Theory Kildall_2
section ‹Kildall's Algorithm \label{sec:Kildall}›
theory Kildall_2
imports SemilatAlg Kildall_1
begin
primrec propa :: "'s binop ⇒ (nat × 's) list ⇒ 's list ⇒ nat set ⇒ 's list * nat set"
where
  "propa f []      τs w = (τs,w)"
| "propa f (q'#qs) τs w = (let (q,τ) = q';
                             u = τ ⊔⇘f⇙ τs!q;
                             w' = (if u = τs!q then w else insert q w)
                         in propa f qs (τs[q := u]) w')"
definition iter :: "'s binop ⇒ 's step_type ⇒
          's list ⇒ nat set ⇒ 's list × nat set"
where
  "iter f step τs w =
   while (λ(τs,w). w ≠ {})
         (λ(τs,w). let p = some_elem w
                   in propa f (step p (τs!p)) τs (w-{p}))
         (τs,w)"
definition unstables :: "'s ord ⇒ 's step_type ⇒ 's list ⇒ nat set"
where
  "unstables r step τs = {p. p < size τs ∧ ¬stable r step τs p}"
definition kildall :: "'s ord ⇒ 's binop ⇒ 's step_type ⇒ 's list ⇒ 's list"
where
  "kildall r f step τs = fst(iter f step τs (unstables r step τs))"
lemma (in Semilat) merges_incr_lemma:
  "∀xs. xs ∈ nlists n A ⟶ (∀(p,x)∈set ps. p<size xs ∧ x ∈ A) ⟶ xs [⊑⇘r⇙] merges f ps xs"
  apply (induct ps)
  apply auto[1]
  apply simp
  apply clarify
  apply (rule order_trans [OF _ list_update_incr])
         apply force
        apply simp+     
  done       
lemma (in Semilat) merges_incr:
 "⟦ xs ∈ nlists n A; ∀(p,x)∈set ps. p<size xs ∧ x ∈ A ⟧ 
  ⟹ xs [⊑⇘r⇙] merges f ps xs"
  by (simp add: merges_incr_lemma)
lemma (in Semilat) merges_same_conv [rule_format]:
 "(∀xs. xs ∈ nlists n A ⟶ (∀(p,x)∈set ps. p<size xs ∧ x∈A) ⟶ 
     (merges f ps xs = xs) = (∀(p,x)∈set ps. x ⊑⇘r⇙ xs!p))"
  apply (induct_tac ps)
   apply simp
  apply clarsimp
  apply (rename_tac p x ps xs)
  apply (rule iffI)
   apply (rule context_conjI)
    apply (subgoal_tac "xs[p := x ⊔⇘f⇙ xs!p] [⊑⇘r⇙] xs")
     apply (fastforce dest!: le_listD)  
    apply (smt (verit, ccfv_threshold) case_prodD case_prodI2 closed_f merges_incr
      nlistsE_length nlistsE_nth_in nlists_update_in_list)
   apply clarify
  using le_iff_plus_unchanged apply fastforce
  apply (simp add: le_iff_plus_unchanged [THEN iffD1] list_update_same_conv [THEN iffD2])
  done
    
lemma decomp_propa:
  "⋀ss w. (∀(q,t)∈set qs. q < size ss) ⟹ 
   propa f qs ss w = 
   (merges f qs ss, {q. ∃t.(q,t)∈set qs ∧ t ⊔⇘f⇙ ss!q ≠ ss!q} ∪ w)"
  by (induct qs; fastforce simp add: nth_list_update)
lemma (in Semilat) stable_pres_lemma:
shows "⟦pres_type step n A; bounded step n; 
     ss ∈ nlists n A; p ∈ w; ∀q∈w. q < n; 
     ∀q. q < n ⟶ q ∉ w ⟶ stable r step ss q; q < n; 
     ∀s'. (q,s') ∈ set (step p (ss!p)) ⟶ s' ⊔⇘f⇙ ss!q = ss!q; 
     q ∉ w ∨ q = p ⟧ 
  ⟹ stable r step (merges f (step p (ss!p)) ss) q"
  apply (unfold stable_def)
  apply (subgoal_tac "∀s'. (q,s') ∈ set (step p (ss!p)) ⟶ s' : A")
   prefer 2
   apply (meson nlistsE_nth_in pres_typeD)
  apply simp
  apply clarify
  apply (subst nth_merges)
     apply simp
     apply (blast dest: boundedD)
    apply assumption
   apply clarify
  apply (metis boundedD nlistsE_nth_in pres_typeD)
  apply simp
  apply(subgoal_tac "q < length ss")
   prefer 2 apply simp
  apply (frule nth_merges [of q _ _ "step p (ss!p)"]) 
    apply assumption
   apply clarify
   apply (metis boundedD nlistsE_nth_in pres_typeD)
  apply (drule_tac P = "λx. (a, b) ∈ set (step q x)" in subst)
   apply assumption
  apply (simp add: plusplus_empty)
  apply (cases "q ∈ w")
   apply simp
   apply (smt (verit, ccfv_SIG) Semilat_axioms bounded_def nlistsE_length nlistsE_set
      nth_in old.prod.case pres_type_def ub1')
  apply simp
  apply (erule allE, erule impE, assumption, erule impE, assumption) 
  apply (rule order_trans)    
       apply fastforce
      defer     
      apply (rule pp_ub2)
       apply simp        
       apply clarify
       apply simp
       apply (rule pres_typeD)
          apply assumption
         prefer 3 
         apply assumption
        apply (blast intro: nlistsE_nth_in)
       apply (blast)
      apply (blast intro: nlistsE_nth_in dest: boundedD)
     prefer 4
     apply fastforce     
    apply (blast intro: nlistsE_nth_in dest: pres_typeD)
   apply (blast intro: nlistsE_nth_in dest: boundedD)
  apply(subgoal_tac "∀(q,t) ∈ set (step p (ss!p)). q < n ∧ t ∈ A")
   apply (subgoal_tac "merges f (step p (ss!p)) ss ∈ nlists n A")
    apply (metis (lifting) boundedD nlistsE_length nlistsE_set nth_in
      nth_merges)
   apply (blast dest:merges_preserves_type)
  by (smt (verit, best) boundedD case_prodI2 nlistsE_nth_in pres_typeD)
    
lemma (in Semilat) merges_bounded_lemma:
 "⟦ mono r step n A; bounded step n; pres_type step n A; 
    ∀(p',s') ∈ set (step p (ss!p)). s' ∈ A; ss ∈ nlists n A; ts ∈ nlists n A; p < n; 
    ss [⊑⇩r] ts; ∀p. p < n ⟶ stable r step ts p ⟧ 
  ⟹ merges f (step p (ss!p)) ss [⊑⇩r] ts" 
  apply (unfold stable_def)
  apply (rule merges_pres_le_ub)
     apply simp
    apply simp
   prefer 2 apply assumption
  apply clarsimp
  apply (drule boundedD, assumption+)
  apply (erule allE, erule impE, assumption)
  apply (drule bspec, assumption)
  apply simp
  apply (drule monoD [of _ _ _ _ p "ss!p"  "ts!p"])
     apply assumption
    apply simp
   apply (simp add: le_listD)
  
  apply (drule lesub_step_typeD, assumption) 
  apply clarify
  apply (drule bspec, assumption)
  apply simp
  by (meson nlistsE_nth_in pres_typeD trans_r)
lemma termination_lemma: assumes "Semilat A r f"
shows "⟦ ss ∈ nlists n A; ∀(q,t)∈set qs. q<n ∧ t∈A; p∈w ⟧ ⟹ 
      ss [⊏⇩r] merges f qs ss ∨ 
  merges f qs ss = ss ∧ {q. ∃t. (q,t)∈set qs ∧ t ⊔⇘f⇙ ss!q ≠ ss!q} ∪ (w-{p}) ⊂ w"
 (is "PROP ?P")
proof -
  interpret Semilat A r f by fact
  show "PROP ?P"
  apply(insert semilat)
    apply (unfold lesssub_def)
    apply (simp (no_asm_simp) add: merges_incr)
    apply (rule impI)
    apply (rule merges_same_conv [THEN iffD1, elim_format]) 
    apply assumption+
    apply fastforce
     apply force
     apply (subgoal_tac "∀q t. ¬((q, t) ∈ set qs ∧ t ⊔⇘f⇙ ss ! q ≠ ss ! q)")
     apply (blast intro!: psubsetI elim: equalityE)
    by fastforce
qed
end