙ T))"
by transfer simp
lemma subset_fset_eqvt [eqvt]:
shows "(p ∙ (S |⊆| T)) = ((p ∙ S) |⊆| (p ∙ T))"
by transfer simp
lemma map_fset_eqvt [eqvt]:
shows "p ∙ (f |`| S) = (p ∙ f) |`| (p ∙ S)"
by transfer simp
end
subsubsection ‹Equivariance for @{typ "('a, 'b) finfun"}›
lemma finfun_update_eqvt [eqvt]:
shows "(p ∙ (finfun_update f a b)) = finfun_update (p ∙ f) (p ∙ a) (p ∙ b)"
by (transfer) (simp)
lemma finfun_const_eqvt [eqvt]:
shows "(p ∙ (finfun_const b)) = finfun_const (p ∙ b)"
by (transfer) (simp)
lemma finfun_apply_eqvt [eqvt]:
shows "(p ∙ (finfun_apply f b)) = finfun_apply (p ∙ f) (p ∙ b)"
by (transfer) (simp)
section ‹Supp, Freshness and Supports›
context pt
begin
definition
supp :: "'a ⇒ atom set"
where
"supp x = {a. infinite {b. (a ⇌ b) ∙ x ≠ x}}"
definition
fresh :: "atom ⇒ 'a ⇒ bool" ("_ ♯ _" [55, 55] 55)
where
"a ♯ x ≡ a ∉ supp x"
end
lemma supp_conv_fresh:
shows "supp x = {a. ¬ a ♯ x}"
unfolding fresh_def by simp
lemma swap_rel_trans:
assumes "sort_of a = sort_of b"
assumes "sort_of b = sort_of c"
assumes "(a ⇌ c) ∙ x = x"
assumes "(b ⇌ c) ∙ x = x"
shows "(a ⇌ b) ∙ x = x"
proof (cases)
assume "a = b ∨ c = b"
with assms show "(a ⇌ b) ∙ x = x" by auto
next
assume *: "¬ (a = b ∨ c = b)"
have "((a ⇌ c) + (b ⇌ c) + (a ⇌ c)) ∙ x = x"
using assms by simp
also have "(a ⇌ c) + (b ⇌ c) + (a ⇌ c) = (a ⇌ b)"
using assms * by (simp add: swap_triple)
finally show "(a ⇌ b) ∙ x = x" .
qed
lemma swap_fresh_fresh:
assumes a: "a ♯ x"
and b: "b ♯ x"
shows "(a ⇌ b) ∙ x = x"
proof (cases)
assume asm: "sort_of a = sort_of b"
have "finite {c. (a ⇌ c) ∙ x ≠ x}" "finite {c. (b ⇌ c) ∙ x ≠ x}"
using a b unfolding fresh_def supp_def by simp_all
then have "finite ({c. (a ⇌ c) ∙ x ≠ x} ∪ {c. (b ⇌ c) ∙ x ≠ x})" by simp
then obtain c
where "(a ⇌ c) ∙ x = x" "(b ⇌ c) ∙ x = x" "sort_of c = sort_of b"
by (rule obtain_atom) (auto)
then show "(a ⇌ b) ∙ x = x" using asm by (rule_tac swap_rel_trans) (simp_all)
next
assume "sort_of a ≠ sort_of b"
then show "(a ⇌ b) ∙ x = x" by simp
qed
subsection ‹supp and fresh are equivariant›
lemma supp_eqvt [eqvt]:
shows "p ∙ (supp x) = supp (p ∙ x)"
unfolding supp_def by simp
lemma fresh_eqvt [eqvt]:
shows "p ∙ (a ♯ x) = (p ∙ a) ♯ (p ∙ x)"
unfolding fresh_def by simp
lemma fresh_permute_iff:
shows "(p ∙ a) ♯ (p ∙ x) ⟷ a ♯ x"
by (simp only: fresh_eqvt[symmetric] permute_bool_def)
lemma fresh_permute_left:
shows "a ♯ p ∙ x ⟷ - p ∙ a ♯ x"
proof
assume "a ♯ p ∙ x"
then have "- p ∙ a ♯ - p ∙ p ∙ x" by (simp only: fresh_permute_iff)
then show "- p ∙ a ♯ x" by simp
next
assume "- p ∙ a ♯ x"
then have "p ∙ - p ∙ a ♯ p ∙ x" by (simp only: fresh_permute_iff)
then show "a ♯ p ∙ x" by simp
qed
section ‹supports›
definition
supports :: "atom set ⇒ 'a::pt ⇒ bool" (infixl "supports" 80)
where
"S supports x ≡ ∀a b. (a ∉ S ∧ b ∉ S ⟶ (a ⇌ b) ∙ x = x)"
lemma supp_is_subset:
fixes S :: "atom set"
and x :: "'a::pt"
assumes a1: "S supports x"
and a2: "finite S"
shows "(supp x) ⊆ S"
proof (rule ccontr)
assume "¬ (supp x ⊆ S)"
then obtain a where b1: "a ∈ supp x" and b2: "a ∉ S" by auto
from a1 b2 have "∀b. b ∉ S ⟶ (a ⇌ b) ∙ x = x" unfolding supports_def by auto
then have "{b. (a ⇌ b) ∙ x ≠ x} ⊆ S" by auto
with a2 have "finite {b. (a ⇌ b) ∙ x ≠ x}" by (simp add: finite_subset)
then have "a ∉ (supp x)" unfolding supp_def by simp
with b1 show False by simp
qed
lemma supports_finite:
fixes S :: "atom set"
and x :: "'a::pt"
assumes a1: "S supports x"
and a2: "finite S"
shows "finite (supp x)"
proof -
have "(supp x) ⊆ S" using a1 a2 by (rule supp_is_subset)
then show "finite (supp x)" using a2 by (simp add: finite_subset)
qed
lemma supp_supports:
fixes x :: "'a::pt"
shows "(supp x) supports x"
unfolding supports_def
proof (intro strip)
fix a b
assume "a ∉ (supp x) ∧ b ∉ (supp x)"
then have "a ♯ x" and "b ♯ x" by (simp_all add: fresh_def)
then show "(a ⇌ b) ∙ x = x" by (simp add: swap_fresh_fresh)
qed
lemma supports_fresh:
fixes x :: "'a::pt"
assumes a1: "S supports x"
and a2: "finite S"
and a3: "a ∉ S"
shows "a ♯ x"
unfolding fresh_def
proof -
have "(supp x) ⊆ S" using a1 a2 by (rule supp_is_subset)
then show "a ∉ (supp x)" using a3 by auto
qed
lemma supp_is_least_supports:
fixes S :: "atom set"
and x :: "'a::pt"
assumes a1: "S supports x"
and a2: "finite S"
and a3: "⋀S'. finite S' ⟹ (S' supports x) ⟹ S ⊆ S'"
shows "(supp x) = S"
proof (rule equalityI)
show "(supp x) ⊆ S" using a1 a2 by (rule supp_is_subset)
with a2 have fin: "finite (supp x)" by (rule rev_finite_subset)
have "(supp x) supports x" by (rule supp_supports)
with fin a3 show "S ⊆ supp x" by blast
qed
lemma subsetCI:
shows "(⋀x. x ∈ A ⟹ x ∉ B ⟹ False) ⟹ A ⊆ B"
by auto
lemma finite_supp_unique:
assumes a1: "S supports x"
assumes a2: "finite S"
assumes a3: "⋀a b. ⟦a ∈ S; b ∉ S; sort_of a = sort_of b⟧ ⟹ (a ⇌ b) ∙ x ≠ x"
shows "(supp x) = S"
using a1 a2
proof (rule supp_is_least_supports)
fix S'
assume "finite S'" and "S' supports x"
show "S ⊆ S'"
proof (rule subsetCI)
fix a
assume "a ∈ S" and "a ∉ S'"
have "finite (S ∪ S')"
using ‹finite S› ‹finite S'› by simp
then obtain b where "b ∉ S ∪ S'" and "sort_of b = sort_of a"
by (rule obtain_atom)
then have "b ∉ S" and "b ∉ S'" and "sort_of a = sort_of b"
by simp_all
then have "(a ⇌ b) ∙ x = x"
using ‹a ∉ S'› ‹S' supports x› by (simp add: supports_def)
moreover have "(a ⇌ b) ∙ x ≠ x"
using ‹a ∈ S› ‹b ∉ S› ‹sort_of a = sort_of b›
by (rule a3)
ultimately show "False" by simp
qed
qed
section ‹Support w.r.t. relations›
text ‹
This definition is used for unquotient types, where
alpha-equivalence does not coincide with equality.
›
definition
"supp_rel R x = {a. infinite {b. ¬(R ((a ⇌ b) ∙ x) x)}}"
section ‹Finitely-supported types›
class fs = pt +
assumes finite_supp: "finite (supp x)"
lemma pure_supp:
fixes x::"'a::pure"
shows "supp x = {}"
unfolding supp_def by (simp add: permute_pure)
lemma pure_fresh:
fixes x::"'a::pure"
shows "a ♯ x"
unfolding fresh_def by (simp add: pure_supp)
instance pure < fs
by standard (simp add: pure_supp)
subsection ‹Type \<^typ>‹atom› is finitely-supported.›
lemma supp_atom:
shows "supp a = {a}"
apply (rule finite_supp_unique)
apply (clarsimp simp add: supports_def)
apply simp
apply simp
done
lemma fresh_atom:
shows "a ♯ b ⟷ a ≠ b"
unfolding fresh_def supp_atom by simp
instance atom :: fs
by standard (simp add: supp_atom)
section ‹Type \<^typ>‹perm› is finitely-supported.›
lemma perm_swap_eq:
shows "(a ⇌ b) ∙ p = p ⟷ (p ∙ (a ⇌ b)) = (a ⇌ b)"
unfolding permute_perm_def
by (metis add_diff_cancel minus_perm_def)
lemma supports_perm:
shows "{a. p ∙ a ≠ a} supports p"
unfolding supports_def
unfolding perm_swap_eq
by (simp add: swap_eqvt)
lemma finite_perm_lemma:
shows "finite {a::atom. p ∙ a ≠ a}"
using finite_Rep_perm [of p]
unfolding permute_atom_def .
lemma supp_perm:
shows "supp p = {a. p ∙ a ≠ a}"
apply (rule finite_supp_unique)
apply (rule supports_perm)
apply (rule finite_perm_lemma)
apply (simp add: perm_swap_eq swap_eqvt)
apply (auto simp: perm_eq_iff swap_atom)
done
lemma fresh_perm:
shows "a ♯ p ⟷ p ∙ a = a"
unfolding fresh_def
by (simp add: supp_perm)
lemma supp_swap:
shows "supp (a ⇌ b) = (if a = b ∨ sort_of a ≠ sort_of b then {} else {a, b})"
by (auto simp: supp_perm swap_atom)
lemma fresh_swap:
shows "a ♯ (b ⇌ c) ⟷ (sort_of b ≠ sort_of c) ∨ b = c ∨ (a ♯ b ∧ a ♯ c)"
by (simp add: fresh_def supp_swap supp_atom)
lemma fresh_zero_perm:
shows "a ♯ (0::perm)"
unfolding fresh_perm by simp
lemma supp_zero_perm:
shows "supp (0::perm) = {}"
unfolding supp_perm by simp
lemma fresh_plus_perm:
fixes p q::perm
assumes "a ♯ p" "a ♯ q"
shows "a ♯ (p + q)"
using assms
unfolding fresh_def
by (auto simp: supp_perm)
lemma supp_plus_perm:
fixes p q::perm
shows "supp (p + q) ⊆ supp p ∪ supp q"
by (auto simp: supp_perm)
lemma fresh_minus_perm:
fixes p::perm
shows "a ♯ (- p) ⟷ a ♯ p"
unfolding fresh_def
unfolding supp_perm
apply(simp)
apply(metis permute_minus_cancel)
done
lemma supp_minus_perm:
fixes p::perm
shows "supp (- p) = supp p"
unfolding supp_conv_fresh
by (simp add: fresh_minus_perm)
lemma plus_perm_eq:
fixes p q::"perm"
assumes asm: "supp p ∩ supp q = {}"
shows "p + q = q + p"
unfolding perm_eq_iff
proof
fix a::"atom"
show "(p + q) ∙ a = (q + p) ∙ a"
proof -
{ assume "a ∉ supp p" "a ∉ supp q"
then have "(p + q) ∙ a = (q + p) ∙ a"
by (simp add: supp_perm)
}
moreover
{ assume a: "a ∈ supp p" "a ∉ supp q"
then have "p ∙ a ∈ supp p" by (simp add: supp_perm)
then have "p ∙ a ∉ supp q" using asm by auto
with a have "(p + q) ∙ a = (q + p) ∙ a"
by (simp add: supp_perm)
}
moreover
{ assume a: "a ∉ supp p" "a ∈ supp q"
then have "q ∙ a ∈ supp q" by (simp add: supp_perm)
then have "q ∙ a ∉ supp p" using asm by auto
with a have "(p + q) ∙ a = (q + p) ∙ a"
by (simp add: supp_perm)
}
ultimately show "(p + q) ∙ a = (q + p) ∙ a"
using asm by blast
qed
qed
lemma supp_plus_perm_eq:
fixes p q::perm
assumes asm: "supp p ∩ supp q = {}"
shows "supp (p + q) = supp p ∪ supp q"
proof -
{ fix a::"atom"
assume "a ∈ supp p"
then have "a ∉ supp q" using asm by auto
then have "a ∈ supp (p + q)" using ‹a ∈ supp p›
by (simp add: supp_perm)
}
moreover
{ fix a::"atom"
assume "a ∈ supp q"
then have "a ∉ supp p" using asm by auto
then have "a ∈ supp (q + p)" using ‹a ∈ supp q›
by (simp add: supp_perm)
then have "a ∈ supp (p + q)" using asm plus_perm_eq
by metis
}
ultimately have "supp p ∪ supp q ⊆ supp (p + q)"
by blast
then show "supp (p + q) = supp p ∪ supp q" using supp_plus_perm
by blast
qed
lemma perm_eq_iff2:
fixes p q :: "perm"
shows "p = q ⟷ (∀a::atom ∈ supp p ∪ supp q. p ∙ a = q ∙ a)"
unfolding perm_eq_iff
apply(auto)
apply(case_tac "a ♯ p ∧ a ♯ q")
apply(simp add: fresh_perm)
apply(simp add: fresh_def)
done
instance perm :: fs
by standard (simp add: supp_perm finite_perm_lemma)
section ‹Finite Support instances for other types›
subsection ‹Type @{typ "'a × 'b"} is finitely-supported.›
lemma supp_Pair:
shows "supp (x, y) = supp x ∪ supp y"
by (simp add: supp_def Collect_imp_eq Collect_neg_eq)
lemma fresh_Pair:
shows "a ♯ (x, y) ⟷ a ♯ x ∧ a ♯ y"
by (simp add: fresh_def supp_Pair)
lemma supp_Unit:
shows "supp () = {}"
by (simp add: supp_def)
lemma fresh_Unit:
shows "a ♯ ()"
by (simp add: fresh_def supp_Unit)
instance prod :: (fs, fs) fs
apply standard
apply (case_tac x)
apply (simp add: supp_Pair finite_supp)
done
subsection ‹Type @{typ "'a + 'b"} is finitely supported›
lemma supp_Inl:
shows "supp (Inl x) = supp x"
by (simp add: supp_def)
lemma supp_Inr:
shows "supp (Inr x) = supp x"
by (simp add: supp_def)
lemma fresh_Inl:
shows "a ♯ Inl x ⟷ a ♯ x"
by (simp add: fresh_def supp_Inl)
lemma fresh_Inr:
shows "a ♯ Inr y ⟷ a ♯ y"
by (simp add: fresh_def supp_Inr)
instance sum :: (fs, fs) fs
apply standard
apply (case_tac x)
apply (simp_all add: supp_Inl supp_Inr finite_supp)
done
subsection ‹Type @{typ "'a option"} is finitely supported›
lemma supp_None:
shows "supp None = {}"
by (simp add: supp_def)
lemma supp_Some:
shows "supp (Some x) = supp x"
by (simp add: supp_def)
lemma fresh_None:
shows "a ♯ None"
by (simp add: fresh_def supp_None)
lemma fresh_Some:
shows "a ♯ Some x ⟷ a ♯ x"
by (simp add: fresh_def supp_Some)
instance option :: (fs) fs
apply standard
apply (induct_tac x)
apply (simp_all add: supp_None supp_Some finite_supp)
done
subsubsection ‹Type @{typ "'a list"} is finitely supported›
lemma supp_Nil:
shows "supp [] = {}"
by (simp add: supp_def)
lemma fresh_Nil:
shows "a ♯ []"
by (simp add: fresh_def supp_Nil)
lemma supp_Cons:
shows "supp (x # xs) = supp x ∪ supp xs"
by (simp add: supp_def Collect_imp_eq Collect_neg_eq)
lemma fresh_Cons:
shows "a ♯ (x # xs) ⟷ a ♯ x ∧ a ♯ xs"
by (simp add: fresh_def supp_Cons)
lemma supp_append:
shows "supp (xs @ ys) = supp xs ∪ supp ys"
by (induct xs) (auto simp: supp_Nil supp_Cons)
lemma fresh_append:
shows "a ♯ (xs @ ys) ⟷ a ♯ xs ∧ a ♯ ys"
by (induct xs) (simp_all add: fresh_Nil fresh_Cons)
lemma supp_rev:
shows "supp (rev xs) = supp xs"
by (induct xs) (auto simp: supp_append supp_Cons supp_Nil)
lemma fresh_rev:
shows "a ♯ rev xs ⟷ a ♯ xs"
by (induct xs) (auto simp: fresh_append fresh_Cons fresh_Nil)
lemma supp_removeAll:
fixes x::"atom"
shows "supp (removeAll x xs) = supp xs - {x}"
by (induct xs)
(auto simp: supp_Nil supp_Cons supp_atom)
lemma supp_of_atom_list:
fixes as::"atom list"
shows "supp as = set as"
by (induct as)
(simp_all add: supp_Nil supp_Cons supp_atom)
instance list :: (fs) fs
apply standard
apply (induct_tac x)
apply (simp_all add: supp_Nil supp_Cons finite_supp)
done
section ‹Support and Freshness for Applications›
lemma fresh_conv_MOST:
shows "a ♯ x ⟷ (MOST b. (a ⇌ b) ∙ x = x)"
unfolding fresh_def supp_def
unfolding MOST_iff_cofinite by simp
lemma fresh_fun_app:
assumes "a ♯ f" and "a ♯ x"
shows "a ♯ f x"
using assms
unfolding fresh_conv_MOST
unfolding permute_fun_app_eq
by (elim MOST_rev_mp) (simp)
lemma supp_fun_app:
shows "supp (f x) ⊆ (supp f) ∪ (supp x)"
using fresh_fun_app
unfolding fresh_def
by auto
subsection ‹Equivariance Predicate ‹eqvt› and ‹eqvt_at››
definition
"eqvt f ≡ ∀p. p ∙ f = f"
lemma eqvt_boolI:
fixes f::"bool"
shows "eqvt f"
unfolding eqvt_def by (simp add: permute_bool_def)
text ‹equivariance of a function at a given argument›
definition
"eqvt_at f x ≡ ∀p. p ∙ (f x) = f (p ∙ x)"
lemma eqvtI:
shows "(⋀p. p ∙ f ≡ f) ⟹ eqvt f"
unfolding eqvt_def
by simp
lemma eqvt_at_perm:
assumes "eqvt_at f x"
shows "eqvt_at f (q ∙ x)"
proof -
{ fix p::"perm"
have "p ∙ (f (q ∙ x)) = p ∙ q ∙ (f x)"
using assms by (simp add: eqvt_at_def)
also have "… = (p + q) ∙ (f x)" by simp
also have "… = f ((p + q) ∙ x)"
using assms by (simp only: eqvt_at_def)
finally have "p ∙ (f (q ∙ x)) = f (p ∙ q ∙ x)" by simp }
then show "eqvt_at f (q ∙ x)" unfolding eqvt_at_def
by simp
qed
lemma supp_fun_eqvt:
assumes a: "eqvt f"
shows "supp f = {}"
using a
unfolding eqvt_def
unfolding supp_def
by simp
lemma fresh_fun_eqvt:
assumes a: "eqvt f"
shows "a ♯ f"
using a
unfolding fresh_def
by (simp add: supp_fun_eqvt)
lemma fresh_fun_eqvt_app:
assumes a: "eqvt f"
shows "a ♯ x ⟹ a ♯ f x"
proof -
from a have "supp f = {}" by (simp add: supp_fun_eqvt)
then show "a ♯ x ⟹ a ♯ f x"
unfolding fresh_def
using supp_fun_app by auto
qed
lemma supp_fun_app_eqvt:
assumes a: "eqvt f"
shows "supp (f x) ⊆ supp x"
using fresh_fun_eqvt_app[OF a]
unfolding fresh_def
by auto
lemma supp_eqvt_at:
assumes asm: "eqvt_at f x"
and fin: "finite (supp x)"
shows "supp (f x) ⊆ supp x"
apply(rule supp_is_subset)
unfolding supports_def
unfolding fresh_def[symmetric]
using asm
apply(simp add: eqvt_at_def)
apply(simp add: swap_fresh_fresh)
apply(rule fin)
done
lemma finite_supp_eqvt_at:
assumes asm: "eqvt_at f x"
and fin: "finite (supp x)"
shows "finite (supp (f x))"
apply(rule finite_subset)
apply(rule supp_eqvt_at[OF asm fin])
apply(rule fin)
done
lemma fresh_eqvt_at:
assumes asm: "eqvt_at f x"
and fin: "finite (supp x)"
and fresh: "a ♯ x"
shows "a ♯ f x"
using fresh
unfolding fresh_def
using supp_eqvt_at[OF asm fin]
by auto
text ‹for handling of freshness of functions›
simproc_setup fresh_fun_simproc ("a ♯ (f::'a::pt ⇒'b::pt)") = ‹fn _ => fn ctxt => fn ctrm =>
let
val _ $ _ $ f = Thm.term_of ctrm
in
case (Term.add_frees f [], Term.add_vars f []) of
([], []) => SOME(@{thm fresh_fun_eqvt[simplified eqvt_def, THEN Eq_TrueI]})
| (x::_, []) =>
let
val argx = Free x
val absf = absfree x f
val cty_inst =
[SOME (Thm.ctyp_of ctxt (fastype_of argx)), SOME (Thm.ctyp_of ctxt (fastype_of f))]
val ctrm_inst = [NONE, SOME (Thm.cterm_of ctxt absf), SOME (Thm.cterm_of ctxt argx)]
val thm = Thm.instantiate' cty_inst ctrm_inst @{thm fresh_fun_app}
in
SOME(thm RS @{thm Eq_TrueI})
end
| (_, _) => NONE
end
›
subsection ‹helper functions for ‹nominal_functions››
lemma THE_defaultI2:
assumes "∃!x. P x" "⋀x. P x ⟹ Q x"
shows "Q (THE_default d P)"
by (iprover intro: assms THE_defaultI')
lemma the_default_eqvt:
assumes unique: "∃!x. P x"
shows "(p ∙ (THE_default d P)) = (THE_default (p ∙ d) (p ∙ P))"
apply(rule THE_default1_equality [symmetric])
apply(rule_tac p="-p" in permute_boolE)
apply(simp add: ex1_eqvt)
apply(rule unique)
apply(rule_tac p="-p" in permute_boolE)
apply(rule subst[OF permute_fun_app_eq])
apply(simp)
apply(rule THE_defaultI'[OF unique])
done
lemma fundef_ex1_eqvt:
fixes x::"'a::pt"
assumes f_def: "f == (λx::'a. THE_default (d x) (G x))"
assumes eqvt: "eqvt G"
assumes ex1: "∃!y. G x y"
shows "(p ∙ (f x)) = f (p ∙ x)"
apply(simp only: f_def)
apply(subst the_default_eqvt)
apply(rule ex1)
apply(rule THE_default1_equality [symmetric])
apply(rule_tac p="-p" in permute_boolE)
apply(perm_simp add: permute_minus_cancel)
using eqvt[simplified eqvt_def]
apply(simp)
apply(rule ex1)
apply(rule THE_defaultI2)
apply(rule_tac p="-p" in permute_boolE)
apply(perm_simp add: permute_minus_cancel)
apply(rule ex1)
apply(perm_simp)
using eqvt[simplified eqvt_def]
apply(simp)
done
lemma fundef_ex1_eqvt_at:
fixes x::"'a::pt"
assumes f_def: "f == (λx::'a. THE_default (d x) (G x))"
assumes eqvt: "eqvt G"
assumes ex1: "∃!y. G x y"
shows "eqvt_at f x"
unfolding eqvt_at_def
using assms
by (auto intro: fundef_ex1_eqvt)
lemma fundef_ex1_prop:
fixes x::"'a::pt"
assumes f_def: "f == (λx::'a. THE_default (d x) (G x))"
assumes P_all: "⋀x y. G x y ⟹ P x y"
assumes ex1: "∃!y. G x y"
shows "P x (f x)"
unfolding f_def
using ex1
apply(erule_tac ex1E)
apply(rule THE_defaultI2)
apply(blast)
apply(rule P_all)
apply(assumption)
done
section ‹Support of Finite Sets of Finitely Supported Elements›
text ‹support and freshness for atom sets›
lemma supp_finite_atom_set:
fixes S::"atom set"
assumes "finite S"
shows "supp S = S"
apply(rule finite_supp_unique)
apply(simp add: supports_def)
apply(simp add: swap_set_not_in)
apply(rule assms)
apply(simp add: swap_set_in)
done
lemma supp_cofinite_atom_set:
fixes S::"atom set"
assumes "finite (UNIV - S)"
shows "supp S = (UNIV - S)"
apply(rule finite_supp_unique)
apply(simp add: supports_def)
apply(simp add: swap_set_both_in)
apply(rule assms)
apply(subst swap_commute)
apply(simp add: swap_set_in)
done
lemma fresh_finite_atom_set:
fixes S::"atom set"
assumes "finite S"
shows "a ♯ S ⟷ a ∉ S"
unfolding fresh_def
by (simp add: supp_finite_atom_set[OF assms])
lemma fresh_minus_atom_set:
fixes S::"atom set"
assumes "finite S"
shows "a ♯ S - T ⟷ (a ∉ T ⟶ a ♯ S)"
unfolding fresh_def
by (auto simp: supp_finite_atom_set assms)
lemma Union_supports_set:
shows "(⋃x ∈ S. supp x) supports S"
proof -
{ fix a b
have "∀x ∈ S. (a ⇌ b) ∙ x = x ⟹ (a ⇌ b) ∙ S = S"
unfolding permute_set_def by force
}
then show "(⋃x ∈ S. supp x) supports S"
unfolding supports_def
by (simp add: fresh_def[symmetric] swap_fresh_fresh)
qed
lemma Union_of_finite_supp_sets:
fixes S::"('a::fs set)"
assumes fin: "finite S"
shows "finite (⋃x∈S. supp x)"
using fin by (induct) (auto simp: finite_supp)
lemma Union_included_in_supp:
fixes S::"('a::fs set)"
assumes fin: "finite S"
shows "(⋃x∈S. supp x) ⊆ supp S"
proof -
have eqvt: "eqvt (λS. ⋃x ∈ S. supp x)"
unfolding eqvt_def by simp
have "(⋃x∈S. supp x) = supp (⋃x∈S. supp x)"
by (rule supp_finite_atom_set[symmetric]) (rule Union_of_finite_supp_sets[OF fin])
also have "… ⊆ supp S" using eqvt
by (rule supp_fun_app_eqvt)
finally show "(⋃x∈S. supp x) ⊆ supp S" .
qed
lemma supp_of_finite_sets:
fixes S::"('a::fs set)"
assumes fin: "finite S"
shows "(supp S) = (⋃x∈S. supp x)"
apply(rule subset_antisym)
apply(rule supp_is_subset)
apply(rule Union_supports_set)
apply(rule Union_of_finite_supp_sets[OF fin])
apply(rule Union_included_in_supp[OF fin])
done
lemma finite_sets_supp:
fixes S::"('a::fs set)"
assumes "finite S"
shows "finite (supp S)"
using assms
by (simp only: supp_of_finite_sets Union_of_finite_supp_sets)
lemma supp_of_finite_union:
fixes S T::"('a::fs) set"
assumes fin1: "finite S"
and fin2: "finite T"
shows "supp (S ∪ T) = supp S ∪ supp T"
using fin1 fin2
by (simp add: supp_of_finite_sets)
lemma fresh_finite_union:
fixes S T::"('a::fs) set"
assumes fin1: "finite S"
and fin2: "finite T"
shows "a ♯ (S ∪ T) ⟷ a ♯ S