Theory LTS_Semantics
subsection ‹Modal Logics on LTS›
text ‹
We here supply abstract definitions that would work for all modal logics one might define over an LTS.
In particular, this contains mechanisms to derive equivalences from sublogics.
›
theory LTS_Semantics
imports
Labeled_Transition_Systems
begin
locale lts_semantics = lts step
for step :: ‹'s ⇒ 'a ⇒ 's ⇒ bool› (‹_ ↦ _ _› [70,70,70] 80) +
fixes models :: ‹'s ⇒ 'formula ⇒ bool›
begin
definition entails :: ‹'formula ⇒ 'formula ⇒ bool› where
entails_def[simp]: ‹entails φl φr ≡ (∀p. (models p φl) ⟶ (models p φr))›
definition logical_eq :: ‹'formula ⇒ 'formula ⇒ bool› where
logical_eq_def[simp]: ‹logical_eq φl φr ≡ entails φl φr ∧ entails φr φl›
text ‹Formula implication is a pre-order. ›
lemma entails_preord: ‹reflp (entails)› ‹transp (entails)›
by (simp add: reflpI transp_def)+
lemma eq_equiv: ‹equivp logical_eq›
using equivpI reflpI sympI transpI
unfolding logical_eq_def entails_def
by (smt (verit, del_insts))
text ‹
Formula equivalence is a biimplication on the models predicate.
›
lemma eq_equality[simp]: ‹(logical_eq φl φr) = (∀p. models p φl ⟷ models p φr)›
by force
lemma logical_eqI[intro]:
assumes
‹⋀s. models s φl ⟹ models s φr›
‹⋀s. models s φr ⟹ models s φl›
shows
‹logical_eq φl φr›
using assms by auto
definition distinguishes :: ‹'formula ⇒ 's ⇒ 's ⇒ bool› where
distinguishes_def[simp]:
‹distinguishes φ p q ≡ models p φ ∧ ¬(models q φ)›
definition distinguishes_from :: ‹'formula ⇒ 's ⇒ 's set ⇒ bool› where
distinguishes_from_def[simp]:
‹distinguishes_from φ p Q ≡ models p φ ∧ (∀q ∈ Q. ¬(models q φ))›
lemma distinction_unlifting:
assumes
‹distinguishes_from φ p Q›
shows
‹∀q∈Q. distinguishes φ p q›
using assms by simp
lemma no_distinction_fom_self:
assumes
‹distinguishes φ p p›
shows
‹False›
using assms by simp
lemma dist_equal_dist:
assumes ‹logical_eq φl φr›
and ‹distinguishes φl p q›
shows ‹distinguishes φr p q›
using assms
by auto
abbreviation model_set :: ‹'formula ⇒ 's set› where
‹model_set φ ≡ {p. models p φ}›
subsection ‹Preorders and Equivalences on Processes Derived from Formula Sets›
text ‹A set of formulas pre-orders two processes ‹p› and ‹q› if, for all formulas in this set, the fact that ‹p› satisfies a formula means that ‹q› must also satisfy this formula.›
definition preordered :: ‹'formula set ⇒ 's ⇒ 's ⇒ bool› where
preordered_def[simp]:
‹preordered φs p q ≡ ∀φ ∈ φs. models p φ ⟶ models q φ›
text ‹If a set of formulas pre-orders two processes ‹p› and ‹q›, then no formula in that set may distinguish ‹p› from ‹q›.›
lemma preordered_no_distinction:
‹preordered φs p q = (∀φ ∈ φs. ¬(distinguishes φ p q))›
by simp
text ‹A formula set derived pre-order is a pre-order.›
lemma preordered_preord:
‹reflp (preordered φs)›
‹transp (preordered φs)›
unfolding reflp_def transp_def by auto
text ‹A set of formulas equates two processes if it pre-orders these two processes in both directions.›
definition equivalent :: ‹'formula set ⇒ 's ⇒ 's ⇒ bool› where
equivalent_def[simp]:
‹equivalent φs p q ≡ preordered φs p q ∧ preordered φs q p›
text ‹If a set of formulas equates two processes, then no formula in that set
may distinguish them in any direction.›
lemma equivalent_no_distinction: ‹equivalent φs p q
= (∀φ ∈ φs. ¬(distinguishes φ p q) ∧ ¬(distinguishes φ q p))›
by auto
text ‹A formula-set-derived equivalence is an equivalence.›
lemma equivalent_equiv: ‹equivp (equivalent φs)›
proof (rule equivpI)
show ‹reflp (equivalent φs)›
by (simp add: reflpI)
show ‹symp (equivalent φs)›
unfolding equivalent_no_distinction symp_def
by auto
show ‹transp (equivalent φs)›
unfolding transp_def equivalent_def preordered_def
by blast
qed
end
end