Theory More_Homomorphisms

theory More_Homomorphisms
imports Ring_Hom_Poly Determinant
section ‹Homomorphisms›

text ‹We register two homomorphism, namely lifting constants to polynomials,
  and lifting elements of some domain into their fraction field.›
  
theory More_Homomorphisms
  imports Polynomial_Interpolation.Ring_Hom_Poly
   Jordan_Normal_Form.Determinant (* Only to obtain lemmas stated there after interpretation *)
begin

abbreviation (input) "coeff_lift == λa. [: a :]"

interpretation coeff_lift_hom: inj_comm_monoid_add_hom coeff_lift by (unfold_locales, auto)
interpretation coeff_lift_hom: inj_ab_group_add_hom coeff_lift..
interpretation coeff_lift_hom: inj_comm_semiring_hom coeff_lift
  by standard (simp_all add: ac_simps)
interpretation coeff_lift_hom: inj_comm_ring_hom coeff_lift..
interpretation coeff_lift_hom: inj_idom_hom coeff_lift..

text ‹The following rule is incompatible with existing simp rules.›
declare coeff_lift_hom.hom_mult[simp del]
declare coeff_lift_hom.hom_add[simp del]
declare coeff_lift_hom.hom_uminus[simp del]

interpretation to_fract_hom: inj_comm_ring_hom to_fract by (unfold_locales, auto)
interpretation to_fract_hom: idom_hom to_fract..
interpretation to_fract_hom: inj_idom_hom to_fract..

end