Theory Green

theory Green
  imports Paths Derivs Integrals General_Utils
begin

lemma frontier_Un_subset_Un_frontier:
     "frontier (s  t)  (frontier s)  (frontier t)"
  by (simp add: frontier_def Un_Diff) (auto simp add: closure_def interior_def islimpt_def)

definition has_partial_derivative:: "(('a::euclidean_space)  'b::euclidean_space)  'a  ('a  'b)  ('a)  bool" where
  "has_partial_derivative F base_vec F' a
         ((λx::'a::euclidean_space. F( (a - ((a  base_vec) *R base_vec)) + (x  base_vec) *R base_vec ))
                has_derivative F') (at a)"

definition has_partial_vector_derivative:: "(('a::euclidean_space)  'b::euclidean_space)  'a  ( 'b)  ('a)  bool" where
  "has_partial_vector_derivative F base_vec F' a
         ((λx. F( (a - ((a  base_vec) *R base_vec)) + x *R base_vec ))
                has_vector_derivative F') (at (a  base_vec))"

definition partially_vector_differentiable where
  "partially_vector_differentiable F base_vec p  (F'. has_partial_vector_derivative F base_vec F' p)"

definition partial_vector_derivative:: "(('a::euclidean_space)  'b::euclidean_space)  'a  'a  'b" where
  "partial_vector_derivative F base_vec a
         (vector_derivative (λx. F( (a - ((a  base_vec) *R base_vec)) + x *R base_vec)) (at (a  base_vec)))"

lemma partial_vector_derivative_works:
  assumes "partially_vector_differentiable F base_vec a"
  shows "has_partial_vector_derivative F base_vec (partial_vector_derivative F base_vec a) a"
proof -
  obtain F' where F'_prop: "((λx. F( (a - ((a  base_vec) *R base_vec)) + x *R base_vec ))
                            has_vector_derivative F') (at (a  base_vec))"
    using assms partially_vector_differentiable_def has_partial_vector_derivative_def
    by blast
  show ?thesis
    using Derivative.differentiableI_vector[OF F'_prop]
    by(simp add: vector_derivative_works partial_vector_derivative_def[symmetric]
        has_partial_vector_derivative_def[symmetric])
qed

lemma fundamental_theorem_of_calculus_partial_vector:
  fixes a b:: "real" and
    F:: "('a::euclidean_space  'b::euclidean_space)" and
    i:: "'a" and
    j:: "'b" and
    F_j_i:: "('a::euclidean_space  real)"
  assumes a_leq_b: "a  b" and
    Base_vecs: "i  Basis" "j  Basis" and
    no_i_component: "c  i = 0 " and
    has_partial_deriv: "p  D. has_partial_vector_derivative (λx. (F x)  j) i (F_j_i p) p" and
    domain_subset_of_D: "{x *R i + c |x. a  x  x  b}  D"
  shows "((λx. F_j_i( x *R i + c)) has_integral
          F(b *R i + c)  j - F(a *R i + c)  j) (cbox a b)"
proof -
  let ?domain = "{v. x. a  x  x  b  v = x *R i + c}"
  have "x ?domain.  has_partial_vector_derivative (λx. (F x)  j) i (F_j_i x) x"
    using has_partial_deriv domain_subset_of_D
    by auto
  then have "x (cbox a b).  ((λx. F(x *R i + c)  j) has_vector_derivative (F_j_i( x *R i + c))) (at x)"
  proof(clarsimp simp add: has_partial_vector_derivative_def)
    fix x::real
    assume range_of_x: "a  x" "x  b"
    assume ass2: "x. (za. z  b  x = z *R i + c) 
                     ((λz. F(x - (x  i) *R i + z *R i)  j) has_vector_derivative F_j_i x) (at (x  i))"
    have "((λz. F((x *R i + c) - ((x *R i + c)  i) *R i + z *R i)  j) has_vector_derivative F_j_i (x *R i + c)) (at ((x *R i + c)  i)) "
      using range_of_x ass2 by auto
    then have 0: "((λx. F( c + x *R i)  j) has_vector_derivative F_j_i (x *R i + c)) (at x)"
      by (simp add: assms(2) inner_left_distrib no_i_component)
    have 1: "(λx. F(x *R i + c)  j) = (λx. F(c + x *R i)  j)"
      by (simp add: add.commute)
    then show "((λx. F(x *R i + c)  j) has_vector_derivative F_j_i (x *R i + c)) (at x)" 
      using 0 and 1 by auto
  qed
  then have "x (cbox a b).  ((λx. F(x *R i + c)  j) has_vector_derivative (F_j_i( x *R i + c))) (at_within x (cbox a b))"
    using has_vector_derivative_at_within
    by blast
  then show "( (λx. F_j_i( x *R i + c)) has_integral
             F(b *R i + c)  j - F(a *R i + c)  j) (cbox a b)"
    using fundamental_theorem_of_calculus[of "a" "b" "(λx::real.  F(x *R i + c)  j)" "(λx::real. F_j_i( x *R i + c))"] and
      a_leq_b
    by auto
qed

lemma fundamental_theorem_of_calculus_partial_vector_gen:
  fixes k1 k2:: "real" and
    F:: "('a::euclidean_space  'b::euclidean_space)" and
    i:: "'a" and
    F_i:: "('a::euclidean_space  'b)"
  assumes a_leq_b: "k1  k2" and
    unit_len: "i  i = 1" and
    no_i_component: "c  i = 0 " and
    has_partial_deriv: "p  D. has_partial_vector_derivative F i (F_i p) p" and
    domain_subset_of_D: "{v. x. k1  x  x  k2  v = x *R i + c}  D"
  shows "( (λx. F_i( x *R i + c)) has_integral
                                        F(k2 *R i + c) - F(k1 *R i + c)) (cbox k1 k2)"
proof -
  let ?domain = "{v. x. k1  x  x  k2  v = x *R i + c}"
  have "x ?domain.  has_partial_vector_derivative F i (F_i x) x"
    using has_partial_deriv domain_subset_of_D
    by auto
  then have "x (cbox k1 k2).  ((λx. F(x *R i + c)) has_vector_derivative (F_i( x *R i + c))) (at x)"
  proof (clarsimp simp add: has_partial_vector_derivative_def)
    fix x::real
    assume range_of_x: "k1  x" "x  k2"
    assume ass2: "x. (zk1. z  k2  x = z *R i + c) 
                     ((λz. F(x - (x  i) *R i + z *R i)) has_vector_derivative F_i x) (at (x  i))"
    have "((λz. F((x *R i + c) - ((x *R i + c)  i) *R i + z *R i)) has_vector_derivative F_i (x *R i + c)) (at ((x *R i + c)  i)) "
      using range_of_x ass2 by auto
    then have 0: "((λx. F( c + x *R i)) has_vector_derivative F_i (x *R i + c)) (at x)"
      by (simp add: inner_commute inner_right_distrib no_i_component unit_len)
    have 1: "(λx. F(x *R i + c)) = (λx. F(c + x *R i))"
      by (simp add: add.commute)
    then show "((λx. F(x *R i + c)) has_vector_derivative F_i (x *R i + c)) (at x)" using 0 and 1 by auto
  qed
  then have "x (cbox k1 k2).  ((λx. F(x *R i + c) ) has_vector_derivative (F_i( x *R i + c))) (at_within x (cbox k1 k2))"
    using has_vector_derivative_at_within
    by blast
  then show "( (λx. F_i( x *R i + c)) has_integral
                                        F(k2 *R i + c) - F(k1 *R i + c)) (cbox k1 k2)"
    using fundamental_theorem_of_calculus[of "k1" "k2" "(λx::real.  F(x *R i + c))" "(λx::real. F_i( x *R i + c))"] and
      a_leq_b
    by auto
qed

lemma add_scale_img:
  assumes "a < b" shows "(λx::real. a + (b - a) * x) ` {0 .. 1} = {a .. b}"
  using assms 
  apply (auto simp: algebra_simps affine_ineq image_iff)
  using less_eq_real_def apply force
  apply (rule_tac x="(x-a)/(b-a)" in bexI)
   apply (auto simp: field_simps)
  done

lemma add_scale_img':
  assumes "a  b"
  shows "(λx::real. a + (b - a) * x) ` {0 .. 1} = {a .. b}"
proof (cases "a = b")
  case True
  then show ?thesis by force
next
  case False
  then show ?thesis
    using add_scale_img assms by auto
qed

definition analytically_valid:: "'a::euclidean_space set  ('a  'b::{euclidean_space,times,zero_neq_one})  'a  bool" where
  "analytically_valid s F i 
       (a  s. partially_vector_differentiable F i a) 
       continuous_on s F  ― ‹TODO: should we replace this with saying that F› is partially diffrerentiable on Dy›,›
                           ― ‹i.e. there is a partial derivative on every dimension›
       integrable lborel (λp. (partial_vector_derivative F i) p * indicator s p) 
       (λx. integral UNIV (λy. (partial_vector_derivative F i (y *R i + x *R ( b (Basis - {i}). b)))
            * (indicator s (y *R i + x *R (b  Basis - {i}. b)) )))  borel_measurable lborel"
  (*(λx. integral UNIV (λy. ((partial_vector_derivative F i) (y, x)) * (indicator s (y, x)))) ∈ borel_measurable lborel)"*)


lemma analytically_valid_imp_part_deriv_integrable_on:
  assumes "analytically_valid (s::(real*real) set) (f::(real*real) real) i"
  shows "(partial_vector_derivative f i) integrable_on s"
proof -
  have "integrable lborel (λp. partial_vector_derivative f i p * indicator s p)"
    using assms
    by(simp add:  analytically_valid_def indic_ident)
  then have "integrable lborel (λp::(real*real). if p  s then partial_vector_derivative f i p else 0)"
    using indic_ident[of "partial_vector_derivative f i"]
    by (simp add: indic_ident)
  then have "(λx. if x  s then partial_vector_derivative f i x else 0) integrable_on UNIV"
    using Equivalence_Lebesgue_Henstock_Integration.integrable_on_lborel
    by auto
  then show "(partial_vector_derivative f i) integrable_on s"
    using integrable_restrict_UNIV
    by auto
qed

(*******************************************************************************)

definition typeII_twoCube :: "((real * real)  (real * real))  bool" where
  "typeII_twoCube twoC
          a b g1 g2. a < b  (x  {a..b}. g2 x  g1 x) 
                       twoC = (λ(y, x). ((1 - y) * (g2 ((1-x)*a + x*b)) + y * (g1 ((1-x)*a + x*b)),
                                        (1-x)*a + x*b)) 
                       g1 piecewise_C1_differentiable_on {a .. b} 
                       g2 piecewise_C1_differentiable_on {a .. b}"

abbreviation unit_cube where "unit_cube  cbox (0,0) (1::real,1::real)" 

definition cubeImage:: "two_cube  ((real*real) set)" where
  "cubeImage twoC  (twoC ` unit_cube)"

lemma typeII_twoCubeImg:
  assumes "typeII_twoCube twoC"
  shows "a b g1 g2. a < b  (x  {a .. b}. g2 x  g1 x) 
                      cubeImage twoC = {(y,x). x  {a..b}  y  {g2 x .. g1 x}}
                       twoC = (λ(y, x). ((1 - y) * g2 ((1 - x) * a + x * b) + y * g1 ((1 - x) * a + x * b), (1 - x) * a + x * b))
                       g1 piecewise_C1_differentiable_on {a .. b}  g2 piecewise_C1_differentiable_on {a .. b} "
  using assms
proof (simp add: typeII_twoCube_def cubeImage_def image_def)
  assume " a b. a < b  (g1 g2. (x{a..b}. g2 x  g1 x) 
                            twoC = (λ(y, x). ((1 - y) * g2 ((1 - x) * a + x * b) + y * g1 ((1 - x) * a + x * b), (1 - x) * a + x * b)) 
                            g1 piecewise_C1_differentiable_on {a..b}  g2 piecewise_C1_differentiable_on {a..b})"
  then obtain a b g1 g2 where
    twoCisTypeII: "a < b"
    "(x{a..b}. g2 x  g1 x)"
    "twoC = (λ(y, x). ((1 - y) * g2 ((1 - x) * a + x * b) + y * g1 ((1 - x) * a + x * b), (1 - x) * a + x * b))"
    "g1 piecewise_C1_differentiable_on {a .. b}"
    "g2 piecewise_C1_differentiable_on {a .. b}"
    by auto
  have ab1: "a - x * a + x * b  b" if a1: "0  x" "x  1" for x
    using that apply (simp add: algebra_simps)
    by (metis affine_ineq less_eq_real_def mult.commute twoCisTypeII(1))
  have ex: "zGreen.unit_cube.
               (d, c) =
               (case z of
                (y, x) 
                  (g2 (a - x * a + x * b) - y * g2 (a - x * a + x * b) + y * g1 (a - x * a + x * b),
                   a - x * a + x * b))" 
    if c_bounds: "a  c" "c  b" and d_bounds: "g2 c  d" "d  g1 c" for c d
  proof -
    have b_minus_a_nzero: "b - a  0" using twoCisTypeII(1) by auto
    have x_witness: "k1. c = (1 - k1)*a + k1 * b  0  k1  k1  1"
      apply (rule_tac x="(c - a)/(b - a)" in exI)
      using c_bounds a < b apply (simp add: divide_simps algebra_simps)
      using sum_sqs_eq by blast
    have y_witness: "k2. d = (1 - k2)*(g2 c) + k2 * (g1 c)  0  k2  k2  1"
    proof (cases "g1 c - g2 c = 0")
      case True
      with d_bounds show ?thesis by (fastforce simp add: algebra_simps)
    next
      case False
      let ?k2 = "(d - g2 c)/(g1 c - g2 c)"
      have k2_in_bounds: "0  ?k2  ?k2  1" 
        using twoCisTypeII(2) c_bounds d_bounds False by simp
      have "d = (1 - ?k2) * g2 c + ?k2 * g1 c" 
        using False sum_sqs_eq by (fastforce simp add: divide_simps algebra_simps)
      with k2_in_bounds show ?thesis 
        by fastforce
    qed
    show "xunit_cube. (d, c) = (case x of (y, x)  (g2 (a - x * a + x * b) - y * g2 (a - x * a + x * b) + y * g1 (a - x * a + x * b), a - x * a + x * b))"
      using x_witness y_witness by (force simp add: left_diff_distrib)
  qed
  have "{y. xunit_cube. y = twoC x} = {(y, x). a  x  x  b  g2 x  y  y  g1 x}"
    apply (auto simp add: twoCisTypeII ab1 left_diff_distrib ex)
    using order.order_iff_strict twoCisTypeII(1) apply fastforce
     apply (smt affine_ineq atLeastAtMost_iff mult_left_mono twoCisTypeII)+
    done
  then show "a b. a < b  (g1 g2. (x{a..b}. g2 x  g1 x) 
                            {y. xunit_cube. y = twoC x} = {(y, x). a  x  x  b  g2 x  y  y  g1 x} 
                            twoC = (λ(y, x). ((1 - y) * g2 ((1 - x) * a + x * b) + y * g1 ((1 - x) * a + x * b), (1 - x) * a + x * b)) 
                            g1 piecewise_C1_differentiable_on {a..b}  g2 piecewise_C1_differentiable_on {a..b})"
    using twoCisTypeII by blast
qed

definition horizontal_boundary :: "two_cube  one_chain" where
  "horizontal_boundary twoC  {(1, (λx. twoC(x,0))), (-1, (λx. twoC(x,1)))}"

definition vertical_boundary :: "two_cube  one_chain" where
  "vertical_boundary twoC  {(-1, (λy. twoC(0,y))), (1, (λy. twoC(1,y)))}"

definition boundary :: "two_cube  one_chain" where
  "boundary twoC  horizontal_boundary twoC  vertical_boundary twoC"

definition valid_two_cube where
  "valid_two_cube twoC  card (boundary twoC) = 4"

definition two_chain_integral:: "two_chain  ((real*real)(real))  real" where
  "two_chain_integral twoChain F  CtwoChain. (integral (cubeImage C) F)"

definition valid_two_chain where
  "valid_two_chain twoChain  (twoCube  twoChain. valid_two_cube twoCube)  pairwise (λc1 c2. ((boundary c1)  (boundary c2)) = {}) twoChain  inj_on cubeImage twoChain"

definition two_chain_boundary:: "two_chain  one_chain" where
  "two_chain_boundary twoChain == (boundary ` twoChain)"

definition gen_division where
  "gen_division s S  (finite S  (S = s)  pairwise (λX Y. negligible (X  Y)) S)"


definition two_chain_horizontal_boundary:: "two_chain  one_chain" where
  "two_chain_horizontal_boundary twoChain   (horizontal_boundary ` twoChain)"

definition two_chain_vertical_boundary:: "two_chain  one_chain" where
  "two_chain_vertical_boundary twoChain   (vertical_boundary ` twoChain)"

definition only_horizontal_division where
  "only_horizontal_division one_chain two_chain 
        𝒱. finite   finite 𝒱 
               ((k,γ)  .
                 ((k', γ')  two_chain_horizontal_boundary two_chain.
                     (a  {0..1}. b  {0..1}. a  b  subpath a b γ' = γ))) 
               (common_sudiv_exists (two_chain_vertical_boundary two_chain) 𝒱
                 common_reparam_exists 𝒱 (two_chain_vertical_boundary two_chain)) 
               boundary_chain 𝒱 
               one_chain =   𝒱  ((k,γ)𝒱. valid_path γ)"

lemma sum_zero_set:
  assumes "x  s. f x = 0" "finite s" "finite t"
  shows "sum f (s  t) = sum f t"
  using assms
  by (simp add: IntE sum.union_inter_neutral sup_commute)

abbreviation "valid_typeII_division s twoChain  ((twoCube  twoChain. typeII_twoCube twoCube) 
                                                (gen_division s (cubeImage ` twoChain)) 
                                                (valid_two_chain twoChain))"

lemma two_chain_vertical_boundary_is_boundary_chain:
  shows "boundary_chain (two_chain_vertical_boundary twoChain)"
  by(simp add: boundary_chain_def two_chain_vertical_boundary_def vertical_boundary_def)

lemma two_chain_horizontal_boundary_is_boundary_chain:
  shows "boundary_chain (two_chain_horizontal_boundary twoChain)"
  by(simp add: boundary_chain_def two_chain_horizontal_boundary_def horizontal_boundary_def)

definition typeI_twoCube :: "two_cube  bool" where
  "typeI_twoCube (twoC::two_cube)
         a b g1 g2. a < b  (x  {a..b}. g2 x  g1 x) 
                       twoC = (λ(x,y). ((1-x)*a + x*b,
                                        (1 - y) * (g2 ((1-x)*a + x*b)) + y * (g1 ((1-x)*a + x*b)))) 
                       g1 piecewise_C1_differentiable_on {a..b} 
                       g2 piecewise_C1_differentiable_on {a..b}"

lemma typeI_twoCubeImg:
  assumes "typeI_twoCube twoC"
  shows "a b g1 g2. a < b  (x  {a .. b}. g2 x  g1 x) 
                      cubeImage twoC = {(x,y). x  {a..b}  y  {g2 x .. g1 x}} 
                      twoC = (λ(x, y). ((1 - x) * a + x * b, (1 - y) * g2 ((1 - x) * a + x * b) + y * g1 ((1 - x) * a + x * b))) 
                      g1 piecewise_C1_differentiable_on {a .. b}  g2 piecewise_C1_differentiable_on {a .. b} "
proof -
  have "a b. a < b 
          (g1 g2. (x{a..b}. g2 x  g1 x) 
                   twoC = (λ(x, y). ((1 - x) * a + x * b, (1 - y) * g2 ((1 - x) * a + x * b) + y * g1 ((1 - x) * a + x * b)))
                   g1 piecewise_C1_differentiable_on {a .. b}  g2 piecewise_C1_differentiable_on {a .. b})"
    using assms by (simp add: typeI_twoCube_def)
  then obtain a b g1 g2 where
    twoCisTypeI: "a < b"
        "(x{a..b}. g2 x  g1 x)"
        "twoC = (λ(x, y). ((1 - x) * a + x * b, (1 - y) * g2 ((1 - x) * a + x * b) + y * g1 ((1 - x) * a + x * b)))"
        "g1 piecewise_C1_differentiable_on {a .. b}"
        "g2 piecewise_C1_differentiable_on {a .. b}"
    by auto
  have ex: "zGreen.unit_cube.
               (c, d) =
               (case z of
                (x, y) 
                  (a - x * a + x * b,
                   g2 (a - x * a + x * b) - y * g2 (a - x * a + x * b) + y * g1 (a - x * a + x * b)))"
    if c_bounds: "a  c" "c  b" and  d_bounds: "g2 c  d" "d  g1 c" for c d
  proof -
    have x_witness: "k1. c = (1 - k1)*a + k1 * b  0  k1  k1  1"
    proof -
      let ?k1 = "(c - a)/(b - a)"
      have k1_in_bounds: "0  (c - a)/(b - a)  (c - a)/(b - a)  1" 
        using twoCisTypeI(1) c_bounds by simp
      have "c = (1 - ?k1)*a + ?k1 * b" 
        using twoCisTypeI(1) sum_sqs_eq
        by (auto simp add: divide_simps algebra_simps)
      then show ?thesis
        using twoCisTypeI k1_in_bounds by fastforce
    qed
    have y_witness: "k2. d = (1 - k2)*(g2 c) + k2 * (g1 c)  0  k2  k2  1"
    proof (cases "g1 c - g2 c = 0")
      case True
      with d_bounds show ?thesis
        by force
    next
      case False
      let ?k2 = "(d - g2 c)/(g1 c - g2 c)"
      have k2_in_bounds: "0  ?k2  ?k2  1" using twoCisTypeI(2) c_bounds d_bounds False by simp
      have "d = (1 - ?k2) * g2 c + ?k2 * g1 c"
        using False apply (simp add: divide_simps algebra_simps)
        using sum_sqs_eq by fastforce        
      then show ?thesis using k2_in_bounds by fastforce
    qed
    show "xunit_cube. (c, d) =
            (case x of (x, y)  (a - x * a + x * b, g2 (a - x * a + x * b) - y * g2 (a - x * a + x * b) + y * g1 (a - x * a + x * b)))"
      using x_witness y_witness by (force simp add: left_diff_distrib)
  qed
  have "{y. xunit_cube. y = twoC x} = {(x, y). a  x  x  b  g2 x  y  y  g1 x}"
    apply (auto simp add: twoCisTypeI left_diff_distrib ex)
    using less_eq_real_def twoCisTypeI(1) apply auto[1]
       apply (smt affine_ineq twoCisTypeI)
      apply (smt affine_ineq atLeastAtMost_iff mult_left_mono twoCisTypeI)+
    done
  then show ?thesis
    unfolding cubeImage_def image_def using twoCisTypeI by auto
qed

lemma typeI_cube_explicit_spec:
  assumes "typeI_twoCube twoC"
  shows "a b g1 g2. a < b  (x  {a .. b}. g2 x  g1 x) 
                      cubeImage twoC = {(x,y). x  {a..b}  y  {g2 x .. g1 x}}
                       twoC = (λ(x, y). ((1 - x) * a + x * b, (1 - y) * g2 ((1 - x) * a + x * b) + y * g1 ((1 - x) * a + x * b)))
                       g1 piecewise_C1_differentiable_on {a .. b}  g2 piecewise_C1_differentiable_on {a .. b}
                       (λx. twoC(x, 0)) = (λx. (a + (b - a) * x, g2 (a + (b - a) * x)))
                       (λy. twoC(1, y)) = (λx. (b, g2 b + x *R (g1 b - g2 b)))
                       (λx. twoC(x, 1)) = (λx. (a + (b - a) * x, g1 (a + (b - a) * x)))
                       (λy. twoC(0, y)) = (λx. (a, g2 a + x *R (g1 a - g2 a)))"
proof -
  let ?bottom_edge = "(λx. twoC(x, 0))"
  let ?right_edge = "(λy. twoC(1, y))"
  let ?top_edge = "(λx. twoC(x, 1))"
  let ?left_edge = "(λy. twoC(0, y))"
  obtain a b g1 g2 where
    twoCisTypeI: "a < b"
    "(x  cbox a b. g2 x  g1 x)"
    "cubeImage twoC = {(x,y). x  cbox a b  y  cbox (g2 x) (g1 x)}"
    "twoC = (λ(x, y). ((1 - x) * a + x * b, (1 - y) * g2 ((1 - x) * a + x * b) + y * g1 ((1 - x) * a + x * b)))"
    "g1 piecewise_C1_differentiable_on {a .. b}"
    "g2 piecewise_C1_differentiable_on {a .. b}"
    using assms and typeI_twoCubeImg[of"twoC"] by auto
  have bottom_edge_explicit: "?bottom_edge = (λx. (a + (b - a) * x, g2 (a + (b - a) * x)))"
    by (simp add: twoCisTypeI(4) algebra_simps)
  have right_edge_explicit: "?right_edge = (λx. (b, g2 b + x *R (g1 b - g2 b)))"
    by (simp add: twoCisTypeI(4) algebra_simps)
  have top_edge_explicit: "?top_edge = (λx. (a + (b - a) * x, g1 (a + (b - a) * x)))"
    by (simp add: twoCisTypeI(4) algebra_simps)
  have left_edge_explicit: "?left_edge = (λx. (a, g2 a + x *R (g1 a - g2 a)))"
    by (simp add: twoCisTypeI(4) algebra_simps)
  show ?thesis
    using bottom_edge_explicit right_edge_explicit top_edge_explicit left_edge_explicit twoCisTypeI
    by auto
qed

lemma typeI_twoCube_smooth_edges:
  assumes "typeI_twoCube twoC"
    "(k,γ)  boundary twoC"
  shows "γ piecewise_C1_differentiable_on {0..1}"
proof -
  let ?bottom_edge = "(λx. twoC(x, 0))"
  let ?right_edge = "(λy. twoC(1, y))"
  let ?top_edge = "(λx. twoC(x, 1))"
  let ?left_edge = "(λy. twoC(0, y))"
  obtain a b g1 g2 where
    twoCisTypeI: "a < b"
    "(x  cbox a b. g2 x  g1 x)"
    "cubeImage twoC = {(x,y). x  cbox a b  y  cbox (g2 x) (g1 x)}"
    "twoC = (λ(x, y). ((1 - x) * a + x * b, (1 - y) * g2 ((1 - x) * a + x * b) + y * g1 ((1 - x) * a + x * b)))"
    "g1 piecewise_C1_differentiable_on {a .. b}"
    "g2 piecewise_C1_differentiable_on {a .. b}"
    "(λx. twoC(x, 0)) = (λx. (a + (b - a) * x, g2 (a + (b - a) * x)))"
    "(λy. twoC(1, y)) = (λx. (b, g2 b + x *R (g1 b - g2 b)))"
    "(λx. twoC(x, 1)) = (λx. (a + (b - a) * x, g1 (a + (b - a) * x)))"
    "(λy. twoC(0, y)) = (λx. (a, g2 a + x *R (g1 a - g2 a)))"
    using assms and typeI_cube_explicit_spec[of"twoC"]
    by auto
  have bottom_edge_smooth: "(λx. twoC (x, 0)) piecewise_C1_differentiable_on {0..1}"
  proof -
    have "x. (λx. (a + (b - a) * x))-` {x} = {(x - a)/(b -a)}"
      using twoCisTypeI(1)
      by(auto simp add: Set.vimage_def)
    then have finite_vimg: "x. finite({0..1}  (λx. (a + (b - a) * x))-` {x})" by auto
    have scale_shif_smth: "(λx. (a + (b - a) * x)) C1_differentiable_on {0..1}" using scale_shift_smooth by auto
    then have scale_shif_pw_smth: "(λx. (a + (b - a) * x)) piecewise_C1_differentiable_on {0..1}" using C1_differentiable_imp_piecewise by blast
    have g2_smooth: "g2 piecewise_C1_differentiable_on (λx. a + (b - a) * x) ` {0..1}" using add_scale_img[OF twoCisTypeI(1)] twoCisTypeI(6) by auto
    have "(λx. g2 (a + (b - a) * x)) piecewise_C1_differentiable_on {0..1}"
      using piecewise_C1_differentiable_compose[OF scale_shif_pw_smth g2_smooth finite_vimg]
      by (auto simp add: o_def)
    then have "(λx::real. (a + (b - a) * x, g2 (a + (b - a) * x))) piecewise_C1_differentiable_on {0..1}"
      using all_components_smooth_one_pw_smooth_is_pw_smooth[where f = "(λx::real. (a + (b - a) * x, g2 (a + (b - a) * x)))"]
      apply (simp only: real_pair_basis)
      by fastforce
    then show ?thesis using twoCisTypeI(7) by auto
  qed
  have top_edge_smooth: "?top_edge piecewise_C1_differentiable_on {0..1}"
  proof -
    have "x. (λx. (a + (b - a) * x))-` {x} = {(x - a)/(b -a)}"
      using twoCisTypeI(1)
      by(auto simp add: Set.vimage_def)
    then have finite_vimg: "x. finite({0..1}  (λx. (a + (b - a) * x))-` {x})" by auto
    have scale_shif_smth: "(λx. (a + (b - a) * x)) C1_differentiable_on {0..1}" using scale_shift_smooth by auto
    then have scale_shif_pw_smth: "(λx. (a + (b - a) * x)) piecewise_C1_differentiable_on {0..1}" using C1_differentiable_imp_piecewise by blast
    have g1_smooth: "g1 piecewise_C1_differentiable_on (λx. a + (b - a) * x) ` {0..1}" using add_scale_img[OF twoCisTypeI(1)] twoCisTypeI(5) by auto
    have "(λx. g1 (a + (b - a) * x)) piecewise_C1_differentiable_on {0..1}"
      using piecewise_C1_differentiable_compose[OF scale_shif_pw_smth g1_smooth finite_vimg]
      by (auto simp add: o_def)
    then have "(λx. (a + (b - a) * x, g1 (a + (b - a) * x))) piecewise_C1_differentiable_on {0..1}"
      using all_components_smooth_one_pw_smooth_is_pw_smooth[where f = "(λx. (a + (b - a) * x, g1 (a + (b - a) * x)))"]
      apply (simp only: real_pair_basis)
      by fastforce
    then show ?thesis using twoCisTypeI(9) by auto
  qed
  have right_edge_smooth: "?right_edge piecewise_C1_differentiable_on {0..1}"
  proof -
    have "(λx. (g2 b + x *R (g1 b - g2 b))) C1_differentiable_on {0..1}"
      using scale_shift_smooth C1_differentiable_imp_piecewise by auto
    then have "(λx. (g2 b + x *R (g1 b - g2 b))) piecewise_C1_differentiable_on {0..1}"
      using C1_differentiable_imp_piecewise by fastforce
    then have "(λx. (b, g2 b + x *R (g1 b - g2 b))) piecewise_C1_differentiable_on {0..1}"
      using pair_prod_smooth_pw_smooth by auto
    then show ?thesis
      using twoCisTypeI(8) by auto
  qed
  have left_edge_smooth: "?left_edge piecewise_C1_differentiable_on {0..1}"
  proof -
    have "(λx. (g2 a + x *R (g1 a - g2 a))) C1_differentiable_on {0..1}"
      using scale_shift_smooth by auto
    then have "(λx. (g2 a + x *R (g1 a - g2 a))) piecewise_C1_differentiable_on {0..1}"
      using C1_differentiable_imp_piecewise by fastforce
    then have "(λx. (a, g2 a + x *R (g1 a - g2 a))) piecewise_C1_differentiable_on {0..1}"
      using pair_prod_smooth_pw_smooth by auto
    then show ?thesis
      using twoCisTypeI(10) by auto
  qed
  have "γ = ?bottom_edge  γ = ?right_edge  γ = ?top_edge  γ = ?left_edge"
    using assms by (auto simp add: boundary_def horizontal_boundary_def vertical_boundary_def)
  then show ?thesis
    using left_edge_smooth right_edge_smooth top_edge_smooth bottom_edge_smooth by auto
qed

lemma two_chain_integral_eq_integral_divisable:
  assumes f_integrable: "twoCube  twoChain. F integrable_on cubeImage twoCube" and
    gen_division: "gen_division s (cubeImage ` twoChain)" and
    valid_two_chain: "valid_two_chain twoChain"
  shows "integral s F = two_chain_integral twoChain F"
proof -
  show "integral s F = two_chain_integral twoChain F"
  proof (simp add: two_chain_integral_def)
    have partial_deriv_integrable:
      "twoCube  twoChain. ((F) has_integral (integral (cubeImage twoCube) (F))) (cubeImage twoCube)"
      using f_integrable by auto
    then have partial_deriv_integrable:
      "twoCubeImg. twoCubeImg  cubeImage ` twoChain  (F has_integral (integral (twoCubeImg) F)) (twoCubeImg)"
      using Henstock_Kurzweil_Integration.integrable_neg by force
    have finite_images: "finite (cubeImage ` twoChain)"
      using gen_division gen_division_def by auto
    have negligible_images: "pairwise (λS S'. negligible (S  S')) (cubeImage ` twoChain)"
      using gen_division  by (auto simp add: gen_division_def pairwise_def)
    have inj: "inj_on cubeImage twoChain"
      using valid_two_chain by (simp add: inj_on_def valid_two_chain_def)
    have "integral s F = (twoCubeImgcubeImage ` twoChain. integral twoCubeImg F)"
      using has_integral_Union[OF finite_images partial_deriv_integrable negligible_images] gen_division
      by (auto simp add: gen_division_def)
    also have " = (CtwoChain. integral (cubeImage C) F)"
      using sum.reindex inj by auto
    finally show "integral s F = (CtwoChain. integral (cubeImage C) F)" .
  qed
qed

definition only_vertical_division where
  "only_vertical_division one_chain two_chain 
       𝒱 . finite   finite 𝒱 
               ((k,γ)  𝒱.
                 ((k',γ')  two_chain_vertical_boundary two_chain.
                     (a  {0..1}. b  {0..1}. a  b  subpath a b γ' = γ))) 
               (common_sudiv_exists (two_chain_horizontal_boundary two_chain) 
                 common_reparam_exists  (two_chain_horizontal_boundary two_chain)) 
               boundary_chain   one_chain = 𝒱   
               ((k,γ). valid_path γ)"

abbreviation "valid_typeI_division s twoChain 
    (twoCube  twoChain. typeI_twoCube twoCube) 
      gen_division s (cubeImage ` twoChain)  valid_two_chain twoChain"


lemma field_cont_on_typeI_region_cont_on_edges:
  assumes typeI_twoC: "typeI_twoCube twoC" 
    and field_cont: "continuous_on (cubeImage twoC) F" 
    and member_of_boundary: "(k,γ)  boundary twoC"
  shows "continuous_on (γ ` {0 .. 1}) F"
proof -
  obtain a b g1 g2 where
    twoCisTypeI: "a < b"
    "(x  cbox a b. g2 x  g1 x)"
    "cubeImage twoC = {(x,y). x  cbox a b  y  cbox (g2 x) (g1 x)}"
    "twoC = (λ(x, y). ((1 - x) * a + x * b, (1 - y) * g2 ((1 - x) * a + x * b) + y * g1 ((1 - x) * a + x * b)))"
    "g1 piecewise_C1_differentiable_on {a .. b}"
    "g2 piecewise_C1_differentiable_on {a .. b}"
    "(λx. twoC(x, 0)) = (λx. (a + (b - a) * x, g2 (a + (b - a) * x)))"
    "(λy. twoC(1, y)) = (λx. (b, g2 b + x *R (g1 b - g2 b)))"
    "(λx. twoC(x, 1)) = (λx. (a + (b - a) * x, g1 (a + (b - a) * x)))"
    "(λy. twoC(0, y)) = (λx. (a, g2 a + x *R (g1 a - g2 a)))"
    using typeI_twoC and typeI_cube_explicit_spec[of"twoC"]
    by auto
  let ?bottom_edge = "(λx. twoC(x, 0))"
  let ?right_edge = "(λy. twoC(1, y))"
  let ?top_edge = "(λx. twoC(x, 1))"
  let ?left_edge = "(λy. twoC(0, y))"
  let ?Dg1 =  "{p. x. x  cbox a b  p = (x, g1(x))}"
  have line_is_pair_img: "?Dg1 = (λx. (x, g1(x))) ` (cbox a b)"
    using image_def by auto
  have field_cont_on_top_edge_image: "continuous_on ?Dg1  F"
    by (rule continuous_on_subset [OF field_cont]) (auto simp: twoCisTypeI(2) twoCisTypeI(3))
  have top_edge_is_compos_of_scal_and_g1:
    "(λx. twoC(x, 1)) = (λx. (x, g1(x)))  (λx. a + (b - a) * x)"
    using twoCisTypeI  by auto
  have Dg1_is_bot_edge_pathimg: "path_image (λx. twoC(x, 1)) = ?Dg1"
    using line_is_pair_img and top_edge_is_compos_of_scal_and_g1 image_comp path_image_def add_scale_img and twoCisTypeI(1)
    by (metis (no_types, lifting) cbox_interval)
  then have cont_on_top: "continuous_on (path_image ?top_edge) F"
    using field_cont_on_top_edge_image by auto
  let ?Dg2 =  "{p. x. x  cbox a b  p = (x, g2(x))}"
  have line_is_pair_img: "?Dg2 = (λx. (x, g2(x))) ` (cbox a b)"
    using image_def by auto
  have field_cont_on_bot_edge_image: "continuous_on ?Dg2 F"
    apply (rule continuous_on_subset [OF field_cont])
    using twoCisTypeI(2) twoCisTypeI(3) by auto
  have bot_edge_is_compos_of_scal_and_g2: "(λx. twoC(x, 0)) = (λx. (x, g2(x)))  (λx. a + (b - a) * x)"
    using twoCisTypeI by auto
  have Dg2_is_bot_edge_pathimg:
    "path_image (λx. twoC(x, 0)) = ?Dg2"
    using line_is_pair_img and bot_edge_is_compos_of_scal_and_g2 image_comp path_image_def add_scale_img and twoCisTypeI(1)
    by (metis (no_types, lifting) cbox_interval)
  then have cont_on_bot: "continuous_on (path_image ?bottom_edge) F"
    using field_cont_on_bot_edge_image by auto
  let ?D_left_edge = "{p. y. y  cbox (g2 a) (g1 a)  p = (a, y)}"
  have field_cont_on_left_edge_image: "continuous_on ?D_left_edge  F"
    apply (rule continuous_on_subset [OF field_cont])
    using twoCisTypeI(1) twoCisTypeI(3) by auto
  have "g2 a  g1 a" using twoCisTypeI(1) twoCisTypeI(2) by auto
  then have "(λx. g2 a + (g1 a - g2 a) * x) ` {(0::real)..1} = {g2 a .. g1 a}"
    using add_scale_img'[of "g2 a" "g1 a"] by blast
  then have left_eq: "?D_left_edge = ?left_edge ` {0..1}"
    unfolding twoCisTypeI(10)
    by(auto simp add: subset_iff image_def set_eq_iff Semiring_Normalization.comm_semiring_1_class.semiring_normalization_rules(7))
  then have cont_on_left: "continuous_on (path_image ?left_edge) F"
    using field_cont_on_left_edge_image path_image_def
    by (metis left_eq field_cont_on_left_edge_image path_image_def)
  let ?D_right_edge =  "{p. y. y  cbox (g2 b) (g1 b)  p = (b, y)}"
  have field_cont_on_left_edge_image: "continuous_on ?D_right_edge F"
    apply (rule continuous_on_subset [OF field_cont])
    using twoCisTypeI(1) twoCisTypeI(3) by auto
  have "g2 b  g1 b" using twoCisTypeI(1)  twoCisTypeI(2) by auto
  then have "(λx. g2 b + (g1 b - g2 b) * x) ` {(0::real)..1} = {g2 b .. g1 b}"
    using add_scale_img'[of "g2 b" "g1 b"] by blast
  then have right_eq: "?D_right_edge = ?right_edge ` {0..1}"
    unfolding twoCisTypeI(8) 
    by(auto simp add: subset_iff image_def set_eq_iff Semiring_Normalization.comm_semiring_1_class.semiring_normalization_rules(7))
  then have cont_on_right:
    "continuous_on (path_image ?right_edge) F"
    using field_cont_on_left_edge_image path_image_def
    by (metis right_eq field_cont_on_left_edge_image path_image_def)
  have all_edge_cases:
    "(γ = ?bottom_edge  γ = ?right_edge  γ = ?top_edge  γ = ?left_edge)"
    using assms by (auto simp add: boundary_def horizontal_boundary_def vertical_boundary_def)
  show ?thesis
    apply (simp add: path_image_def[symmetric])
    using cont_on_top cont_on_bot cont_on_right cont_on_left all_edge_cases
    by blast
qed

lemma typeII_cube_explicit_spec:
  assumes "typeII_twoCube twoC"
  shows "a b g1 g2. a < b  (x  {a .. b}. g2 x  g1 x) 
                     cubeImage twoC = {(y, x). x  {a..b}  y  {g2 x .. g1 x}}
                   twoC = (λ(y, x). ((1 - y) * g2 ((1 - x) * a + x * b) + y * g1 ((1 - x) * a + x * b), (1 - x) * a + x * b))
                   g1 piecewise_C1_differentiable_on {a .. b}  g2 piecewise_C1_differentiable_on {a .. b}
                   (λx. twoC(0, x)) = (λx. (g2 (a + (b - a) * x), a + (b - a) * x))
                   (λy. twoC(y, 1)) = (λx. (g2 b + x *R (g1 b - g2 b), b))
                   (λx. twoC(1, x)) = (λx. (g1 (a + (b - a) * x), a + (b - a) * x))
                   (λy. twoC(y, 0)) = (λx. (g2 a + x *R (g1 a - g2 a), a))"
proof -
  let ?bottom_edge = "(λx. twoC(0, x))"
  let ?right_edge = "(λy. twoC(y, 1))"
  let ?top_edge = "(λx. twoC(1, x))"
  let ?left_edge = "(λy. twoC(y, 0))"
  obtain a b g1 g2 where
    twoCisTypeII: "a < b"
    "(x  cbox a b. g2 x  g1 x)"
    "cubeImage twoC = {(y, x). x  cbox a b  y  cbox (g2 x) (g1 x)}"
    "twoC = (λ(y, x). ((1 - y) * g2 ((1 - x) * a + x * b) + y * g1 ((1 - x) * a + x * b), (1 - x) * a + x * b))"
    "g1 piecewise_C1_differentiable_on {a .. b}"
    "g2 piecewise_C1_differentiable_on {a .. b}"
    using assms and typeII_twoCubeImg[of"twoC"] by auto
  have bottom_edge_explicit: "?bottom_edge = (λx. (g2 (a + (b - a) * x), a + (b - a) * x))"
    by (simp add: twoCisTypeII(4) algebra_simps)
  have right_edge_explicit: "?right_edge = (λx. (g2 b + x *R (g1 b - g2 b), b))"
    by (simp add: twoCisTypeII(4) algebra_simps)
  have top_edge_explicit: "?top_edge = (λx. (g1 (a + (b - a) * x), a + (b - a) * x))"
    by (simp add: twoCisTypeII(4) algebra_simps)
  have left_edge_explicit: "?left_edge = (λx. (g2 a + x *R (g1 a - g2 a), a))"
    by (simp add: twoCisTypeII(4) algebra_simps)
  show ?thesis
    using bottom_edge_explicit right_edge_explicit top_edge_explicit left_edge_explicit twoCisTypeII
    by auto
qed

lemma typeII_twoCube_smooth_edges:
  assumes "typeII_twoCube twoC" "(k,γ)  boundary twoC"
  shows "γ piecewise_C1_differentiable_on {0..1}"
proof -
  let ?bottom_edge = "(λx. twoC(0, x))"
  let ?right_edge = "(λy. twoC(y, 1))"
  let ?top_edge = "(λx. twoC(1, x))"
  let ?left_edge = "(λy. twoC(y, 0))"
  obtain a b g1 g2 where
    twoCisTypeII: "a < b"
    "(x  cbox a b. g2 x  g1 x)"
    "cubeImage twoC = {(y, x). x  cbox a b  y  cbox (g2 x) (g1 x)}"
    "twoC = (λ(y, x). ((1 - y) * g2 ((1 - x) * a + x * b) + y * g1 ((1 - x) * a + x * b), (1 - x) * a + x * b))"
    "g1 piecewise_C1_differentiable_on {a .. b}"
    "g2 piecewise_C1_differentiable_on {a .. b}"
    "(λx. twoC(0, x)) = (λx. (g2 (a + (b - a) * x), a + (b - a) * x))"
    "(λy. twoC(y, 1)) = (λx. (g2 b + x *R (g1 b - g2 b), b))"
    "(λx. twoC(1, x)) = (λx. (g1 (a + (b - a) * x), a + (b - a) * x))"
    "(λy. twoC(y, 0)) = (λx. (g2 a + x *R (g1 a - g2 a), a))"
    using assms and typeII_cube_explicit_spec[of"twoC"]
    by auto
  have bottom_edge_smooth: "?bottom_edge piecewise_C1_differentiable_on {0..1}"
  proof -
    have "x. (λx. (a + (b - a) * x)) -` {x} = {(x - a)/(b -a)}"
      using twoCisTypeII(1)  by auto
    then have finite_vimg: "x. finite({0..1}  (λx. (a + (b - a) * x))-` {x})" by auto
    have scale_shif_pw_smth: "(λx. (a + (b - a) * x)) piecewise_C1_differentiable_on {0..1}" 
      using scale_shift_smooth C1_differentiable_imp_piecewise by blast
    have g2_smooth: "g2 piecewise_C1_differentiable_on (λx. a + (b - a) * x) ` {0..1}" using add_scale_img[OF twoCisTypeII(1)] twoCisTypeII(6) by auto
    have "(λx. g2 (a + (b - a) * x)) piecewise_C1_differentiable_on {0..1}"
      using piecewise_C1_differentiable_compose[OF scale_shif_pw_smth g2_smooth finite_vimg]
      by (auto simp add: o_def)
    then have "(λx::real. (g2 (a + (b - a) * x), a + (b - a) * x)) piecewise_C1_differentiable_on {0..1}"
      using all_components_smooth_one_pw_smooth_is_pw_smooth[where f = "(λx::real. (g2 (a + (b - a) * x), a + (b - a) * x))"]
      by (fastforce simp add: real_pair_basis)
    then show ?thesis using twoCisTypeII(7) by auto
  qed
  have top_edge_smooth: "?top_edge piecewise_C1_differentiable_on {0..1}"
  proof -
    have "x. (λx. (a + (b - a) * x))-` {x} = {(x - a)/(b -a)}"
      using twoCisTypeII(1) by auto
    then have finite_vimg: "x. finite({0..1}  (λx. (a + (b - a) * x))-` {x})" by auto
    have scale_shif_pw_smth: "(λx. (a + (b - a) * x)) piecewise_C1_differentiable_on {0..1}" 
      using scale_shift_smooth C1_differentiable_imp_piecewise by blast
    have g1_smooth: "g1 piecewise_C1_differentiable_on (λx. a + (b - a) * x) ` {0..1}" using add_scale_img[OF twoCisTypeII(1)] twoCisTypeII(5) by auto
    have "(λx. g1 (a + (b - a) * x)) piecewise_C1_differentiable_on {0..1}"
      using piecewise_C1_differentiable_compose[OF scale_shif_pw_smth g1_smooth finite_vimg]
      by (auto simp add: o_def)
    then have "(λx::real. (g1 (a + (b - a) * x), a + (b - a) * x)) piecewise_C1_differentiable_on {0..1}"
      using all_components_smooth_one_pw_smooth_is_pw_smooth[where f = "(λx::real. (g1 (a + (b - a) * x), a + (b - a) * x))"]
      by (fastforce simp add: real_pair_basis)
    then show ?thesis using twoCisTypeII(9) by auto
  qed
  have right_edge_smooth: "?right_edge piecewise_C1_differentiable_on {0..1}"
  proof -
    have "(λx. (g2 b + x *R (g1 b - g2 b))) piecewise_C1_differentiable_on {0..1}"
      by (simp add: C1_differentiable_imp_piecewise)
    then have "(λx. (g2 b + x *R (g1 b - g2 b), b)) piecewise_C1_differentiable_on {0..1}"
      using all_components_smooth_one_pw_smooth_is_pw_smooth[of "(1,0)" "(λx. (g2 b + x *R (g1 b - g2 b), b))"]
      by (auto simp add: real_pair_basis)
    then show ?thesis
      using twoCisTypeII(8) by auto
  qed
  have left_edge_smooth: "?left_edge piecewise_C1_differentiable_on {0..1}"
  proof -
    have 0: "(λx. (g2 a + x *R (g1 a - g2 a))) C1_differentiable_on {0..1}"
      using C1_differentiable_imp_piecewise by fastforce
    have "(λx. (g2 a + x *R (g1 a - g2 a), a)) piecewise_C1_differentiable_on {0..1}"
      using C1_differentiable_imp_piecewise[OF C1_differentiable_on_pair[OF 0 C1_differentiable_on_const[of "a" "{0..1}"]]]
      by force
    then show ?thesis
      using twoCisTypeII(10) by auto
  qed
  have "γ = ?bottom_edge  γ = ?right_edge  γ = ?top_edge  γ = ?left_edge"
    using assms by (auto simp add: boundary_def horizontal_boundary_def vertical_boundary_def)
  then show ?thesis
    using left_edge_smooth right_edge_smooth top_edge_smooth bottom_edge_smooth by auto
qed

lemma field_cont_on_typeII_region_cont_on_edges:
  assumes typeII_twoC:
    "typeII_twoCube twoC" and
    field_cont:
    "continuous_on (cubeImage twoC) F" and
    member_of_boundary:
    "(k,γ)  boundary twoC"
  shows "continuous_on (γ ` {0 .. 1}) F"
proof -
  obtain a b g1 g2 where
    twoCisTypeII: "a < b"
    "(x  cbox a b. g2 x  g1 x)"
    "cubeImage twoC = {(y, x). x  cbox a b  y  cbox (g2 x) (g1 x)}"
    "twoC = (λ(y, x). ((1 - y) * g2 ((1 - x) * a + x * b) + y * g1 ((1 - x) * a + x * b), (1 - x) * a + x * b))"
    "g1 piecewise_C1_differentiable_on {a .. b}"
    "g2 piecewise_C1_differentiable_on {a .. b}"
    "(λx. twoC(0, x)) = (λx. (g2 (a + (b - a) * x), a + (b - a) * x))"
    "(λy. twoC(y, 1)) = (λx. (g2 b + x *R (g1 b - g2 b), b))"
    "(λx. twoC(1, x)) = (λx. (g1 (a + (b - a) * x), a + (b - a) * x))"
    "(λy. twoC(y, 0)) = (λx. (g2 a + x *R (g1 a - g2 a), a))"
    using typeII_twoC and typeII_cube_explicit_spec[of"twoC"]
    by auto
  let ?bottom_edge = "(λx. twoC(0, x))"
  let ?right_edge = "(λy. twoC(y, 1))"
  let ?top_edge = "(λx. twoC(1, x))"
  let ?left_edge = "(λy. twoC(y, 0))"
  let ?Dg1 =  "{p. x. x  cbox a b  p = (g1(x), x)}"
  have line_is_pair_img: "?Dg1 = (λx. (g1(x), x)) ` (cbox a b)"
    using image_def by auto
  have field_cont_on_top_edge_image: "continuous_on ?Dg1 F"
    by (rule continuous_on_subset [OF field_cont]) (auto simp: twoCisTypeII(2) twoCisTypeII(3))
  have top_edge_is_compos_of_scal_and_g1:
    "(λx. twoC(1, x)) = (λx. (g1(x), x))  (λx. a + (b - a) * x)"
    using twoCisTypeII by auto
  have Dg1_is_bot_edge_pathimg:
    "path_image (λx. twoC(1, x)) = ?Dg1"
    using line_is_pair_img and top_edge_is_compos_of_scal_and_g1 image_comp path_image_def add_scale_img and twoCisTypeII(1)
    by (metis (no_types, lifting) cbox_interval)
  then have cont_on_top: "continuous_on (path_image ?top_edge) F"
    using field_cont_on_top_edge_image by auto
  let ?Dg2 =  "{p. x. x  cbox a b  p = (g2(x), x)}"
  have line_is_pair_img: "?Dg2 = (λx. (g2(x), x)) ` (cbox a b)"
    using image_def by auto
  have field_cont_on_bot_edge_image: "continuous_on ?Dg2 F"
    by (rule continuous_on_subset [OF field_cont]) (auto simp add: twoCisTypeII(2) twoCisTypeII(3))
  have bot_edge_is_compos_of_scal_and_g2:
    "(λx. twoC(0, x)) = (λx. (g2(x), x))  (λx. a + (b - a) * x)"
    using twoCisTypeII by auto
  have Dg2_is_bot_edge_pathimg: "path_image (λx. twoC(0, x)) = ?Dg2"
    unfolding path_image_def
    using line_is_pair_img and bot_edge_is_compos_of_scal_and_g2 image_comp  add_scale_img [OF a < b]
    by (metis (no_types, lifting) box_real(2))
  then have cont_on_bot: "continuous_on (path_image ?bottom_edge) F"
    using field_cont_on_bot_edge_image
    by auto
  let ?D_left_edge =  "{p. y. y  cbox (g2 a) (g1 a)  p = (y, a)}"
  have field_cont_on_left_edge_image: "continuous_on ?D_left_edge F"
    apply (rule continuous_on_subset [OF field_cont])
    using twoCisTypeII(1) twoCisTypeII(3) by auto
  have "g2 a  g1 a" using twoCisTypeII(1) twoCisTypeII(2) by auto
  then have "(λx. g2 a + x * (g1 a - g2 a)) ` {(0::real)..1} = {g2 a .. g1 a}"
    using add_scale_img'[of "g2 a" "g1 a"] by (auto simp add: ac_simps)
  with g2 a  g1 a have left_eq: "?D_left_edge = ?left_edge ` {0..1}"
    by (simp only: twoCisTypeII(10)) auto
  then have cont_on_left: "continuous_on (path_image ?left_edge) F"
    using field_cont_on_left_edge_image path_image_def
    by (metis left_eq field_cont_on_left_edge_image path_image_def)
  let ?D_right_edge = "{p. y. y  cbox (g2 b) (g1 b)  p = (y, b)}"
  have field_cont_on_left_edge_image: "continuous_on ?D_right_edge F"
    apply (rule continuous_on_subset [OF field_cont])
    using twoCisTypeII(1) twoCisTypeII(3) by auto
  have "g2 b  g1 b" using twoCisTypeII(1) twoCisTypeII(2) by auto
  then have "(λx. g2 b + x * (g1 b - g2 b)) ` {(0::real)..1} = {g2 b .. g1 b}"
    using add_scale_img'[of "g2 b" "g1 b"] by (auto simp add: ac_simps)
  with g2 b  g1 b have right_eq: "?D_right_edge = ?right_edge ` {0..1}"
    by (simp only: twoCisTypeII(8)) auto
  then have cont_on_right:
    "continuous_on (path_image ?right_edge) F"
    using field_cont_on_left_edge_image path_image_def
    by (metis right_eq field_cont_on_left_edge_image path_image_def)
  have all_edge_cases:
    "(γ = ?bottom_edge  γ = ?right_edge  γ = ?top_edge  γ = ?left_edge)"
    using assms unfolding boundary_def horizontal_boundary_def vertical_boundary_def by blast
  show ?thesis
    apply (simp add: path_image_def[symmetric])
    using cont_on_top cont_on_bot cont_on_right cont_on_left all_edge_cases
    by blast
qed

lemma two_cube_boundary_is_boundary: "boundary_chain (boundary C)"
  by (auto simp add: boundary_chain_def boundary_def horizontal_boundary_def vertical_boundary_def)

lemma common_boundary_subdiv_exists_refl:
  assumes "(k,γ)boundary twoC. valid_path γ"
  shows "common_boundary_sudivision_exists (boundary twoC) (boundary twoC)"
  using assms chain_subdiv_chain_refl common_boundary_sudivision_exists_def two_cube_boundary_is_boundary by blast

lemma common_boundary_subdiv_exists_refl':
  assumes "(k,γ)C. valid_path γ"
    "boundary_chain (C::(int × (real  real × real)) set)"
  shows "common_boundary_sudivision_exists (C) (C)"
  using assms chain_subdiv_chain_refl common_boundary_sudivision_exists_def by blast

lemma gen_common_boundary_subdiv_exists_refl_twochain_boundary:
  assumes "(k,γ)C. valid_path γ"
    "boundary_chain (C::(int × (real  real × real)) set)"
  shows "common_sudiv_exists (C) (C)"
  using assms chain_subdiv_chain_refl common_boundary_sudivision_exists_def common_subdiv_imp_gen_common_subdiv by blast

lemma two_chain_boundary_is_boundary_chain:
  shows "boundary_chain (two_chain_boundary twoChain)"
  by (simp add: boundary_chain_def two_chain_boundary_def boundary_def horizontal_boundary_def vertical_boundary_def)

lemma typeI_edges_are_valid_paths:
  assumes "typeI_twoCube twoC" "(k,γ)  boundary twoC"
  shows "valid_path γ"
  using typeI_twoCube_smooth_edges[OF assms] C1_differentiable_imp_piecewise
  by (auto simp: valid_path_def)

lemma typeII_edges_are_valid_paths:
  assumes "typeII_twoCube twoC" "(k,γ)  boundary twoC"
  shows "valid_path γ"
  using typeII_twoCube_smooth_edges[OF assms] C1_differentiable_imp_piecewise
  by (auto simp: valid_path_def)

lemma finite_two_chain_vertical_boundary:
  assumes "finite two_chain"
  shows "finite (two_chain_vertical_boundary two_chain)"
  using assms  by (simp add: two_chain_vertical_boundary_def vertical_boundary_def)

lemma finite_two_chain_horizontal_boundary:
  assumes "finite two_chain"
  shows "finite (two_chain_horizontal_boundary two_chain)"
  using assms  by (simp add: two_chain_horizontal_boundary_def horizontal_boundary_def)

locale R2 =
  fixes i j
  assumes i_is_x_axis: "i = (1::real,0::real)" and
    j_is_y_axis: "j = (0::real, 1::real)"
begin

lemma analytically_valid_y:
  assumes "analytically_valid s F i"
  shows "(λx. integral UNIV (λy. (partial_vector_derivative F i) (y, x) * (indicator s (y, x))))  borel_measurable lborel"
proof -
  have "{(1::real, 0::real), (0, 1)} - {(1, 0)} = {(0::real,1::real)}"
    by force
  with assms show ?thesis
    using assms  by(simp add: real_pair_basis analytically_valid_def i_is_x_axis j_is_y_axis)
qed

lemma analytically_valid_x:
  assumes "analytically_valid s F j"
  shows "(λx. integral UNIV (λy. ((partial_vector_derivative F j) (x, y)) * (indicator s (x, y))))  borel_measurable lborel"
proof -
  have "{(1::real, 0::real), (0, 1)} - {(0, 1)} = {(1::real, 0::real)}"
    by force
  with assms show ?thesis
    by(simp add: real_pair_basis analytically_valid_def i_is_x_axis j_is_y_axis)
qed

lemma Greens_thm_type_I:
  fixes F:: "((real*real)  (real * real))" and
    gamma1 gamma2 gamma3 gamma4 :: "(real  (real * real))" and
    a:: "real" and b:: "real" and
    g1:: "(real  real)" and g2:: "(real  real)"
  assumes Dy_def: "Dy_pair = {(x::real,y) . x  cbox a b  y  cbox (g2 x) (g1 x)}" and
    gamma1_def: "gamma1 = (λx. (a + (b - a) * x, g2(a + (b - a) * x)))" and
    gamma1_smooth: "gamma1 piecewise_C1_differentiable_on {0..1}" and (*TODO: This should be piecewise smooth*)
    gamma2_def: "gamma2 = (λx. (b, g2(b) + x  *R (g1(b) - g2(b))))" and
    gamma3_def: "gamma3 = (λx. (a + (b - a) * x, g1(a + (b - a) * x)))" and
    gamma3_smooth: "gamma3 piecewise_C1_differentiable_on {0..1}" and
    gamma4_def: "gamma4 = (λx. (a,  g2(a) + x *R (g1(a) - g2(a))))" and
    F_i_analytically_valid: "analytically_valid Dy_pair (λp. F(p)  i) j" and
    g2_leq_g1: "x  cbox a b. (g2 x)  (g1 x)" and (*This is needed otherwise what would Dy be?*)
    a_lt_b: "a < b"
  shows "(line_integral F {i} gamma1) +
         (line_integral F {i} gamma2) -
         (line_integral F {i} gamma3) -
         (line_integral F {i} gamma4)
                 = (integral Dy_pair (λa. - (partial_vector_derivative (λp. F(p)  i) j a)))"
    "line_integral_exists F {i} gamma4"
    "line_integral_exists F {i} gamma3"
    "line_integral_exists F {i} gamma2"
    "line_integral_exists F {i} gamma1"
proof -
  let ?F_b' = "partial_vector_derivative (λa. (F a)  i)  j"
  have F_first_is_continuous: "continuous_on Dy_pair (λa. F(a)  i)"
    using F_i_analytically_valid
    by (auto simp add: analytically_valid_def)
  let ?f = "(λx. if x  (Dy_pair) then (partial_vector_derivative (λa. (F a)  i)  j) x else 0)"
  have f_lesbegue_integrable: "integrable lborel ?f"
    using F_i_analytically_valid
    by (auto simp add: analytically_valid_def indic_ident)
  have partially_vec_diff: "a  Dy_pair. partially_vector_differentiable (λa. (F a)  i) j a"
    using F_i_analytically_valid
    by (auto simp add: analytically_valid_def indicator_def)
  have x_axis_integral_measurable: "(λx. integral UNIV (λy. ?f(x, y)))  borel_measurable lborel"
  proof -
    have "(λp. (?F_b' p) * indicator (Dy_pair) p) = (λx. if x  (Dy_pair) then (?F_b') x else 0)"
      using indic_ident[of "?F_b'"] by auto
    then have "x y. ?F_b' (x,y) * indicator (Dy_pair) (x,y) = (λx. if x  (Dy_pair) then (?F_b') x else 0) (x,y)"
      by auto
    then show ?thesis
      using analytically_valid_x[OF F_i_analytically_valid]
      by (auto simp add: indicator_def)
  qed
  have F_partially_differentiable: "aDy_pair. has_partial_vector_derivative (λx. (F x)  i) j (?F_b' a) a"
    using partial_vector_derivative_works partially_vec_diff
    by fastforce
  have g1_g2_continuous: "continuous_on (cbox a b) g1"
    "continuous_on (cbox a b) g2"
  proof -
    have shift_scale_cont: "continuous_on {a..b} (λx. (x - a)*(1/(b-a)))"
      by (intro continuous_intros)
    have shift_scale_inv: "(λx. a + (b - a) * x)  (λx. (x - a)*(1/(b-a))) = id"
      using a_lt_b by (auto simp add: o_def)
    have img_shift_scale: "(λx. (x - a)*(1/(b-a)))`{a..b} = {0..