(* Author: Dmitriy Traytel *) theory WS1S_Examples imports WS1S_Equivalence_Checking "HOL-Library.Char_ord" "HOL-Library.Product_Lexorder" begin abbreviation FALSE where "FALSE ≡ FExists (FLess 0 0)" abbreviation TRUE where "TRUE ≡ FNot FALSE" abbreviation All where "All φ ≡ FNot (FExists (FNot φ))" abbreviation AL where "AL φ ≡ FNot (FEXISTS (FNot φ))" abbreviation Imp where "Imp φ ψ ≡ FOr (FNot φ) ψ" abbreviation Iff where "Iff φ ψ ≡ FAnd (Imp φ ψ) (Imp ψ φ)" abbreviation Ball where "Ball X φ ≡ All (Imp (FIn 0 (X+1)) φ)" abbreviation Bex where "Bex X φ ≡ FExists (FAnd (FIn 0 (X+1)) φ)" abbreviation Eq where "Eq x y ≡ FAnd (FNot (FLess x y)) (FNot (FLess y x))" abbreviation SUBSET where "SUBSET X Y ≡ Ball X (FIn 0 (Y+1))" abbreviation EQ where "EQ X Y ≡ FAnd (SUBSET X Y) (SUBSET Y X)" abbreviation First where "First x ≡ FNot (FExists (FLess 0 (x+1)))" abbreviation Last where "Last x ≡ FNot (FExists (FLess (x+1) 0))" abbreviation Suc where "Suc sucx x ≡ FAnd (FLess x sucx) (FNot (FExists (FAnd (FLess (x+1) 0) (FLess 0 (sucx+1)))))" definition "Thm (type :: 'a :: {enum, linorder} itself) n φ = fast.check_eqv n (FNot φ :: 'a formula) FALSE" definition "Thm_slow (type :: 'a :: {enum, linorder} itself) n φ = slow.check_eqv n (FNot φ :: 'a formula) FALSE" definition "Thm_dual (type :: 'a :: {enum, linorder} itself) n φ = dual.check_eqv n (FNot φ :: 'a formula) FALSE" definition "M2L = (FEXISTS (All (FIn 0 1)) :: Enum.finite_1 formula)" lemma "Thm TYPE(Enum.finite_1) 0 (FNot M2L)" by eval lemma "Thm TYPE(Enum.finite_1) 0 (All (FExists (FLess 1 0)))" by eval lemma "Thm (TYPE(bool)) 0 (FNot (FExists (FExists (FAnd (FLess 0 1) (FLess 1 0)))))" by eval lemma Drinker: "Thm (TYPE(bool)) 1 (FExists (Imp (FIn 0 1) (All (FIn 0 2))))" by eval lemma "Thm (TYPE(bool)) 1 (Imp (All (FIn 0 1)) (FExists (FIn 0 1)))" by eval (* definition "mod_two a b c d = Iff a (Iff b (Iff c d))" definition "at_least_two a b c d = Iff d (FOr (FAnd a b) (FOr (FAnd b c) (FAnd a c)))" definition "ADD S A B = FEXISTS (FAnd (All (Imp (First 0) (FNot (FIn 0 1)))) (All (FAnd (mod_two (FIn 0 (A+2)) (FIn 0 (B+2)) (FIn 0 1) (FIn 0 (S+2))) (Imp (FExists (FAnd (Last 0) (FLess 1 0))) (at_least_two (FIn 0 (A+2)) (FIn 0 (B+2)) (FIn 0 1) (All (Imp (Suc 0 1) (FIn 0 2))))))))" definition Comm_Lemma :: "Enum.finite_1 formula" where "Comm_Lemma = AL (AL (FEXISTS (FAnd (ADD 0 1 2) (FEXISTS (FAnd (ADD 0 3 2) (EQ 0 1))))))" lemma "Thm TYPE(bool) 0 (AL (AL (FEXISTS (ADD 0 1 2))))" by eval lemma "Thm TYPE(Enum.finite_1) 0 Comm_Lemma" by eval *) abbreviation Globally ("□_" [40] 40) where "Globally P == %n. All (Imp (FNot (FLess (n+1) 0)) (P 0))" abbreviation Future ("◇_" [40] 40) where "Future P == %n. FExists (FAnd (FNot (FLess (n+1) 0)) (P 0))" abbreviation IMP (infixr "→" 50) where "IMP P1 P2 == %n. Imp (P1 n) (P2 n)" abbreviation "FOR xs n ≡ rexp_of_list FOr FALSE (map (λx. FQ x n) xs)" abbreviation Φ0 :: "bool formula" where "Φ0 ≡ (All (((□(FOR [(True)])) → (□(FOR [(True)]))) 0))" abbreviation Φ1 :: "(bool × bool) formula" where "Φ1 ≡ (All (((□(FOR [(True, True), (True, False)] → FOR [(True, True), (False, True)])) → (□(FOR [(True, True), (True, False)])) → (□(FOR [(True, True), (False, True)]))) 0))" abbreviation Φ2 :: "(bool × bool × bool) formula" where "Φ2 ≡ (All (((□(FOR [(True, True, True), (True, True, False), (True, False, True), (True, False, False)] → FOR [(True, True, True), (True, True, False), (False, True, True), (False, True, False)] → FOR [(True, True, True), (True, False, True), (False, True, True), (False, False, True)])) → (□(FOR [(True, True, True), (True, True, False), (True, False, True), (True, False, False)])) → (□(FOR [(True, True, True), (True, True, False), (False, True, True), (False, True, False)])) → (□(FOR [(True, True, True), (True, True, False), (False, True, True), (False, True, False)]))) 0))" definition Ψ :: "nat ⇒ Enum.finite_1 formula" where "Ψ n = All (((□(foldr (λi φ. (λm. FIn m (2 + i)) → φ) [0..<n] (λm. FIn m (n + 2)))) → foldr (λi φ. (□(λm. FIn m (2 + i))) → φ) [0..<n] (□(λm. FIn m (n + 2)))) 0)" definition "Thm1 n = Thm (TYPE(Enum.finite_1)) (n + 1) (Ψ n)" definition "Thm1_slow n = Thm_slow (TYPE(Enum.finite_1)) (n + 1) (Ψ n)" definition "Thm1_dual n = Thm_dual (TYPE(Enum.finite_1)) (n + 1) (Ψ n)" lemma "Thm1_dual 0" by eval lemma "Thm1_dual 1" by eval (* lemma "Thm1 2" by eval *) lemma "Thm_dual (TYPE(bool)) 0 Φ0" by eval lemma "Thm_dual (TYPE(bool * bool)) 0 Φ1" by eval (* lemma "Thm (TYPE(bool * bool * bool)) 0 Φ2" by eval *) (* export_code Thm1 Nat in SML module_name WS1S_Thm1 file "WS1S_Thm1.ML" export_code Thm1_slow Nat in SML module_name WS1S_Thm1_slow file "WS1S_Thm1_slow.ML" export_code Thm1_dual Nat in SML module_name WS1S_Thm1_dual file "WS1S_Thm1_dual.ML" ML_file "WS1S_Thm1.ML" ML_file "WS1S_Thm1_slow.ML" ML_file "WS1S_Thm1_dual.ML" ML {* PolyML.timing true; open WS1S_Thm1_dual; thm1_dual (Nat 0); thm1_dual (Nat 1); *} ML {* PolyML.timing true; open WS1S_Thm1; thm1 (Nat 0); thm1 (Nat 1); *} ML {* PolyML.timing true; open WS1S_Thm1_slow; thm1_slow (Nat 0); *} *) end