(*********************************************************************************** * Copyright (c) University of Exeter, UK * * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * * Redistributions of source code must retain the above copyright notice, this * * * Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * SPDX-License-Identifier: BSD-2-Clause ***********************************************************************************) section‹Main Theory (Digraph)› theory NN_Digraph_Main imports NN_Common NN_Digraph Activation_Functions Properties begin text‹\label{thy:NN_Digraph_Main}› ML‹ signature CONVERT_TENSORFLOW_JSON = sig datatype neuron = In of int | Out of int | Neuron of {phi:TensorFlow_Type.activationT, bias:IEEEReal.decimal_approx, uid:int} type edge = { tl:neuron, weight:IEEEReal.decimal_approx, hd:neuron } type neural_network = { edges: edge list, neurons: neuron list, activation_tab: TensorFlow_Type.activationT list } val uid_of: neuron -> int val mk_neural_network: IEEEReal.decimal_approx TensorFlow_Type.layer list -> neural_network end › ML_file‹Tools/Convert_TensorFlow_Json.ML› ML‹ signature TENSORFLOW_DIGRAPTH_TERM = sig val term_of_neuron: bool -> Activation_Term.mode -> Convert_TensorFlow_Json.neuron -> term end › ML_file ‹Tools/TensorFlow_Digraph_Term.ML› ML‹ signature CONVERT_TENSORFLOW_DIGRAPH = sig val def_nn: Activation_Term.mode -> string -> 'a -> 'b -> Nano_Json_Type.json -> local_theory -> Proof.context end › ML_file‹Tools/Convert_TensorFlow_Digraph.ML› ML‹ val _ = Theory.setup (Convert_TensorFlow_Symtab.add_encoding("digraph", Convert_TensorFlow_Digraph.def_nn Activation_Term.MultiList)) val _ = Theory.setup (Convert_TensorFlow_Symtab.add_encoding("digraph_single", Convert_TensorFlow_Digraph.def_nn Activation_Term.Single)) › end