Theory ProcParEx

(*
    Author:      Norbert Schirmer
    Maintainer:  Norbert Schirmer, norbert.schirmer at web de

Copyright (C) 2006-2008 Norbert Schirmer
*)

section "Examples for Procedures as Parameters"

theory ProcParEx imports "../Vcg" begin


lemma DynProcProcPar':
 assumes adapt: "P  {s. p s = q 
         (Z. init s  P' Z 
              (t  Q' Z. return s t  R s t) 
              (t  A' Z. return s t  A))}"
 assumes result: "s t. Γ,Θ⊢⇘/F(R s t) result s t Q,A"
 assumes q: "Z. Γ,Θ⊢⇘/F(P' Z) Call q (Q' Z),(A' Z)"
 shows "Γ,Θ⊢⇘/FP dynCall init p return result Q,A"
apply (rule HoarePartial.DynProcProcPar [OF _ result q])
apply (insert adapt)
apply fast
done


lemma conseq_exploit_pre':
             "s  S. Γ,Θ  ({s}  P) c Q,A
              
              Γ,Θ (P  S)c Q,A"
  apply (rule HoarePartialDef.Conseq)
  apply clarify
  by (metis IntI insertI1 subset_refl)


lemma conseq_exploit_pre'':
             "Z. s  S Z.  Γ,Θ  ({s}  P Z) c (Q Z),(A Z)
              
              Z. Γ,Θ (P Z  S Z)c (Q Z),(A Z)"
  apply (rule allI)
  apply (rule conseq_exploit_pre')
  apply blast
  done

lemma conseq_exploit_pre''':
             "s  S. Z. Γ,Θ  ({s}  P Z) c (Q Z),(A Z)
              
              Z. Γ,Θ (P Z  S)c (Q Z),(A Z)"
  apply (rule allI)
  apply (rule conseq_exploit_pre')
  apply blast
  done



record 'g vars = "'g state" +
  compare_' :: string
  n_'   :: nat
  m_'   :: nat
  b_'   :: bool
  k_'  :: nat



procedures compare(n,m|b) = "NoBody"
print_locale! compare_signature


context compare_signature
begin
declare [[hoare_use_call_tr' = false]]
term "´b :== CALL compare(´n,´m)"
term "´b :== DYNCALL ´compare(´n,´m)"
declare [[hoare_use_call_tr' = true]]
term "´b :== DYNCALL ´compare(´n,´m)"
end


procedures
  LEQ (n,m | b) = "´b :== ´n ≤ ´m"
  LEQ_spec: "∀σ. Γ⊢ {σ}  PROC LEQ(´n,´m,´b) ⦃´b = (σn ≤ σm)⦄"
  LEQ_modifies: "∀σ. Γ⊢ {σ} PROC LEQ(´n,´m,´b) {t. t may_only_modify_globals σ in []}"



definition mx:: "('a  'a  bool)  'a  'a  'a"
  where "mx leq a b = (if leq a b then a else b)"

procedures
  Max (compare, n, m | k) =
  "´b :== DYNCALL ´compare(´n,´m);;
   IF ´b THEN ´k :== ´n ELSE ´k :== ´m FI"

  Max_spec: "⋀leq. ∀σ. Γ⊢
  ({σ} ∩ {s. (∀τ. Γ⊢ {τ} ´b :== PROC scompare(´n,´m) ⦃´b = (leq τn τm)⦄) ∧
              (∀τ. Γ⊢ {τ} ´b :== PROC scompare(´n,´m) {t. t may_only_modify_globals τ in []})})
    PROC Max(´compare,´n,´m,´k)
  ⦃´k = mx leq σn σm⦄"


lemma (in Max_impl ) Max_spec1:
shows
"σ leq. Γ
  ({σ}   (τ. Γ{τ} ´b :== PROC ´compare(´n,´m) ´b = (leq τn τm)) 
      (τ. Γ {τ} ´b :== PROC ´compare(´n,´m) {t. t may_only_modify_globals τ in []}))
    ´k :== PROC Max(´compare,´n,´m)
  ´k = mx leq σn σm"
apply (hoare_rule HoarePartial.ProcNoRec1)
apply (intro allI)
apply (rule conseq_exploit_pre')
apply (rule)
apply clarify
proof -
  fix σ:: "('a,'b) vars_scheme" and s::"('a,'b) vars_scheme" and leq
   assume compare_spec:
       "τ. Γ{τ} ´b :== PROC scompare(´n,´m) ´b = leq τn τm"

  assume compare_modifies:
        "τ. Γ{τ} ´b :== PROC scompare(´n,´m)
                {t. t may_only_modify_globals τ in []}"

   show "Γ({s}  {σ})
            ´b :== DYNCALL ´compare (´n,´m);;
            IF ´b THEN ´k :== ´n ELSE ´k :== ´m FI
            ´k = mx leq σn σm"
     apply vcg
     apply (clarsimp simp add: mx_def)
     done
 qed


lemma (in Max_impl) Max_spec2:
shows
"σ leq. Γ
  ({σ}  (τ. Γ {τ} ´b :== PROC ´compare(´n,´m) ´b = (leq τn τm)) 
      (τ. Γ {τ} ´b :== PROC ´compare(´n,´m) {t. t may_only_modify_globals τ in []}))
    ´k :== PROC Max(´compare,´n,´m)
  ´k = mx leq σn σm"
apply (hoare_rule HoarePartial.ProcNoRec1)
apply (intro allI)
apply (rule conseq_exploit_pre')
apply (rule)
apply clarify
apply vcg
apply (clarsimp simp add: mx_def)
done

lemma (in Max_impl) Max_spec3:
shows
"n m leq. Γ
  (´n=n  ´m=m  
   (τ. Γ {τ} ´b :== PROC ´compare(´n,´m) ´b = (leq τn τm)) 
     (τ. Γ {τ} ´b :== PROC ´compare(´n,´m) {t. t may_only_modify_globals τ in []}))
    ´k :== PROC Max(´compare,´n,´m)
  ´k = mx leq n m"
apply (hoare_rule HoarePartial.ProcNoRec1)
apply (intro allI)
apply (rule conseq_exploit_pre')
apply (rule)
apply clarify
apply vcg
apply (clarsimp simp add: mx_def)
done

lemma (in Max_impl) Max_spec4:
shows
"n m leq. Γ
  (´n=n  ´m=m  τ. Γ {τ} ´b :== PROC ´compare(´n,´m) ´b = (leq τn τm))
    ´k :== PROC Max(´compare,´n,´m)
  ´k = mx leq n m"
apply (hoare_rule HoarePartial.ProcNoRec1)
apply (intro allI)
apply (rule conseq_exploit_pre')
apply (rule)
apply clarify
apply vcg
apply (clarsimp simp add: mx_def)
done

locale Max_test = Max_spec + LEQ_spec + LEQ_modifies
lemma (in Max_test)

  shows
  "Γ {σ} ´k :== CALL Max(LEQ_'proc,´n,´m) ´k = mx (≤) σn σm"
proof -
  note Max_spec = Max_spec [where leq="(≤)"]
  show ?thesis
    apply vcg
    apply (clarsimp)
    apply (rule conjI)
    apply (rule LEQ_spec [simplified])
    apply (rule LEQ_modifies [simplified])
    done
qed


lemma (in Max_impl) Max_spec5:
shows
"n m leq. Γ
  (´n=n  ´m=m  n' m'. Γ ´n=n'  ´m=m' ´b :== PROC ´compare(´n,´m) ´b = (leq n' m'))
    ´k :== PROC Max(´compare,´n,´m)
  ´k = mx leq n m"
term "{s. sn = n'  sm = m'} = X"
apply (hoare_rule HoarePartial.ProcNoRec1)
apply (intro allI)
apply (rule conseq_exploit_pre')
apply (rule)
apply clarify
apply vcg
apply clarsimp
apply (clarsimp simp add: mx_def)
done

lemma (in LEQ_impl)
 LEQ_spec: "n m. Γ ´n=n  ´m=m  PROC LEQ(´n,´m,´b) ´b = (n  m)"
  apply vcg
  done


locale Max_test' = Max_impl + LEQ_impl
lemma (in Max_test')
  shows
  "n m. Γ ´n=n  ´m=m ´k :== CALL Max(LEQ_'proc,´n,´m) ´k = mx (≤) n m"
proof -
  note Max_spec = Max_spec5
  show ?thesis
    apply vcg
    apply (rule_tac x="(≤)" in exI)
    apply clarsimp
    apply (rule LEQ_spec [rule_format])
    done
qed

end