Theory Derivatives_Finite

(* Author: Dmitriy Traytel, ported by Tobias Nipkow *)

section ‹Finiteness of Derivatives Modulo ACI›

(*<*)
(* split into Norm and Fin theories *)
theory Derivatives_Finite
imports "Regular-Sets.Derivatives"
begin
(*>*)

text ‹Lifting constructors to lists›

fun rexp_of_list where
  "rexp_of_list OP N [] = N"
| "rexp_of_list OP N [r] = r"
| "rexp_of_list OP N (r # rs) = OP r (rexp_of_list OP N rs)"

abbreviation "PLUS  rexp_of_list Plus Zero"
abbreviation "TIMES  rexp_of_list Times One"

lemma list_singleton_induct [case_names nil single cons]:
assumes "P []" and "x. P [x]" and "x y xs. P (y # xs)  P (x # (y # xs))"
shows "P xs"
using assms by induction_schema (pat_completeness, lexicographic_order)


subsection ‹ACI normalization›

fun toplevel_summands :: "'a rexp  'a rexp set" where
  "toplevel_summands (Plus r s) = toplevel_summands r  toplevel_summands s"
| "toplevel_summands r = {r}"

abbreviation "flatten LISTOP X  LISTOP (sorted_list_of_set X)"

lemma toplevel_summands_nonempty[simp]:
  "toplevel_summands r  {}"
  by (induct r) auto

lemma toplevel_summands_finite[simp]:
  "finite (toplevel_summands r)"
  by (induct r) auto

primrec ACI_norm :: "('a::linorder) rexp  'a rexp"  ("«_»") where
  "«Zero» = Zero"
| "«One» = One"
| "«Atom a» = Atom a"
| "«Plus r s» = flatten PLUS (toplevel_summands (Plus «r» «s»))"
| "«Times r s» = Times «r» «s»"
| "«Star r» = Star «r»"

lemma Plus_toplevel_summands: "Plus r s  toplevel_summands t  False"
by (induction t) auto

lemma toplevel_summands_not_Plus[simp]:
  "(r s. x  Plus r s)  toplevel_summands x = {x}"
by (induction x) auto

lemma toplevel_summands_PLUS_strong:
  "xs  []; list_all (λx. ¬(r s. x = Plus r s)) xs  toplevel_summands (PLUS xs) = set xs"
  by (induct xs rule: list_singleton_induct) auto

lemma toplevel_summands_flatten:
  "X  {}; finite X; x  X. ¬(r s. x = Plus r s)  toplevel_summands (flatten PLUS X) = X"
  using toplevel_summands_PLUS_strong[of "sorted_list_of_set X"]
  unfolding list_all_iff by fastforce

lemma ACI_norm_Plus: "«r» = Plus s t  s t. r = Plus s t"
by (induction r) auto

lemma toplevel_summands_flatten_ACI_norm_image:
  "toplevel_summands (flatten PLUS (ACI_norm ` toplevel_summands r)) = ACI_norm ` toplevel_summands r"
by (intro toplevel_summands_flatten) (auto dest!: ACI_norm_Plus intro: Plus_toplevel_summands)

lemma toplevel_summands_flatten_ACI_norm_image_Union:
  "toplevel_summands (flatten PLUS (ACI_norm ` toplevel_summands r  ACI_norm ` toplevel_summands s)) =
    ACI_norm ` toplevel_summands r  ACI_norm ` toplevel_summands s"
by (intro toplevel_summands_flatten) (auto dest!: ACI_norm_Plus[OF sym] intro: Plus_toplevel_summands)

lemma toplevel_summands_ACI_norm:
  "toplevel_summands «r» = ACI_norm ` toplevel_summands r"
by (induction r) (auto simp: toplevel_summands_flatten_ACI_norm_image_Union)

lemma ACI_norm_flatten:
  "«r» = flatten PLUS (ACI_norm ` toplevel_summands r)"
by (induction r) (auto simp: image_Un toplevel_summands_flatten_ACI_norm_image)

theorem ACI_norm_idem[simp]: "««r»» = «r»"
proof (induct r)
  case (Plus r s)
  have "««Plus r s»» = «flatten PLUS (toplevel_summands «r»  toplevel_summands «s»)»"
    (is "_ = «flatten PLUS ?U»") by simp
  also have " = flatten PLUS (ACI_norm ` toplevel_summands (flatten PLUS ?U))"
    by (simp only: ACI_norm_flatten)
  also have "toplevel_summands (flatten PLUS ?U) = ?U"
    by (intro toplevel_summands_flatten) (auto intro: Plus_toplevel_summands)
  also have "flatten PLUS (ACI_norm ` ?U) = flatten PLUS (toplevel_summands «r»  toplevel_summands «s»)"
    by (simp only: image_Un toplevel_summands_ACI_norm[symmetric] Plus)
  finally show ?case by simp
qed auto

subsection "Atoms"

lemma atoms_toplevel_summands:
  "atoms s = (rtoplevel_summands s. atoms r)"
by (induct s) auto

lemma wf_PLUS: "atoms (PLUS xs)  Σ  (r  set xs. atoms r  Σ)"
by (induct xs rule: list_singleton_induct) auto

lemma atoms_PLUS: "atoms (PLUS xs) = (r  set xs. atoms r)"
by (induct xs rule: list_singleton_induct) auto

lemma atoms_flatten_PLUS:
  "finite X  atoms (flatten PLUS X) = (r  X. atoms r)"
using wf_PLUS[of "sorted_list_of_set X"] by auto

theorem atoms_ACI_norm: "atoms «r» = atoms r"
proof (induct r)
  case (Plus r1 r2) thus ?case
   using atoms_toplevel_summands[of "«r1»"] atoms_toplevel_summands[of "«r2»"]
   by(simp add: atoms_flatten_PLUS ball_Un Un_commute)
qed auto


subsection "Language"

lemma toplevel_summands_lang: "r  toplevel_summands s  lang r  lang s"
by (induct s) auto

lemma toplevel_summands_lang_UN:
  "lang s = (rtoplevel_summands s. lang r)"
by (induct s) auto

lemma toplevel_summands_in_lang:
  "w  lang s = (rtoplevel_summands s. w  lang r)"
by (induct s) auto

lemma lang_PLUS: "lang (PLUS xs) = (r  set xs. lang r)"
by (induct xs rule: list_singleton_induct) auto

lemma lang_PLUS_map[simp]:
  "lang (PLUS (map f xs)) = (aset xs. lang (f a))"
by (induct xs rule: list_singleton_induct) auto

lemma lang_flatten_PLUS[simp]:
  "finite X  lang (flatten PLUS X) = (r  X. lang r)"
using lang_PLUS[of "sorted_list_of_set X"] by fastforce

theorem lang_ACI_norm[simp]: "lang «r» = lang r"
proof (induct r)
  case (Plus r1 r2)
  moreover
  from Plus[symmetric] have "lang (Plus r1 r2)  lang «Plus r1 r2»"
    using toplevel_summands_in_lang[of _ "«r1»"] toplevel_summands_in_lang[of _ "«r2»"]
    by auto
  ultimately show ?case by (fastforce dest!: toplevel_summands_lang)
qed auto


subsection ‹Finiteness of ACI-Equivalent Derivatives›

lemma toplevel_summands_deriv:
  "toplevel_summands (deriv as r) = (stoplevel_summands r. toplevel_summands (deriv as s))"
by (induction r) (auto simp: Let_def)

lemma derivs_Zero[simp]: "derivs xs Zero = Zero"
by (induction xs) auto

lemma derivs_One: "derivs xs One  {Zero, One}"
by (induction xs) auto

lemma derivs_Atom: "derivs xs (Atom as)  {Zero, One, Atom as}"
proof (induction xs)
  case Cons thus ?case by (auto intro: insertE[OF derivs_One])
qed simp

lemma derivs_Plus: "derivs xs (Plus r s) = Plus (derivs xs r) (derivs xs s)"
by (induction xs arbitrary: r s) auto

lemma derivs_PLUS: "derivs xs (PLUS ys) = PLUS (map (derivs xs) ys)"
by (induction ys rule: list_singleton_induct) (auto simp: derivs_Plus)

lemma toplevel_summands_derivs_Times: "toplevel_summands (derivs xs (Times r s)) 
  {Times (derivs xs r) s} 
  {r'. ys zs. r'  toplevel_summands (derivs ys s)  ys  []  zs @ ys = xs}"
proof (induction xs arbitrary: r s)
  case (Cons x xs)
  thus ?case by (auto simp: Let_def derivs_Plus) (fastforce intro: exI[of _ "x#xs"])+
qed simp

lemma toplevel_summands_derivs_Star_nonempty:
  "xs  []  toplevel_summands (derivs xs (Star r)) 
    {Times (derivs ys r) (Star r) | ys. zs. ys  []  zs @ ys = xs}"
proof (induction xs rule: length_induct)
  case (1 xs)
  then obtain y ys where "xs = y # ys" by (cases xs) auto
  thus ?case using spec[OF 1(1)]
    by (auto dest!: subsetD[OF toplevel_summands_derivs_Times] intro: exI[of _ "y#ys"])
       (auto elim!: impE dest!: meta_spec subsetD)
qed

lemma toplevel_summands_derivs_Star:
  "toplevel_summands (derivs xs (Star r)) 
    {Star r}  {Times (derivs ys r) (Star r) | ys. zs. ys  []  zs @ ys = xs}"
by (cases "xs = []") (auto dest!: toplevel_summands_derivs_Star_nonempty)

lemma toplevel_summands_PLUS:
 "xs  []  toplevel_summands (PLUS (map f xs)) = (r  set xs. toplevel_summands (f r))"
by (induction xs rule: list_singleton_induct) simp_all

lemma ACI_norm_toplevel_summands_Zero: "toplevel_summands r  {Zero}  «r» = Zero"
by (subst ACI_norm_flatten) (auto dest: subset_singletonD)

lemma finite_ACI_norm_toplevel_summands:
  "finite {f «s» |s. toplevel_summands s  B}" if "finite B"
proof -
  have *: "{f «s» | s.
    toplevel_summands s  B}  (f  flatten PLUS  (`) ACI_norm) ` Pow B"
    by (subst ACI_norm_flatten) auto
  with that show ?thesis 
    by (rule finite_surj [OF iffD2 [OF finite_Pow_iff]])
qed

theorem finite_derivs: "finite {«derivs xs r» | xs . True}"
proof (induct r)
  case Zero show ?case by simp
next
  case One show ?case
   by (rule finite_surj[of "{Zero, One}"]) (blast intro: insertE[OF derivs_One])+
next
  case (Atom as) show ?case
    by (rule finite_surj[of "{Zero, One, Atom as}"]) (blast intro: insertE[OF derivs_Atom])+
next
  case (Plus r s)
  show ?case by (auto simp: derivs_Plus intro!: finite_surj[OF finite_cartesian_product[OF Plus]])
next
  case (Times r s)
  hence "finite ( (toplevel_summands ` {«derivs xs s» | xs . True}))" by auto
  moreover have "{«r'» |r'. ys. r'  toplevel_summands (derivs ys s)} =
    {r'. ys. r'  toplevel_summands «derivs ys s»}"
    by (auto simp: toplevel_summands_ACI_norm)
  ultimately have fin: "finite {«r'» |r'. ys. r'  toplevel_summands (derivs ys s)}"
    by (fastforce intro: finite_subset[of _ " (toplevel_summands ` {«derivs xs s» | xs . True})"])
  let ?X = "λxs. {Times (derivs ys r) s | ys. True}  {r'. r'  (ys. toplevel_summands (derivs ys s))}"
  show ?case
  proof (simp only: ACI_norm_flatten,
      rule finite_surj[of "{X. xs. X  ACI_norm ` ?X xs}" _ "flatten PLUS"])
    show "finite {X. xs. X  ACI_norm ` ?X xs}"
      using fin by (fastforce simp: image_Un elim: finite_subset[rotated] intro: finite_surj[OF Times(1), of _ "λr. Times r «s»"])
  qed (fastforce dest!: subsetD[OF toplevel_summands_derivs_Times] intro!: imageI)
next
  case (Star r)
  let ?f = "λf r'. Times r' (Star (f r))"
  let ?X = "{Star r}  ?f id ` {r'. r'  {derivs ys r|ys. True}}"
  show ?case
  proof (simp only: ACI_norm_flatten,
      rule finite_surj[of "{X. X  ACI_norm ` ?X}" _ "flatten PLUS"])
    have *: "X. ACI_norm ` ?f (λx. x) ` X = ?f ACI_norm ` ACI_norm ` X" by (auto simp: image_def)
    show "finite {X. X  ACI_norm ` ?X}"
      by (rule finite_Collect_subsets)
         (auto simp: * intro!: finite_imageI[of _ "?f ACI_norm"] intro: finite_subset[OF _ Star])
  qed (fastforce dest!: subsetD[OF toplevel_summands_derivs_Star] intro!: imageI)
qed


subsection ‹Deriving preserves ACI-equivalence›

lemma ACI_norm_PLUS:
  "list_all2 (λr s. «r» = «s») xs ys  «PLUS xs» = «PLUS ys»"
proof (induct rule: list_all2_induct)
  case (Cons x xs y ys)
  hence "length xs = length ys" by (elim list_all2_lengthD)
  thus ?case using Cons by (induct xs ys rule: list_induct2) auto
qed simp

lemma toplevel_summands_ACI_norm_deriv:
  "(atoplevel_summands r. toplevel_summands «deriv as «a»») = toplevel_summands «deriv as «r»»"
proof (induct r)
  case (Plus r1 r2) thus ?case
   unfolding toplevel_summands.simps toplevel_summands_ACI_norm
     toplevel_summands_deriv[of as "«Plus r1 r2»"] image_Un Union_Un_distrib
   by (simp add: image_UN)
qed (auto simp: Let_def)


lemma toplevel_summands_nullable:
  "nullable s = (rtoplevel_summands s. nullable r)"
by (induction s) auto

lemma nullable_PLUS:
  "nullable (PLUS xs) = (r  set xs. nullable r)"
by (induction xs rule: list_singleton_induct) auto

theorem ACI_norm_nullable: "nullable «r» = nullable r"
proof (induction r)
  case (Plus r1 r2) thus ?case using toplevel_summands_nullable
    by (auto simp: nullable_PLUS)
qed auto

theorem ACI_norm_deriv: "«deriv as «r»» = «deriv as r»"
proof (induction r arbitrary: as)
  case (Plus r1 r2) thus ?case
   unfolding deriv.simps ACI_norm_flatten[of "deriv as «Plus r1 r2»"]
     toplevel_summands_deriv[of as "«Plus r1 r2»"] image_Un image_UN
   by (auto simp: toplevel_summands_ACI_norm toplevel_summands_flatten_ACI_norm_image_Union)
     (auto simp: toplevel_summands_ACI_norm[symmetric] toplevel_summands_ACI_norm_deriv)
qed (simp_all add: ACI_norm_nullable)

corollary deriv_preserves: "«r» = «s»  «deriv as r» = «deriv as s»"
  by (rule box_equals[OF _ ACI_norm_deriv ACI_norm_deriv]) (erule arg_cong)

lemma derivs_snoc[simp]: "derivs (xs @ [x]) r = (deriv x (derivs xs r))"
by (induction xs arbitrary: r) auto

theorem ACI_norm_derivs: "«derivs xs «r»» = «derivs xs r»"
proof (induction xs arbitrary: r rule: rev_induct)
  case (snoc x xs) thus ?case
    using ACI_norm_deriv[of x "derivs xs r"] ACI_norm_deriv[of x "derivs xs «r»"] by auto
qed simp

subsection ‹Alternative ACI defintions›

text ‹Not necessary but conceptually nicer (and seems also to be faster?!)›

fun ACI_nPlus :: "'a::linorder rexp  'a rexp  'a rexp"
where
  "ACI_nPlus (Plus r1 r2) s = ACI_nPlus r1 (ACI_nPlus r2 s)"
| "ACI_nPlus r (Plus s1 s2) =
  (if r = s1 then Plus s1 s2
  else if r < s1 then Plus r (Plus s1 s2)
  else Plus s1 (ACI_nPlus r s2))"
| "ACI_nPlus r s =
  (if r = s then r
  else if r < s then Plus r s
  else Plus s r)"

primrec ACI_norm_alt where 
  "ACI_norm_alt Zero = Zero"
| "ACI_norm_alt One = One"
| "ACI_norm_alt (Atom a) = Atom a"
| "ACI_norm_alt (Plus r s) = ACI_nPlus (ACI_norm_alt r) (ACI_norm_alt s)"
| "ACI_norm_alt (Times r s) = Times (ACI_norm_alt r) (ACI_norm_alt s)"
| "ACI_norm_alt (Star r) = Star (ACI_norm_alt r)"

lemma toplevel_summands_ACI_nPlus:
  "toplevel_summands (ACI_nPlus r s) = toplevel_summands (Plus r s)"
  by (induct r s rule: ACI_nPlus.induct) auto

lemma toplevel_summands_ACI_norm_alt:
  "toplevel_summands (ACI_norm_alt r) = ACI_norm_alt ` toplevel_summands r"
  by (induct r) (auto simp: toplevel_summands_ACI_nPlus)

lemma ACI_norm_alt_Plus:
  "ACI_norm_alt r = Plus s t  s t. r = Plus s t"
  by (induct r) auto

lemma toplevel_summands_flatten_ACI_norm_alt_image:
  "toplevel_summands (flatten PLUS (ACI_norm_alt ` toplevel_summands r)) = ACI_norm_alt ` toplevel_summands r"
  by (intro toplevel_summands_flatten) (auto dest!: ACI_norm_alt_Plus intro: Plus_toplevel_summands)

lemma ACI_norm_ACI_norm_alt: "«ACI_norm_alt r» = «r»"
proof (induction r)
  case (Plus r s) show ?case
    using ACI_norm_flatten [of r] ACI_norm_flatten [of s]
    by (auto simp add: toplevel_summands_ACI_nPlus)
      (metis ACI_norm_flatten Plus.IH(1) Plus.IH(2) image_Un toplevel_summands.simps(1) toplevel_summands_ACI_nPlus toplevel_summands_ACI_norm)
qed auto

lemma ACI_nPlus_singleton_PLUS: 
  "xs  []; sorted xs; distinct xs; x  {x}  set xs. ¬(r s. x = Plus r s) 
  ACI_nPlus x (PLUS xs) = (if x  set xs then PLUS xs else PLUS (insort x xs))"
proof (induct xs rule: list_singleton_induct)
  case (single y)
  thus ?case
    by (cases x y rule: linorder_cases) (induct x y rule: ACI_nPlus.induct, auto)+
next
  case (cons y1 y2 ys) thus ?case by (cases x) (auto)
qed simp

lemma ACI_nPlus_PLUS:
  "xs1  []; xs2  []; x  set (xs1 @ xs2). ¬(r s. x = Plus r s); sorted xs2; distinct xs2
  ACI_nPlus (PLUS xs1) (PLUS xs2) = flatten PLUS (set (xs1 @ xs2))"
proof (induct xs1 arbitrary: xs2 rule: list_singleton_induct)
  case (single x1)
  thus ?case
    apply (auto intro!: trans[OF ACI_nPlus_singleton_PLUS] simp del: sorted_list_of_set_insert_remove)
    apply (simp only: insert_absorb)
    apply (metis List.finite_set finite_sorted_distinct_unique sorted_list_of_set)
    apply (rule arg_cong[of _ _ PLUS])
    apply (metis remdups_id_iff_distinct sorted_list_of_set_sort_remdups sorted_sort_id)
    done
next
  case (cons x11 x12 xs1) thus ?case
  apply (simp del: sorted_list_of_set_insert_remove)
  apply (rule trans[OF ACI_nPlus_singleton_PLUS])
  apply (auto simp del: sorted_list_of_set_insert_remove simp add: insert_commute[of x11])
  apply (auto simp only: Un_insert_left[of x11, symmetric] insert_absorb) []
  apply (auto simp only: Un_insert_right[of _ x11, symmetric] insert_absorb) []
  apply (auto simp add: insert_commute[of x12])
  done
qed simp

lemma ACI_nPlus_flatten_PLUS:
  "X1  {}; X2  {}; finite X1; finite X2; x  X1  X2. ¬(r s. x = Plus r s)
  ACI_nPlus (flatten PLUS X1) (flatten PLUS X2) = flatten PLUS (X1  X2)"
  by (rule trans[OF ACI_nPlus_PLUS]) auto

lemma ACI_nPlus_ACI_norm [simp]: "ACI_nPlus «r» «s» = «Plus r s»"
  by (auto simp: image_Un Un_assoc ACI_norm_flatten [of r] ACI_norm_flatten [of s] ACI_norm_flatten [of "Plus r s"]
    toplevel_summands_flatten_ACI_norm_image
    intro!: trans [OF ACI_nPlus_flatten_PLUS])
    (metis ACI_norm_Plus Plus_toplevel_summands)+

lemma ACI_norm_alt:
  "ACI_norm_alt r = «r»"
  by (induct r) auto

declare ACI_norm_alt[symmetric, code]

inductive ACI where
  ACI_refl:       "ACI r r" |
  ACI_sym:        "ACI r s  ACI s r" |
  ACI_trans:      "ACI r s  ACI s t  ACI r t" |
  ACI_Plus_cong:  "ACI r1 s1; ACI r2 s2  ACI (Plus r1 r2) (Plus s1 s2)" |
  ACI_Times_cong: "ACI r1 s1; ACI r2 s2  ACI (Times r1 r2) (Times s1 s2)" |
  ACI_Star_cong:  "ACI r s  ACI (Star r) (Star s)" |
  ACI_assoc:      "ACI (Plus (Plus r s) t) (Plus r (Plus s t))" |
  ACI_comm:       "ACI (Plus r s) (Plus s r)" |
  ACI_idem:       "ACI (Plus r r) r"

lemma ACI_atoms: "ACI r s  atoms r = atoms s"
  by (induct rule: ACI.induct) auto

lemma ACI_nullable: "ACI r s  nullable r = nullable s"
  by (induct rule: ACI.induct) auto

lemma ACI_lang: "ACI r s  lang r = lang s"
  by (induct rule: ACI.induct) auto

lemma ACI_deriv: "ACI r s  ACI (deriv a r) (deriv a s)"
proof (induct arbitrary: a rule: ACI.induct)
  case (ACI_Times_cong r1 s1 r2 s2) thus ?case
    by (auto simp: Let_def intro: ACI.intros dest: ACI_nullable)
      (metis ACI.ACI_Times_cong ACI_Plus_cong)
qed (auto intro: ACI.intros)

lemma ACI_Plus_assocI[intro]:
  "ACI (Plus r1 r2) s2  ACI (Plus r1 (Plus s1 r2)) (Plus s1 s2)"
  "ACI (Plus r1 r2) s2  ACI (Plus r1 (Plus r2 s1)) (Plus s1 s2)"
  by (metis ACI_assoc ACI_comm ACI_Plus_cong ACI_refl ACI_trans)+

lemma ACI_Plus_idemI[intro]: "ACI r s1; ACI r s2  ACI r (Plus s1 s2)"
  by (metis ACI_Plus_cong ACI_idem ACI_sym ACI_trans)

lemma ACI_Plus_idemI'[intro]:
  "ACI r1 s1; ACI (Plus r1 r2) s2  ACI (Plus r1 r2) (Plus s1 s2)"
  by (rule ACI_trans[OF ACI_Plus_cong[OF ACI_sym[OF ACI_idem] ACI_refl]
             ACI_trans[OF ACI_assoc ACI_trans[OF ACI_Plus_cong ACI_refl]]])

lemma ACI_ACI_nPlus: "ACI r1 s1; ACI r2 s2  ACI (ACI_nPlus r1 r2) (Plus s1 s2)"
proof (induct r1 r2 arbitrary: s1 s2 rule: ACI_nPlus.induct)
  case 1
  from 1(2)[OF ACI_refl 1(1)[OF ACI_refl 1(4)]] 1(3) show ?case by (auto intro: ACI_comm ACI_trans)
next
  case ("2_1" r1 r2)
  with ACI_Plus_cong[OF ACI_refl "2_1"(1)[OF _ _ "2_1"(2) ACI_refl], of r1]
    show ?case by (auto intro: ACI.intros)
next
  case ("2_2" r1 r2)
  with ACI_Plus_cong[OF ACI_refl "2_2"(1)[OF _ _ "2_2"(2) ACI_refl], of r1]
    show ?case by (auto intro: ACI.intros)
next
  case ("2_3" _ r1 r2)
  with ACI_Plus_cong[OF ACI_refl "2_3"(1)[OF _ _ "2_3"(2) ACI_refl], of r1]
    show ?case by (auto intro: ACI.intros)
next
  case ("2_4" _ _ r1 r2)
  with ACI_Plus_cong[OF ACI_refl "2_4"(1)[OF _ _ "2_4"(2) ACI_refl], of r1]
    show ?case by (auto intro: ACI.intros)
next
  case ("2_5" _ r1 r2)
  with ACI_Plus_cong[OF ACI_refl "2_5"(1)[OF _ _ "2_5"(2) ACI_refl], of r1]
    show ?case by (auto intro: ACI.intros)
qed (auto intro: ACI.intros)

lemma ACI_ACI_norm: "ACI «r» r"
  unfolding ACI_norm_alt[symmetric]
  by (induct r) (auto intro: ACI.intros simp: ACI_ACI_nPlus)

lemma ACI_norm_eqI: "ACI r s  «r» = «s»"
  by (induct rule: ACI.induct) (auto simp: toplevel_summands_ACI_norm ACI_norm_flatten[symmetric]
    toplevel_summands_flatten_ACI_norm_image_Union ac_simps)

lemma ACI_I: "«r» = «s»  ACI r s"
  by (metis ACI_ACI_norm ACI_sym ACI_trans)

lemma ACI_decidable: "ACI r s = («r» = «s»)"
  by (metis ACI_I ACI_norm_eqI)

(*<*)
end
(*>*)