Theory Hensels_Lemma

theory Hensels_Lemma
  imports Padic_Int_Polynomials
begin


text‹
  The following proof of Hensel's Lemma is directly adapted from Keith Conrad's proof which is
  given in an online note cite"keithconrad". The same note was used as the basis for a 
  formalization of Hensel's Lemma by Robert Lewis in the Lean proof assistant
  cite"Thi".  ›
(**************************************************************************************************)
(**************************************************************************************************)
section‹Auxiliary Lemmas for Hensel's Lemma›
(**************************************************************************************************)
(**************************************************************************************************)

lemma(in ring) minus_sum:
  assumes "a  carrier R"
  assumes "b  carrier R"
  shows " (a  b) =  a   b"
  by (simp add: assms(1) assms(2) local.minus_add)

context padic_integers
begin


lemma poly_diff_val:
  assumes "f  carrier Zp_x"
  assumes "a  carrier Zp"
  assumes "b  carrier Zp"
  shows "val_Zp (fa  fb)  val_Zp (a  b)"
proof-
  obtain c where c_def: "c  carrier Zp  (fa  fb) = (a  b)  c"
    using assms 
    by (meson to_fun_diff_factor)
  have 1: "val_Zp c  0"
    using c_def val_pos by blast 
  have 2: "val_Zp (fa  fb) = val_Zp (a  b) + (val_Zp c)"
    using c_def val_Zp_mult 
    by (simp add: assms(2) assms(3))        
  then show ?thesis 
    using "1" by auto 
qed

text‹Restricted p-adic division›

definition divide where
"divide x y = (if x = 𝟬 then 𝟬 else 
              (𝗉[^](nat (ord_Zp x - ord_Zp y))  ac_Zp x  (inv ac_Zp y)))"

lemma divide_closed:
  assumes "x  carrier Zp"
  assumes "y  carrier Zp"
  assumes "y  𝟬"
  shows "divide x y  carrier Zp"
  unfolding divide_def
  apply(cases "x = 𝟬")
  apply auto[1]
  using assms ac_Zp_is_Unit 
  by (simp add: ac_Zp_in_Zp)
   
lemma divide_formula:
  assumes "x  carrier Zp"
  assumes "y  carrier Zp"
  assumes "y  𝟬"
  assumes "val_Zp x  val_Zp y"
  shows "y  divide x y = x"
  apply(cases "x = 𝟬")
   apply (simp add: divide_def mult_zero_l)
proof- assume A: "x  𝟬"
  have 0: "y  divide x y = 𝗉[^] nat (ord_Zp y)  ac_Zp y  (𝗉[^](nat (ord_Zp x - ord_Zp y))  ac_Zp x  (inv ac_Zp y))"
    using assms ac_Zp_factors_x[of x] ac_Zp_factors_x[of y] A divide_def 
    by auto
  hence  1: "y  divide x y = 𝗉[^] nat (ord_Zp  y)  (𝗉[^](nat (ord_Zp  x - ord_Zp  y))   ac_Zp x  ac_Zp y   (inv ac_Zp y))"
    using mult_assoc mult_comm by auto
  have 2: "(nat (ord_Zp  y) + nat (ord_Zp  x - ord_Zp  y)) = nat (ord_Zp  x)"
    using assms ord_pos[of x] ord_pos[of y] A val_ord_Zp by auto
  have "y  divide x y = 𝗉[^] nat (ord_Zp  y)  𝗉[^](nat (ord_Zp  x - ord_Zp  y))   ac_Zp x"
    using 1 A assms 
    by (simp add: ac_Zp_in_Zp ac_Zp_is_Unit mult_assoc)
  thus "y  divide x y = x"
    using "2" A ac_Zp_factors_x(1) assms(1) p_natpow_prod by auto
qed

lemma divide_nonzero:
  assumes "x  nonzero Zp"
  assumes "y  nonzero Zp"
  assumes "val_Zp x  val_Zp y"
  shows "divide x y  nonzero Zp"
  by (metis assms(1) assms(2) assms(3) divide_closed divide_formula mult_zero_l nonzero_closed nonzero_memE(2) nonzero_memI)

lemma val_of_divide:
  assumes "x  carrier Zp"
  assumes "y  nonzero Zp"
  assumes "val_Zp x  val_Zp y"
  shows "val_Zp (divide x y) = val_Zp x - val_Zp y"
proof-
  have 0: "y  divide x y = x"
    by (simp add: assms(1) assms(2) assms(3) divide_formula nonzero_closed nonzero_memE(2))
  hence "val_Zp y + val_Zp (divide x y) = val_Zp x"
    using assms(1) assms(2) divide_closed nonzero_closed not_nonzero_memI val_Zp_mult by fastforce
  thus ?thesis 
    by (smt Zp_def add.commute add.left_neutral add.right_neutral add_diff_assoc_eint assms(1) 
        assms(2) divide_nonzero eSuc_minus_eSuc iadd_Suc idiff_0_right mult_zero(1) mult_zero_l
        nonzero_closed ord_pos order_refl padic_integers.Zp_int_inc_closed padic_integers.mult_comm 
        padic_integers.ord_of_nonzero(2) padic_integers_axioms val_Zp_eq_frac_0 val_Zp_mult val_Zp_p)
qed

lemma val_of_divide':
  assumes "x  carrier Zp"
  assumes "y  carrier  Zp"
  assumes "y  𝟬"
  assumes "val_Zp x  val_Zp y"
  shows "val_Zp (divide x y) = val_Zp x - val_Zp y"
  using Zp_def assms(1) assms(2) assms(3) assms(4) padic_integers.not_nonzero_Zp 
    padic_integers.val_of_divide padic_integers_axioms by blast
end

lemma(in UP_cring) taylor_deg_1_eval''':
  assumes "f  carrier P"
  assumes "a  carrier R"
  assumes "b  carrier R"
  assumes "c = to_fun (shift (2::nat) (T⇘af)) (b)"
  assumes "b  (deriv f a) = (to_fun f a)"
  shows "to_fun f (a  b) =  (c  b[^](2::nat))"
proof-
  have 0: "to_fun f (a  b) = (to_fun f a)  (deriv f a  b)  (c  b[^](2::nat))"
    using assms taylor_deg_1_eval'' 
    by blast
  have 1: "(to_fun f a)  (deriv f a  b) = 𝟬"
    using assms
  proof -
    have "f a. f  carrier P  a  carrier R  to_fun f a  carrier R"
      using to_fun_closed by presburger
    then show ?thesis
      using R.m_comm R.r_right_minus_eq assms(1) assms(2) assms(3) assms(5) 
      by (simp add: deriv_closed)
  qed     
  have 2: "to_fun f (a  b) = 𝟬  (c  b[^](2::nat))"
    using 0 1 
    by simp
  then show ?thesis using assms
    by (simp add: taylor_closed to_fun_closed shift_closed)    
qed

lemma(in padic_integers) res_diff_zero_fact:
  assumes "a  carrier Zp"
  assumes "b  carrier Zp"
  assumes "(a  b) k = 0"
  shows "a k = b k" "a k Zp_res_ring kb k = 0"
   apply(cases "k = 0")
  apply (metis assms(1) assms(2) p_res_ring_0 p_res_ring_0' p_res_ring_car p_residue_padic_int p_residue_range' zero_le)
   apply (metis R.add.inv_closed R.add.m_lcomm R.minus_eq R.r_neg R.r_zero Zp_residue_add_zero(2) assms(1) assms(2) assms(3))
    using assms(2) assms(3) residue_of_diff by auto

lemma(in padic_integers) res_diff_zero_fact':
  assumes "a  carrier Zp"
  assumes "b  carrier Zp"
  assumes "a k = b k"
  shows "a k Zp_res_ring kb k = 0"
  by (simp add: assms(3) residue_minus)

lemma(in padic_integers) res_diff_zero_fact'':
  assumes "a  carrier Zp"
  assumes "b  carrier Zp"
  assumes "a k = b k"
  shows "(a  b) k = 0"
  by (simp add: assms(2) assms(3) res_diff_zero_fact' residue_of_diff)

lemma(in padic_integers) is_Zp_cauchyI': 
assumes "s  closed_seqs Zp"
assumes "n::nat.  k::int.m.  m   k  val_Zp (s (Suc m)  s m)  n"
shows "is_Zp_cauchy s"
proof(rule is_Zp_cauchyI)
  show A0: "s  closed_seqs Zp" 
    by (simp add: assms(1))  
  show "n. N. n0 n1. N < n0  N < n1  s n0 n = s n1 n"
  proof-
    fix n
    show "N. n0 n1. N < n0  N < n1  s n0 n = s n1 n"
    proof(induction n)
      case 0
      then show ?case 
      proof-
        have "n0 n1. 0 < n0  0 < n1  s n0 0 = s n1 0"
          apply auto 
        proof-
          fix n0 n1::nat
          assume A: "n0 > 0" "n1 > 0"
          have 0: "s n0  carrier Zp"
            using A0 
            by (simp add: closed_seqs_memE)                       
          have 1: "s n1  carrier Zp"
            using A0            
            by (simp add: closed_seqs_memE)                       
          show " s n0 (0::nat) = s n1 (0::nat)"
            using A0 Zp_def 0 1 residues_closed 
            by (metis p_res_ring_0')           
        qed
        then show ?thesis 
          by blast 
      qed
    next
      case (Suc n)
      fix n
      assume IH: "N. n0 n1. N < n0  N < n1  s n0 n = s n1 n"
      show " N. n0 n1. N < n0  N < n1  s n0 (Suc n) = s n1 (Suc n)"
      proof-
        obtain N where N_def: "n0 n1. N < n0  N < n1  s n0 n = s n1 n"
          using IH 
          by blast  
        obtain k where k_def: "m.  (Suc m)  k  val_Zp (s (Suc (Suc m))  s (Suc m))  Suc (Suc n)"
          using assms  Suc_n_not_le_n 
          by (meson nat_le_iff)
        have "n0 n1.  Suc (max N (max n k)) < n0   Suc (max N (max n k))< n1  s n0 (Suc n) = s n1 (Suc n)"
          apply auto
        proof-
          fix n0 n1
          assume A: "Suc (max N (max n k)) < n0" " Suc (max N (max n k)) < n1"
          show "s n0 (Suc n) = s n1 (Suc n) "
          proof-
            obtain K where K_def: "K = Suc (max N (max n k))"
              by simp
            have P0: "m. s ((Suc m)+ K) (Suc n) = s (Suc K) (Suc n)"
              apply auto  
            proof-
              fix m
              show "s (Suc (m + K)) (Suc n) = s (Suc K) (Suc n)"
              apply(induction m)
                 apply auto 
              proof-
                fix m
                assume A0: " s (Suc (m + K)) (Suc n) = s (Suc K) (Suc n)"
                show " s (Suc (Suc (m + K))) (Suc n) = s (Suc K) (Suc n)"
                proof-
                  have I: "k < m + K"
                    using K_def 
                    by linarith
                  have "val_Zp (s (Suc (Suc (m + K)))  s (Suc (m + K)))   Suc (Suc n)"
                  proof-
                    have "(Suc (m + K)) > k"
                      by (simp add: I less_Suc_eq)
                    then show ?thesis 
                      using k_def less_imp_le_nat 
                      by blast
                  qed
                  hence D: "val_Zp (s (Suc (Suc (m + K)))  s (Suc (m + K))) > (Suc n)"
                    using Suc_ile_eq by fastforce
                  have "s (Suc (Suc (m + K))) (Suc n) =  s (Suc (m + K)) (Suc n)"
                  proof-
                    have "(s (Suc (Suc (m + K)))  s (Suc (m + K)))  (Suc n) = 0"
                      using D assms(1) res_diff_zero_fact''[of "s (Suc (Suc (m + K)))" "s (Suc (m + K)) " "Suc n"]
                      val_Zp_dist_res_eq[of "s (Suc (Suc (m + K)))" "s (Suc (m + K)) "  "Suc n"] unfolding val_Zp_dist_def 
                      by (simp add: closed_seqs_memE)                                                                                  
                    hence 0: "(s (Suc (Suc (m + K)))  (Suc n) Zp_res_ring (Suc n)(s (Suc (m + K)))  (Suc n)) = 0"
                      using res_diff_zero_fact(2)[of "s (Suc (Suc (m + K)))" "s (Suc (m + K))" "Suc n" ]
                            assms(1) 
                      by (simp add: closed_seqs_memE)                       
 
                    show ?thesis 
                    proof-
                      have 00: "cring (Zp_res_ring (Suc n))"
                        using R_cring by blast
                      have 01: " s (Suc (Suc (m + K))) (Suc n)  carrier (Zp_res_ring (Suc n))"
                        using assms(1) closed_seqs_memE residues_closed by blast
                      have 02: "(Zp_res_ring (Suc n)(s (Suc (m + K)) (Suc n)))  carrier (Zp_res_ring (Suc n)) "
                        by (meson "00" assms(1) cring.cring_simprules(3) closed_seqs_memE residues_closed)
                      show ?thesis 
                        unfolding a_minus_def
                        using  00 01 02  
                              cring.sum_zero_eq_neg[of "Zp_res_ring (Suc n)" "s (Suc (Suc (m + K))) (Suc n)"
                                            "Zp_res_ring (Suc n)s (Suc (m + K)) (Suc n)"]  
                        by (metis 0  a_minus_def assms(1) cring.cring_simprules(21) closed_seqs_memE 
                            p_res_ring_zero residues_closed)                        
                    qed
                  qed
                  then show ?thesis using A0 assms(1)
                    by simp   
                qed
              qed
            qed
            have "m0. n0 = (Suc m0) + K"
            proof-
              have "n0 > K"
                by (simp add: A(1) K_def)
              then have "n0 = (Suc (n0 - K - 1)) + K"
                by auto
              then show ?thesis by blast 
            qed
            then obtain m0 where m0_def: "n0 = (Suc m0) + K"
              by blast 
            have "m0. n1 = (Suc m0) + K"
            proof-
              have "n1 > K"
                by (simp add: A(2) K_def)
              then have "n1 = (Suc (n1 - K - 1)) + K"
                by auto
              then show ?thesis by blast 
            qed
            then obtain m1 where m1_def: "n1 = (Suc m1) + K"
              by blast
            have 0: "s n0 (Suc n) = s (Suc K) (Suc n)" 
              using m0_def P0[of "m0"] by auto  
            have 1: "s n1 (Suc n) = s (Suc K) (Suc n)" 
              using m1_def P0[of "m1"] by auto  
            show ?thesis using 0 1 
              by auto
          qed
        qed
        then show ?thesis 
          by blast
      qed
    qed
  qed
qed

(**************************************************************************************************)
(**************************************************************************************************)
section‹The Proof of Hensel's Lemma›
(**************************************************************************************************)
(**************************************************************************************************)

subsection‹Building a Locale for the Proof of Hensel's Lemma›

locale hensel = padic_integers+ 
  fixes f::padic_int_poly
  fixes a::padic_int
  assumes f_closed[simp]: "f  carrier Zp_x"
  assumes a_closed[simp]: "a  carrier Zp"
  assumes fa_nonzero[simp]: "fa 𝟬"
  assumes hensel_hypothesis[simp]: "(val_Zp (fa) > 2* val_Zp ((pderiv f)a))"

sublocale hensel < cring Zp
  by (simp add: R.is_cring)

context hensel
begin

abbreviation f' where
"f'  pderiv f"

lemma f'_closed:
"f'  carrier Zp_x"
  using f_closed pderiv_closed by blast 
  
lemma f'_vals_closed:
  assumes "a  carrier Zp"
  shows "f'a  carrier Zp"
  by (simp add: UP_cring.to_fun_closed Zp_x_is_UP_cring f'_closed)
  
lemma fa_closed:
"(fa)  carrier Zp"
  by (simp add: UP_cring.to_fun_closed Zp_x_is_UP_cring)

lemma f'a_closed:
"(f'a)  carrier Zp"
proof-
  have "f'  carrier Zp_x"
    by (simp add: f'_closed)  
  then show ?thesis 
    by (simp add: f'_vals_closed)
qed

lemma fa_nonzero':
"(fa)  nonzero Zp"
  using fa_closed fa_nonzero not_nonzero_Zp by blast

lemma f'a_nonzero[simp]:
"(f'a)  𝟬"
proof(rule ccontr)
  assume "¬ (f'a)  𝟬"
  then have "(f'a) = 𝟬"
    by blast 
  then have " < val_Zp (fa)" using hensel_hypothesis 
    by (simp add: val_Zp_def)
  thus False 
    using eint_ord_simps(6) by blast
qed      

lemma f'a_nonzero':
"(f'a)  nonzero Zp"
  using f'a_closed f'a_nonzero not_nonzero_Zp by blast

lemma f'a_not_infinite[simp]: 
"val_Zp (f'a)  "
  by (metis eint_ord_code(3) hensel_hypothesis linorder_not_less times_eint_simps(4))

lemma f'a_nonneg_val[simp]: 
"val_Zp ((f'a))  0"
  using f'a_closed val_pos by blast

lemma hensel_hypothesis_weakened:
"val_Zp (fa) > val_Zp (f'a)"
proof-
  have 0: "0  val_Zp (f'a)  val_Zp (f'a)  "
    using f'a_closed val_ord_Zp val_pos by force
  have 1: "1 < eint 2 "
    by (simp add: one_eint_def)
  thus ?thesis   using 0 eint_mult_mono'[of "val_Zp (f'a)" 1 2] hensel_hypothesis 
    by (metis linorder_not_less mult_one_left order_trans)
qed

subsection‹Constructing the Newton Sequence›

definition newton_step :: "padic_int  padic_int" where
"newton_step x = x  (divide (fx) (f'x))"

lemma newton_step_closed:
  "newton_step a  carrier Zp"
  using  divide_closed unfolding newton_step_def 
  using f'a_closed f'a_nonzero fa_closed local.a_closed by blast
  
fun newton_seq :: "padic_int_seq" ("ns") where
"newton_seq 0 = a"|
"newton_seq (Suc n) = newton_step (newton_seq n)"

subsection‹Key Properties of the Newton Sequence›

lemma hensel_factor_id:
"(divide (fa) (f'a))  ((f'a)) = (fa)"
  using hensel_hypothesis hensel_axioms divide_formula f'a_closed 
        fa_closed hensel_hypothesis_weakened mult_comm 
  by auto

definition hensel_factor ("t") where
"hensel_factor = val_Zp (fa) - 2*(val_Zp (f'a))"

lemma t_pos[simp]:
"t > 0"
  using hensel_factor_def hensel_hypothesis 
  by (simp add: eint_minus_le)

lemma t_neq_infty[simp]:
"t  "
  by (simp add: hensel_factor_def val_Zp_def)

lemma t_times_pow_pos[simp]:
"(2^(n::nat))*t > 0"
  apply(cases "n = 0")
  using one_eint_def apply auto[1]
    using eint_mult_mono'[of t 1 "2^n"] t_pos
  by (smt eint_ord_simps(2) linorder_not_less mult_one_left neq0_conv one_eint_def order_less_le order_trans self_le_power t_neq_infty)

lemma newton_seq_props_induct:
shows "k. k  n  (ns k)  carrier Zp
               val_Zp (f'(ns k)) = val_Zp ((f'a))
               val_Zp (f(ns k))  2*(val_Zp (f'a)) + (2^k)*t"
proof(induction n)
  case 0
  then have kz: "k = 0"
    by simp
  have B0: "( ns k)  carrier Zp"
    using kz 
    by simp
  have B1: "val_Zp (f'  ns k) = (val_Zp (f'a))"
    using kz newton_seq.simps(1) 
    by presburger 
  have B2: "val_Zp (f  (ns k))  (2 * (val_Zp (f'a))) + 2 ^ k * t"
  proof-
    have B20: "(2 * (val_Zp (f'a))) + 2 ^ k * t = (2 * (val_Zp (f'a))) +  t"
    proof-
      have "(2 * (val_Zp (f'a))) + 2 ^ k * t = (2 * (val_Zp (f'a))) +  t"
        using kz  one_eint_def by auto        
      then show ?thesis 
        by blast
    qed
    then have "(2 * (val_Zp (f'a))) + 2 ^ k * t = (2 * (val_Zp (f'a))) + val_Zp (fa) - 2*(val_Zp (f'a))"
      unfolding hensel_factor_def 
      by (simp add: val_Zp_def)
    then have "(2 * (val_Zp (f'a))) + 2 ^ k * t =  val_Zp (fa)"
      by (metis add_diff_cancel_eint eint_ord_simps(6) hensel_hypothesis)     
    thus ?thesis       by (simp add: kz)      
  qed
  thus ?case 
    using B0 B1 by blast    
next
  case (Suc n)
  show ?case
  proof(cases "k  n")
    case True
    then show ?thesis using  Suc.IH 
      by blast
    next
      case False
      have F1: "(ns n)  carrier Zp"
        using  Suc.IH   by blast      
      have F2: "val_Zp (f'(ns n)) = val_Zp ((f'a))"
        using  Suc.IH  by blast      
      have F3: "val_Zp (f(ns n))  2*(val_Zp (f'a)) + (2^n)*t"
        using  Suc.IH  by blast 
      have kval: "k = Suc n"
        using False Suc.prems le_Suc_eq by blast        
      have F6: "val_Zp (f(ns n))  val_Zp (f'(ns n))"
      proof-
        have "2*(val_Zp (f'a))   val_Zp (f'a)"
          using f'a_closed val_pos eint_mult_mono'[of "val_Zp (f'a)" 1 2]  
          by (metis Groups.add_ac(2) add.right_neutral eSuc_eint eint_0_iff(2) eint_add_left_cancel_le
              eint_ord_simps(2) f'a_nonneg_val f'a_not_infinite infinity_ne_i1 linorder_not_less 
              mult_one_left not_one_less_zero one_add_one one_eint_def order_less_le order_trans zero_one_eint_neq(1))
        hence  "2*(val_Zp (f'a)) + (2^n)*t   val_Zp (f'a)"
          using t_times_pow_pos[of n] 
          by (metis (no_types, lifting) add.right_neutral eint_add_left_cancel_le order_less_le order_trans)    
        then show ?thesis 
          using F2 F3 by auto                            
      qed
      have F5: " divide (f(ns n))(f'(ns n))  carrier Zp"
      proof-
        have 00: "f  ns n  carrier Zp"
          by (simp add: F1 to_fun_closed)                     
        have "val_Zp ((f'a))  val_Zp 𝟬"
          by (simp add:  val_Zp_def)
        then have 01: "f'  ns n  nonzero Zp"
          using F2 F1 Zp_x_is_UP_cring f'_closed nonzero_def
        proof -
          have "f'  ns n  carrier Zp"
            using F1 Zp_continuous_is_Zp_closed f'_closed  polynomial_is_Zp_continuous
            by (simp add: to_fun_closed) 
          then show ?thesis
            using F2 val_Zp (f'a)  val_Zp 𝟬 not_nonzero_Zp by fastforce
        qed           
        then show ?thesis 
          using F6 
          by (metis "00" F2 val_Zp (f'a)  val_Zp 𝟬 divide_closed nonzero_closed)          
      qed
      have F4:  "(ns k)  (ns n) = ( divide (f(ns n))(f'(ns n)))"
        using F1 F5 newton_seq.simps(2)[of n] kval
        unfolding newton_step_def 
        by (metis R.l_neg R.minus_closed R.minus_zero R.plus_diff_simp R.r_neg2 R.r_right_minus_eq 
            a_minus_def local.a_closed minus_a_inv)
      have F7: "val_Zp (divide (f(ns n))(f'(ns n))) = val_Zp (f(ns n)) - val_Zp (f'(ns n))"
        apply(rule val_of_divide)
           apply (simp add: F1 to_fun_closed)
            using F1 f'_closed to_fun_closed F2 not_nonzero_Zp val_Zp_def apply fastforce
              by (simp add: F6)
      show ?thesis
      proof
        show P0:"ns k  carrier Zp"
        proof- 
          have A0: "ns k = ns n  (divide (f (ns n)) (f'(ns n)))"
            by (simp add: kval newton_step_def)          
          have A1: "val_Zp (f'(ns n)) = val_Zp (f'a)"
            using  Suc.IH  
            by blast
          have A2: "val_Zp (f(ns n)) val_Zp (f'a)"
          proof-
            have A20: "(2 * val_Zp (f'a)) + 2 ^ n * (val_Zp (fa) - 2 * val_Zp (f'a)) val_Zp (f'a)"
            proof-
              have "val_Zp (fa) - 2 * val_Zp (f'a) > 0"
                using hensel_hypothesis eint_minus_le by blast                
              then have "  (2 ^ n) * (val_Zp (fa) - 2 * val_Zp (f'a))
                         (val_Zp (fa) - 2 * val_Zp (f'a))"
                using eint_pos_int_times_ge by auto
              then have  "  ((2 * val_Zp (f'a)) + 2 ^ n * (val_Zp (fa) - 2 * val_Zp (f'a)))
                         (2 * val_Zp (f'a)) + (val_Zp (fa) - 2 * val_Zp (f'a))"
                by (simp add: val_Zp_def)
              then have  "  ((2 * val_Zp (f'a)) + 2 ^ n * (val_Zp (fa) - 2 * val_Zp (f'a)))
                         (val_Zp (fa) )"
                by simp 
              then show  "  ((2 * val_Zp (f'a)) + 2 ^ n * (val_Zp (fa) - 2 * val_Zp (f'a)))
                         (val_Zp (f'a) )"
                using hensel_hypothesis_weakened by auto                 
            qed
            have A21:"val_Zp (f(ns n))  (2 * val_Zp (f'a)) + 2 ^ n * (val_Zp (fa) - 2 * val_Zp (f'a))"
              using  Suc.IH unfolding hensel_factor_def 
              by blast              
            show ?thesis using A21 A20 
              by auto              
          qed
          have A3: "ns n  carrier Zp"
            using  Suc.IH by blast 
          have A4: "val_Zp (f(ns n)) val_Zp (f'(ns n))"
            using A1 A2 
            by presburger
          have A5: "f(ns n)  carrier Zp"
            by (simp add: F1 UP_cring.to_fun_closed Zp_x_is_UP_cring)                      
          have A6: "(f'(ns n))  nonzero Zp"
          proof-
            have "(f'(ns n))  carrier  Zp"
              by (simp add: F1 UP_cring.to_fun_closed Zp_x_is_UP_cring f'_closed)                 
            have "val_Zp (f'(ns n))  "
              using A1 
              by (simp add:  val_Zp_def)              
            then show ?thesis 
              using f'  ns n  carrier Zp not_nonzero_Zp val_Zp_def 
              by meson
          qed
          have A7: " (divide (f (ns n)) (f'(ns n)))  carrier Zp"
            using A5 A6 A4 A3 F5 by linarith            
          then show ?thesis 
            using A0 A3 cring.cring_simprules(4) 
            by (simp add: F1 F5 cring.cring_simprules(4))
        qed
        have P1: "val_Zp (f'  ns k) = val_Zp (f'a) "
        proof(cases "(f'  ns k) = (f'  ns n)")
          case True
          then show ?thesis using  Suc.IH
            by (metis order_refl)
        next
          case False
          have "val_Zp ((f'  ns k)  (f'  ns n))  val_Zp ((ns k)  (ns n))"
            using False P0 f'_closed  poly_diff_val  Suc.IH 
            by blast
          then have "val_Zp ((f'  ns k)  (f'  ns n))  val_Zp ( divide (f(ns n))(f'(ns n)))"
            using  F4 by metis  
          then have "val_Zp ((f'  ns k)  (f'  ns n))  val_Zp (divide (f(ns n))(f'(ns n)))"
            using F5 val_Zp_of_minus 
            by presburger                        
          then have P10: "val_Zp ((f'  ns k)  (f'  ns n))  val_Zp (f(ns n)) - val_Zp (f'(ns n))"
            using F7 by metis 
          have P11: "val_Zp (f'(ns n))  "
            by (simp add: F2)           
          then have "val_Zp ((f'  ns k)  (f'  ns n))  (2 * val_Zp (f'a)) + 2 ^ n * t -  val_Zp (f'(ns n))"
            using F3 P10  
            by (smt eint_add_cancel_fact eint_add_left_cancel_le order_trans)                
          then have P12: "val_Zp ((f'  ns k)  (f'  ns n))  (2 *(val_Zp (f'a))) + 2 ^ n * t - (val_Zp (f'a))"
            by (simp add: F2)            
          have P13:"val_Zp ((f'  ns k)  (f'  ns n))  (val_Zp (f'a)) + 2 ^ n * t "
          proof-
            have "(2 *(val_Zp (f'a))) + (2 ^ n * t) - (val_Zp (f'a)) =  (2 *(val_Zp (f'a))) - (val_Zp (f'a)) + (2 ^ n * t) "
              using eint_minus_comm by blast            
            then show ?thesis using P12 
              using f'a_not_infinite by force
          qed
          then have P14: "val_Zp ((f'  ns k)  (f'  ns n)) > (val_Zp (f'a))"
            using f'a_not_infinite ge_plus_pos_imp_gt t_times_pow_pos by blast
          show ?thesis 
            by (meson F1 F2 P0 P14 equal_val_Zp f'_closed f'a_closed to_fun_closed)
        qed
        have P2: "val_Zp (f(ns k))  2*(val_Zp (f'a)) + (2^k)*t"
        proof- 
          have P23: "2 * (val_Zp (f'a)) + ((2 ^ k) * t)  val_Zp (f  ns k)"
          proof-
            have 0: "ns n  carrier Zp"
              by (simp add: F1)
            have 1: "local.divide (f  ns n) (f'  ns n)  carrier Zp"
              using F5 by blast
            have 2: "(poly_shift_iter 2 (taylor (ns n) f))   local.divide (f  ns n) (f'  ns n)  carrier Zp"
              using F1 F5 shift_closed 1  
              by (simp add: taylor_closed to_fun_closed)
            have 3: "divide (f  ns n) (f'  ns n)  deriv f (ns n) = f  ns n"
              by (metis F1 F2 F6 divide_formula f'_closed f'a_not_infinite f_closed mult_comm pderiv_eval_deriv to_fun_closed val_Zp_def)                  
            have 4: "f  carrier Zp_x"
              by simp
            obtain c where c_def: "c = poly_shift_iter (2::nat) (taylor (ns n) f)   local.divide (f  ns n) (f'  ns n)"
              by blast
            then have c_def': "c  carrier Zp  f  (ns n  local.divide (f  ns n) (f'  ns n)) = c  local.divide (f  ns n) (f'  ns n) [^] (2::nat)"
              using 0 1 2 3 4 UP_cring.taylor_deg_1_eval'''[of Zp f "ns n" "(divide (f(ns n)) (f'(ns n)))" c]
                Zp_x_is_UP_cring
              by blast
            have P230: "f(ns k) =  (c  (divide (f(ns n)) (f'(ns n)))[^](2::nat))"
              using c_def' 
              by (simp add: kval newton_step_def)                
            have P231: "val_Zp (f(ns k)) = val_Zp c + 2*(val_Zp (f(ns n)) - val_Zp(f'(ns n)))"
                proof-
                  have P2310: "val_Zp (f(ns k)) =  val_Zp c + val_Zp ((divide (f(ns n)) (f'(ns n)))[^](2::nat))"
                    by (simp add: F5 P230 c_def' val_Zp_mult)                
                  have P2311: "val_Zp ((divide (f(ns n)) (f'(ns n)))[^](2::nat)) 
                                                    =  2*(val_Zp (f(ns n)) - val_Zp(f'(ns n)))"
                    by (metis  F5 F7 R.pow_zero mult.commute not_nonzero_Zp of_nat_numeral times_eint_simps(3) val_Zp_def val_Zp_pow' zero_less_numeral)
                  thus ?thesis 
                    by (simp add: P2310)                
                qed
                have P232: "val_Zp (f(ns k))  2*(val_Zp (f(ns n)) - val_Zp(f'(ns n)))"
                  by (simp add: P231 c_def' val_pos)                
                have P236:  "val_Zp (f(ns k))  2*(2 *val_Zp (f'a) + 2 ^ n * t)  - 2* val_Zp(f'(ns n))"
                  using P232 F3 eint_minus_ineq''[of "val_Zp(f'(ns n))" "(2 *val_Zp (f'a)) + 2 ^ n * t" "val_Zp (f(ns n))" 2 ]
                       F2 eint_pow_int_is_pos by auto
                hence  P237:  "val_Zp (f(ns k)) (4*val_Zp (f'a)) + (2*((2 ^ n)* t)) - 2* val_Zp(f'(ns n))"
                proof-
                  have "2*(2*val_Zp (f'a) + 2 ^ n * t)  = (4*val_Zp (f'a)) + 2*(2 ^ n)* t "
                    using distrib_left[of 2 "2*val_Zp (f'a)" "2 ^ n * t"] mult.assoc mult_one_right one_eint_def plus_eint_simps(1)
                          hensel_factor_def val_Zp_def by auto
                  then show ?thesis 
                    using P236 
                    by (metis mult.assoc)                  
                qed
                hence P237:  "val_Zp (f(ns k))  4*val_Zp (f'a) + 2*(2 ^ n)* t - 2* val_Zp((f'a))"
                  by (metis F2 mult.assoc)                                  
                hence P238: "val_Zp (f(ns k))  2*val_Zp (f'a) + 2*(2 ^ n)* t"
                  using eint_minus_comm[of "4*val_Zp (f'a) " "2*(2 ^ n)* t" "2* val_Zp((f'a))"]
                  by (simp add: eint_int_minus_distr)
                thus ?thesis 
                  by (simp add: kval)               
          qed
          thus ?thesis 
            by blast   
        qed
        show "val_Zp (to_fun f' (ns k)) = val_Zp (f'a)  
                2 * val_Zp (f'a) + eint (2 ^ k) * t  val_Zp (to_fun f (ns k))"
          using P1 P2 by blast
      qed
    qed
qed

lemma newton_seq_closed:
shows "ns m  carrier Zp"
  using newton_seq_props_induct 
  by blast

lemma f_of_newton_seq_closed:
shows "f  ns m  carrier Zp"
  by (simp add: to_fun_closed newton_seq_closed)

lemma newton_seq_fact1[simp]:
" val_Zp (f'(ns k)) = val_Zp ((f'a))"
using newton_seq_props_induct by blast

lemma newton_seq_fact2:
"k.  val_Zp (f(ns k))  2*(val_Zp (f'a)) + (2^k)*t"
  by (meson le_iff_add newton_seq_props_induct)

lemma newton_seq_fact3:
"val_Zp (f(ns l))  val_Zp (f'(ns l))"
proof-
  have "2*(val_Zp (f'a)) + (2^l)*t  (val_Zp (f'a))"
    using f'a_closed ord_pos t_pos 
    by (smt eint_pos_int_times_ge f'a_nonneg_val f'a_not_infinite ge_plus_pos_imp_gt linorder_not_less nat_mult_not_infty order_less_le t_times_pow_pos)    
  then show "val_Zp (f  ns l)  val_Zp (f'  ns l) "
    using  f'a_closed f'a_nonzero newton_seq_fact1[of l] newton_seq_fact2[of l]  val_Zp_def 
    proof -
    show ?thesis
      using eint 2 * val_Zp (f'a) + eint (2 ^ l) * t  val_Zp (to_fun f (ns l)) val_Zp (f'a)  eint 2 * val_Zp (f'a) + eint (2 ^ l) * t by force
    qed  
qed

lemma newton_seq_fact4[simp]:
  assumes "f(ns l) 𝟬"
  shows "val_Zp (f(ns l))  val_Zp (f'(ns l))"
  using newton_seq_fact3 by blast

lemma newton_seq_fact5:
"divide (f  ns l) (f'  ns l)  carrier Zp"
  apply(rule divide_closed) 
  apply (simp add: to_fun_closed newton_seq_closed)
  apply (simp add: f'_closed to_fun_closed newton_seq_closed)
  by (metis f'a_not_infinite newton_seq_fact1 val_Zp_def)
   
lemma newton_seq_fact6:
"(f'(ns l))  nonzero Zp"
  apply(rule ccontr)
  using  nonzero_memI nonzero_memE  
        f'a_nonzero newton_seq_fact1  val_Zp_def
  by (metis (no_types, lifting) divide_closed f'_closed f'a_closed fa_closed hensel_factor_id 
      hensel_hypothesis_weakened mult_zero_l newton_seq_closed order_less_le to_fun_closed val_Zp_mult)

lemma newton_seq_fact7:
 "(ns (Suc n))  (ns n) = divide (f(ns n)) (f'(ns n))"
  using newton_seq.simps(2)[of n]  newton_seq_fact5[of n] 
        newton_seq_closed[of "Suc n"]  newton_seq_closed[of n] 
        R.ring_simprules
  unfolding newton_step_def a_minus_def 
  by smt 

lemma newton_seq_fact8:
  assumes "f(ns l) 𝟬"
  shows "divide (f  ns l) (f'  ns l)  nonzero Zp"
  using assms divide_nonzero[of "f  ns l" "f'  ns l"]
        nonzero_memI 
  using f_of_newton_seq_closed newton_seq_fact3 newton_seq_fact6 by blast

lemma newton_seq_fact9:
  assumes "f(ns n) 𝟬"
  shows "val_Zp((ns (Suc n))  (ns n)) = val_Zp (f(ns n)) - val_Zp (f'(ns n))"
  using newton_seq_fact7 val_of_divide newton_seq_fact6 assms nonzero_memI
        f_of_newton_seq_closed newton_seq_fact4 newton_seq_fact5 
  by (metis val_Zp_of_minus)

text‹Assuming no element of the Newton sequence is a root of f, the Newton sequence is Cauchy.›

lemma newton_seq_is_Zp_cauchy_0:
assumes "k. f(ns k) 𝟬"
shows "is_Zp_cauchy ns"
proof(rule is_Zp_cauchyI')
  show P0: "ns  closed_seqs Zp"
  proof(rule closed_seqs_memI)
    show "k. ns k  carrier Zp "
     by (simp add: newton_seq_closed)
 qed
  show "n. k. m. k  int m  int n  val_Zp (ns (Suc m)  ns m)"
  proof
    fix n
    show "k. m. k  int m  int n  val_Zp (ns (Suc m)  ns m)"
    proof(induction "n")
      case 0
      have B0: "n0 n1. 0 < n0  0 < n1  ns n0 0 = ns n1 0"
        apply auto 
      proof-
        fix n0 n1::nat 
        assume A: "0 < n0" "0 < n1"
        show "ns n0 0 = ns n1 0"
        proof-
          have 0: "ns n0  carrier Zp"
            using P0 
            by (simp add: newton_seq_closed)           
          have 1: "ns n1  carrier Zp"
            using P0 
            by (simp add: newton_seq_closed)      
          show ?thesis
            using 0 1 Zp_defs(3) prime  
            by (metis p_res_ring_0' residue_closed)                                
        qed
      qed
      have "m. 1  int m  int 0  val_Zp_dist (newton_step (ns m)) (ns m)"
      proof
        fix m
        show "1  int m  int 0  val_Zp_dist (newton_step (ns m)) (ns m)"
        proof
        assume "1  int m "
        then have C0:"ns (Suc m) 0 = ns m 0"
          using B0 
          by (metis int_one_le_iff_zero_less int_ops(1) less_Suc_eq_0_disj of_nat_less_iff)
        then show "int 0  val_Zp_dist (newton_step (ns m)) (ns m)"
        proof-
          have "(newton_step (ns m)) (ns m)"
          proof-
            have A0: "divide (f(ns m)) (f'(ns m)) 𝟬"
            proof-
              have 0: "(f(ns m))  𝟬"
                using assms by auto 
              have 1: " (f'(ns m))  carrier Zp"
                by (simp add: UP_cring.to_fun_closed Zp_x_is_UP_cring f'_closed newton_seq_closed)                
              have 2:  "(f'(ns m))  𝟬" 
                using newton_seq_fact6 not_nonzero_memI by blast                                              
              show ?thesis using 0 1 2 
                by (metis R.r_null divide_formula f_closed to_fun_closed newton_seq_closed newton_seq_fact4)                
            qed
            have A2: "local.divide (f  ns m) (f'  ns m)  carrier Zp"
              using newton_seq_fact5 by blast   
            have A3: "ns m  carrier Zp"
              by (simp add: newton_seq_closed)
            have A4: "newton_step (ns m)  carrier Zp"
              by (metis newton_seq.simps(2) newton_seq_closed)
            show ?thesis 
              apply(rule ccontr) 
              using A4 A3 A2 A0 newton_step_def[of "(ns m)"] 
              by (simp add: a_minus_def)
          qed
          then show ?thesis using C0 
            by (metis newton_seq.simps(2) newton_seq_closed val_Zp_dist_res_eq2)
        qed
      qed
      qed
      then show ?case 
        using val_Zp_def val_Zp_dist_def 
        by (metis int_ops(1) newton_seq.simps(2) zero_eint_def)                
    next
      case (Suc n)
      show "k. m. k  int m  int (Suc n)  val_Zp (ns (Suc m)  ns m)"
      proof-
        obtain k0 where k0_def: "k0 0  (m. k0  int m  int n  val_Zp (ns (Suc m)  ns m))"
          using Suc.IH 
          by (metis int_nat_eq le0 nat_le_iff of_nat_0_eq_iff )
        have I0: "l. val_Zp (ns (Suc l)  ns l) = val_Zp (f (ns l)) - val_Zp (f'(ns l))"
        proof-
          fix l
          have I00:"(ns (Suc l)  ns l) = ( divide (f(ns l)) (f'(ns l)))"
          proof-
            have "local.divide (f  ns l) (f'  ns l)  carrier Zp"
              by (simp add: newton_seq_fact5) 
            then show ?thesis 
              using newton_seq.simps(2)[of l] newton_seq_closed R.ring_simprules 
              unfolding newton_step_def a_minus_def  
              by (metis add_comm)                 
          qed
          have I01: "val_Zp (ns (Suc l)  ns l) = val_Zp (divide (f(ns l)) (f'(ns l)))"   
          proof-
            have I010: "(divide (f(ns l)) (f'(ns l))) carrier Zp"
             by (simp add: newton_seq_fact5)
           have I011: "(divide (f(ns l)) (f'(ns l)))  𝟬"
           proof-
             have A: "(f(ns l)) 𝟬"
               by (simp add: assms) 
             have B: " (f'(ns l))  carrier Zp"
               using nonzero_memE newton_seq_fact6 by auto                 
             then have C: " (f'(ns l))  nonzero  Zp"
               using  f'a_closed fa_closed fa_nonzero hensel_factor_id hensel_hypothesis_weakened
                     newton_seq_fact1[of l]   not_nonzero_Zp val_Zp_def 
               by fastforce
             then show ?thesis using I010 A 
               by (metis B R.r_null divide_formula f_closed to_fun_closed newton_seq_closed newton_seq_fact4 nonzero_memE(2))               
           qed
           then have "val_Zp (divide (f(ns l)) (f'(ns l)))
                    = val_Zp ( divide (f(ns l)) (f'(ns l)))"
             using I010 not_nonzero_Zp val_Zp_of_minus by blast
           then show ?thesis using I00 by metis  
          qed
          have I02: "val_Zp (f(ns l))  val_Zp (f'(ns l))"
            using assms  newton_seq_fact4
            by blast  
          have I03: "(f(ns l))  nonzero Zp"
            by (meson UP_cring.to_fun_closed Zp_x_is_UP_cring assms f_closed newton_seq_closed not_nonzero_Zp)           
          have I04: "f'(ns l)  nonzero Zp"
            by (simp add: newton_seq_fact6)            
          have I05 :" val_Zp (divide (f(ns l)) (f'(ns l))) = val_Zp (f (ns l)) - val_Zp (f'(ns l))"
            using I02 I03 I04 I01 assms newton_seq_fact9 by auto                
          then show " val_Zp (ns (Suc l)  ns l) = val_Zp (f (ns l)) - val_Zp (f'(ns l))"
            using I01  by simp            
        qed
        have "m. int(Suc n) + k0 + 1  int m  int (Suc n)  val_Zp_dist (newton_step (ns m)) (ns m)"
        proof
          fix m
          show "int (Suc n) + k0 + 1  int m  int (Suc n)  val_Zp_dist (newton_step (ns m)) (ns m)"
          proof
          assume A: "int (Suc n) + k0 + 1  int m "
            show " int (Suc n)  val_Zp_dist (newton_step (ns m)) (ns m)"
            proof-
              have 0: " val_Zp_dist (newton_step (ns m)) (ns m) =  val_Zp (f (ns m)) - val_Zp (f'(ns m))"
                using I0 val_Zp_dist_def by auto         
              have 1: "val_Zp (f (ns m)) - val_Zp (f'(ns m)) > int n"
              proof-
              have "val_Zp (f (ns m))  2*(val_Zp (f'a)) + (2^m)*t"
                by (simp add: newton_seq_fact2)                
              then have 10:"val_Zp (f (ns m)) - val_Zp (f'(ns m))  2*(val_Zp (f'a)) + (2^m)*t -  val_Zp (f'(ns m))"
                by (simp add: eint_minus_ineq)                
              have "2^m * t > m"
                apply(induction m)
                 using one_eint_def zero_eint_def apply auto[1]                 
              proof- fix m 
                assume IH : "int m < 2 ^ m * t " 
                then have "((2 ^ (Suc m)) * t) = 2* ((2 ^ m) * t)"
                  by (metis mult.assoc power_Suc times_eint_simps(1))  
                then show "int (Suc m) < 2 ^ Suc m * t"
                  using IH t_neq_infty by force
              qed
              then have 100: "2^m * t > int m"
                by blast
              have "int m 2 + (int n + k0)"
                using A by simp
              hence 1000: "2^m * t > 2 + (int n + k0)"
                using 100 
                by (meson eint_ord_simps(2) less_le_trans linorder_not_less)
              have "2 + (int n + k0) > 1 + int n"
                using k0_def by linarith
              then have "2^m * t > 1 + int n"
                using 1000  eint_ord_simps(2) k0_def less_le_trans linorder_not_less
              proof -
                have "eint (2 + (int n + k0)) < t * eint (int (2 ^ m))"
                  by (metis "1000" mult.commute numeral_power_eq_of_nat_cancel_iff)
                then have "eint (int (Suc n)) < t * eint (int (2 ^ m))"
                  by (metis 1 + int n < 2 + (int n + k0) eint_ord_simps(2) less_trans of_nat_Suc)
                then show ?thesis
                  by (simp add: mult.commute)
              qed
              hence "2*val_Zp (f'a) + eint (2 ^ m) * t  2*(val_Zp (f'a)) + 1 + int n"
                by (smt eSuc_eint eint_add_left_cancel_le iadd_Suc iadd_Suc_right order_less_le)
              then have 11: "val_Zp (f (ns m)) - val_Zp (f'(ns m)) 
                                 2*(val_Zp (f'a)) + 1 + int n -  val_Zp (f'(ns m))"
                using "10" 
                by (smt eint 2 * val_Zp (f'a) + eint (2 ^ m) * t  val_Zp (to_fun f (ns m)) 
                    f'a_not_infinite eint_minus_ineq hensel_axioms newton_seq_fact1 order_trans)
              have 12: "val_Zp (f'(ns m))  = val_Zp (f'a) "
                using nonzero_memE  newton_seq_fact1 newton_seq_fact6 val_Zp_def val_Zp_def 
                by auto               
              then have 13: "val_Zp (f (ns m)) - val_Zp (f'(ns m)) 
                                 2*(val_Zp (f'a)) + (1 + int n) -  val_Zp ((f'a))"
                using 11 
                by (smt eSuc_eint iadd_Suc iadd_Suc_right)
              then have 14:"val_Zp (f (ns m)) - val_Zp (f'(ns m)) 
                                 1 + int n +  val_Zp ((f'a))"
                using eint_minus_comm[of "2*(val_Zp (f'a))" "1 + int n" "val_Zp ((f'a))"] 
                by (simp add: Groups.add_ac(2))
              then show ?thesis 
                by (smt Suc_ile_eq add.right_neutral eint.distinct(2) f'a_nonneg_val ge_plus_pos_imp_gt order_less_le)                
              qed
              then show ?thesis 
               by (smt "0" Suc_ile_eq of_nat_Suc)              
            qed
          qed
        qed
        then show ?thesis 
          using val_Zp_def val_Zp_dist_def 
          by (metis newton_seq.simps(2))          
       qed
    qed
  qed
qed

lemma eventually_zero:
"f  ns (k + m) = 𝟬  f  ns (k + Suc m) = 𝟬"
proof-
  assume A: "f  ns (k + m) = 𝟬"
  have 0: "ns (k + Suc m) = ns (k + m)  (divide (f  ns (k + m)) (f'  ns (k + m)))"
    by (simp add: newton_step_def)
  have 1: "(divide (f  ns (k + m)) (f'  ns (k + m))) = 𝟬"
    by (simp add: A divide_def)
  show "f  ns (k + Suc m) = 𝟬"
    using A 0 1 
    by (simp add: a_minus_def newton_seq_closed)    
qed

text‹The Newton Sequence is Cauchy:›

lemma newton_seq_is_Zp_cauchy:
"is_Zp_cauchy ns"
proof(cases "k. f(ns k) 𝟬")
  case True
  then show ?thesis using newton_seq_is_Zp_cauchy_0 
    by blast
next
  case False
  obtain k where k_def:"f(ns k) = 𝟬"
    using False by blast
  have 0: "m. (ns (m + k)) = (ns k)"
  proof-
    fix m
    show "(ns (m + k)) = (ns k)"
    proof(induction m)
      case 0
      then show ?case 
        by simp      
    next
      case (Suc m)
      show "(ns (Suc m + k)) = (ns k)" 
      proof-
        have "f  ns (m + k) = 𝟬"
          by (simp add: Suc.IH k_def)
        then have "divide ( f  ns (m + k)) (f'  ns (m + k)) = 𝟬"
          by (simp add: divide_def)
        then show ?thesis using newton_step_def 
          by (simp add: Suc.IH a_minus_def newton_seq_closed)
      qed
    qed
  qed
  show "is_Zp_cauchy ns"
    apply(rule is_Zp_cauchyI)
    apply (simp add: closed_seqs_memI newton_seq_closed)                  
  proof-
    show "n.n. N. n0 n1. N < n0  N < n1  ns n0 n = ns n1 n"
    proof-
      fix n
      show "N. n0 n1. N < n0  N < n1  ns n0 n = ns n1 n"
      proof-
        have "n0 n1. k < n0  k < n1  ns n0 n = ns n1 n"
          apply auto 
        proof-
          fix n0 n1
          assume A0: "k < n0"
          assume A1: "k < n1"
          obtain m0 where m0_def: "n0 = k + m0"
            using A0 less_imp_add_positive by blast
          obtain m1 where m1_def: "n1 = k + m1"
            using A1 less_imp_add_positive by auto
          show "ns n0 n = ns n1 n"
            using 0 m0_def m1_def 
            by (metis add.commute)
        qed
        then show ?thesis by blast 
      qed
    qed
  qed
qed

subsection‹The Proof of Hensel's Lemma›
lemma pre_hensel:
"val_Zp (a  (ns n)) >  val_Zp (f'a)"
"N. n. n> N  (val_Zp (a  (ns n)) = val_Zp (divide (fa) (f'a)))"
"val_Zp (f'(ns n)) = val_Zp (f'a)"
proof-
  show "val_Zp (a  (ns n)) >  val_Zp (f'a)"
  proof(induction n)
    case 0
    then show ?case 
      by (simp add: val_Zp_def)                
  next
    case (Suc n)
    show "val_Zp (a  (ns (Suc n))) > val_Zp (f'a)"
    proof-
      have I0: "val_Zp ((ns (Suc n))  (ns n)) >  val_Zp (f'a)"
      proof(cases "(ns (Suc n)) = (ns n)")
        case True
        then show ?thesis 
          by (simp add: newton_seq_closed val_Zp_def)              
      next
        case False         
        have 00:"(ns (Suc n))  (ns n) = divide (f(ns n)) (f'(ns n))"
          using  newton_seq_fact7 by blast                 
        then have 0: "val_Zp((ns (Suc n))  (ns n)) = val_Zp (divide (f(ns n)) (f'(ns n)))"
          using newton_seq_fact5 val_Zp_of_minus by presburger                                                    
        have 1: "(f(ns n))  nonzero Zp"
          by (metis False R.minus_zero R.r_right_minus_eq 00 divide_def f_closed to_fun_closed 
              newton_seq_closed not_nonzero_Zp)         
        have 2: "f'(ns n)  nonzero Zp"
          by (simp add: newton_seq_fact6)
        have "val_Zp (f(ns n))   val_Zp (f'(ns n))"
          using nonzero_memE  f  ns n  nonzero Zp newton_seq_fact4 by blast
        then have 3:"val_Zp((ns (Suc n))  (ns n)) = val_Zp (f(ns n)) - val_Zp (f'(ns n))"
          using 0 1 2 newton_seq_fact9 nonzero_memE(2) by blast      
        have 4: "val_Zp (f  ns n)  (2 * val_Zp (f'a)) + 2 ^ n * t"
          using newton_seq_fact2[of n] by metis  
        then have 5: "val_Zp((ns (Suc n))  (ns n))  ((2 * val_Zp (f'a)) + 2 ^ n * t) - val_Zp (f'(ns n))"
          using "3" eint_minus_ineq f'a_not_infinite newton_seq_fact1 by presburger
        have 6: "((ns (Suc n))  (ns n))  nonzero Zp"
          using False not_eq_diff_nonzero newton_seq_closed by blast
        then have "val_Zp((ns (Suc n))  (ns n))  (2 * val_Zp (f'a)) + 2 ^ n * t - val_Zp ((f'a))"
          using "5" by auto         
        then have 7: "val_Zp((ns (Suc n))  (ns n))  (val_Zp (f'a)) + 2 ^ n * t"
          by (simp add: eint_minus_comm)         
        then show  "val_Zp((ns (Suc n))  (ns n)) > (val_Zp (f'a))"
          using f'a_not_infinite ge_plus_pos_imp_gt t_times_pow_pos by blast
      qed      
      have "val_Zp ((ns (Suc n))  (ns n)) = val_Zp ((ns n)  (ns (Suc n)))"
        using  newton_seq_closed[of "n"]  newton_seq_closed[of "Suc n"]
                 val_Zp_def val_Zp_dist_def val_Zp_dist_sym val_Zp_def 
        by auto
      then have I1: "val_Zp ((ns n)  (ns (Suc n))) > val_Zp (f'a)"
        using I0 
        by presburger
      have I2: " (a  (ns n))  ((ns n)  (ns (Suc n))) = (a  (ns (Suc n)))"
          by (metis R.plus_diff_simp add_comm local.a_closed newton_seq_closed)                    
      then have "val_Zp (a  (ns (Suc n)))  min (val_Zp (a  ns n)) (val_Zp (ns n  ns (Suc n)))"
          by (metis R.minus_closed local.a_closed newton_seq_closed val_Zp_ultrametric)               
      thus ?thesis 
        using I1 Suc.IH eint_min_ineq by blast
    qed
  qed
  show "val_Zp (f'(ns n)) = val_Zp (f'a)"
    using newton_seq_fact1 by blast
  show "N.n. n> N  (val_Zp (a  (ns n)) = val_Zp (divide (fa) (f'a)))"
  proof-
    have P: "m. m > 1  (val_Zp (a  (ns m)) = val_Zp (divide (fa) (f'a)))"
    proof-
      fix n::nat
      assume AA: "n >1"
      show " (val_Zp (a  (ns n)) = val_Zp (divide (fa) (f'a)))" 
      proof(cases "(ns 1) = a")
        case True
        have T0: "k. n. n  k   ns n = a"
        proof-
          fix k
          show " n. n  k   ns n = a"
          proof(induction k)
            case 0
            then show ?case 
              by simp 
          next
            case (Suc k)
            show "nSuc k. ns n = a" apply auto 
            proof-
              fix n
              assume A: "n Suc k"
              show "ns n = a"
              proof(cases "n < Suc k")
                case True
                then show ?thesis using Suc.IH by auto 
              next
                case False thus ?thesis 
                  using A Suc.IH True by auto
              qed
            qed
          qed
        qed
        show "val_Zp (a  ns n) = val_Zp (local.divide (fa) (f'a))"
          by (metis T0  Zp_def Zp_defs(3) f'a_closed f'a_nonzero fa_nonzero 
              hensel.fa_closed hensel_axioms hensel_hypothesis_weakened le_eq_less_or_eq 
              newton_seq_fact9 not_nonzero_Qp order_less_le val_of_divide)
      next
        case False  
        have F0: "(1::nat)  n"
          using AA by simp 
        have "(fa)  𝟬"
          by simp
        have "k. val_Zp (a  ns (Suc k)) = val_Zp (local.divide (fa) (f'a))"
        proof-
          fix k
          show " val_Zp (a  ns (Suc k)) = val_Zp (local.divide (fa) (f'a))"
          proof(induction k)
            case 0             
            have "(a  ns (Suc 0)) = (local.divide (fa) (f'a))" 
              by (metis R.minus_minus Zp_def hensel.newton_seq_fact7 hensel_axioms 
                  local.a_closed minus_a_inv newton_seq.simps(1) newton_seq.simps(2) newton_seq_fact5 newton_step_closed)
            then show ?case by simp
          next
            case (Suc k)
            have I0: "ns (Suc (Suc k)) = ns (Suc k)  (divide (f(ns (Suc k))) (f'(ns (Suc k))))"
              by (simp add: newton_step_def)
            have I1: "val_Zp (f(ns (Suc k)))  val_Zp(f'(ns (Suc k)))"
              using newton_seq_fact3 by blast
            have I2: "(divide (f(ns (Suc k))) (f'(ns (Suc k))))  carrier Zp"
              using newton_seq_fact5 by blast
            have I3: "ns (Suc (Suc k))  ns (Suc k) = (divide (f(ns (Suc k))) (f'(ns (Suc k))))"
              using I0 I2 newton_seq_fact7 by blast                                     
            then have "val_Zp (ns (Suc (Suc k))  ns (Suc k)) = val_Zp (divide (f(ns (Suc k))) (f'(ns (Suc k))))"
              using I2 val_Zp_of_minus 
              by presburger   
            then have "val_Zp (ns (Suc (Suc k))  ns (Suc k)) = val_Zp (f(ns (Suc k))) - val_Zp (f'(ns (Suc k)))"
              by (metis I1 R.zero_closed Zp_def newton_seq_fact6 newton_seq_fact9 padic_integers.val_of_divide padic_integers_axioms)    
            then have I4: "val_Zp (ns (Suc (Suc k))  ns (Suc k)) = val_Zp (f(ns (Suc k))) - val_Zp ((f'a))"
              using newton_seq_fact1 by presburger                  
            have F3: "val_Zp (a  ns (Suc k)) = val_Zp (local.divide (fa) (f'a))"
              using Suc.IH by blast
            have F4: "a   ns (Suc (Suc k)) = (a  ( ns (Suc k)))  (ns  (Suc k))  ns (Suc (Suc k))"
              by (metis R.ring_simprules(17) a_minus_def add_comm local.a_closed newton_seq_closed)                                          
            have F5: "val_Zp ((ns  (Suc k))  ns (Suc (Suc k))) > val_Zp (a  ( ns (Suc k)))"
            proof-
              have F50:  "val_Zp ((ns  (Suc k))  ns (Suc (Suc k))) = val_Zp (f(ns (Suc k))) - val_Zp ((f'a))"
                by (metis I4 R.minus_closed minus_a_inv newton_seq_closed val_Zp_of_minus)
                                                          
              have F51: "val_Zp (f(ns (Suc k))) > val_Zp ((fa))"                 
              proof-
                have F510: "val_Zp (f(ns (Suc k)))   2*val_Zp (f'a) + 2^(Suc k)*t "
                  using newton_seq_fact2 by blast                    
                hence F511: "val_Zp (f(ns (Suc k)))   2*val_Zp (f'a) + 2*t "
                  using eint_plus_times[of t "2*val_Zp (f'a)" "2^(Suc k)" "val_Zp (f(ns (Suc k)))" 2] t_pos
                  by (simp add: order_less_le)
                have F512: "2*val_Zp (f'a) + 2*t  = 2 *val_Zp (fa) - 2* val_Zp (f'a)"               
                  unfolding hensel_factor_def
                  using eint_minus_distr[of "val_Zp (fa)" "2 * val_Zp (f'a)" 2] 
                        eint_minus_comm[of _ _ "eint 2 * (eint 2 * val_Zp (f'a))"]   
                  by (smt eint_2_minus_1_mult eint_add_cancel_fact eint_minus_comm f'a_not_infinite hensel_hypothesis nat_mult_not_infty order_less_le)
                hence "2*val_Zp (f'a) + 2*t  > val_Zp (fa)"
                  using hensel_hypothesis 
                  by (smt add_diff_cancel_eint eint_add_cancel_fact eint_add_left_cancel_le 
                      eint_pos_int_times_gt f'a_not_infinite hensel_factor_def nat_mult_not_infty order_less_le t_neq_infty t_pos)
                thus ?thesis using F512 
                  using F511 less_le_trans by blast
              qed
              thus ?thesis 
                by (metis F3 F50 Zp_def divide_closed eint_add_cancel_fact eint_minus_ineq 
                    f'a_closed f'a_nonzero f'a_not_infinite fa_closed fa_nonzero hensel.newton_seq_fact7 
                    hensel_axioms newton_seq.simps(1) newton_seq_fact9 order_less_le val_Zp_of_minus)
            qed
            have "a  ns (Suc k)  (ns (Suc k)  ns (Suc (Suc k))) = a   ns (Suc (Suc k))"
              by (metis F4 a_minus_def add_assoc)
            then show F6: "val_Zp (a  ns (Suc (Suc k))) = val_Zp (local.divide (fa) (f'a))"
              using F5 F4 F3  
              by (metis R.minus_closed local.a_closed newton_seq_closed order_less_le val_Zp_not_equal_ord_plus_minus val_Zp_ultrametric_eq'')                 
          qed
        qed
        thus ?thesis 
          by (metis AA less_imp_add_positive plus_1_eq_Suc)        
      qed
    qed
    thus ?thesis 
      by blast
  qed
qed

lemma hensel_seq_comp_f:
 "res_lim ((to_fun f)  ns) = 𝟬"
proof-
  have A: "is_Zp_cauchy ((to_fun f)  ns)"
    using f_closed is_Zp_continuous_def newton_seq_is_Zp_cauchy polynomial_is_Zp_continuous 
    by blast
  have "Zp_converges_to ((to_fun f)  ns) 𝟬"
    apply(rule Zp_converges_toI)
    using A is_Zp_cauchy_def apply blast
     apply simp     
  proof-
    fix n
    show " N. k>N. (((to_fun f)  ns) k) n = 𝟬 n"
    proof-
      have 0: "k. (k::nat)>3   val_Zp (f(ns k)) > k"
      proof
        fix k::nat
        assume A: "k >3"
        show "val_Zp (f(ns k)) > k "
        proof-
          have 0: " val_Zp (f(ns k))   2*(val_Zp (f'a)) + (2^k)*t"
            using newton_seq_fact2 by blast   
          have 1: "2*(val_Zp (f'a)) + (2^k)*t > k "
          proof-
            have "(2^k)*t  (2^k) "
              apply(cases "t = ")
               apply simp
            using t_pos eint_mult_mono' 
            proof -
              obtain ii :: "eint  int" where
                f1: "e. (  e  (i. eint i  e))  (eint (ii e) = e   = e)"
                by (metis not_infinity_eq)
              then have "0 < ii t"
                by (metis (no_types) eint_ord_simps(2) t_neq_infty t_pos zero_eint_def)
              then show ?thesis
                using f1 by (metis eint_pos_int_times_ge eint_mult_mono linorder_not_less 
                            mult.commute order_less_le t_neq_infty t_pos t_times_pow_pos)
            qed
            hence " 2*(val_Zp (f'a)) + (2^k)*t  (2^k) "
              by (smt Groups.add_ac(2) add.right_neutral eint_2_minus_1_mult eint_pos_times_is_pos
                  eint_pow_int_is_pos f'a_nonneg_val ge_plus_pos_imp_gt idiff_0_right linorder_not_less 
                  nat_mult_not_infty order_less_le t_neq_infty) 
            then have  " 2*(val_Zp (f'a)) + (2^k)*t > k"
              using A  of_nat_1 of_nat_add of_nat_less_two_power 
              by (smt eint_ord_simps(1) linorder_not_less order_trans)              
            then show ?thesis 
              by metis
          qed
          thus ?thesis 
            using 0 less_le_trans by blast          
        qed
      qed
      have 1: "k. (k::nat)>3   (f(ns k)) k = 0"
      proof
        fix k::nat
        assume B: "3<k"
        show " (f(ns k)) k = 0"
        proof-
          have B0: " val_Zp (f(ns k)) > k"
            using 0 B 
            by blast
          then show ?thesis 
            by (simp add: f_of_newton_seq_closed zero_below_val_Zp)
        qed
      qed
      have "k>(max 3 n). (((to_fun f)  ns) k) n = 𝟬 n"
        apply auto
      proof-
        fix k::nat
        assume A: "3< k"
        assume A': "n < k"
        have A0: "(f(ns k)) k = 0"
          using 1[of k] A by auto 
        then have "(f(ns k)) n = 0"
          using A A'
          using above_ord_nonzero[of "(f(ns k))"]
          by (smt UP_cring.to_fun_closed Zp_x_is_UP_cring f_closed le_eq_less_or_eq 
              newton_seq_closed of_nat_mono residue_of_zero(2) zero_below_ord)
        then show A1:  "to_fun f (ns k) n = 𝟬 n"
          by (simp add: residue_of_zero(2))          
      qed
      then show ?thesis by blast 
    qed
  qed
  then show ?thesis 
    by (metis Zp_converges_to_def unique_limit') 
qed

lemma full_hensels_lemma:
  obtains α where
       "fα = 𝟬" and "α  carrier Zp"
       "val_Zp (a  α) > val_Zp (f'a)"
       "(val_Zp (a  α) = val_Zp (divide (fa) (f'a)))"
       "val_Zp (f'α) = val_Zp (f'a)"
proof(cases "k. f(ns k) =𝟬")
  case True
  obtain k where k_def: "f(ns k) =𝟬"
    using True by blast
  obtain N where N_def: "n. n> N  (val_Zp (a  (ns n)) = val_Zp (divide (fa) (f'a)))"
    using pre_hensel(2) by blast
  have Z: "n. n k  f(ns n) =𝟬"
  proof-
    fix n
    assume A: "n k"
    obtain l where l_def:"n = k + l"
      using A le_Suc_ex 
      by blast
    have "m. f(ns (k+m)) =𝟬"
    proof-
      fix m
      show "f(ns (k+m)) =𝟬"
        apply(induction m)
         apply (simp add: k_def)
        using  eventually_zero 
        by simp
    qed
    then show "f(ns n) =𝟬"
      by (simp add: l_def)
  qed
  obtain M where M_def: "M = N + k"
    by simp 
  then have M_root: "f(ns M) =𝟬"
    by (simp add: Z)
  obtain α where alpha_def: "α= ns M"
    by simp 
  have T0: "fα = 𝟬"
    using alpha_def M_root 
    by auto
  have T1:    "val_Zp (a  α) > val_Zp (f'a)"
    using alpha_def pre_hensel(1) by blast
  have T2: "(val_Zp (a  α) = val_Zp (divide (fa) (f'a)))"
    by (metis M_def N_def alpha_def fa_nonzero k_def 
        less_add_same_cancel1 newton_seq.elims zero_less_Suc)
  have T3:  "val_Zp (f'α) = val_Zp (f'a)"
    using alpha_def newton_seq_fact1 by blast
  show ?thesis using T0 T1 T2 T3 
    using that alpha_def newton_seq_closed 
    by blast   
next 
  case False
  then have Nz: "k. f(ns k) 𝟬"
    by blast
  have ns_cauchy: "is_Zp_cauchy ns"
    by (simp add: newton_seq_is_Zp_cauchy)
  have fns_cauchy: "is_Zp_cauchy ((to_fun f)  ns)"
    using f_closed is_Zp_continuous_def ns_cauchy polynomial_is_Zp_continuous by blast
  have F0: "res_lim ((to_fun f)  ns) = 𝟬"
  proof-
    show ?thesis 
      using hensel_seq_comp_f by auto 
  qed
  obtain α where alpha_def: "α = res_lim ns"
    by simp
  have F1: "(fα)= 𝟬"
    using F0 alpha_def alt_seq_limit
      ns_cauchy polynomial_is_Zp_continuous res_lim_pushforward 
      res_lim_pushforward' by auto
  have F2: "val_Zp (a  α) > val_Zp (f'a)   val_Zp (a  α) = val_Zp (local.divide (fa) (f'a))"
  proof-
    have 0: "Zp_converges_to ns α"
      by (simp add: alpha_def is_Zp_cauchy_imp_has_limit ns_cauchy)
    have "val_Zp (a  α) < "
      using "0" F1 R.r_right_minus_eq Zp_converges_to_def Zp_def hensel.fa_nonzero hensel_axioms local.a_closed val_Zp_def 
      by auto
    hence "1 + max (eint 2 + val_Zp (f'a)) (val_Zp (α  a)) < "
      by (metis "0" R.minus_closed Zp_converges_to_def eint.distinct(2) eint_ord_simps(4) 
          f'a_not_infinite infinity_ne_i1 local.a_closed max_def minus_a_inv 
          sum_infinity_imp_summand_infinity val_Zp_of_minus)
    then obtain l where l_def: "eint l = 1 + max (eint 2 + val_Zp (f'a)) (val_Zp (α  a))"
      by auto
    then obtain N where N_def: "(m>N. 1 + max (2 + val_Zp (f'a)) (val_Zp (α  a)) < val_Zp_dist (ns m) α)"
      using 0 l_def Zp_converges_to_def[of ns α] unfolding val_Zp_dist_def 
      by metis        
    obtain N' where N'_def: "n>N'. val_Zp (a  ns n) = val_Zp (local.divide (fa) (f'a))"
      using pre_hensel(2) by blast 
    obtain K where K_def: "K = Suc (max N N')"
      by simp 
    then have F21: "(1+ (max (2 + val_Zp (f'a)) (val_Zp (α  a)))) < val_Zp_dist (ns K) α"
      by (metis N_def lessI linorder_not_less max_def order_trans)         
    have F22: "a  ns K"
      by (smt False K_def N'_def Zp_def cring_def eint.distinct(2) hensel_factor_id lessI 
          less_le_trans linorder_not_less max_def mult_comm mult_zero_l newton_seq_closed 
          order_less_le padic_int_is_cring padic_integers.prime padic_integers_axioms ring.r_right_minus_eq 
          val_Zp_def)
    show ?thesis
    proof(cases "ns K = α")
      case True
      then show ?thesis 
        using pre_hensel F1 False by blast
    next
      case False
      assume "ns K  α"
      show ?thesis
      proof-
        have P0: " (a  α)  nonzero Zp"
          by (metis (mono_tags, opaque_lifting) F1 not_eq_diff_nonzero 
              Zp_converges_to ns α a_closed Zp_converges_to_def fa_nonzero)
        have P1: "(α  (ns K))  nonzero Zp"
          using False not_eq_diff_nonzero Zp_converges_to ns α 
            Zp_converges_to_def newton_seq_closed
          by (metis (mono_tags, opaque_lifting))
        have P2: "a  (ns K)  nonzero Zp"
          using F22 not_eq_diff_nonzero 
                a_closed newton_seq_closed 
          by blast
        have P3: "(a  α) = a  (ns K)  ((ns K)  α)"
          by (metis R.plus_diff_simp Zp_converges_to ns α add_comm Zp_converges_to_def local.a_closed newton_seq_closed)                           
        have P4: "val_Zp (a  α)  min (val_Zp (a  (ns K))) (val_Zp ((ns K)  α))"
          using "0" P3 Zp_converges_to_def newton_seq_closed val_Zp_ultrametric 
          by auto          
        have P5: "val_Zp (a  (ns K)) >  val_Zp (f'a)"
          using pre_hensel(1)[of "K"] 
          by metis                
        have "1 + max (eint 2 + val_Zp (f'a)) (val_Zp (α  a)) > val_Zp (f'a)"
        proof-
          have "1 + max (eint 2 + val_Zp (f'a)) (val_Zp (α  a)) > (eint 2 + val_Zp (f'a))"
          proof -
            obtain ii :: int where
              f1: "eint ii = 1 + max (eint 2 + val_Zp (f'a)) (val_Zp (α  a))"
              by (meson l_def)
            then have "1 + (eint 2 + val_Zp (f'a))  eint ii"
              by simp
            then show ?thesis
              using f1 by (metis Groups.add_ac(2) iless_Suc_eq linorder_not_less)
          qed
          thus ?thesis 
            by (smt Groups.add_ac(2) eint_pow_int_is_pos f'a_not_infinite ge_plus_pos_imp_gt order_less_le)
        qed
        hence P6: "val_Zp ((ns K)  α) >  val_Zp (f'a)"
          using F21 unfolding val_Zp_dist_def 
          by auto     
        have P7: "val_Zp (a  α) >  val_Zp (f'a)"
          using P4 P5 P6 eint_min_ineq by blast
        have P8:  "val_Zp (a  α) = val_Zp (local.divide (fa) (f'a))"
        proof-
          have " 1 + max (2 + val_Zp (f'a)) (val_Zp_dist α a)  val_Zp_dist (ns K) α"
            using False F21 
            by (simp add: val_Zp_dist_def)           
          then have "val_Zp(α  (ns K)) >   max (2 + val_Zp (f'a)) (val_Zp_dist α a)"
            by (metis "0" Groups.add_ac(2) P1 Zp_converges_to_def eSuc_mono iless_Suc_eq l_def 
                minus_a_inv newton_seq_closed nonzero_closed val_Zp_dist_def val_Zp_of_minus)                                          
          then have "val_Zp(α  (ns K)) > val_Zp (a  α) "
            using Zp_converges_to ns α Zp_converges_to_def val_Zp_dist_def val_Zp_dist_sym 
            by auto
          then have P80: "val_Zp (a  α) = val_Zp (a  (ns K))"
            using P0 P1 Zp_def val_Zp_ultrametric_eq[of "α  ns K" "a  α"] 0 R.plus_diff_simp 
              Zp_converges_to_def local.a_closed newton_seq_closed nonzero_closed by auto
          have P81: "val_Zp (a  ns K) = val_Zp (local.divide (fa) (f'a))"
            using K_def N'_def 
            by (metis (no_types, lifting) lessI linorder_not_less max_def order_less_le order_trans)
          then show ?thesis       
            by (simp add: P80)            
        qed
        thus ?thesis 
          using P7 by blast        
      qed          
    qed
  qed
  have F3: "val_Zp (f'  α) = val_Zp (f'a)"
  proof-
    have F31: " (f'  α) = res_lim ((to_fun f')  ns)"
      using alpha_def alt_seq_limit ns_cauchy polynomial_is_Zp_continuous res_lim_pushforward
          res_lim_pushforward' f'_closed 
      by auto
    obtain N where N_def: "val_Zp (f'α  f'(ns N)) > val_Zp ((f'a))"
      by (smt F2 False R.minus_closed Suc_ile_eq Zp_def alpha_def f'_closed f'a_nonzero 
          local.a_closed minus_a_inv newton_seq.simps(1) newton_seq_is_Zp_cauchy_0 order_trans
          padic_integers.poly_diff_val padic_integers_axioms res_lim_in_Zp val_Zp_def val_Zp_of_minus)      
    show ?thesis
      by (metis False N_def alpha_def equal_val_Zp f'_closed newton_seq_closed newton_seq_is_Zp_cauchy_0 newton_seq_fact1 res_lim_in_Zp to_fun_closed)
  qed
  show ?thesis 
    using F1 F2 F3 that alpha_def ns_cauchy res_lim_in_Zp 
    by blast
qed


end

(**************************************************************************************************)
(**************************************************************************************************)
section‹Removing Hensel's Lemma from the Hensel Locale›
(**************************************************************************************************)
(**************************************************************************************************)

context padic_integers
begin


lemma hensels_lemma:
  assumes "f  carrier Zp_x"
  assumes "a  carrier Zp"
  assumes "(pderiv f)a  𝟬"
  assumes "fa 𝟬"
  assumes "val_Zp (fa) > 2* val_Zp ((pderiv f)a)"
  obtains α where
       "fα = 𝟬" and "α  carrier Zp" 
       "val_Zp (a  α) > val_Zp ((pderiv f)a)"
       "val_Zp (a  α) = val_Zp (divide (fa) ((pderiv f)a))"
       "val_Zp ((pderiv f)α) = val_Zp ((pderiv f)a)"
proof-
  have "hensel p f a"
    using assms 
    by (simp add: Zp_def hensel.intro hensel_axioms.intro padic_integers_axioms)
  then show ?thesis 
    using hensel.full_hensels_lemma  Zp_def that    
    by blast     
qed

text‹Uniqueness of the root found in Hensel's lemma ›

lemma hensels_lemma_unique_root:
  assumes "f  carrier Zp_x"
  assumes "a  carrier Zp"
  assumes "(pderiv f)a  𝟬"
  assumes "fa 𝟬"
  assumes "(val_Zp (fa) > 2* val_Zp ((pderiv f)a))"
  assumes "fα = 𝟬" 
  assumes "α  carrier Zp" 
  assumes "val_Zp (a  α) > val_Zp ((pderiv f)a)"
  assumes "fβ = 𝟬" 
  assumes "β  carrier Zp" 
  assumes "val_Zp (a  β) > val_Zp ((pderiv f)a)"
  assumes "val_Zp ((pderiv f)α) = val_Zp ((pderiv f)a)"
  shows "α = β"
proof-
  have "α  a"
    using assms(4) assms(6) by auto
  have "β  a"
    using assms(4) assms(9) by auto
  have 0: "val_Zp (β  α) >  val_Zp ((pderiv f)a)"
  proof-
    have "β  α =  ((a  β)  (a  α))"
      by (metis R.minus_eq R.plus_diff_simp assms(10) assms(2) assms(7) minus_a_inv)   
    hence "val_Zp (β  α) = val_Zp ((a  β)  (a  α))"
      using R.minus_closed assms(10) assms(2) assms(7) val_Zp_of_minus by presburger
    thus ?thesis using val_Zp_ultrametric_diff[of "a  β" "a  α"]
      by (smt R.minus_closed assms(10) assms(11) assms(2) assms(7) assms(8) min.absorb2 min_less_iff_conj)      
  qed
  obtain h where h_def: "h = β  α"
    by blast 
  then have h_fact: "h  carrier Zp  β = α  h"
    by (metis R.l_neg R.minus_closed R.minus_eq R.r_zero add_assoc add_comm assms(10) assms(7))    
  then have 1: "f(α  h) = 𝟬"
    using assms 
    by blast
  obtain c where c_def: "c  carrier Zp  f(α  h) = (f  α)  (deriv f α)h  c (h[^](2::nat))"
    using taylor_deg_1_eval'[of  f α h _ "f  α" "deriv f α" ]
    by (meson taylor_closed assms(1) assms(7) to_fun_closed h_fact shift_closed)    
  then have  "(f  α)  (deriv f α)h  c (h[^](2::nat)) = 𝟬"
    by (simp add: "1")
  then have 2:  "(deriv f α)h  c (h[^](2::nat)) = 𝟬"
   by (simp add: assms(1) assms(6) assms(7) deriv_closed h_fact)   
  have 3: "((deriv f α)  c h)h = 𝟬"
  proof-
    have "((deriv f α)  c h)h = ((deriv f α)h  (c h)h)"
      by (simp add: R.r_distr UP_cring.deriv_closed Zp_x_is_UP_cring assms(1) assms(7) c_def h_fact mult_comm)      
    then have "((deriv f α)  c h)h = (deriv f α)h  (c (hh))"
      by (simp add: mult_assoc)      
    then have "((deriv f α)  c h)h = (deriv f α)h  (c (h[^](2::nat)))"
      using nat_pow_def[of Zp h "2"]
      by (simp add: h_fact)
    then show ?thesis
      using 2 
      by simp
  qed
  have "h = 𝟬"
  proof(rule ccontr)
    assume "h  𝟬"
    then have "(deriv f α)  c h = 𝟬"
      using 2 3 
      by (meson R.m_closed assms(1) assms(7) c_def deriv_closed h_fact local.integral sum_closed)      
    then have "(deriv f α) =  c h"
      by (simp add: R.l_minus R.sum_zero_eq_neg UP_cring.deriv_closed Zp_x_is_UP_cring assms(1) assms(7) c_def h_fact)      
    then have "val_Zp (deriv f α) = val_Zp (c  h)"
      by (meson R.m_closed deriv f α  c  h = 𝟬 assms(1) assms(7) c_def deriv_closed h_fact val_Zp_not_equal_imp_notequal(3))      
    then have P: "val_Zp (deriv f α) = val_Zp h + val_Zp c"
      using val_Zp_mult c_def h_fact by force
    hence "val_Zp (deriv f α)  val_Zp h "
      using val_pos[of c] 
      by (simp add: c_def)
    then have "val_Zp (deriv f α)  val_Zp (β  α) "
      using h_def by blast
    then have "val_Zp (deriv f α) > val_Zp ((pderiv f)a)"
      using "0" by auto     
    then show False using pderiv_eval_deriv[of f α]  
      using assms(1) assms(12) assms(7) by auto
  qed
  then show "α = β"
    using assms(10) assms(7) h_def 
    by auto
qed

lemma hensels_lemma':
  assumes "f  carrier Zp_x"
  assumes "a  carrier Zp"
  assumes "val_Zp (fa) > 2*val_Zp ((pderiv f)a)"
  shows "∃!α  carrier Zp. fα = 𝟬  val_Zp (a  α) > val_Zp ((pderiv f)a)"
proof(cases "fa = 𝟬")
  case True
  have T0: "pderiv f  a  𝟬"
    apply(rule ccontr) using assms(3) 
    unfolding val_Zp_def by simp                  
  then have T1: "a  carrier Zp  fa = 𝟬  val_Zp (a  a) > val_Zp ((pderiv f)a)"
    using assms True  
    by(simp add: val_Zp_def)  
  have T2: "b. b  carrier Zp  fb = 𝟬  val_Zp (a  b) > val_Zp ((pderiv f)a)  a = b"
  proof- fix b assume A: "b  carrier Zp  fb = 𝟬  val_Zp (a  b) > val_Zp ((pderiv f)a)"
    obtain h where h_def: "h = b  a"
      by blast 
    then have h_fact: "h  carrier Zp  b = a  h"
      by (metis A R.l_neg R.minus_closed R.minus_eq R.r_zero add_assoc add_comm assms(2))        
    then have 1: "f(a  h) = 𝟬"
      using assms A by blast   
    obtain c where c_def: "c  carrier Zp  f(a  h) = (f  a)  (deriv f a)h  c (h[^](2::nat))"
      using taylor_deg_1_eval'[of  f a h _ "f  a" "deriv f a" ]
      by (meson taylor_closed assms(1) assms(2) to_fun_closed h_fact shift_closed)       
    then have  "(f  a)  (deriv f a)h  c (h[^](2::nat)) = 𝟬"
      by (simp add: "1")
    then have 2:  "(deriv f a)h  c (h[^](2::nat)) = 𝟬"
      by (simp add: True assms(1) assms(2) deriv_closed h_fact)   
    hence 3: "((deriv f a)  c h)h = 𝟬"      
    proof-
      have "((deriv f a)  c h)h = ((deriv f a)h  (c h)h)"
        by (simp add: R.l_distr assms(1) assms(2) c_def deriv_closed h_fact)        
      then have "((deriv f a)  c h)h = (deriv f a)h  (c (hh))"
        by (simp add: mult_assoc)      
      then have "((deriv f a)  c h)h = (deriv f a)h  (c (h[^](2::nat)))"
        using nat_pow_def[of Zp h "2"]
        by (simp add: h_fact)
      then show ?thesis
        using 2 
        by simp
    qed
    have "h = 𝟬"
    proof(rule ccontr)
      assume "h  𝟬"
      then have "(deriv f a)  c h = 𝟬"
        using 2 3 
        by (meson R.m_closed UP_cring.deriv_closed Zp_x_is_UP_cring assms(1) assms(2) c_def h_fact local.integral sum_closed)              
      then have "(deriv f a) =  c h"
        using R.l_minus R.minus_equality assms(1) assms(2) c_def deriv_closed h_fact by auto               
      then have "val_Zp (deriv f a) = val_Zp (c  h)"
        by (meson R.m_closed deriv f a  c  h = 𝟬 assms(1) assms(2) c_def deriv_closed h_fact val_Zp_not_equal_imp_notequal(3))            
      then have P: "val_Zp (deriv f a) = val_Zp h +  val_Zp c"
        by (simp add: c_def h_fact val_Zp_mult)
      have "val_Zp (deriv f a)  val_Zp h "
        using P val_pos[of c] c_def  
        by simp
      then have "val_Zp (deriv f a)  val_Zp (b  a) "
        using h_def by blast
      then have "val_Zp (deriv f a) > val_Zp ((pderiv f)a)"
        by (metis (no_types, lifting) A assms(2) h_def h_fact minus_a_inv not_less order_trans val_Zp_of_minus)
      then have P0:"val_Zp (deriv f a) > val_Zp (deriv f a)"
        by (metis UP_cring.pderiv_eval_deriv Zp_x_is_UP_cring assms(1) assms(2))     
      thus False by auto 
    qed
    then show "a = b"
      by (simp add: assms(2) h_fact)
  qed
  show ?thesis 
    using T1 T2 
    by blast  
next
  case False
  have F0: "pderiv f  a  𝟬"
    apply(rule ccontr) using assms(3) 
    unfolding val_Zp_def by simp
  obtain α where alpha_def:
       "fα = 𝟬"  "α  carrier Zp" 
       "val_Zp (a  α) > val_Zp ((pderiv f)a)"
       "(val_Zp (a  α) = val_Zp (divide (fa) ((pderiv f)a)))"
       "val_Zp ((pderiv f)α) = val_Zp ((pderiv f)a)"
    using assms hensels_lemma F0 False by blast    
  have 0: "x. x  carrier Zp  f  x = 𝟬  val_Zp (a  x) > val_Zp (pderiv f  a)  val_Zp (pderiv f  a)  val_Zp (a  x)  x= α"
    using alpha_def assms hensels_lemma_unique_root[of f a α] F0 False by blast     
  have 1: "α  carrier Zp  f  α = 𝟬  val_Zp (a  α) > val_Zp (pderiv f  a)  val_Zp (pderiv f  a)  val_Zp (a  α)"
    using alpha_def order_less_le by blast    
  thus ?thesis 
    using 0  
    by (metis (no_types, opaque_lifting) R.minus_closed alpha_def(1-3) assms(2) equal_val_Zp val_Zp_ultrametric_eq')
qed

(**************************************************************************************************)
(**************************************************************************************************)
section‹Some Applications of Hensel's Lemma to Root Finding for Polynomials over $\mathbb{Z}_p$›
(**************************************************************************************************)
(**************************************************************************************************)

lemma Zp_square_root_criterion:
  assumes "p  2"
  assumes "a  carrier Zp"
  assumes "b  carrier Zp"
  assumes "val_Zp b  val_Zp a"
  assumes "a  𝟬"
  assumes "b  𝟬"
  shows "y  carrier Zp. a[^](2::nat)  𝗉b[^](2::nat) = (y [^]Zp(2::nat))"
proof-
  have bounds: "val_Zp a < " "val_Zp a  0" "val_Zp b < " "val_Zp b  0"
    using assms(2) assms(3) assms(6) assms(5) val_Zp_def val_pos[of b]  val_pos[of a] 
    by auto     
  obtain f where f_def: "f = monom Zp_x 𝟭 2  Zp_xto_polynomial Zp ( (a[^](2::nat) 𝗉b[^](2::nat)))"
    by simp
  have " α. fα = 𝟬  α  carrier Zp"
  proof-
    have 0: "f  carrier Zp_x"
      using f_def 
      by (simp add: X_closed assms(2) assms(3) to_poly_closed)       
    have 1: "(pderiv f)a = [(2::nat)]  𝟭  a"
    proof-
      have "pderiv f = pderiv (monom Zp_x 𝟭 2)"
        using assms f_def pderiv_add[of "monom Zp_x 𝟭 2"] to_poly_closed R.nat_pow_closed 
              pderiv_deg_0
        unfolding to_polynomial_def 
        using P.nat_pow_closed P.r_zero R.add.inv_closed X_closed Zp_int_inc_closed deg_const monom_term_car pderiv_closed sum_closed
        by (metis (no_types, lifting) R.one_closed monom_closed)                                                                                                            
      then have 20: "pderiv f = monom (Zp_x) ([(2::nat) ]  𝟭) (1::nat)"
        using pderiv_monom[of 𝟭 2] 
        by simp
      have 21: "[(2::nat)]  𝟭  𝟬"
        using Zp_char_0'[of 2] by simp 
      have 22: "(pderiv f)a = [(2::nat)]  𝟭  (a[^]((1::nat)))"
        using 20 
        by (simp add: Zp_nat_inc_closed assms(2) to_fun_monom)        
      then show ?thesis
        using assms(2) 
        by (simp add: cring.cring_simprules(12))       
    qed
    have 2: "(pderiv f)a  𝟬"
      using 1 assms 
      by (metis Zp_char_0' Zp_nat_inc_closed local.integral zero_less_numeral)
    have 3: "fa =  (𝗉b[^](2::nat))"
    proof-
      have 3: "fa =
    monom (UP Zp) 𝟭 2  a 
    to_polynomial Zp ( (a [^] (2::nat)  [p]  𝟭  b [^] (2::nat)))a"
        unfolding f_def apply(rule to_fun_plus)
          apply (simp add: assms(2) assms(3) to_poly_closed)
         apply simp
        by (simp add: assms(2))
      have 30: "fa = a[^](2::nat)   (a[^](2::nat)  𝗉b[^](2::nat))"
        unfolding 3  by (simp add: R.minus_eq assms(2) assms(3) to_fun_monic_monom to_fun_to_poly)
      have 31: "fa = a[^](2::nat)   a[^](2::nat)  (𝗉b[^](2::nat))"
      proof-
        have 310: "a[^](2::nat)  carrier Zp"
          using assms(2) pow_closed 
          by blast
        have 311: "𝗉(b[^](2::nat))  carrier Zp"
          by (simp add: assms(3) monom_term_car)
        have   " (a [^] (2::nat)(𝗉  b [^] (2::nat))) =  (a [^] (2::nat))   (𝗉  (b [^] (2::nat)))"
          using 310 311 R.minus_add by blast                  
        then show ?thesis  
          by (simp add: "30" R.minus_eq add_assoc)                                                  
      qed
      have 32: "fa = (a[^](2::nat)   a[^](2::nat))  (𝗉b[^](2::nat))"
        using 31 unfolding a_minus_def 
        by blast
      have 33: "𝗉b[^](2::nat)  carrier Zp"
        by (simp add: Zp_nat_inc_closed assms(3) monom_term_car)
      have 34: "a[^](2::nat)  carrier Zp"
        using assms(2) pow_closed by blast
      then have 34: "(a[^](2::nat)   a[^](2::nat)) = 𝟬 "
        by simp        
      have 35: "fa = 𝟬  (𝗉b[^](2::nat))"
        by (simp add: "32" "34")                
      then show ?thesis 
        using 33 unfolding a_minus_def   
        by (simp add: cring.cring_simprules(3))
    qed
    have 4: "fa 𝟬"
      using 3 assms  
      by (metis R.add.inv_eq_1_iff R.m_closed R.nat_pow_closed Zp.integral Zp_int_inc_closed
          mult_zero_r nonzero_pow_nonzero p_natpow_prod_Suc(1) p_pow_nonzero(2))                                                
    have 5: "val_Zp (fa) = 1 + 2*val_Zp b"
    proof-
      have "val_Zp (fa) = val_Zp (𝗉b[^](2::nat))"
        using 3 Zp_int_inc_closed assms(3) monom_term_car val_Zp_of_minus by presburger               
      then have "val_Zp (𝗉b[^](2::nat)) = 1 + val_Zp (b[^](2::nat))"
        by (simp add: assms(3) val_Zp_mult val_Zp_p)                
      then show ?thesis 
        using assms(3) assms(6) 
        using Zp_def val_Zp (to_fun f a) = val_Zp ([p]  𝟭  b [^] 2) not_nonzero_Zp
          padic_integers_axioms val_Zp_pow' by fastforce                           
    qed
    have 6: "val_Zp ((pderiv f)a) = val_Zp a"
    proof-
      have 60: "val_Zp ([(2::nat)]  𝟭  a) = val_Zp ([(2::nat)]  𝟭) + val_Zp a"
        by (simp add: Zp_char_0' assms(2) assms(5) val_Zp_mult ord_of_nonzero(2) ord_pos)
      have "val_Zp ([(2::nat)]  𝟭) = 0"
      proof-
        have "(2::nat) < p"
          using prime assms prime_ge_2_int by auto          
        then have "(2::nat) mod p = (2::nat)"
          by simp
        then show ?thesis 
          by (simp add: val_Zp_p_nat_unit)          
      qed
      then show ?thesis 
        by (simp add: "1" "60")        
    qed
    then have 7: "val_Zp (fa) > 2* val_Zp ((pderiv f)a)"
      using bounds 5 assms(4) 
      by (simp add: assms(5) assms(6) one_eint_def val_Zp_def)
    obtain α where
       A0: "fα = 𝟬"  "α  carrier Zp"       
      using hensels_lemma[of f a] "0" "2" "4" "7" assms(2) 
      by blast
    show ?thesis 
      using A0  by blast   
  qed
  then obtain α where α_def: "fα = 𝟬  α  carrier Zp"
    by blast 
  have "fα = α [^](2::nat)   (a[^](2::nat) 𝗉b[^](2::nat))" 
  proof- 
    have 0: "fα =
    monom (UP Zp) 𝟭 2  α 
    to_polynomial Zp ( (a [^] (2::nat)  [p]  𝟭  b [^] (2::nat)))α"
        unfolding f_def apply(rule to_fun_plus)
          apply (simp add: assms(2) assms(3) to_poly_closed)
         apply simp
        by (simp add: α_def)
    thus ?thesis 
      by (simp add: R.minus_eq α_def assms(2) assms(3) to_fun_monic_monom to_fun_to_poly)
  qed
  then show ?thesis 
    by (metis R.r_right_minus_eq Zp_int_inc_closed α_def assms(2) assms(3) monom_term_car pow_closed sum_closed)        
qed

lemma Zp_semialg_eq:
  assumes "a  nonzero Zp"
  shows "y  carrier Zp. 𝟭  (𝗉 [^] (3::nat)) (a [^] (4::nat)) = (y [^] (2::nat))"
proof-
  obtain f where f_def: "f = monom Zp_x 𝟭 2 Zp_xto_poly ( (𝟭  (𝗉 [^] (3::nat)) (a [^] (4::nat))))"
    by simp
  have a_car: "a  carrier Zp"
    by (simp add: nonzero_memE assms)
  have "f  carrier Zp_x"
    using f_def 
    by (simp add: a_car to_poly_closed)             
  hence 0:"f𝟭 = 𝟭  (𝟭  (𝗉 [^] (3::nat)) (a [^] (4::nat)))"
    using f_def 
    by (simp add: R.minus_eq assms nat_pow_nonzero nonzero_mult_in_car p_pow_nonzero' to_fun_monom_plus to_fun_to_poly to_poly_closed)
  then have 1: "f𝟭 =  (𝗉 [^] (3::nat)) (a [^] (4::nat))"
    unfolding a_minus_def 
    by (smt R.add.inv_closed R.l_minus R.minus_add R.minus_minus R.nat_pow_closed R.one_closed R.r_neg1 a_car monom_term_car p_pow_nonzero(1))
  then have "val_Zp (f𝟭) = 3 + val_Zp (a [^] (4::nat))"
    using  assms val_Zp_mult[of "𝗉 [^] (3::nat)" "(a [^] (4::nat))" ] 
      val_Zp_p_pow p_pow_nonzero[of "3::nat"] val_Zp_of_minus  
    by (metis R.l_minus R.nat_pow_closed a_car monom_term_car of_nat_numeral)
  then have 2: "val_Zp (f𝟭) = 3 + 4* val_Zp a"
    using assms val_Zp_pow' by auto
  have "pderiv f = pderiv (monom Zp_x 𝟭 2)"
    using assms f_def pderiv_add[of "monom Zp_x 𝟭 2"] to_poly_closed R.nat_pow_closed  pderiv_deg_0
    unfolding to_polynomial_def 
    by (metis (no_types, lifting) P.r_zero R.add.inv_closed R.add.m_closed R.one_closed 
        UP_zero_closed a_car deg_const deg_nzero_nzero monom_closed monom_term_car p_pow_nonzero(1))
  then have 3: "pderiv f = [(2::nat)]  𝟭 Zp_xX "
    by (metis P.nat_pow_eone R.one_closed Suc_1 X_closed diff_Suc_1 monom_rep_X_pow pderiv_monom')
  hence 4: "val_Zp ((pderiv f)𝟭) = val_Zp ([(2::nat)]  𝟭 )"
    by (metis R.add.nat_pow_eone R.nat_inc_prod R.nat_inc_prod' R.nat_pow_one R.one_closed 
        Zp_nat_inc_closed pderiv f = pderiv (monom Zp_x 𝟭 2) pderiv_monom to_fun_monom)
  have "(2::int) = (int (2::nat))"
    by simp
  then  have 5: "[(2::nat)]  𝟭 = ([(int (2::nat))]  𝟭 )"
     using add_pow_def int_pow_int 
     by metis     
  have 6: "val_Zp ((pderiv f)𝟭)  1" 
    apply(cases "p = 2") 
    using "4" "5" val_Zp_p apply auto[1]
  proof-
    assume "p  2"
    then have 60: "coprime 2 p"
      using prime prime_int_numeral_eq primes_coprime two_is_prime_nat by blast    
    have 61: "2 < p"
      using 60 prime 
      by (smt p  2 prime_gt_1_int)
    then show ?thesis 
      by (smt "4" "5" 2 = int 2 mod_pos_pos_trivial nonzero_closed p_nonzero val_Zp_p val_Zp_p_int_unit val_pos)
  qed
  have 7: "val_Zp (f𝟭)  3"
  proof-
    have "eint 4 * val_Zp a  0"
      using 2 val_pos[of a] 
      by (metis R.nat_pow_closed a_car assms of_nat_numeral val_Zp_pow' val_pos)
    thus ?thesis 
      using "2" by auto
  qed
  have "2*val_Zp ((pderiv f)𝟭)  2*1"
    using 6 one_eint_def eint_mult_mono' 
    by (smt 2 = int 2 eint.distinct(2) eint_ile eint_ord_simps(1) eint_ord_simps(2) mult.commute 
        ord_Zp_p ord_Zp_p_pow ord_Zp_pow p_nonzero p_pow_nonzero(1) times_eint_simps(1) val_Zp_p val_Zp_pow' val_pos)
  hence 8: "2 * val_Zp ((pderiv f) 𝟭) < val_Zp (f𝟭)"
    using 7 le_less_trans[of "2 * val_Zp ((pderiv f) 𝟭)" "2::eint" 3] 
            less_le_trans[of "2 * val_Zp ((pderiv f) 𝟭)" 3 "val_Zp (f𝟭)"] one_eint_def
    by auto
  obtain α where  α_def: "fα = 𝟬" and  α_def' :"α  carrier Zp"
    using 2 6 7 hensels_lemma' 8 f  carrier Zp_x  by blast
  have 0: "(monom Zp_x 𝟭 2)  α = α [^] (2::nat)"
    by (simp add: α_def' to_fun_monic_monom)          
  have 1: "to_poly ( (𝟭  (𝗉 [^] (3::nat)) (a [^] (4::nat))))  α =( 𝟭  (𝗉 [^] (3::nat)) (a [^] (4::nat)))"
    by (simp add: α_def' a_car to_fun_to_poly)  
  then have "α [^] (2::nat)  (𝟭  (𝗉 [^] (3::nat)) (a [^] (4::nat))) = 𝟬"
    using α_def α_def' 
    by (simp add: R.minus_eq a_car f_def to_fun_monom_plus to_poly_closed)    
  then show ?thesis 
    by (metis R.add.m_closed R.nat_pow_closed R.one_closed R.r_right_minus_eq α_def' a_car monom_term_car p_pow_nonzero(1))   
qed

lemma Zp_nth_root_lemma:
  assumes "a  carrier Zp"
  assumes "a  𝟭"
  assumes "n > 1"
  assumes "val_Zp (𝟭  a) > 2*val_Zp ([(n::nat)] 𝟭)"
  shows " b  carrier Zp. b[^]n = a"
proof-
  obtain f where f_def: "f = monom Zp_x 𝟭 n Zp_xmonom Zp_x (a) 0"
    by simp
  have "f  carrier Zp_x"
    using f_def monom_closed assms 
    by simp
  have 0: "pderiv f = monom Zp_x ([n] 𝟭) (n-1)"
    by (simp add: assms(1) f_def pderiv_add pderiv_monom)    
  have 1: "f  𝟭 = 𝟭  a"
    using f_def 
    by (metis R.add.inv_closed R.minus_eq R.nat_pow_one R.one_closed assms(1) to_fun_const to_fun_monom to_fun_monom_plus monom_closed)
  have 2: "(pderiv f)  𝟭 = ([n] 𝟭)"
    using 0 to_fun_monom assms 
    by simp
  have 3: "val_Zp (f  𝟭) > 2* val_Zp ((pderiv f)  𝟭)"
    using 1 2 assms 
    by (simp add: val_Zp_def)
  have 4: "f  𝟭  𝟬"
    using 1 assms(1) assms(2) by auto
  have 5: "(pderiv f)  𝟭  𝟬"
    using "2" Zp_char_0' assms(3) by auto
  obtain β where beta_def: "β  carrier Zp  f  β = 𝟬"
    using hensels_lemma[of f 𝟭]
    by (metis "3" "5" R.one_closed f  carrier Zp_x)
  then have "(β [^] n)  a = 𝟬"
    using f_def R.add.inv_closed  assms(1) to_fun_const[of " a"] to_fun_monic_monom[of β n] to_fun_plus monom_closed
    unfolding a_minus_def 
    by (simp add: beta_def)
  then have "β  carrier Zp  β [^] n = a"
    using beta_def nonzero_memE  not_eq_diff_nonzero assms(1) pow_closed 
    by blast
  then show ?thesis by blast 
qed
    
end
end