Theory LTS_Semantics

(* License: LGPL *)

subsection ‹Modal Logics on LTS›

text ‹
  We here supply abstract definitions that would work for all modal logics one might define over an LTS.
  In particular, this contains mechanisms to derive equivalences from sublogics.
›

theory LTS_Semantics
  imports
    Labeled_Transition_Systems
begin

locale lts_semantics = lts step
  for step :: 's  'a  's  bool (‹_  _ _› [70,70,70] 80) +
  fixes models :: 's  'formula  bool
begin

definition entails :: 'formula  'formula  bool where
  entails_def[simp]: entails φl φr  (p. (models p φl)  (models p φr))

definition logical_eq :: 'formula  'formula  bool where
  logical_eq_def[simp]: logical_eq φl φr  entails φl φr  entails φr φl

text ‹Formula implication is a pre-order. ›
lemma entails_preord: reflp (entails) transp (entails)
  by (simp add: reflpI transp_def)+

lemma eq_equiv: equivp logical_eq
  using equivpI reflpI sympI transpI
  unfolding logical_eq_def entails_def
  by (smt (verit, del_insts))

text ‹
  Formula equivalence is a biimplication on the models predicate.
›
lemma eq_equality[simp]: (logical_eq φl φr) = (p. models p φl  models p φr)
  by force

lemma logical_eqI[intro]:
  assumes
    s. models s φl  models s φr
    s. models s φr  models s φl
  shows
    logical_eq φl φr
  using assms by auto

definition distinguishes :: 'formula  's  's  bool where
  distinguishes_def[simp]:
  distinguishes φ p q  models p φ  ¬(models q φ)

definition distinguishes_from :: 'formula  's  's set  bool where
  distinguishes_from_def[simp]:
  distinguishes_from φ p Q  models p φ  (q  Q. ¬(models q φ))

lemma distinction_unlifting:
  assumes
    distinguishes_from φ p Q
  shows
    qQ. distinguishes φ p q
  using assms by simp

lemma no_distinction_fom_self:
  assumes
    distinguishes φ p p
  shows
    False
  using assms by simp

lemma dist_equal_dist:
  assumes logical_eq φl φr
      and distinguishes φl p q
    shows distinguishes φr p q
  using assms
  by auto

abbreviation model_set :: 'formula  's set where
  model_set φ  {p. models p φ}

subsection ‹Preorders and Equivalences on Processes Derived from Formula Sets›

text ‹A set of formulas pre-orders two processes p› and q› if, for all formulas in this set, the fact that p› satisfies a formula means that q› must also satisfy this formula.›
definition preordered :: 'formula set  's  's  bool where
  preordered_def[simp]:
  preordered φs p q  φ  φs. models p φ  models q φ

text ‹If a set of formulas pre-orders two processes p› and q›, then no formula in that set may distinguish p› from q›.›
lemma preordered_no_distinction:
  preordered φs p q = (φ  φs. ¬(distinguishes φ p q))
  by simp

text ‹A formula set derived pre-order is a pre-order.›
lemma preordered_preord:
  reflp (preordered φs)
  transp (preordered φs)
  unfolding reflp_def transp_def by auto

text ‹A set of formulas equates two processes if it pre-orders these two processes in both directions.›
definition equivalent :: 'formula set  's  's  bool where
  equivalent_def[simp]:
  equivalent φs p q  preordered φs p q  preordered φs q p

text ‹If a set of formulas equates two processes, then no formula in that set
may distinguish them in any direction.›
lemma equivalent_no_distinction: equivalent φs p q
     = (φ  φs. ¬(distinguishes φ p q)  ¬(distinguishes φ q p))
  by auto

text ‹A formula-set-derived equivalence is an equivalence.›
lemma equivalent_equiv: equivp (equivalent φs)
proof (rule equivpI)
  show reflp (equivalent φs)
    by (simp add: reflpI)
  show symp (equivalent φs)
    unfolding equivalent_no_distinction symp_def
    by auto
  show transp (equivalent φs)
    unfolding transp_def equivalent_def preordered_def
    by blast
qed

end ― ‹of context lts_semantics›

end