# Theory Conditionally_Complete_Lattices

```(*  Title:      HOL/Conditionally_Complete_Lattices.thy
Author:     Amine Chaieb and L C Paulson, University of Cambridge
Author:     Johannes Hölzl, TU München
Author:     Luke S. Serafin, Carnegie Mellon University
*)

section ‹Conditionally-complete Lattices›

theory Conditionally_Complete_Lattices
imports Finite_Set Lattices_Big Set_Interval
begin

locale preordering_bdd = preordering
begin

definition bdd :: ‹'a set ⇒ bool›
where unfold: ‹bdd A ⟷ (∃M. ∀x ∈ A. x ❙≤ M)›

lemma empty [simp, intro]:
‹bdd {}›
by (simp add: unfold)

lemma I [intro]:
‹bdd A› if ‹⋀x. x ∈ A ⟹ x ❙≤ M›
using that by (auto simp add: unfold)

lemma E:
assumes ‹bdd A›
obtains M where ‹⋀x. x ∈ A ⟹ x ❙≤ M›
using assms that by (auto simp add: unfold)

lemma I2:
‹bdd (f ` A)› if ‹⋀x. x ∈ A ⟹ f x ❙≤ M›
using that by (auto simp add: unfold)

lemma mono:
‹bdd A› if ‹bdd B› ‹A ⊆ B›
using that by (auto simp add: unfold)

lemma Int1 [simp]:
‹bdd (A ∩ B)› if ‹bdd A›
using mono that by auto

lemma Int2 [simp]:
‹bdd (A ∩ B)› if ‹bdd B›
using mono that by auto

end

subsection ‹Preorders›

context preorder
begin

sublocale bdd_above: preordering_bdd ‹(≤)› ‹(<)›
defines bdd_above_primitive_def: bdd_above = bdd_above.bdd ..

sublocale bdd_below: preordering_bdd ‹(≥)› ‹(>)›
defines bdd_below_primitive_def: bdd_below = bdd_below.bdd ..

lemma bdd_above_def: ‹bdd_above A ⟷ (∃M. ∀x ∈ A. x ≤ M)›
by (fact bdd_above.unfold)

lemma bdd_below_def: ‹bdd_below A ⟷ (∃M. ∀x ∈ A. M ≤ x)›
by (fact bdd_below.unfold)

lemma bdd_aboveI: "(⋀x. x ∈ A ⟹ x ≤ M) ⟹ bdd_above A"
by (fact bdd_above.I)

lemma bdd_belowI: "(⋀x. x ∈ A ⟹ m ≤ x) ⟹ bdd_below A"
by (fact bdd_below.I)

lemma bdd_aboveI2: "(⋀x. x ∈ A ⟹ f x ≤ M) ⟹ bdd_above (f`A)"
by (fact bdd_above.I2)

lemma bdd_belowI2: "(⋀x. x ∈ A ⟹ m ≤ f x) ⟹ bdd_below (f`A)"
by (fact bdd_below.I2)

lemma bdd_above_empty: "bdd_above {}"
by (fact bdd_above.empty)

lemma bdd_below_empty: "bdd_below {}"
by (fact bdd_below.empty)

lemma bdd_above_mono: "bdd_above B ⟹ A ⊆ B ⟹ bdd_above A"
by (fact bdd_above.mono)

lemma bdd_below_mono: "bdd_below B ⟹ A ⊆ B ⟹ bdd_below A"
by (fact bdd_below.mono)

lemma bdd_above_Int1: "bdd_above A ⟹ bdd_above (A ∩ B)"
by (fact bdd_above.Int1)

lemma bdd_above_Int2: "bdd_above B ⟹ bdd_above (A ∩ B)"
by (fact bdd_above.Int2)

lemma bdd_below_Int1: "bdd_below A ⟹ bdd_below (A ∩ B)"
by (fact bdd_below.Int1)

lemma bdd_below_Int2: "bdd_below B ⟹ bdd_below (A ∩ B)"
by (fact bdd_below.Int2)

lemma bdd_above_Ioo [simp, intro]: "bdd_above {a <..< b}"
by (auto simp add: bdd_above_def intro!: exI[of _ b] less_imp_le)

lemma bdd_above_Ico [simp, intro]: "bdd_above {a ..< b}"
by (auto simp add: bdd_above_def intro!: exI[of _ b] less_imp_le)

lemma bdd_above_Iio [simp, intro]: "bdd_above {..< b}"
by (auto simp add: bdd_above_def intro: exI[of _ b] less_imp_le)

lemma bdd_above_Ioc [simp, intro]: "bdd_above {a <.. b}"
by (auto simp add: bdd_above_def intro: exI[of _ b] less_imp_le)

lemma bdd_above_Icc [simp, intro]: "bdd_above {a .. b}"
by (auto simp add: bdd_above_def intro: exI[of _ b] less_imp_le)

lemma bdd_above_Iic [simp, intro]: "bdd_above {.. b}"
by (auto simp add: bdd_above_def intro: exI[of _ b] less_imp_le)

lemma bdd_below_Ioo [simp, intro]: "bdd_below {a <..< b}"
by (auto simp add: bdd_below_def intro!: exI[of _ a] less_imp_le)

lemma bdd_below_Ioc [simp, intro]: "bdd_below {a <.. b}"
by (auto simp add: bdd_below_def intro!: exI[of _ a] less_imp_le)

lemma bdd_below_Ioi [simp, intro]: "bdd_below {a <..}"
by (auto simp add: bdd_below_def intro: exI[of _ a] less_imp_le)

lemma bdd_below_Ico [simp, intro]: "bdd_below {a ..< b}"
by (auto simp add: bdd_below_def intro: exI[of _ a] less_imp_le)

lemma bdd_below_Icc [simp, intro]: "bdd_below {a .. b}"
by (auto simp add: bdd_below_def intro: exI[of _ a] less_imp_le)

lemma bdd_below_Ici [simp, intro]: "bdd_below {a ..}"
by (auto simp add: bdd_below_def intro: exI[of _ a] less_imp_le)

end

context order_top
begin

lemma bdd_above_top [simp, intro!]: "bdd_above A"
by (rule bdd_aboveI [of _ top]) simp

end

context order_bot
begin

lemma bdd_below_bot [simp, intro!]: "bdd_below A"
by (rule bdd_belowI [of _ bot]) simp

end

lemma bdd_above_image_mono: "mono f ⟹ bdd_above A ⟹ bdd_above (f`A)"
by (auto simp: bdd_above_def mono_def)

lemma bdd_below_image_mono: "mono f ⟹ bdd_below A ⟹ bdd_below (f`A)"
by (auto simp: bdd_below_def mono_def)

lemma bdd_above_image_antimono: "antimono f ⟹ bdd_below A ⟹ bdd_above (f`A)"
by (auto simp: bdd_above_def bdd_below_def antimono_def)

lemma bdd_below_image_antimono: "antimono f ⟹ bdd_above A ⟹ bdd_below (f`A)"
by (auto simp: bdd_above_def bdd_below_def antimono_def)

lemma
fixes X :: "'a::ordered_ab_group_add set"
shows bdd_above_uminus[simp]: "bdd_above (uminus ` X) ⟷ bdd_below X"
and bdd_below_uminus[simp]: "bdd_below (uminus ` X) ⟷ bdd_above X"
using bdd_above_image_antimono[of uminus X] bdd_below_image_antimono[of uminus "uminus`X"]
using bdd_below_image_antimono[of uminus X] bdd_above_image_antimono[of uminus "uminus`X"]
by (auto simp: antimono_def image_image)

subsection ‹Lattices›

context lattice
begin

lemma bdd_above_insert [simp]: "bdd_above (insert a A) = bdd_above A"
by (auto simp: bdd_above_def intro: le_supI2 sup_ge1)

lemma bdd_below_insert [simp]: "bdd_below (insert a A) = bdd_below A"
by (auto simp: bdd_below_def intro: le_infI2 inf_le1)

lemma bdd_finite [simp]:
assumes "finite A" shows bdd_above_finite: "bdd_above A" and bdd_below_finite: "bdd_below A"
using assms by (induct rule: finite_induct, auto)

lemma bdd_above_Un [simp]: "bdd_above (A ∪ B) = (bdd_above A ∧ bdd_above B)"
proof
assume "bdd_above (A ∪ B)"
thus "bdd_above A ∧ bdd_above B" unfolding bdd_above_def by auto
next
assume "bdd_above A ∧ bdd_above B"
then obtain a b where "∀x∈A. x ≤ a" "∀x∈B. x ≤ b" unfolding bdd_above_def by auto
hence "∀x ∈ A ∪ B. x ≤ sup a b" by (auto intro: Un_iff le_supI1 le_supI2)
thus "bdd_above (A ∪ B)" unfolding bdd_above_def ..
qed

lemma bdd_below_Un [simp]: "bdd_below (A ∪ B) = (bdd_below A ∧ bdd_below B)"
proof
assume "bdd_below (A ∪ B)"
thus "bdd_below A ∧ bdd_below B" unfolding bdd_below_def by auto
next
assume "bdd_below A ∧ bdd_below B"
then obtain a b where "∀x∈A. a ≤ x" "∀x∈B. b ≤ x" unfolding bdd_below_def by auto
hence "∀x ∈ A ∪ B. inf a b ≤ x" by (auto intro: Un_iff le_infI1 le_infI2)
thus "bdd_below (A ∪ B)" unfolding bdd_below_def ..
qed

lemma bdd_above_image_sup[simp]:
"bdd_above ((λx. sup (f x) (g x)) ` A) ⟷ bdd_above (f`A) ∧ bdd_above (g`A)"
by (auto simp: bdd_above_def intro: le_supI1 le_supI2)

lemma bdd_below_image_inf[simp]:
"bdd_below ((λx. inf (f x) (g x)) ` A) ⟷ bdd_below (f`A) ∧ bdd_below (g`A)"
by (auto simp: bdd_below_def intro: le_infI1 le_infI2)

lemma bdd_below_UN[simp]: "finite I ⟹ bdd_below (⋃i∈I. A i) = (∀i ∈ I. bdd_below (A i))"
by (induction I rule: finite.induct) auto

lemma bdd_above_UN[simp]: "finite I ⟹ bdd_above (⋃i∈I. A i) = (∀i ∈ I. bdd_above (A i))"
by (induction I rule: finite.induct) auto

end

text ‹

To avoid name classes with the \<^class>‹complete_lattice›-class we prefix \<^const>‹Sup› and
\<^const>‹Inf› in theorem names with c.

›

subsection ‹Conditionally complete lattices›

class conditionally_complete_lattice = lattice + Sup + Inf +
assumes cInf_lower: "x ∈ X ⟹ bdd_below X ⟹ Inf X ≤ x"
and cInf_greatest: "X ≠ {} ⟹ (⋀x. x ∈ X ⟹ z ≤ x) ⟹ z ≤ Inf X"
assumes cSup_upper: "x ∈ X ⟹ bdd_above X ⟹ x ≤ Sup X"
and cSup_least: "X ≠ {} ⟹ (⋀x. x ∈ X ⟹ x ≤ z) ⟹ Sup X ≤ z"
begin

lemma cSup_upper2: "x ∈ X ⟹ y ≤ x ⟹ bdd_above X ⟹ y ≤ Sup X"
by (metis cSup_upper order_trans)

lemma cInf_lower2: "x ∈ X ⟹ x ≤ y ⟹ bdd_below X ⟹ Inf X ≤ y"
by (metis cInf_lower order_trans)

lemma cSup_mono: "B ≠ {} ⟹ bdd_above A ⟹ (⋀b. b ∈ B ⟹ ∃a∈A. b ≤ a) ⟹ Sup B ≤ Sup A"
by (metis cSup_least cSup_upper2)

lemma cInf_mono: "B ≠ {} ⟹ bdd_below A ⟹ (⋀b. b ∈ B ⟹ ∃a∈A. a ≤ b) ⟹ Inf A ≤ Inf B"
by (metis cInf_greatest cInf_lower2)

lemma cSup_subset_mono: "A ≠ {} ⟹ bdd_above B ⟹ A ⊆ B ⟹ Sup A ≤ Sup B"
by (metis cSup_least cSup_upper subsetD)

lemma cInf_superset_mono: "A ≠ {} ⟹ bdd_below B ⟹ A ⊆ B ⟹ Inf B ≤ Inf A"
by (metis cInf_greatest cInf_lower subsetD)

lemma cSup_eq_maximum: "z ∈ X ⟹ (⋀x. x ∈ X ⟹ x ≤ z) ⟹ Sup X = z"
by (intro order.antisym cSup_upper[of z X] cSup_least[of X z]) auto

lemma cInf_eq_minimum: "z ∈ X ⟹ (⋀x. x ∈ X ⟹ z ≤ x) ⟹ Inf X = z"
by (intro order.antisym cInf_lower[of z X] cInf_greatest[of X z]) auto

lemma cSup_le_iff: "S ≠ {} ⟹ bdd_above S ⟹ Sup S ≤ a ⟷ (∀x∈S. x ≤ a)"
by (metis order_trans cSup_upper cSup_least)

lemma le_cInf_iff: "S ≠ {} ⟹ bdd_below S ⟹ a ≤ Inf S ⟷ (∀x∈S. a ≤ x)"
by (metis order_trans cInf_lower cInf_greatest)

lemma cSup_eq_non_empty:
assumes 1: "X ≠ {}"
assumes 2: "⋀x. x ∈ X ⟹ x ≤ a"
assumes 3: "⋀y. (⋀x. x ∈ X ⟹ x ≤ y) ⟹ a ≤ y"
shows "Sup X = a"
by (intro 3 1 order.antisym cSup_least) (auto intro: 2 1 cSup_upper)

lemma cInf_eq_non_empty:
assumes 1: "X ≠ {}"
assumes 2: "⋀x. x ∈ X ⟹ a ≤ x"
assumes 3: "⋀y. (⋀x. x ∈ X ⟹ y ≤ x) ⟹ y ≤ a"
shows "Inf X = a"
by (intro 3 1 order.antisym cInf_greatest) (auto intro: 2 1 cInf_lower)

lemma cInf_cSup: "S ≠ {} ⟹ bdd_below S ⟹ Inf S = Sup {x. ∀s∈S. x ≤ s}"
by (rule cInf_eq_non_empty) (auto intro!: cSup_upper cSup_least simp: bdd_below_def)

lemma cSup_cInf: "S ≠ {} ⟹ bdd_above S ⟹ Sup S = Inf {x. ∀s∈S. s ≤ x}"
by (rule cSup_eq_non_empty) (auto intro!: cInf_lower cInf_greatest simp: bdd_above_def)

lemma cSup_insert: "X ≠ {} ⟹ bdd_above X ⟹ Sup (insert a X) = sup a (Sup X)"
by (intro cSup_eq_non_empty) (auto intro: le_supI2 cSup_upper cSup_least)

lemma cInf_insert: "X ≠ {} ⟹ bdd_below X ⟹ Inf (insert a X) = inf a (Inf X)"
by (intro cInf_eq_non_empty) (auto intro: le_infI2 cInf_lower cInf_greatest)

lemma cSup_singleton [simp]: "Sup {x} = x"
by (intro cSup_eq_maximum) auto

lemma cInf_singleton [simp]: "Inf {x} = x"
by (intro cInf_eq_minimum) auto

lemma cSup_insert_If:  "bdd_above X ⟹ Sup (insert a X) = (if X = {} then a else sup a (Sup X))"
using cSup_insert[of X] by simp

lemma cInf_insert_If: "bdd_below X ⟹ Inf (insert a X) = (if X = {} then a else inf a (Inf X))"
using cInf_insert[of X] by simp

lemma le_cSup_finite: "finite X ⟹ x ∈ X ⟹ x ≤ Sup X"
proof (induct X arbitrary: x rule: finite_induct)
case (insert x X y) then show ?case
by (cases "X = {}") (auto simp: cSup_insert intro: le_supI2)
qed simp

lemma cInf_le_finite: "finite X ⟹ x ∈ X ⟹ Inf X ≤ x"
proof (induct X arbitrary: x rule: finite_induct)
case (insert x X y) then show ?case
by (cases "X = {}") (auto simp: cInf_insert intro: le_infI2)
qed simp

lemma cSup_eq_Sup_fin: "finite X ⟹ X ≠ {} ⟹ Sup X = Sup_fin X"
by (induct X rule: finite_ne_induct) (simp_all add: cSup_insert)

lemma cInf_eq_Inf_fin: "finite X ⟹ X ≠ {} ⟹ Inf X = Inf_fin X"
by (induct X rule: finite_ne_induct) (simp_all add: cInf_insert)

lemma cSup_atMost[simp]: "Sup {..x} = x"
by (auto intro!: cSup_eq_maximum)

lemma cSup_greaterThanAtMost[simp]: "y < x ⟹ Sup {y<..x} = x"
by (auto intro!: cSup_eq_maximum)

lemma cSup_atLeastAtMost[simp]: "y ≤ x ⟹ Sup {y..x} = x"
by (auto intro!: cSup_eq_maximum)

lemma cInf_atLeast[simp]: "Inf {x..} = x"
by (auto intro!: cInf_eq_minimum)

lemma cInf_atLeastLessThan[simp]: "y < x ⟹ Inf {y..<x} = y"
by (auto intro!: cInf_eq_minimum)

lemma cInf_atLeastAtMost[simp]: "y ≤ x ⟹ Inf {y..x} = y"
by (auto intro!: cInf_eq_minimum)

lemma cINF_lower: "bdd_below (f ` A) ⟹ x ∈ A ⟹ ⨅(f ` A) ≤ f x"
using cInf_lower [of _ "f ` A"] by simp

lemma cINF_greatest: "A ≠ {} ⟹ (⋀x. x ∈ A ⟹ m ≤ f x) ⟹ m ≤ ⨅(f ` A)"
using cInf_greatest [of "f ` A"] by auto

lemma cSUP_upper: "x ∈ A ⟹ bdd_above (f ` A) ⟹ f x ≤ ⨆(f ` A)"
using cSup_upper [of _ "f ` A"] by simp

lemma cSUP_least: "A ≠ {} ⟹ (⋀x. x ∈ A ⟹ f x ≤ M) ⟹ ⨆(f ` A) ≤ M"
using cSup_least [of "f ` A"] by auto

lemma cINF_lower2: "bdd_below (f ` A) ⟹ x ∈ A ⟹ f x ≤ u ⟹ ⨅(f ` A) ≤ u"
by (auto intro: cINF_lower order_trans)

lemma cSUP_upper2: "bdd_above (f ` A) ⟹ x ∈ A ⟹ u ≤ f x ⟹ u ≤ ⨆(f ` A)"
by (auto intro: cSUP_upper order_trans)

lemma cSUP_const [simp]: "A ≠ {} ⟹ (⨆x∈A. c) = c"
by (intro order.antisym cSUP_least) (auto intro: cSUP_upper)

lemma cINF_const [simp]: "A ≠ {} ⟹ (⨅x∈A. c) = c"
by (intro order.antisym cINF_greatest) (auto intro: cINF_lower)

lemma le_cINF_iff: "A ≠ {} ⟹ bdd_below (f ` A) ⟹ u ≤ ⨅(f ` A) ⟷ (∀x∈A. u ≤ f x)"
by (metis cINF_greatest cINF_lower order_trans)

lemma cSUP_le_iff: "A ≠ {} ⟹ bdd_above (f ` A) ⟹ ⨆(f ` A) ≤ u ⟷ (∀x∈A. f x ≤ u)"
by (metis cSUP_least cSUP_upper order_trans)

lemma less_cINF_D: "bdd_below (f`A) ⟹ y < (⨅i∈A. f i) ⟹ i ∈ A ⟹ y < f i"
by (metis cINF_lower less_le_trans)

lemma cSUP_lessD: "bdd_above (f`A) ⟹ (⨆i∈A. f i) < y ⟹ i ∈ A ⟹ f i < y"
by (metis cSUP_upper le_less_trans)

lemma cINF_insert: "A ≠ {} ⟹ bdd_below (f ` A) ⟹ ⨅(f ` insert a A) = inf (f a) (⨅(f ` A))"
by (simp add: cInf_insert)

lemma cSUP_insert: "A ≠ {} ⟹ bdd_above (f ` A) ⟹ ⨆(f ` insert a A) = sup (f a) (⨆(f ` A))"
by (simp add: cSup_insert)

lemma cINF_mono: "B ≠ {} ⟹ bdd_below (f ` A) ⟹ (⋀m. m ∈ B ⟹ ∃n∈A. f n ≤ g m) ⟹ ⨅(f ` A) ≤ ⨅(g ` B)"
using cInf_mono [of "g ` B" "f ` A"] by auto

lemma cSUP_mono: "A ≠ {} ⟹ bdd_above (g ` B) ⟹ (⋀n. n ∈ A ⟹ ∃m∈B. f n ≤ g m) ⟹ ⨆(f ` A) ≤ ⨆(g ` B)"
using cSup_mono [of "f ` A" "g ` B"] by auto

lemma cINF_superset_mono: "A ≠ {} ⟹ bdd_below (g ` B) ⟹ A ⊆ B ⟹ (⋀x. x ∈ B ⟹ g x ≤ f x) ⟹ ⨅(g ` B) ≤ ⨅(f ` A)"
by (rule cINF_mono) auto

lemma cSUP_subset_mono:
"⟦A ≠ {}; bdd_above (g ` B); A ⊆ B; ⋀x. x ∈ A ⟹ f x ≤ g x⟧ ⟹ ⨆ (f ` A) ≤ ⨆ (g ` B)"
by (rule cSUP_mono) auto

lemma less_eq_cInf_inter: "bdd_below A ⟹ bdd_below B ⟹ A ∩ B ≠ {} ⟹ inf (Inf A) (Inf B) ≤ Inf (A ∩ B)"
by (metis cInf_superset_mono lattice_class.inf_sup_ord(1) le_infI1)

lemma cSup_inter_less_eq: "bdd_above A ⟹ bdd_above B ⟹ A ∩ B ≠ {} ⟹ Sup (A ∩ B) ≤ sup (Sup A) (Sup B) "
by (metis cSup_subset_mono lattice_class.inf_sup_ord(1) le_supI1)

lemma cInf_union_distrib: "A ≠ {} ⟹ bdd_below A ⟹ B ≠ {} ⟹ bdd_below B ⟹ Inf (A ∪ B) = inf (Inf A) (Inf B)"
by (intro order.antisym le_infI cInf_greatest cInf_lower) (auto intro: le_infI1 le_infI2 cInf_lower)

lemma cINF_union: "A ≠ {} ⟹ bdd_below (f ` A) ⟹ B ≠ {} ⟹ bdd_below (f ` B) ⟹ ⨅ (f ` (A ∪ B)) = ⨅ (f ` A) ⊓ ⨅ (f ` B)"
using cInf_union_distrib [of "f ` A" "f ` B"] by (simp add: image_Un)

lemma cSup_union_distrib: "A ≠ {} ⟹ bdd_above A ⟹ B ≠ {} ⟹ bdd_above B ⟹ Sup (A ∪ B) = sup (Sup A) (Sup B)"
by (intro order.antisym le_supI cSup_least cSup_upper) (auto intro: le_supI1 le_supI2 cSup_upper)

lemma cSUP_union: "A ≠ {} ⟹ bdd_above (f ` A) ⟹ B ≠ {} ⟹ bdd_above (f ` B) ⟹ ⨆ (f ` (A ∪ B)) = ⨆ (f ` A) ⊔ ⨆ (f ` B)"
using cSup_union_distrib [of "f ` A" "f ` B"] by (simp add: image_Un)

lemma cINF_inf_distrib: "A ≠ {} ⟹ bdd_below (f`A) ⟹ bdd_below (g`A) ⟹ ⨅ (f ` A) ⊓ ⨅ (g ` A) = (⨅a∈A. inf (f a) (g a))"
by (intro order.antisym le_infI cINF_greatest cINF_lower2)
(auto intro: le_infI1 le_infI2 cINF_greatest cINF_lower le_infI)

lemma SUP_sup_distrib: "A ≠ {} ⟹ bdd_above (f`A) ⟹ bdd_above (g`A) ⟹ ⨆ (f ` A) ⊔ ⨆ (g ` A) = (⨆a∈A. sup (f a) (g a))"
by (intro order.antisym le_supI cSUP_least cSUP_upper2)
(auto intro: le_supI1 le_supI2 cSUP_least cSUP_upper le_supI)

lemma cInf_le_cSup:
"A ≠ {} ⟹ bdd_above A ⟹ bdd_below A ⟹ Inf A ≤ Sup A"
by (auto intro!: cSup_upper2[of "SOME a. a ∈ A"] intro: someI cInf_lower)

context
fixes f :: "'a ⇒ 'b::conditionally_complete_lattice"
assumes "mono f"
begin

lemma mono_cInf: "⟦bdd_below A; A≠{}⟧ ⟹ f (Inf A) ≤ (INF x∈A. f x)"
by (simp add: ‹mono f› conditionally_complete_lattice_class.cINF_greatest cInf_lower monoD)

lemma mono_cSup: "⟦bdd_above A; A≠{}⟧ ⟹ (SUP x∈A. f x) ≤ f (Sup A)"
by (simp add: ‹mono f› conditionally_complete_lattice_class.cSUP_least cSup_upper monoD)

lemma mono_cINF: "⟦bdd_below (A`I); I≠{}⟧ ⟹ f (INF i∈I. A i) ≤ (INF x∈I. f (A x))"
by (simp add: ‹mono f› conditionally_complete_lattice_class.cINF_greatest cINF_lower monoD)

lemma mono_cSUP: "⟦bdd_above (A`I); I≠{}⟧ ⟹ (SUP x∈I. f (A x)) ≤ f (SUP i∈I. A i)"
by (simp add: ‹mono f› conditionally_complete_lattice_class.cSUP_least cSUP_upper monoD)

end

end

text ‹The special case of well-orderings›

lemma wellorder_InfI:
fixes k :: "'a::{wellorder,conditionally_complete_lattice}"
assumes "k ∈ A" shows "Inf A ∈ A"
using wellorder_class.LeastI [of "λx. x ∈ A" k]
by (simp add: Least_le assms cInf_eq_minimum)

lemma wellorder_Inf_le1:
fixes k :: "'a::{wellorder,conditionally_complete_lattice}"
assumes "k ∈ A" shows "Inf A ≤ k"
by (meson Least_le assms bdd_below.I cInf_lower)

subsection ‹Complete lattices›

instance complete_lattice ⊆ conditionally_complete_lattice
by standard (auto intro: Sup_upper Sup_least Inf_lower Inf_greatest)

lemma cSup_eq:
fixes a :: "'a :: {conditionally_complete_lattice, no_bot}"
assumes upper: "⋀x. x ∈ X ⟹ x ≤ a"
assumes least: "⋀y. (⋀x. x ∈ X ⟹ x ≤ y) ⟹ a ≤ y"
shows "Sup X = a"
proof cases
assume "X = {}" with lt_ex[of a] least show ?thesis by (auto simp: less_le_not_le)
qed (intro cSup_eq_non_empty assms)

lemma cSup_unique:
fixes b :: "'a :: {conditionally_complete_lattice, no_bot}"
assumes "⋀c. (∀x ∈ s. x ≤ c) ⟷ b ≤ c"
shows "Sup s = b"
by (metis assms cSup_eq order.refl)

lemma cInf_eq:
fixes a :: "'a :: {conditionally_complete_lattice, no_top}"
assumes upper: "⋀x. x ∈ X ⟹ a ≤ x"
assumes least: "⋀y. (⋀x. x ∈ X ⟹ y ≤ x) ⟹ y ≤ a"
shows "Inf X = a"
proof cases
assume "X = {}" with gt_ex[of a] least show ?thesis by (auto simp: less_le_not_le)
qed (intro cInf_eq_non_empty assms)

lemma cInf_unique:
fixes b :: "'a :: {conditionally_complete_lattice, no_top}"
assumes "⋀c. (∀x ∈ s. x ≥ c) ⟷ b ≥ c"
shows "Inf s = b"
by (meson assms cInf_eq order.refl)

class conditionally_complete_linorder = conditionally_complete_lattice + linorder
begin

lemma less_cSup_iff:
"X ≠ {} ⟹ bdd_above X ⟹ y < Sup X ⟷ (∃x∈X. y < x)"
by (rule iffI) (metis cSup_least not_less, metis cSup_upper less_le_trans)

lemma cInf_less_iff: "X ≠ {} ⟹ bdd_below X ⟹ Inf X < y ⟷ (∃x∈X. x < y)"
by (rule iffI) (metis cInf_greatest not_less, metis cInf_lower le_less_trans)

lemma cINF_less_iff: "A ≠ {} ⟹ bdd_below (f`A) ⟹ (⨅i∈A. f i) < a ⟷ (∃x∈A. f x < a)"
using cInf_less_iff[of "f`A"] by auto

lemma less_cSUP_iff: "A ≠ {} ⟹ bdd_above (f`A) ⟹ a < (⨆i∈A. f i) ⟷ (∃x∈A. a < f x)"
using less_cSup_iff[of "f`A"] by auto

lemma less_cSupE:
assumes "y < Sup X" "X ≠ {}" obtains x where "x ∈ X" "y < x"
by (metis cSup_least assms not_le that)

lemma less_cSupD:
"X ≠ {} ⟹ z < Sup X ⟹ ∃x∈X. z < x"
by (metis less_cSup_iff not_le_imp_less bdd_above_def)

lemma cInf_lessD:
"X ≠ {} ⟹ Inf X < z ⟹ ∃x∈X. x < z"
by (metis cInf_less_iff not_le_imp_less bdd_below_def)

lemma complete_interval:
assumes "a < b" and "P a" and "¬ P b"
shows "∃c. a ≤ c ∧ c ≤ b ∧ (∀x. a ≤ x ∧ x < c ⟶ P x) ∧
(∀d. (∀x. a ≤ x ∧ x < d ⟶ P x) ⟶ d ≤ c)"
proof (rule exI [where x = "Sup {d. ∀x. a ≤ x ∧ x < d ⟶ P x}"], safe)
show "a ≤ Sup {d. ∀c. a ≤ c ∧ c < d ⟶ P c}"
by (rule cSup_upper, auto simp: bdd_above_def)
(metis ‹a < b› ‹¬ P b› linear less_le)
next
show "Sup {d. ∀c. a ≤ c ∧ c < d ⟶ P c} ≤ b"
by (rule cSup_least)
(use ‹a<b› ‹¬ P b› in ‹auto simp add: less_le_not_le›)
next
fix x
assume x: "a ≤ x" and lt: "x < Sup {d. ∀c. a ≤ c ∧ c < d ⟶ P c}"
show "P x"
by (rule less_cSupE [OF lt]) (use less_le_not_le x in ‹auto›)
next
fix d
assume 0: "∀x. a ≤ x ∧ x < d ⟶ P x"
then have "d ∈ {d. ∀c. a ≤ c ∧ c < d ⟶ P c}"
by auto
moreover have "bdd_above {d. ∀c. a ≤ c ∧ c < d ⟶ P c}"
unfolding bdd_above_def using ‹a<b› ‹¬ P b› linear
by (simp add: less_le) blast
ultimately show "d ≤ Sup {d. ∀c. a ≤ c ∧ c < d ⟶ P c}"
by (auto simp: cSup_upper)
qed

end

subsection ‹Instances›

instance complete_linorder < conditionally_complete_linorder
..

lemma cSup_eq_Max: "finite (X::'a::conditionally_complete_linorder set) ⟹ X ≠ {} ⟹ Sup X = Max X"
using cSup_eq_Sup_fin[of X] by (simp add: Sup_fin_Max)

lemma cInf_eq_Min: "finite (X::'a::conditionally_complete_linorder set) ⟹ X ≠ {} ⟹ Inf X = Min X"
using cInf_eq_Inf_fin[of X] by (simp add: Inf_fin_Min)

lemma cSup_lessThan[simp]: "Sup {..<x::'a::{conditionally_complete_linorder, no_bot, dense_linorder}} = x"
by (auto intro!: cSup_eq_non_empty intro: dense_le)

lemma cSup_greaterThanLessThan[simp]: "y < x ⟹ Sup {y<..<x::'a::{conditionally_complete_linorder, dense_linorder}} = x"
by (auto intro!: cSup_eq_non_empty intro: dense_le_bounded)

lemma cSup_atLeastLessThan[simp]: "y < x ⟹ Sup {y..<x::'a::{conditionally_complete_linorder, dense_linorder}} = x"
by (auto intro!: cSup_eq_non_empty intro: dense_le_bounded)

lemma cInf_greaterThan[simp]: "Inf {x::'a::{conditionally_complete_linorder, no_top, dense_linorder} <..} = x"
by (auto intro!: cInf_eq_non_empty intro: dense_ge)

lemma cInf_greaterThanAtMost[simp]: "y < x ⟹ Inf {y<..x::'a::{conditionally_complete_linorder, dense_linorder}} = y"
by (auto intro!: cInf_eq_non_empty intro: dense_ge_bounded)

lemma cInf_greaterThanLessThan[simp]: "y < x ⟹ Inf {y<..<x::'a::{conditionally_complete_linorder, dense_linorder}} = y"
by (auto intro!: cInf_eq_non_empty intro: dense_ge_bounded)

lemma Sup_inverse_eq_inverse_Inf:
fixes f::"'b ⇒ 'a::{conditionally_complete_linorder,linordered_field}"
assumes "bdd_above (range f)" "L > 0" and geL: "⋀x. f x ≥ L"
shows "(SUP x. 1 / f x) = 1 / (INF x. f x)"
proof (rule antisym)
have bdd_f: "bdd_below (range f)"
by (meson assms bdd_belowI2)
have "Inf (range f) ≥ L"
by (simp add: cINF_greatest geL)
have bdd_invf: "bdd_above (range (λx. 1 / f x))"
proof (rule bdd_aboveI2)
show "⋀x. 1 / f x ≤ 1/L"
using assms by (auto simp: divide_simps)
qed
moreover have le_inverse_Inf: "1 / f x ≤ 1 / Inf (range f)" for x
proof -
have "Inf (range f) ≤ f x"
by (simp add: bdd_f cInf_lower)
then show ?thesis
using assms ‹L ≤ Inf (range f)› by (auto simp: divide_simps)
qed
ultimately show *: "(SUP x. 1 / f x) ≤ 1 / Inf (range f)"
by (auto simp: cSup_le_iff cINF_lower)
have "1 / (SUP x. 1 / f x) ≤ f y" for y
proof (cases "(SUP x. 1 / f x) < 0")
case True
with assms show ?thesis
by (meson less_asym' order_trans linorder_not_le zero_le_divide_1_iff)
next
case False
have "1 / f y ≤ (SUP x. 1 / f x)"
by (simp add: bdd_invf cSup_upper)
with False assms show ?thesis
by (metis (no_types) div_by_1 divide_divide_eq_right dual_order.strict_trans1 inverse_eq_divide
inverse_le_imp_le mult.left_neutral)
qed
then have "1 / (SUP x. 1 / f x) ≤ Inf (range f)"
using bdd_f by (simp add: le_cInf_iff)
moreover have "(SUP x. 1 / f x) > 0"
using assms cSUP_upper [OF _ bdd_invf] by (meson UNIV_I less_le_trans zero_less_divide_1_iff)
ultimately show "1 / Inf (range f) ≤ (SUP t. 1 / f t)"
using ‹L ≤ Inf (range f)› ‹L>0› by (auto simp: field_simps)
qed

lemma Inf_inverse_eq_inverse_Sup:
fixes f::"'b ⇒ 'a::{conditionally_complete_linorder,linordered_field}"
assumes "bdd_above (range f)" "L > 0" and geL: "⋀x. f x ≥ L"
shows  "(INF x. 1 / f x) = 1 / (SUP x. f x)"
proof -
obtain M where "M>0" and M: "⋀x. f x ≤ M"
by (meson assms cSup_upper dual_order.strict_trans1 rangeI)
have bdd: "bdd_above (range (inverse ∘ f))"
using assms le_imp_inverse_le by (auto simp: bdd_above_def)
have "f x > 0" for x
using ‹L>0› geL order_less_le_trans by blast
then have [simp]: "1 / inverse(f x) = f x" "1 / M ≤ 1 / f x" for x
using M ‹M>0› by (auto simp: divide_simps)
show ?thesis
using Sup_inverse_eq_inverse_Inf [OF bdd, of "inverse M"] ‹M>0›
by (simp add: inverse_eq_divide)
qed

lemma Inf_insert_finite:
fixes S :: "'a::conditionally_complete_linorder set"
shows "finite S ⟹ Inf (insert x S) = (if S = {} then x else min x (Inf S))"
by (simp add: cInf_eq_Min)

lemma Sup_insert_finite:
fixes S :: "'a::conditionally_complete_linorder set"
shows "finite S ⟹ Sup (insert x S) = (if S = {} then x else max x (Sup S))"
by (simp add: cSup_insert sup_max)

lemma finite_imp_less_Inf:
fixes a :: "'a::conditionally_complete_linorder"
shows "⟦finite X; x ∈ X; ⋀x. x∈X ⟹ a < x⟧ ⟹ a < Inf X"
by (induction X rule: finite_induct) (simp_all add: cInf_eq_Min Inf_insert_finite)

lemma finite_less_Inf_iff:
fixes a :: "'a :: conditionally_complete_linorder"
shows "⟦finite X; X ≠ {}⟧ ⟹ a < Inf X ⟷ (∀x ∈ X. a < x)"
by (auto simp: cInf_eq_Min)

lemma finite_imp_Sup_less:
fixes a :: "'a::conditionally_complete_linorder"
shows "⟦finite X; x ∈ X; ⋀x. x∈X ⟹ a > x⟧ ⟹ a > Sup X"
by (induction X rule: finite_induct) (simp_all add: cSup_eq_Max Sup_insert_finite)

lemma finite_Sup_less_iff:
fixes a :: "'a :: conditionally_complete_linorder"
shows "⟦finite X; X ≠ {}⟧ ⟹ a > Sup X ⟷ (∀x ∈ X. a > x)"
by (auto simp: cSup_eq_Max)

class linear_continuum = conditionally_complete_linorder + dense_linorder +
assumes UNIV_not_singleton: "∃a b::'a. a ≠ b"
begin

lemma ex_gt_or_lt: "∃b. a < b ∨ b < a"
by (metis UNIV_not_singleton neq_iff)

end

context
fixes f::"'a ⇒ 'b::{conditionally_complete_linorder,ordered_ab_group_add}"
begin

lemma bdd_above_uminus_image: "bdd_above ((λx. - f x) ` A) ⟷ bdd_below (f ` A)"
by (metis bdd_above_uminus image_image)

lemma bdd_below_uminus_image: "bdd_below ((λx. - f x) ` A) ⟷ bdd_above (f ` A)"
by (metis bdd_below_uminus image_image)

lemma uminus_cSUP:
assumes "bdd_above (f ` A)" "A ≠ {}"
shows  "- (SUP x∈A. f x) = (INF x∈A. - f x)"
proof (rule antisym)
show "(INF x∈A. - f x) ≤ - Sup (f ` A)"
by (metis cINF_lower cSUP_least bdd_below_uminus_image assms le_minus_iff)
have *: "⋀x. x ∈A ⟹ f x ≤ Sup (f ` A)"
by (simp add: assms cSup_upper)
then show "- Sup (f ` A) ≤ (INF x∈A. - f x)"
by (simp add: assms cINF_greatest)
qed

end

context
fixes f::"'a ⇒ 'b::{conditionally_complete_linorder,ordered_ab_group_add}"
begin

lemma uminus_cINF:
assumes "bdd_below (f ` A)" "A ≠ {}"
shows  "- (INF x∈A. f x) = (SUP x∈A. - f x)"
by (metis (mono_tags, lifting) INF_cong uminus_cSUP assms bdd_above_uminus_image minus_equation_iff)

lemma Sup_add_eq:
assumes "bdd_above (f ` A)" "A ≠ {}"
shows  "(SUP x∈A. a + f x) = a + (SUP x∈A. f x)" (is "?L=?R")
proof (rule antisym)
have bdd: "bdd_above ((λx. a + f x) ` A)"
by (metis assms bdd_above_image_mono image_image mono_add)
with assms show "?L ≤ ?R"
by (simp add: assms cSup_le_iff cSUP_upper)
have "⋀x. x ∈ A ⟹ f x ≤ (SUP x∈A. a + f x) - a"
by (simp add: bdd cSup_upper le_diff_eq)
with ‹A ≠ {}› have "⨆ (f ` A) ≤ (⨆x∈A. a + f x) - a"
by (simp add: cSUP_least)
then show "?R ≤ ?L"
by (metis add.commute le_diff_eq)
qed

lemma Inf_add_eq: ―‹you don't get a shorter proof by duality›
assumes "bdd_below (f ` A)" "A ≠ {}"
shows  "(INF x∈A. a + f x) = a + (INF x∈A. f x)" (is "?L=?R")
proof (rule antisym)
show "?R ≤ ?L"
using assms mono_add mono_cINF by blast
have bdd: "bdd_below ((λx. a + f x) ` A)"
by (metis add_left_mono assms(1) bdd_below.E bdd_below.I2 imageI)
with assms have "⋀x. x ∈ A ⟹ f x ≥ (INF x∈A. a + f x) - a"
by (simp add: cInf_lower diff_le_eq)
with ‹A ≠ {}› have "(⨅x∈A. a + f x) - a ≤ ⨅ (f ` A)"
by (simp add: cINF_greatest)
with assms show "?L ≤ ?R"
by (metis add.commute diff_le_eq)
qed

end

instantiation nat :: conditionally_complete_linorder
begin

definition "Sup (X::nat set) = (if X={} then 0 else Max X)"
definition "Inf (X::nat set) = (LEAST n. n ∈ X)"

lemma bdd_above_nat: "bdd_above X ⟷ finite (X::nat set)"
proof
assume "bdd_above X"
then obtain z where "X ⊆ {.. z}"
by (auto simp: bdd_above_def)
then show "finite X"
by (rule finite_subset) simp
qed simp

instance
proof
fix x :: nat
fix X :: "nat set"
show "Inf X ≤ x" if "x ∈ X" "bdd_below X"
using that by (simp add: Inf_nat_def Least_le)
show "x ≤ Inf X" if "X ≠ {}" "⋀y. y ∈ X ⟹ x ≤ y"
using that unfolding Inf_nat_def ex_in_conv[symmetric] by (rule LeastI2_ex)
show "x ≤ Sup X" if "x ∈ X" "bdd_above X"
using that by (auto simp add: Sup_nat_def bdd_above_nat)
show "Sup X ≤ x" if "X ≠ {}" "⋀y. y ∈ X ⟹ y ≤ x"
proof -
from that have "bdd_above X"
by (auto simp: bdd_above_def)
with that show ?thesis
by (simp add: Sup_nat_def bdd_above_nat)
qed
qed

end

lemma Inf_nat_def1:
fixes K::"nat set"
assumes "K ≠ {}"
shows "Inf K ∈ K"
by (auto simp add: Min_def Inf_nat_def) (meson LeastI assms bot.extremum_unique subsetI)

lemma Sup_nat_empty [simp]: "Sup {} = (0::nat)"
by (auto simp add: Sup_nat_def)

instantiation int :: conditionally_complete_linorder
begin

definition "Sup (X::int set) = (THE x. x ∈ X ∧ (∀y∈X. y ≤ x))"
definition "Inf (X::int set) = - (Sup (uminus ` X))"

instance
proof
{ fix x :: int and X :: "int set" assume "X ≠ {}" "bdd_above X"
then obtain x y where "X ⊆ {..y}" "x ∈ X"
by (auto simp: bdd_above_def)
then have *: "finite (X ∩ {x..y})" "X ∩ {x..y} ≠ {}" and "x ≤ y"
by (auto simp: subset_eq)
have "∃!x∈X. (∀y∈X. y ≤ x)"
proof
{ fix z assume "z ∈ X"
have "z ≤ Max (X ∩ {x..y})"
proof cases
assume "x ≤ z" with ‹z ∈ X› ‹X ⊆ {..y}› *(1) show ?thesis
by (auto intro!: Max_ge)
next
assume "¬ x ≤ z"
then have "z < x" by simp
also have "x ≤ Max (X ∩ {x..y})"
using ‹x ∈ X› *(1) ‹x ≤ y› by (intro Max_ge) auto
finally show ?thesis by simp
qed }
note le = this
with Max_in[OF *] show ex: "Max (X ∩ {x..y}) ∈ X ∧ (∀z∈X. z ≤ Max (X ∩ {x..y}))" by auto

fix z assume *: "z ∈ X ∧ (∀y∈X. y ≤ z)"
with le have "z ≤ Max (X ∩ {x..y})"
by auto
moreover have "Max (X ∩ {x..y}) ≤ z"
using * ex by auto
ultimately show "z = Max (X ∩ {x..y})"
by auto
qed
then have "Sup X ∈ X ∧ (∀y∈X. y ≤ Sup X)"
unfolding Sup_int_def by (rule theI') }
note Sup_int = this

{ fix x :: int and X :: "int set" assume "x ∈ X" "bdd_above X" then show "x ≤ Sup X"
using Sup_int[of X] by auto }
note le_Sup = this
{ fix x :: int and X :: "int set" assume "X ≠ {}" "⋀y. y ∈ X ⟹ y ≤ x" then show "Sup X ≤ x"
using Sup_int[of X] by (auto simp: bdd_above_def) }
note Sup_le = this

{ fix x :: int and X :: "int set" assume "x ∈ X" "bdd_below X" then show "Inf X ≤ x"
using le_Sup[of "-x" "uminus ` X"] by (auto simp: Inf_int_def) }
{ fix x :: int and X :: "int set" assume "X ≠ {}" "⋀y. y ∈ X ⟹ x ≤ y" then show "x ≤ Inf X"
using Sup_le[of "uminus ` X" "-x"] by (force simp: Inf_int_def) }
qed
end

lemma interval_cases:
fixes S :: "'a :: conditionally_complete_linorder set"
assumes ivl: "⋀a b x. a ∈ S ⟹ b ∈ S ⟹ a ≤ x ⟹ x ≤ b ⟹ x ∈ S"
shows "∃a b. S = {} ∨
S = UNIV ∨
S = {..<b} ∨
S = {..b} ∨
S = {a<..} ∨
S = {a..} ∨
S = {a<..<b} ∨
S = {a<..b} ∨
S = {a..<b} ∨
S = {a..b}"
proof -
define lower upper where "lower = {x. ∃s∈S. s ≤ x}" and "upper = {x. ∃s∈S. x ≤ s}"
with ivl have "S = lower ∩ upper"
by auto
moreover
have "∃a. upper = UNIV ∨ upper = {} ∨ upper = {.. a} ∨ upper = {..< a}"
proof cases
assume *: "bdd_above S ∧ S ≠ {}"
from * have "upper ⊆ {.. Sup S}"
by (auto simp: upper_def intro: cSup_upper2)
moreover from * have "{..< Sup S} ⊆ upper"
by (force simp add: less_cSup_iff upper_def subset_eq Ball_def)
ultimately have "upper = {.. Sup S} ∨ upper = {..< Sup S}"
unfolding ivl_disj_un(2)[symmetric] by auto
then show ?thesis by auto
next
assume "¬ (bdd_above S ∧ S ≠ {})"
then have "upper = UNIV ∨ upper = {}"
by (auto simp: upper_def bdd_above_def not_le dest: less_imp_le)
then show ?thesis
by auto
qed
moreover
have "∃b. lower = UNIV ∨ lower = {} ∨ lower = {b ..} ∨ lower = {b <..}"
proof cases
assume *: "bdd_below S ∧ S ≠ {}"
from * have "lower ⊆ {Inf S ..}"
by (auto simp: lower_def intro: cInf_lower2)
moreover from * have "{Inf S <..} ⊆ lower"
by (force simp add: cInf_less_iff lower_def subset_eq Ball_def)
ultimately have "lower = {Inf S ..} ∨ lower = {Inf S <..}"
unfolding ivl_disj_un(1)[symmetric] by auto
then show ?thesis by auto
next
assume "¬ (bdd_below S ∧ S ≠ {})"
then have "lower = UNIV ∨ lower = {}"
by (auto simp: lower_def bdd_below_def not_le dest: less_imp_le)
then show ?thesis
by auto
qed
ultimately show ?thesis
unfolding greaterThanAtMost_def greaterThanLessThan_def atLeastAtMost_def atLeastLessThan_def
by (metis inf_bot_left inf_bot_right inf_top.left_neutral inf_top.right_neutral)
qed

lemma cSUP_eq_cINF_D:
fixes f :: "_ ⇒ 'b::conditionally_complete_lattice"
assumes eq: "(⨆x∈A. f x) = (⨅x∈A. f x)"
and bdd: "bdd_above (f ` A)" "bdd_below (f ` A)"
and a: "a ∈ A"
shows "f a = (⨅x∈A. f x)"
proof (rule antisym)
show "f a ≤ ⨅ (f ` A)"
by (metis a bdd(1) eq cSUP_upper)
show "⨅ (f ` A) ≤ f a"
using a bdd by (auto simp: cINF_lower)
qed

lemma cSUP_UNION:
fixes f :: "_ ⇒ 'b::conditionally_complete_lattice"
assumes ne: "A ≠ {}" "⋀x. x ∈ A ⟹ B(x) ≠ {}"
and bdd_UN: "bdd_above (⋃x∈A. f ` B x)"
shows "(⨆z ∈ ⋃x∈A. B x. f z) = (⨆x∈A. ⨆z∈B x. f z)"
proof -
have bdd: "⋀x. x ∈ A ⟹ bdd_above (f ` B x)"
using bdd_UN by (meson UN_upper bdd_above_mono)
obtain M where "⋀x y. x ∈ A ⟹ y ∈ B(x) ⟹ f y ≤ M"
using bdd_UN by (auto simp: bdd_above_def)
then have bdd2: "bdd_above ((λx. ⨆z∈B x. f z) ` A)"
unfolding bdd_above_def by (force simp: bdd cSUP_le_iff ne(2))
have "(⨆z ∈ ⋃x∈A. B x. f z) ≤ (⨆x∈A. ⨆z∈B x. f z)"
using assms by (fastforce simp add: intro!: cSUP_least intro: cSUP_upper2 simp: bdd2 bdd)
moreover have "(⨆x∈A. ⨆z∈B x. f z) ≤ (⨆ z ∈ ⋃x∈A. B x. f z)"
using assms by (fastforce simp add: intro!: cSUP_least intro: cSUP_upper simp: image_UN bdd_UN)
ultimately show ?thesis
by (rule order_antisym)
qed

lemma cINF_UNION:
fixes f :: "_ ⇒ 'b::conditionally_complete_lattice"
assumes ne: "A ≠ {}" "⋀x. x ∈ A ⟹ B(x) ≠ {}"
and bdd_UN: "bdd_below (⋃x∈A. f ` B x)"
shows "(⨅z ∈ ⋃x∈A. B x. f z) = (⨅x∈A. ⨅z∈B x. f z)"
proof -
have bdd: "⋀x. x ∈ A ⟹ bdd_below (f ` B x)"
using bdd_UN by (meson UN_upper bdd_below_mono)
obtain M where "⋀x y. x ∈ A ⟹ y ∈ B(x) ⟹ f y ≥ M"
using bdd_UN by (auto simp: bdd_below_def)
then have bdd2: "bdd_below ((λx. ⨅z∈B x. f z) ` A)"
unfolding bdd_below_def by (force simp: bdd le_cINF_iff ne(2))
have "(⨅z ∈ ⋃x∈A. B x. f z) ≤ (⨅x∈A. ⨅z∈B x. f z)"
using assms by (fastforce simp add: intro!: cINF_greatest intro: cINF_lower simp: bdd2 bdd)
moreover have "(⨅x∈A. ⨅z∈B x. f z) ≤ (⨅z ∈ ⋃x∈A. B x. f z)"
using assms  by (fastforce simp add: intro!: cINF_greatest intro: cINF_lower2  simp: bdd bdd_UN bdd2)
ultimately show ?thesis
by (rule order_antisym)
qed

lemma cSup_abs_le:
fixes S :: "('a::{linordered_idom,conditionally_complete_linorder}) set"
shows "S ≠ {} ⟹ (⋀x. x∈S ⟹ ¦x¦ ≤ a) ⟹ ¦Sup S¦ ≤ a"
apply (auto simp add: abs_le_iff intro: cSup_least)
by (metis bdd_aboveI cSup_upper neg_le_iff_le order_trans)

end
```