Theory TF_JVM
section ‹The Typing Framework for the JVM \label{sec:JVM}›
theory TF_JVM
imports "../DFA/Typing_Framework_err" EffectMono BVSpec
begin
definition exec :: "jvm_prog ⇒ nat ⇒ ty ⇒ ex_table ⇒ instr list ⇒ ty⇩i' err step_type"
where 
  "exec G maxs rT et bs ≡
  err_step (size bs) (λpc. app (bs!pc) G maxs rT pc (size bs) et) 
                     (λpc. eff (bs!pc) G pc et)"
locale JVM_sl =
  fixes P :: jvm_prog and mxs and mxl⇩0 and n
  fixes Ts :: "ty list" and "is" and xt and T⇩r
  fixes mxl and A and r and f and app and eff and step
  defines [simp]: "mxl ≡ 1+size Ts+mxl⇩0"
  defines [simp]: "A   ≡ states P mxs mxl"
  defines [simp]: "r   ≡ JVM_SemiType.le P mxs mxl"
  defines [simp]: "f   ≡ JVM_SemiType.sup P mxs mxl"
  defines [simp]: "app ≡ λpc. Effect.app (is!pc) P mxs T⇩r pc (size is) xt"
  defines [simp]: "eff ≡ λpc. Effect.eff (is!pc) P pc xt"
  defines [simp]: "step ≡ err_step (size is) app eff"
  defines [simp]: "n ≡ size is"
locale start_context = JVM_sl +
  fixes p and C
  assumes wf: "wf_prog p P"
  assumes C:  "is_class P C"
  assumes Ts: "set Ts ⊆ types P"
  fixes first :: ty⇩i' and start
  defines [simp]: 
  "first ≡ Some ([],OK (Class C) # map OK Ts @ replicate mxl⇩0 Err)"
  defines [simp]:
  "start ≡ OK first # replicate (size is - 1) (OK None)"
subsection ‹Connecting JVM and Framework›
lemma (in start_context) semi: "semilat (A, r, f)"
  using semilat_JVM[OF wf]
  by (auto simp: JVM_SemiType.le_def JVM_SemiType.sup_def states_def)
lemma (in JVM_sl) step_def_exec: "step ≡ exec P mxs T⇩r xt is" 
  by (simp add: exec_def)  
lemma special_ex_swap_lemma [iff]: 
  "(? X. (? n. X = A n & P n) & Q X) = (? n. Q(A n) & P n)"
  by blast
lemma ex_in_nlists [iff]:
  "(∃n. ST ∈ nlists n A ∧ n ≤ mxs) = (set ST ⊆ A ∧ size ST ≤ mxs)"
  by (unfold nlists_def) auto
lemma singleton_nlists: 
  "(∃n. [Class C] ∈ nlists n (types P) ∧ n ≤ mxs) = (is_class P C ∧ 0 < mxs)"
  by auto
lemma set_drop_subset:
  "set xs ⊆ A ⟹ set (drop n xs) ⊆ A"
  by (auto dest: in_set_dropD)
lemma Suc_minus_minus_le:
  "n < mxs ⟹ Suc (n - (n - b)) ≤ mxs"
  by arith
lemma in_nlistsE:
  "⟦ xs ∈ nlists n A; ⟦size xs = n; set xs ⊆ A⟧ ⟹ P ⟧ ⟹ P"
  by (unfold nlists_def) blast
declare is_relevant_entry_def [simp]
declare set_drop_subset [simp]
theorem (in start_context) exec_pres_type:
  "pres_type step (size is) A"
  apply (insert wf)
  apply simp
  apply (unfold JVM_states_unfold)
  apply (rule pres_type_lift)
  apply clarify
  apply (rename_tac s pc pc' s')
  apply (case_tac s)
   apply simp
   apply (drule effNone)
   apply simp  
  apply (simp add: Effect.app_def xcpt_app_def Effect.eff_def  
                   xcpt_eff_def norm_eff_def relevant_entries_def)
  apply (case_tac "is!pc")
  
  apply clarsimp
  apply (frule nlistsE_nth_in, assumption)
  apply fastforce
  
  apply fastforce
  
  apply (fastforce simp add: typeof_lit_is_type)
  
  apply clarsimp apply fastforce
  
  apply clarsimp apply (fastforce dest: sees_field_is_type)
  
  apply clarsimp apply fastforce
  
  apply clarsimp apply fastforce
  defer 
  
  
  apply fastforce
  
  apply fastforce
  
  apply fastforce
  
  
  apply fastforce
  
  apply fastforce
  
  apply fastforce
  
 apply clarsimp  apply fastforce
  
  apply (clarsimp split!: if_splits)
   apply fastforce
  apply (erule disjE)
   prefer 2
   apply fastforce
  apply clarsimp
  apply (rule conjI)
   apply (drule (1) sees_wf_mdecl)
   apply (clarsimp simp add: wf_mdecl_def)
  apply arith
  done
declare is_relevant_entry_def [simp del]
declare set_drop_subset [simp del]
lemma lesubstep_type_simple:
  "xs [⊑⇘Product.le (=) r⇙] ys ⟹ set xs {⊑⇘r⇙} set ys"
  apply (simp add: lesubstep_type_def set_conv_nth)
  by (metis (full_types, opaque_lifting) le_listD le_prod_Pair_conv lesub_def
      surj_pair)
declare is_relevant_entry_def [simp del]
lemma conjI2: "⟦ A; A ⟹ B ⟧ ⟹ A ∧ B" by blast
  
lemma (in JVM_sl) eff_mono:
  "⟦wf_prog p P; pc < length is; s ⊑⇘sup_state_opt P⇙ t; app pc t⟧
  ⟹ set (eff pc s) {⊑⇘sup_state_opt P⇙} set (eff pc t)"
  apply simp
  apply (unfold Effect.eff_def)  
  apply (cases t)
   apply (simp add: lesub_def)
  apply (rename_tac a)
  apply (cases s)
   apply simp
  apply (rename_tac b)
  apply simp
  apply (rule lesubstep_union)
   prefer 2
   apply (rule lesubstep_type_simple)
   apply (simp add: xcpt_eff_def)
   apply (rule le_listI)
    apply (simp add: split_beta)
   apply (simp add: split_beta)
   apply (simp add: lesub_def fun_of_def)
   apply (case_tac a)
   apply (case_tac b)
   apply simp   
   apply (subgoal_tac "size ab = size aa")
     prefer 2
     apply (clarsimp simp add: list_all2_lengthD)
   apply simp
  apply (clarsimp simp add: norm_eff_def lesubstep_type_def lesub_def iff del: sup_state_conv)
  apply (rule exI)
  using succs_mono eff⇩i_mono
  by (fastforce simp: Effect.app_def iff del: sup_state_conv)
lemma (in JVM_sl) bounded_step: "bounded step (size is)"
  by (auto simp add: error_def map_snd_def bounded_def err_step_def Effect.app_def Effect.eff_def split: err.splits option.splits)
theorem (in JVM_sl) step_mono:
  "wf_prog wf_mb P ⟹ mono r step (size is) A"
  apply (simp add: JVM_le_Err_conv)  
  apply (insert bounded_step)
  apply (unfold JVM_states_unfold)
  apply (rule mono_lift)
     apply blast   
    apply (unfold app_mono_def lesub_def)
    apply clarsimp
    apply (erule (2) app_mono)
   apply simp
  apply clarify
  apply (drule eff_mono)
  apply (auto simp add: lesub_def)
  done
lemma (in start_context) first_in_A [iff]: "OK first ∈ A"
  using Ts C by (force intro!: nlists_appendI simp add: JVM_states_unfold)
lemma (in JVM_sl) wt_method_def2:
  "wt_method P C' Ts T⇩r mxs mxl⇩0 is xt τs =
  (is ≠ [] ∧ 
   size τs = size is ∧
   OK ` set τs ⊆ states P mxs mxl ∧
   wt_start P C' Ts mxl⇩0 τs ∧ 
   wt_app_eff (sup_state_opt P) app eff τs)"
  by (auto simp: wt_method_def wt_app_eff_def wt_instr_def lesub_def check_types_def)
end