Theory Frequency_Moment_0

section ‹Frequency Moment $0$\label{sec:f0}›

theory Frequency_Moment_0
  imports
    Frequency_Moments_Preliminary_Results
    Median_Method.Median 
    K_Smallest 
    Universal_Hash_Families.Carter_Wegman_Hash_Family
    Frequency_Moments
    Landau_Ext 
    Product_PMF_Ext
    Universal_Hash_Families.Universal_Hash_Families_More_Finite_Fields
begin

text ‹This section contains a formalization of a new algorithm for the zero-th frequency moment
inspired by ideas described in cite"baryossef2002".
It is a KMV-type ($k$-minimum value) algorithm with a rounding method and matches the space complexity 
of the best algorithm described in cite"baryossef2002".

In addition to the Isabelle proof here, there is also an informal hand-written proof in
Appendix~\ref{sec:f0_proof}.›

type_synonym f0_state = "nat × nat × nat × nat × (nat  nat list) × (nat  float set)"

definition hash where "hash p = ring.hash (mod_ring p)"

fun f0_init :: "rat  rat  nat  f0_state pmf" where
  "f0_init δ ε n =
    do {
      let s = nat -18 * ln (real_of_rat ε);
      let t = nat 80 / (real_of_rat δ)2;
      let p = prime_above (max n 19);
      let r = nat (4 * log 2 (1 / real_of_rat δ) + 23); 
      h  prod_pmf {..<s} (λ_. pmf_of_set (bounded_degree_polynomials (mod_ring p) 2));
      return_pmf (s, t, p, r, h, (λ_  {0..<s}. {}))
    }"

fun f0_update :: "nat  f0_state  f0_state pmf" where
  "f0_update x (s, t, p, r, h, sketch) = 
    return_pmf (s, t, p, r, h, λi  {..<s}.
      least t (insert (float_of (truncate_down r (hash p x (h i)))) (sketch i)))"

fun f0_result :: "f0_state  rat pmf" where
  "f0_result (s, t, p, r, h, sketch) = return_pmf (median s (λi  {..<s}.
      (if card (sketch i) < t then of_nat (card (sketch i)) else
        rat_of_nat t* rat_of_nat p / rat_of_float (Max (sketch i)))
    ))"

fun f0_space_usage :: "(nat × rat × rat)  real" where
  "f0_space_usage (n, ε, δ) = (
    let s = nat -18 * ln (real_of_rat ε) in 
    let r = nat (4 * log 2 (1 / real_of_rat δ) + 23) in
    let t = nat 80 / (real_of_rat δ)2  in
    6 +
    2 * log 2 (real s + 1) +
    2 * log 2 (real t + 1) +
    2 * log 2 (real n + 21) +
    2 * log 2 (real r + 1) +
    real s * (5 + 2 * log 2 (21 + real n) +
    real t * (13 + 4 * r + 2 * log 2 (log 2 (real n + 13)))))"

definition encode_f0_state :: "f0_state  bool list option" where
  "encode_f0_state = 
    Ne e (λs. 
    Ne ×e (
    Ne e (λp. 
    Ne ×e ( 
    ([0..<s] e (Pe p 2)) ×e
    ([0..<s] e (Se Fe))))))"

lemma "inj_on encode_f0_state (dom encode_f0_state)"
proof -
  have "is_encoding encode_f0_state" 
    unfolding encode_f0_state_def
    by (intro dependent_encoding exp_golomb_encoding poly_encoding fun_encoding set_encoding float_encoding)
  thus ?thesis  by (rule encoding_imp_inj)
qed

context
  fixes ε δ :: rat
  fixes n :: nat
  fixes as :: "nat list"
  fixes result
  assumes ε_range: "ε  {0<..<1}"
  assumes δ_range: "δ  {0<..<1}"
  assumes as_range: "set as  {..<n}"
  defines "result  fold (λa state. state  f0_update a) as (f0_init δ ε n)  f0_result"
begin  

private definition t where "t = nat 80 / (real_of_rat δ)2"
private lemma t_gt_0: "t > 0" using δ_range by (simp add:t_def)

private definition s where "s = nat -(18 * ln (real_of_rat ε))"
private lemma s_gt_0: "s > 0" using ε_range by (simp add:s_def)

private definition p where "p = prime_above (max n 19)"

private lemma p_prime:"Factorial_Ring.prime p"
  using p_def prime_above_prime by presburger

private lemma p_ge_18: "p  18"
proof -
  have "p  19" 
    by (metis p_def prime_above_lower_bound max.bounded_iff)
  thus ?thesis by simp
qed

private lemma p_gt_0: "p > 0" using p_ge_18 by simp
private lemma p_gt_1: "p > 1" using p_ge_18 by simp

private lemma n_le_p: "n  p"
proof -
  have "n  max n 19" by simp
  also have "...  p"
    unfolding p_def by (rule prime_above_lower_bound)
  finally show ?thesis by simp
qed

private lemma p_le_n: "p  2*n + 40"
proof -
  have "p  2 * (max n 19) + 2"
    by (subst p_def, rule prime_above_upper_bound)
  also have "...  2 * n + 40"
    by (cases "n  19", auto)
  finally show ?thesis by simp
qed

private lemma as_lt_p: "x. x  set as  x < p" 
  using as_range atLeastLessThan_iff
  by (intro order_less_le_trans[OF _ n_le_p]) blast

private lemma as_subset_p: "set as  {..<p}"
   using as_lt_p  by (simp add: subset_iff)

private definition r where "r = nat (4 * log 2 (1 / real_of_rat δ) + 23)"

private lemma r_bound: "4 * log 2 (1 / real_of_rat δ) + 23  r"
proof -
  have "0  log 2 (1 / real_of_rat δ)" using δ_range by simp 
  hence "0  log 2 (1 / real_of_rat δ)" by simp
  hence "0  4 * log 2 (1 / real_of_rat δ) + 23"
    by (intro add_nonneg_nonneg mult_nonneg_nonneg, auto)
  thus ?thesis by (simp add:r_def)
qed

private lemma r_ge_23: "r  23"
proof -
  have "(23::real) = 0 + 23" by simp
  also have "...  4 * log 2 (1 / real_of_rat δ) + 23" 
    using δ_range by (intro add_mono mult_nonneg_nonneg, auto) 
  also have "...  r" using r_bound by simp
  finally show "23  r" by simp
qed

private lemma two_pow_r_le_1: "0 < 1 - 2 powr - real r"
proof -
  have a: "2 powr (0::real) = 1"
    by simp
  show ?thesis using r_ge_23 
    by (simp, subst a[symmetric], intro powr_less_mono, auto)
qed

interpretation carter_wegman_hash_family "mod_ring p" 2
  rewrites "ring.hash (mod_ring p) = Frequency_Moment_0.hash p"
  using carter_wegman_hash_familyI[OF mod_ring_is_field mod_ring_finite]
  using hash_def p_prime by auto

private definition tr_hash where "tr_hash x ω = truncate_down r (hash x ω)"

private definition sketch_rv where
  "sketch_rv ω = least t ((λx. float_of (tr_hash x ω)) ` set as)"

private definition estimate 
   where "estimate S = (if card S < t then of_nat (card S) else of_nat t * of_nat p / rat_of_float (Max S))"

private definition sketch_rv' where "sketch_rv' ω = least t ((λx. tr_hash x ω) ` set as)"
private definition estimate' where "estimate' S = (if card S < t then real (card S) else real t * real p / Max S)"

private definition Ω0 where "Ω0 = prod_pmf {..<s} (λ_. pmf_of_set space)"

private lemma f0_alg_sketch:
  defines "sketch  fold (λa state. state  f0_update a) as (f0_init δ ε n)"
  shows "sketch = map_pmf (λx. (s,t,p,r, x, λi  {..<s}. sketch_rv (x i))) Ω0" 
  unfolding sketch_rv_def 
proof (subst sketch_def, induction as rule:rev_induct)
  case Nil
  then show ?case
    by (simp add:s_def p_def[symmetric] map_pmf_def t_def r_def Let_def least_def restrict_def space_def Ω0_def)
next
  case (snoc x xs)
  let ?sketch = "λω xs. least t ((λa. float_of (tr_hash a ω)) ` set xs)"
  have "fold (λa state. state  f0_update a) (xs @ [x]) (f0_init δ ε n) =
     (map_pmf (λω. (s, t, p, r, ω, λi  {..<s}. ?sketch (ω i) xs)) Ω0)  f0_update x"
    by (simp add: restrict_def snoc del:f0_init.simps)
  also have "... = Ω0  (λω. f0_update x (s, t, p, r, ω, λi{..<s}. ?sketch (ω i) xs)) "
    by (simp add:map_pmf_def bind_assoc_pmf bind_return_pmf del:f0_update.simps)
  also have "... = map_pmf (λω. (s, t, p, r, ω, λi{..<s}. ?sketch (ω i) (xs@[x]))) Ω0"
    by (simp add:least_insert map_pmf_def tr_hash_def cong:restrict_cong)
  finally show ?case by blast
qed

private lemma card_nat_in_ball:
  fixes x :: nat
  fixes q :: real
  assumes "q  0"
  defines "A  {k. abs (real x - real k)  q  k  x}"
  shows "real (card A)  2 * q" and "finite A"
proof -
  have a: "of_nat x  {real x-q..real x+q}"
    using assms 
    by (simp add: ceiling_le_iff)

  have "card A = card (int ` A)"
    by (rule card_image[symmetric], simp)
  also have "...  card ({real x-q..real x+q} - {of_nat x})"
    by (intro card_mono image_subsetI, simp_all add:A_def abs_le_iff, linarith)
  also have "... = card {real x-q..real x+q} - 1"
    by (rule card_Diff_singleton, rule a)
  also have "... = int (card {real x-q..real x+q}) - int 1"
    by (intro of_nat_diff)
     (metis a card_0_eq empty_iff finite_atLeastAtMost_int less_one linorder_not_le)
  also have "...  q+real x+1 -real x-q - 1"
    using assms by (simp, linarith)
  also have "...  2*q"
    by linarith
  finally show "card A  2 * q"
    by simp

  have "A  {..x + nat q}"
    by (rule subsetI, simp add:A_def abs_le_iff, linarith)
  thus "finite A"
    by (rule finite_subset, simp)
qed

private lemma prob_degree_lt_1:
   "prob {ω. degree ω < 1}  1/real p" 
proof -
  have "space  {ω. length ω  Suc 0} = bounded_degree_polynomials (mod_ring p) 1"
    by (auto simp:set_eq_iff bounded_degree_polynomials_def space_def)
  moreover have "field_size = p" by (simp add:mod_ring_def)
  hence "real (card (bounded_degree_polynomials (mod_ring p) (Suc 0))) / real (card space) = 1 / real p"
    by (simp add:space_def bounded_degree_polynomials_card power2_eq_square)
  ultimately show ?thesis
    by (simp add:M_def measure_pmf_of_set)
qed

private lemma collision_prob:
  assumes "c  1"
  shows "prob {ω. x  set as. y  set as. x  y  tr_hash x ω  c  tr_hash x ω = tr_hash y ω}  
    (5/2) * (real (card (set as)))2 * c2 * 2 powr -(real r) / (real p)2 + 1/real p" (is "prob {ω. ?l ω}  ?r1 + ?r2")
proof -
  define ρ :: real where "ρ = 9/8"

  have rho_c_ge_0: "ρ * c  0" unfolding ρ_def using assms by simp 

  have c_ge_0: "c0" using assms by simp
  
  have "degree ω  1  ω  space  degree ω = 1" for ω
    by (simp add:bounded_degree_polynomials_def space_def) 
     (metis One_nat_def Suc_1 le_less_Suc_eq less_imp_diff_less list.size(3) pos2)

  hence a: "ω x y. x < p  y < p   x  y  degree ω  1  ω  space   hash x ω  hash y ω" 
    using inj_onD[OF inj_if_degree_1]  mod_ring_carr by blast 

  have b: "prob {ω. degree ω  1  tr_hash x ω  c  tr_hash x ω = tr_hash y ω}  5 * c2 * 2 powr (-real r) /(real p)2"
    if b_assms: "x  set as"  "y  set as"  "x < y" for x y
  proof -
    have c: "real u  ρ * c  ¦real u - real v¦  ρ * c * 2 powr (-real r)"
      if c_assms:"truncate_down r (real u)  c" "truncate_down r (real u) = truncate_down r (real v)" for u v
    proof -
      have "9 * 2 powr - real r  9 * 2 powr (- real 23)" 
        using r_ge_23 by (intro mult_left_mono powr_mono, auto)

      also have "...  1" by simp

      finally have "9 * 2 powr - real r  1" by simp

      hence "1  ρ * (1 - 2 powr (- real r))" 
        by (simp add:ρ_def)

      hence d: "(c*1) / (1 - 2 powr (-real r))  c * ρ" 
        using assms two_pow_r_le_1 by (simp add: pos_divide_le_eq)

      have "x. truncate_down r (real x)  c  real x * (1 - 2 powr - real r)  c * 1" 
        using  truncate_down_pos[OF of_nat_0_le_iff] order_trans by (simp, blast)

      hence "x. truncate_down r (real x)   c   real x  c * ρ"
        using two_pow_r_le_1 by (intro order_trans[OF _ d], simp add: pos_le_divide_eq) 

      hence e: "real u  c * ρ" "real v  c * ρ" 
        using c_assms by auto

      have " ¦real u - real v¦  (max ¦real u¦ ¦real v¦) * 2 powr (-real r)"
        using c_assms by (intro truncate_down_eq, simp)

      also have "...  (c * ρ) * 2 powr (-real r)"
        using e by (intro mult_right_mono, auto)

      finally have "¦real u - real v¦  ρ * c * 2 powr (-real r)"
        by (simp add:algebra_simps)

      thus ?thesis using e by (simp add:algebra_simps)
    qed

    have "prob {ω. degree ω  1  tr_hash x ω  c  tr_hash x ω = tr_hash y ω} 
      prob ( i  {(u,v)  {..<p} × {..<p}. u  v  truncate_down r u  c  truncate_down r u = truncate_down r v}.
      {ω.  hash x ω = fst i  hash y ω = snd i})"
      using a by (intro pmf_mono[OF M_def], simp add:tr_hash_def) 
       (metis hash_range mod_ring_carr b_assms as_subset_p lessThan_iff nat_neq_iff subset_eq) 

    also have "...  ( i {(u,v)  {..<p} × {..<p}. u  v 
      truncate_down r u  c  truncate_down r u = truncate_down r v}. 
      prob {ω. hash x ω = fst i  hash  y ω = snd i})"
      by (intro measure_UNION_le finite_cartesian_product finite_subset[where B="{0..<p} × {0..<p}"])
       (auto simp add:M_def)

    also have "...  ( i {(u,v)  {..<p} × {..<p}. u  v 
      truncate_down r u  c  truncate_down r u = truncate_down r v}. 
      prob {ω. (u  {x,y}. hash u ω = (if u = x then (fst i) else (snd i)))})" 
      by (intro sum_mono  pmf_mono[OF M_def]) force

    also have "...  ( i {(u,v)  {..<p} × {..<p}. u  v 
      truncate_down r u  c  truncate_down r u = truncate_down r v}. 1/(real p)2)"
      using assms as_subset_p b_assms
      by (intro sum_mono, subst hash_prob)  (auto simp add: mod_ring_def power2_eq_square)

    also have "... = 1/(real p)2 * 
      card {(u,v)  {0..<p} × {0..<p}. u  v  truncate_down r u  c  truncate_down r u = truncate_down r v}"
      by simp

    also have "...  1/(real p)2 * 
      card {(u,v)  {..<p} × {..<p}. u  v  real u  ρ * c  abs (real u - real v)  ρ * c * 2 powr (-real r)}"
      using c
      by (intro mult_mono of_nat_mono card_mono finite_cartesian_product finite_subset[where B="{..<p}×{..<p}"])
        auto

    also have "...  1/(real p)2 * card (u'  {u. u < p  real u  ρ * c}.
        {(u::nat,v::nat). u = u'  abs (real u - real v)  ρ * c * 2 powr (-real r)  v < p  v  u'})"
      by (intro mult_left_mono of_nat_mono card_mono finite_cartesian_product finite_subset[where B="{..<p}×{..<p}"])
       auto

    also have "...  1/(real p)2 * ( u'  {u. u < p  real u  ρ * c}.
      card  {(u,v). u = u'  abs (real u - real v)  ρ * c * 2 powr (-real r)  v < p  v  u'})"
      by (intro mult_left_mono of_nat_mono card_UN_le, auto)

    also have "... = 1/(real p)2 * ( u'  {u. u < p   real u  ρ * c}.
      card ((λx. (u' ,x)) ` {v. abs (real u' - real v)  ρ * c * 2 powr (-real r)  v < p  v  u'}))"
      by (intro arg_cong2[where f="(*)"] arg_cong[where f="real"] sum.cong arg_cong[where f="card"])
       (auto simp add:set_eq_iff)

    also have "...  1/(real p)2 * ( u'  {u. u < p  real u  ρ * c}.
      card {v. abs (real u' - real v)  ρ * c * 2 powr (-real r)  v < p  v  u'})"
      by (intro mult_left_mono of_nat_mono sum_mono card_image_le, auto)

    also have "...  1/(real p)2 * ( u'  {u. u < p  real u  ρ * c}.
      card {v. abs (real u' - real v)  ρ * c * 2 powr (-real r)  v  u'})"
      by (intro mult_left_mono sum_mono of_nat_mono card_mono card_nat_in_ball subsetI)  auto

    also have "...  1/(real p)2 * ( u'  {u. u < p  real u  ρ * c}.
      real (card {v. abs (real u' - real v)  ρ * c * 2 powr (-real r)  v  u'}))"
      by simp

    also have "...  1/(real p)2 * ( u'  {u. u < p  real u  ρ * c}. 2 * (ρ * c * 2 powr (-real r)))"
      by (intro mult_left_mono sum_mono card_nat_in_ball(1), auto)

    also have "... =  1/(real p)2 * (real (card {u. u < p  real u  ρ * c}) * (2 * (ρ * c * 2 powr (-real r))))"
      by simp

    also have "...   1/(real p)2 * (real (card {u. u  nat (ρ * c )}) * (2 * (ρ * c * 2 powr (-real r))))"
      using rho_c_ge_0 le_nat_floor
      by (intro mult_left_mono mult_right_mono of_nat_mono card_mono subsetI) auto

    also have "...   1/(real p)2 * ((1+ρ * c) * (2 * (ρ * c * 2 powr (-real r))))"
      using rho_c_ge_0 by (intro mult_left_mono mult_right_mono, auto)

    also have "...   1/(real p)2 * (((1+ρ) * c) * (2 * (ρ * c * 2 powr (-real r))))" 
      using assms by (intro mult_mono, auto simp add:distrib_left distrib_right ρ_def)

    also have "... = (ρ * (2 + ρ * 2)) * c2 * 2 powr (-real r) /(real p)2"
      by (simp add:ac_simps power2_eq_square) 

    also have "...  5 * c2 *  2 powr (-real r) /(real p)2"
      by (intro divide_right_mono mult_right_mono) (auto simp add:ρ_def)

    finally show ?thesis by simp
  qed

  have "prob {ω. ?l ω  degree ω  1}  
    prob ( i  {(x,y)  (set as) × (set as). x < y}. {ω. degree ω  1  tr_hash (fst i) ω  c 
    tr_hash (fst i) ω = tr_hash (snd i) ω})"
    by (rule pmf_mono[OF M_def], simp, metis linorder_neqE_nat)

  also have "...  ( i  {(x,y)  (set as) × (set as). x < y}. prob 
    {ω. degree ω  1  tr_hash  (fst i) ω  c  tr_hash (fst i) ω = tr_hash (snd i) ω})"
    unfolding M_def
    by (intro measure_UNION_le finite_cartesian_product finite_subset[where B="(set as) × (set as)"])
      auto

  also have "...  ( i  {(x,y)  (set as) × (set as). x < y}. 5  * c2 * 2 powr (-real r) /(real p)2)"
    using b by (intro sum_mono, simp add:case_prod_beta)

  also have "... =  ((5/2) * c2  * 2 powr (-real r) /(real p)2) * (2 * card  {(x,y)  (set as) × (set as). x < y})"
    by simp

  also have "... =  ((5/2) * c2  * 2 powr (-real r) /(real p)2) * (card (set as) * (card (set as) - 1))"
    by (subst card_ordered_pairs, auto) 

  also have "...  ((5/2) * c2 * 2 powr (-real r) /(real p)2) * (real (card (set as)))2"
    by (intro mult_left_mono) (auto simp add:power2_eq_square mult_left_mono)

  also have "... = (5/2) * (real (card (set as)))2 * c2 * 2 powr (-real r) /(real p)2"
    by (simp add:algebra_simps)

  finally have f:"prob {ω. ?l ω  degree ω  1}  ?r1" by simp

  have "prob {ω. ?l ω}  prob {ω. ?l ω  degree ω  1} + prob {ω. degree ω < 1}"
    by (rule pmf_add[OF M_def], auto)
  also have "...  ?r1 + ?r2"
    by (intro add_mono f prob_degree_lt_1)
  finally show ?thesis by simp
qed

private lemma of_bool_square: "(of_bool x)2 = ((of_bool x)::real)"
  by (cases x, auto)

private definition Q where "Q y ω = card {x  set as. int (hash x ω) < y}"

private definition m where "m = card (set as)"

private lemma
  assumes "a  0"
  assumes "a  int p"
  shows exp_Q: "expectation (λω. real (Q a ω)) = real m * (of_int a) / p"
  and var_Q: "variance (λω. real (Q a ω))  real m * (of_int a) / p"
proof -
  have exp_single: "expectation (λω. of_bool (int (hash x ω) < a)) = real_of_int a /real p"
    if a:"x  set as" for x
  proof -
    have x_le_p: "x < p" using a as_lt_p by simp
    have "expectation (λω. of_bool (int (hash x ω) < a)) = expectation (indicat_real {ω. int (Frequency_Moment_0.hash p x ω) < a})"
      by (intro arg_cong2[where f="integralL"] ext, simp_all)
    also have "... = prob {ω. hash x ω  {k. int k < a}}"
      by (simp add:M_def)
    also have "... = card ({k. int k < a}  {..<p}) / real p"
      by (subst prob_range, simp_all add: x_le_p mod_ring_def)
    also have "... = card {..<nat a} / real p"
      using assms by (intro arg_cong2[where f="(/)"] arg_cong[where f="real"] arg_cong[where f="card"])
       (auto simp add:set_eq_iff) 
    also have "... =  real_of_int a/real p"
      using assms by simp
    finally show "expectation (λω. of_bool (int (hash x ω) < a)) = real_of_int a /real p"
      by simp
  qed

  have "expectation(λω. real (Q a ω)) = expectation (λω. (x  set as. of_bool (int (hash x ω) < a)))"
    by (simp add:Q_def Int_def)
  also have "... =  (x  set as. expectation (λω. of_bool (int (hash x ω) < a)))"
    by (rule Bochner_Integration.integral_sum, simp)
  also have "... = ( x  set as. a /real p)"
    by (rule sum.cong, simp, subst exp_single, simp, simp)
  also have "... = real m *  real_of_int a / real p"
    by (simp add:m_def)
  finally show "expectation (λω. real (Q a ω)) = real m * real_of_int a / p" by simp

  have indep: "J  set as  card J = 2  indep_vars (λ_. borel) (λi x. of_bool (int (hash i x) < a)) J" for J
    using as_subset_p mod_ring_carr
    by (intro indep_vars_compose2[where Y="λi x. of_bool (int x < a)" and M'="λ_. discrete"]
        k_wise_indep_vars_subset[OF k_wise_indep] finite_subset[OF _ finite_set]) auto

  have rv: "x. x  set as  random_variable borel (λω. of_bool (int (hash x ω) < a))"
     by (simp add:M_def)

  have "variance (λω. real (Q a ω)) = variance (λω. (x  set as. of_bool (int (hash x ω) < a)))"
    by (simp add:Q_def Int_def)
  also have "... = (x  set as. variance (λω. of_bool (int (hash x ω) < a)))"
    by (intro var_sum_pairwise_indep_2 indep rv) auto
  also have "...  ( x  set as. a / real p)"
    by (rule sum_mono, simp add: variance_eq of_bool_square, simp add: exp_single)
  also have "... = real m * real_of_int a /real p"
    by (simp add:m_def)
  finally show "variance (λω. real (Q a ω))  real m * real_of_int a / p"
    by simp
qed

private lemma t_bound: "t  81 / (real_of_rat δ)2"
proof -
  have "t  80 / (real_of_rat δ)2 + 1" using t_def t_gt_0 by linarith
  also have "...  80 / (real_of_rat δ)2 + 1 /  (real_of_rat δ)2"
    using δ_range by (intro add_mono, simp, simp add:power_le_one)
  also have "... = 81 / (real_of_rat δ)2" by simp
  finally show ?thesis by simp
qed

private lemma t_r_bound:
  "18 * 40 * (real t)2 * 2 powr (-real r)  1"
proof -
  have "720 * (real t)2 * 2 powr (-real r)  720 * (81 / (real_of_rat δ)2)2 * 2 powr (-4 * log 2 (1 / real_of_rat δ) - 23)"
    using r_bound t_bound by (intro mult_left_mono mult_mono power_mono powr_mono, auto)

  also have "...  720 * (81 / (real_of_rat δ)2)2 * (2 powr (-4 * log 2 (1 / real_of_rat δ)) * 2 powr (-23))"
    using δ_range by (intro mult_left_mono mult_mono power_mono add_mono)
     (simp_all add:power_le_one powr_diff)

  also have "... = 720 * (812 / (real_of_rat δ)^4) * (2 powr (log 2 ((real_of_rat δ)^4))  * 2 powr (-23))"
    using δ_range by (intro arg_cong2[where f="(*)"])
      (simp_all add:power2_eq_square power4_eq_xxxx log_divide log_powr[symmetric])

  also have "... = 720 * 812 * 2 powr (-23)" using δ_range by simp

  also have "...  1" by simp

  finally show ?thesis by simp
qed

private lemma m_eq_F_0: "real m = of_rat (F 0 as)"
  by (simp add:m_def F_def)

private lemma estimate'_bounds:
  "prob {ω. of_rat δ * real_of_rat (F 0 as) < ¦estimate' (sketch_rv' ω) - of_rat (F 0 as)¦}  1/3"
proof (cases "card (set as)  t")
  case True
  define δ' where "δ' = 3 * real_of_rat δ / 4"
  define u where "u = real t * p / (m * (1+δ'))"
  define v where "v = real t * p / (m * (1-δ'))"

  define has_no_collision where 
    "has_no_collision = (λω. x set as. y  set as. (tr_hash x ω = tr_hash y ω  x = y)  tr_hash x ω > v)"

  have "2 powr (-real r)  2 powr (-(4 * log 2 (1 / real_of_rat δ) + 23))"
    using r_bound by (intro powr_mono, linarith, simp)
  also have "... = 2 powr (-4 * log 2 (1 /real_of_rat δ) -23)"
    by (rule arg_cong2[where f="(powr)"], auto simp add:algebra_simps)
  also have "...  2 powr ( -1 * log 2 (1 /real_of_rat δ) -4)"
    using δ_range by (intro powr_mono diff_mono, auto)
  also have "... = 2 powr ( -1 * log 2 (1 /real_of_rat δ)) /  16"
    by (simp add: powr_diff)
  also have "... = real_of_rat δ / 16"
    using δ_range by (simp add:log_divide)
  also have "... < real_of_rat δ / 8"
    using δ_range by (subst pos_divide_less_eq, auto)
  finally have r_le_δ: "2 powr (-real r) < real_of_rat δ / 8"
    by simp

  have δ'_gt_0: "δ' > 0" using δ_range by (simp add:δ'_def)
  have "δ' < 3/4" using δ_range by (simp add:δ'_def)+
  also have "... < 1" by simp
  finally have δ'_lt_1: "δ' < 1" by simp

  have "t  81 / (real_of_rat δ)2"
    using t_bound by simp
  also have "... = (81*9/16) / (δ')2"
    by (simp add:δ'_def power2_eq_square)
  also have "...  46 / δ'2"
    by (intro divide_right_mono, simp, simp)
  finally have t_le_δ': "t  46/ δ'2" by simp

  have "80  (real_of_rat δ)2 * (80 / (real_of_rat δ)2)" using δ_range by simp
  also have "...  (real_of_rat δ)2 * t"
    by (intro mult_left_mono, simp add:t_def of_nat_ceiling, simp)
  finally have "80  (real_of_rat δ)2 * t" by simp
  hence t_ge_δ': "45  t * δ' * δ'" by (simp add:δ'_def power2_eq_square)

  have "m  card {..<n}" unfolding m_def using as_range by (intro card_mono, auto)
  also have "...  p" using n_le_p by simp
  finally have m_le_p: "m  p" by simp

  hence t_le_m: "t  card (set as)" using True by simp
  have m_ge_0: "real m > 0" using m_def True t_gt_0 by simp

  have "v  real t * real p / (real m * (1 - δ'))" by (simp add:v_def)

  also have "...  real t * real p / (real m * (1/4))"
    using δ'_lt_1 m_ge_0 δ_range
    by (intro divide_left_mono mult_left_mono mult_nonneg_nonneg mult_pos_pos, simp_all add:δ'_def)

  finally have v_ubound: "v  4 * real t * real p / real m" by (simp add:algebra_simps)

  have a_ge_1: "u  1" using δ'_gt_0 p_gt_0 m_ge_0 t_gt_0
    by (auto intro!:mult_pos_pos divide_pos_pos simp add:u_def) 
  hence a_ge_0: "u  0" by simp
  have "real m * (1 - δ') < real m" using δ'_gt_0 m_ge_0 by simp
  also have "...  1 * real p" using m_le_p by simp
  also have "...  real t * real p" using t_gt_0 by (intro mult_right_mono, auto)
  finally have " real m * (1 - δ') < real t * real p" by simp
  hence v_gt_0: "v > 0" using mult_pos_pos m_ge_0 δ'_lt_1 by (simp add:v_def)
  hence v_ge_1: "real_of_int v  1" by linarith

  have "real t  real m" using True m_def by linarith
  also have "... < (1 + δ') * real m" using δ'_gt_0 m_ge_0 by force
  finally have a_le_p_aux: "real t < (1 + δ') * real m"  by simp

  have "u  real t * real p / (real m * (1 + δ'))+1" by (simp add:u_def)
  also have "... < real p + 1" 
    using m_ge_0 δ'_gt_0 a_le_p_aux  a_le_p_aux p_gt_0
    by (simp add: pos_divide_less_eq ac_simps) 
  finally have "u  real p" 
    by (metis int_less_real_le not_less of_int_le_iff of_int_of_nat_eq)
  hence u_le_p: "u  int p" by linarith

  have "prob {ω. Q u ω  t}  prob {ω  Sigma_Algebra.space M. abs (real (Q u ω) - 
    expectation (λω. real (Q u ω)))  3 * sqrt (m * real_of_int u / p)}"
  proof (rule pmf_mono[OF M_def])
    fix ω
    assume "ω  {ω. t  Q u ω}"
    hence t_le: "t  Q u ω" by simp
    have "real m * real_of_int u / real p  real m * (real t * real p / (real m * (1 + δ'))+1) / real p"
      using m_ge_0 p_gt_0 by (intro divide_right_mono mult_left_mono, simp_all add: u_def)
    also have "... = real m * real t * real p / (real m * (1+δ') * real p) + real m / real p"
      by (simp add:distrib_left add_divide_distrib)
    also have "... = real t / (1+δ') + real m / real p"
      using p_gt_0 m_ge_0 by simp
    also have "...  real t / (1+δ') + 1"
      using m_le_p p_gt_0 by (intro add_mono, auto)
    finally have "real m * real_of_int u / real p  real t / (1 + δ') + 1"
      by simp

    hence "3 * sqrt (real m * of_int u / real p) + real m * of_int u / real p  
      3 * sqrt (t / (1+δ')+1)+(t/(1+δ')+1)"
      by (intro add_mono mult_left_mono real_sqrt_le_mono, auto)
    also have "...  3 * sqrt (real t+1) + ((t * (1 - δ' / (1+δ'))) + 1)"
      using δ'_gt_0 t_gt_0 by (intro add_mono mult_left_mono real_sqrt_le_mono)
        (simp_all add: pos_divide_le_eq left_diff_distrib)
    also have "... = 3 * sqrt (real t+1) + (t - δ' * t / (1+δ')) + 1" by (simp add:algebra_simps)
    also have "...  3 * sqrt (46 / δ'2 + 1 / δ'2) + (t - δ' * t/2) + 1 / δ'"
      using δ'_gt_0 t_gt_0 δ'_lt_1 add_pos_pos  t_le_δ'
      by (intro add_mono mult_left_mono real_sqrt_le_mono add_mono)
       (simp_all add: power_le_one pos_le_divide_eq)
    also have "...  (21 / δ' + (t - 45 / (2*δ'))) + 1 / δ'" 
      using δ'_gt_0 t_ge_δ' by (intro add_mono)
         (simp_all add:real_sqrt_divide divide_le_cancel real_le_lsqrt pos_divide_le_eq ac_simps)
    also have "...  t" using δ'_gt_0 by simp
    also have "...  Q u ω" using t_le by simp
    finally have "3 * sqrt (real m * of_int u / real p) + real m * of_int u / real p  Q u ω"
      by simp
    hence " 3 * sqrt (real m * real_of_int u / real p)  ¦real (Q u ω) - expectation (λω. real (Q u ω))¦"
      using a_ge_0 u_le_p  True by (simp add:exp_Q abs_ge_iff)

    thus "ω  {ω  Sigma_Algebra.space M. 3 * sqrt (real m * real_of_int u / real p)  
      ¦real (Q u ω) - expectation (λω. real (Q u ω))¦}"
      by (simp add: M_def)
  qed
  also have "...  variance  (λω. real (Q u ω)) / (3 * sqrt (real m * of_int u / real p))2"
    using a_ge_1 p_gt_0 m_ge_0 
    by (intro Chebyshev_inequality, simp add:M_def, auto) 

  also have "...  (real m * real_of_int u / real p) / (3 * sqrt (real m * of_int u / real p))2"
    using a_ge_0 u_le_p by (intro divide_right_mono var_Q, auto)

  also have "...  1/9" using a_ge_0 by simp

  finally have case_1: "prob {ω. Q u ω  t}  1/9" by simp

  have case_2: "prob {ω. Q v ω < t}  1/9"
  proof (cases "v  p")
    case True
    have "prob {ω. Q v ω < t}  prob {ω  Sigma_Algebra.space M. abs (real (Q v ω) - expectation (λω. real (Q v ω))) 
       3 * sqrt (m * real_of_int v / p)}"
    proof (rule pmf_mono[OF M_def])
      fix ω
      assume "ω  set_pmf (pmf_of_set space)"
      have "(real t + 3 * sqrt (real t / (1 - δ') )) * (1 - δ') = real t - δ' * t + 3 * ((1-δ') * sqrt( real t / (1-δ') ))"
        by (simp add:algebra_simps)

      also have "... = real t - δ' * t + 3 * sqrt (  (1-δ')2 * (real t /  (1-δ')))"
        using δ'_lt_1 by (subst real_sqrt_mult, simp)

      also have "... = real t - δ' * t + 3 * sqrt ( real t * (1- δ'))"
        by (simp add:power2_eq_square distrib_left)

      also have "...  real t - 45/ δ' + 3 * sqrt ( real t )"
        using δ'_gt_0 t_ge_δ' δ'_lt_1 by (intro add_mono mult_left_mono real_sqrt_le_mono)
         (simp_all add:pos_divide_le_eq ac_simps left_diff_distrib power_le_one)

       also have "...  real t - 45/ δ' + 3 * sqrt ( 46 / δ'2)"
         using  t_le_δ' δ'_lt_1 δ'_gt_0
         by (intro add_mono mult_left_mono real_sqrt_le_mono, simp_all add:pos_divide_le_eq power_le_one)

      also have "... = real t + (3 * sqrt(46) - 45)/ δ'"
        using δ'_gt_0 by (simp add:real_sqrt_divide diff_divide_distrib)

      also have "...  t"
        using δ'_gt_0 by (simp add:pos_divide_le_eq real_le_lsqrt)

      finally have aux: "(real t + 3 * sqrt (real t / (1 - δ'))) * (1 - δ')  real t "
        by simp

      assume "ω  {ω. Q v ω < t}"
      hence "Q v ω < t" by simp

      hence "real (Q v ω) + 3 * sqrt (real m * real_of_int v / real p) 
         real t - 1 + 3 * sqrt (real m * real_of_int v / real p)"
        using m_le_p p_gt_0 by (intro add_mono, auto simp add: algebra_simps add_divide_distrib)

      also have "...  (real t-1) + 3 * sqrt (real m * (real t * real p / (real m * (1- δ'))) / real p)"
        by (intro add_mono mult_left_mono real_sqrt_le_mono divide_right_mono)
         (auto simp add:v_def)

      also have "...  real t + 3 * sqrt(real t / (1-δ')) - 1"
        using m_ge_0 p_gt_0 by simp

      also have "...  real t / (1-δ')-1" 
        using δ'_lt_1 aux by (simp add: pos_le_divide_eq)   
      also have "...  real m * (real t * real p / (real m * (1-δ'))) / real p - 1"
        using p_gt_0 m_ge_0 by simp
      also have "...  real m * (real t * real p / (real m * (1-δ'))) / real p - real m / real p"
          using m_le_p p_gt_0
          by (intro diff_mono, auto)
      also have "... = real m * (real t * real p / (real m * (1-δ'))-1) / real p" 
          by (simp add: left_diff_distrib right_diff_distrib diff_divide_distrib)
      also have "...   real m * real_of_int v / real p"      
        by (intro divide_right_mono mult_left_mono, simp_all add:v_def)

      finally have "real (Q v ω) + 3 * sqrt (real m * real_of_int v / real p) 
         real m * real_of_int v / real p" by simp

      hence " 3 * sqrt (real m * real_of_int v / real p)  ¦real (Q v ω) -expectation (λω. real (Q v ω))¦"  
        using v_gt_0 True by (simp add: exp_Q abs_ge_iff)

      thus "ω  {ω Sigma_Algebra.space M. 3 * sqrt (real m * real_of_int v / real p)  
        ¦real (Q v ω) - expectation (λω. real (Q v ω))¦}" 
        by (simp add:M_def)
    qed
    also have "...  variance (λω. real (Q v ω)) / (3 * sqrt (real m * real_of_int v / real p))2" 
      using v_gt_0 p_gt_0 m_ge_0 
      by (intro Chebyshev_inequality, simp add:M_def, auto)

    also have "...  (real m * real_of_int v / real p) / (3 * sqrt (real m * real_of_int v / real p))2"
      using  v_gt_0 True  by (intro divide_right_mono var_Q, auto)

    also have "... = 1/9"
      using p_gt_0 v_gt_0 m_ge_0 by (simp add:power2_eq_square)

    finally show ?thesis by simp
  next
    case False
    have "prob {ω. Q v ω < t}  prob {ω. False}"
    proof (rule pmf_mono[OF M_def])
      fix ω
      assume a:"ω  {ω. Q v ω < t}"
      assume "ω  set_pmf (pmf_of_set space)"
      hence b:"x. x < p  hash x ω < p" 
        using hash_range mod_ring_carr by (simp add:M_def measure_pmf_inverse) 
      have "t  card (set as)" using True by simp
      also have "...  Q v ω"
        unfolding Q_def  using b False as_lt_p by (intro card_mono subsetI, simp, force) 
      also have "... < t" using a by simp
      finally have "False" by auto
      thus "ω  {ω. False}" by simp
    qed
    also have "... = 0" by auto
    finally show ?thesis by simp
  qed

  have "prob {ω. ¬has_no_collision ω} 
    prob {ω. x  set as. y  set as. x  y  tr_hash x ω  real_of_int v  tr_hash x ω = tr_hash y ω}"
    by (rule pmf_mono[OF M_def]) (simp add:has_no_collision_def M_def, force) 

  also have "...  (5/2) * (real (card (set as)))2 * (real_of_int v)2 * 2 powr - real r / (real p)2 + 1 / real p"
    using collision_prob v_ge_1 by blast

  also have "...  (5/2) * (real m)2 * (real_of_int v)2 * 2 powr - real r / (real p)2 + 1 / real p"
    by (intro divide_right_mono add_mono mult_right_mono mult_mono power_mono, simp_all add:m_def)

  also have "...  (5/2) * (real m)2 * (4 * real t * real p / real m)2 * (2 powr - real r) / (real p)2 + 1 / real p"
    using v_def v_ge_1 v_ubound
    by (intro add_mono divide_right_mono  mult_right_mono  mult_left_mono, auto)

  also have "... = 40 * (real t)2 * (2 powr -real r) + 1 / real p"
    using p_gt_0 m_ge_0 t_gt_0 by (simp add:algebra_simps power2_eq_square)

  also have "...  1/18 + 1/18"
    using t_r_bound p_ge_18 by (intro add_mono, simp_all add: pos_le_divide_eq)

  also have "... = 1/9" by simp

  finally have case_3: "prob {ω. ¬has_no_collision ω}  1/9" by simp

  have "prob {ω. real_of_rat δ * of_rat (F 0 as) < ¦estimate' (sketch_rv' ω) - of_rat (F 0 as)¦}  
    prob {ω. Q u ω  t  Q v ω < t  ¬(has_no_collision ω)}"
  proof (rule pmf_mono[OF M_def], rule ccontr)
    fix ω
    assume "ω  set_pmf (pmf_of_set space)"
    assume "ω  {ω. real_of_rat δ * real_of_rat (F 0 as) < ¦estimate' (sketch_rv' ω) - real_of_rat (F 0 as)¦}"
    hence est: "real_of_rat δ * real_of_rat (F 0 as) < ¦estimate' (sketch_rv' ω) - real_of_rat (F 0 as)¦" by simp
    assume "ω  {ω. t  Q u ω  Q v ω < t  ¬ has_no_collision ω}"
    hence "¬( t  Q u ω  Q v ω < t  ¬ has_no_collision ω)" by simp
    hence lb: "Q u ω < t" and ub: "Q v ω  t" and no_col: "has_no_collision ω" by simp+

    define y where "y =  nth_mset (t-1) {#int (hash x ω). x ∈# mset_set (set as)#}"
    define y' where "y' = nth_mset (t-1) {#tr_hash x ω. x ∈# mset_set (set as)#}"

    have rank_t_lb: "u  y"
      unfolding y_def using True t_gt_0 lb
      by (intro nth_mset_bound_left, simp_all add:count_less_def swap_filter_image Q_def)
  
    have rank_t_ub: "y  v - 1"
      unfolding y_def using True t_gt_0 ub
      by (intro nth_mset_bound_right, simp_all add:Q_def swap_filter_image count_le_def)

    have y_ge_0: "real_of_int y  0" using rank_t_lb a_ge_0 by linarith

    have "mono (λx. truncate_down r (real_of_int x))" 
      by (metis truncate_down_mono mono_def of_int_le_iff)
    hence y'_eq: "y' = truncate_down r y"
      unfolding y_def y'_def  using True t_gt_0
      by (subst nth_mset_commute_mono[where f="(λx. truncate_down r (of_int x))"]) 
        (simp_all add: multiset.map_comp comp_def tr_hash_def)

    have "real_of_int u * (1 - 2 powr -real r)  real_of_int y * (1 - 2 powr (-real r))"
      using rank_t_lb of_int_le_iff two_pow_r_le_1
      by (intro mult_right_mono, auto)
    also have "...  y'"
      using y'_eq truncate_down_pos[OF y_ge_0] by simp
    finally have rank_t_lb': "u * (1 - 2 powr -real r)  y'" by simp

    have "y'  real_of_int y"
      by (subst y'_eq, rule truncate_down_le, simp)
    also have "...  real_of_int (v-1)"
      using rank_t_ub of_int_le_iff by blast
    finally have rank_t_ub': "y'  v-1"
      by simp

    have "0 < u * (1-2 powr -real r)"
      using a_ge_1 two_pow_r_le_1 by (intro mult_pos_pos, auto)
    hence y'_pos: "y' > 0" using rank_t_lb' by linarith

    have no_col': "x. x  y'  count {#tr_hash x ω. x ∈# mset_set (set as)#} x  1"
      using  rank_t_ub' no_col 
      by (simp add:vimage_def card_le_Suc0_iff_eq count_image_mset has_no_collision_def) force

    have h_1: "Max (sketch_rv' ω) = y'"
      using True t_gt_0 no_col'
      by (simp add:sketch_rv'_def y'_def nth_mset_max)

    have "card (sketch_rv' ω) = card (least ((t-1)+1) (set_mset {#tr_hash x ω. x ∈# mset_set (set as)#}))"
      using t_gt_0 by (simp add:sketch_rv'_def)
    also have "... = (t-1) +1"
      using True t_gt_0 no_col' by (intro nth_mset_max(2), simp_all add:y'_def)
    also have "... = t" using t_gt_0 by simp
    finally have "card (sketch_rv' ω) = t" by simp
    hence h_3: "estimate' (sketch_rv' ω) = real t * real p / y'"
      using h_1 by (simp add:estimate'_def)

    have "(real t) * real p   (1 + δ') * real m * ((real t) * real p / (real m * (1 + δ')))" 
      using δ'_lt_1 m_def True t_gt_0 δ'_gt_0 by auto
    also have "...  (1+δ') * m * u"
      using δ'_gt_0 by (intro mult_left_mono, simp_all add:u_def)
    also have "... < ((1 + real_of_rat δ)*(1-real_of_rat δ/8)) * m * u"
      using True m_def t_gt_0 a_ge_1 δ_range
      by (intro mult_strict_right_mono, auto simp add:δ'_def right_diff_distrib)
    also have "...  ((1 + real_of_rat δ)*(1-2 powr (-r))) * m * u"
      using r_le_δ δ_range a_ge_0 by (intro mult_right_mono mult_left_mono, auto)
    also have "... = (1 + real_of_rat δ) * m * (u * (1-2 powr -real r))" 
      by simp
    also have "...  (1 + real_of_rat δ) * m * y'"
      using δ_range by (intro mult_left_mono rank_t_lb', simp)
    finally have "real t * real p < (1 + real_of_rat δ) * m * y'" by simp
    hence f_1: "estimate' (sketch_rv' ω) < (1 + real_of_rat δ) * m"
      using y'_pos by (simp add: h_3 pos_divide_less_eq)

    have "(1 - real_of_rat δ) * m * y'  (1 - real_of_rat δ) * m * v" 
      using δ_range rank_t_ub' y'_pos by (intro mult_mono rank_t_ub', simp_all)
    also have "... = (1-real_of_rat δ) * (real m * v)"
      by simp
    also have "... < (1-δ') * (real m * v)" 
      using δ_range m_ge_0 v_ge_1
      by (intro mult_strict_right_mono mult_pos_pos, simp_all add:δ'_def)
    also have "...  (1-δ') * (real m * (real t * real p / (real m * (1-δ'))))"
      using δ'_gt_0 δ'_lt_1 by (intro mult_left_mono, auto simp add:v_def)
    also have "... = real t * real p"
      using δ'_gt_0 δ'_lt_1 t_gt_0 p_gt_0 m_ge_0 by auto
    finally have "(1 - real_of_rat δ) * m * y' < real t * real p" by simp
    hence f_2: "estimate' (sketch_rv' ω) > (1 - real_of_rat δ) * m"
      using y'_pos by (simp add: h_3 pos_less_divide_eq)

    have "abs (estimate' (sketch_rv' ω) - real_of_rat (F 0 as)) < real_of_rat δ * (real_of_rat (F 0 as))"
      using f_1 f_2 by (simp add:abs_less_iff algebra_simps m_eq_F_0)
    thus "False" using est by linarith
  qed
  also have "...  1/9 + (1/9 + 1/9)"
    by (intro pmf_add_2[OF M_def] case_1 case_2 case_3)
  also have "... = 1/3" by simp
  finally show ?thesis by simp
next
  case False
  have "prob {ω. real_of_rat δ * of_rat (F 0 as) < ¦estimate' (sketch_rv' ω) - of_rat (F 0 as)¦} 
    prob {ω. x  set as. y  set as. x  y  tr_hash x ω  real p  tr_hash x ω = tr_hash y ω}" 
  proof (rule pmf_mono[OF M_def])
    fix ω
    assume a:"ω  {ω. real_of_rat δ * real_of_rat (F 0 as) < ¦estimate' (sketch_rv' ω) - real_of_rat (F 0 as)¦}"
    assume b:"ω  set_pmf (pmf_of_set space)" 
    have c: "card (set as) < t" using False by auto
    hence "card ((λx. tr_hash x ω) ` set as) < t"
      using card_image_le order_le_less_trans by blast
    hence d:"card (sketch_rv' ω) = card ((λx. tr_hash x ω) ` (set as))"
      by (simp add:sketch_rv'_def card_least)
    have "card (sketch_rv' ω) < t"
      by (metis List.finite_set  c d card_image_le  order_le_less_trans)
    hence "estimate' (sketch_rv' ω) = card (sketch_rv' ω)" by (simp add:estimate'_def)
    hence "card (sketch_rv' ω)  real_of_rat (F 0 as)"
      using a δ_range by simp 
        (metis abs_zero cancel_comm_monoid_add_class.diff_cancel of_nat_less_0_iff pos_prod_lt zero_less_of_rat_iff)
    hence "card (sketch_rv' ω)  card (set as)"
      using m_def m_eq_F_0 by linarith
    hence "¬inj_on (λx. tr_hash x ω) (set as)"
      using card_image d by auto
    moreover have "tr_hash x ω  real p" if a:"x  set as" for x
    proof -
      have "hash x ω < p" 
        using hash_range as_lt_p a b by (simp add:mod_ring_carr M_def)
      thus "tr_hash x ω  real p" using truncate_down_le by (simp add:tr_hash_def)
    qed
   ultimately show "ω  {ω. x  set as. y  set as. x  y  tr_hash x ω  real p  tr_hash x ω = tr_hash y ω}"
     by (simp add:inj_on_def, blast)
  qed
  also have "...  (5/2) * (real (card (set as)))2 * (real p)2 * 2 powr - real r / (real p)2 + 1 / real p"
    using p_gt_0 by (intro collision_prob, auto)
  also have "... = (5/2) * (real (card (set as)))2 * 2 powr (- real r) + 1 / real p"
    using p_gt_0 by (simp add:ac_simps power2_eq_square)
  also have "...  (5/2) * (real t)2 * 2 powr (-real r) + 1 / real p"
    using False by (intro add_mono mult_right_mono mult_left_mono power_mono, auto)
  also have "...  1/6 + 1/6"
    using t_r_bound p_ge_18 by (intro add_mono, simp_all)
  also have "...  1/3" by simp
  finally show ?thesis by simp
qed

private lemma median_bounds:
  "𝒫(ω in measure_pmf Ω0. ¦median s (λi. estimate (sketch_rv (ω i))) - F 0 as¦  δ * F 0 as)  1 - real_of_rat ε"
proof -
  have "strict_mono_on A real_of_float" for A by (meson less_float.rep_eq strict_mono_onI)
  hence real_g_2: "ω.  sketch_rv' ω = real_of_float ` sketch_rv ω" 
    by (simp add: sketch_rv'_def sketch_rv_def tr_hash_def least_mono_commute image_comp)

  moreover have "inj_on real_of_float A" for A
    using  real_of_float_inject by (simp add:inj_on_def)
  ultimately have card_eq: "ω. card (sketch_rv ω) = card (sketch_rv' ω)" 
    using real_g_2 by (auto intro!: card_image[symmetric])

  have "Max (sketch_rv' ω) = real_of_float (Max (sketch_rv ω))" if a:"card (sketch_rv' ω)  t" for ω 
  proof -
    have "mono real_of_float"
      using less_eq_float.rep_eq mono_def by blast
    moreover have "finite (sketch_rv ω)"
      by (simp add:sketch_rv_def least_def)
    moreover have " sketch_rv ω  {}"
      using card_eq[symmetric] card_gt_0_iff t_gt_0 a by (simp, force)  
    ultimately show ?thesis
      by (subst mono_Max_commute[where f="real_of_float"], simp_all add:real_g_2)
  qed
  hence real_g: "ω. estimate' (sketch_rv' ω) = real_of_rat (estimate (sketch_rv ω))"
    by (simp add:estimate_def estimate'_def card_eq of_rat_divide of_rat_mult of_rat_add real_of_rat_of_float)

  have indep: "prob_space.indep_vars (measure_pmf Ω0) (λ_. borel) (λi ω. estimate' (sketch_rv' (ω i))) {0..<s}"
    unfolding Ω0_def
    by (rule indep_vars_restrict_intro', auto simp add:restrict_dfl_def lessThan_atLeast0)

  moreover have "- (18 * ln (real_of_rat ε))  real s"
    using of_nat_ceiling by (simp add:s_def) blast

  moreover have "i < s  measure Ω0 {ω. of_rat δ * of_rat (F 0 as) < ¦estimate' (sketch_rv' (ω i)) - of_rat (F 0 as)¦}  1/3"
    for i
    using estimate'_bounds unfolding Ω0_def M_def
    by (subst prob_prod_pmf_slice, simp_all)
 
  ultimately have "1-real_of_rat ε  𝒫(ω in measure_pmf Ω0.
      ¦median s (λi. estimate' (sketch_rv' (ω i))) - real_of_rat (F 0 as)¦   real_of_rat δ * real_of_rat (F 0 as))"
    using ε_range prob_space_measure_pmf
    by (intro prob_space.median_bound_2) auto
  also have "... = 𝒫(ω in measure_pmf Ω0. 
      ¦median s (λi. estimate (sketch_rv (ω i))) - F 0 as¦   δ * F 0 as)"
    using s_gt_0 median_rat[symmetric] real_g by (intro arg_cong2[where f="measure"]) 
      (simp_all add:of_rat_diff[symmetric] of_rat_mult[symmetric] of_rat_less_eq)
  finally show "𝒫(ω in measure_pmf Ω0. ¦median s (λi. estimate (sketch_rv (ω i))) - F 0 as¦  δ * F 0 as)  1-real_of_rat ε"
    by blast
qed

lemma f0_alg_correct':
  "𝒫(ω in measure_pmf result. ¦ω - F 0 as¦  δ * F 0 as)  1 - of_rat ε"
proof -
  have f0_result_elim: "x. f0_result (s, t, p, r, x, λi{..<s}. sketch_rv (x i)) =
    return_pmf (median s (λi. estimate (sketch_rv (x i))))"
    by (simp add:estimate_def, rule median_cong, simp)
 
  have "result = map_pmf (λx. (s, t, p, r, x, λi{..<s}. sketch_rv (x i))) Ω0  f0_result"
    by (subst result_def, subst f0_alg_sketch, simp)
  also have "... = Ω0  (λx. return_pmf (s, t, p, r, x, λi{..<s}. sketch_rv (x i)))  f0_result"
    by (simp add:t_def p_def r_def s_def map_pmf_def)
  also have "... = Ω0  (λx. return_pmf (median s (λi. estimate (sketch_rv (x i)))))"
    by (subst bind_assoc_pmf, subst bind_return_pmf, subst f0_result_elim)  simp
  finally have a:"result =  Ω0  (λx. return_pmf (median s (λi. estimate (sketch_rv (x i)))))"
    by simp

  show ?thesis
    using median_bounds by (simp add: a map_pmf_def[symmetric])
qed

private lemma f_subset:
  assumes "g ` A  h ` B"
  shows "(λx. f (g x)) ` A  (λx. f (h x)) ` B"
  using assms by auto

lemma f0_exact_space_usage':
  defines "Ω  fold (λa state. state  f0_update a) as (f0_init δ ε n)"
  shows "AE ω in Ω. bit_count (encode_f0_state ω)  f0_space_usage (n, ε, δ)"
proof -
  
  have log_2_4: "log 2 4 = 2" 
    by (metis log2_of_power_eq mult_2 numeral_Bit0 of_nat_numeral power2_eq_square)

  have a: "bit_count (Fe (float_of (truncate_down r y)))  
    ereal (12 + 4 * real r + 2 * log 2 (log 2 (n+13)))" if a_1:"y  {..<p}" for y
  proof (cases "y  1")
    case True

    have aux_1: " 0 < 2 + log 2 (real y)" 
      using True by (intro add_pos_nonneg, auto)
    have aux_2: "0 < 2 + log 2 (real p)"
      using p_gt_1 by (intro add_pos_nonneg, auto)

    have "bit_count (Fe (float_of (truncate_down r y)))  
      ereal (10 + 4 * real r + 2 * log 2 (2 + ¦log 2 ¦real y¦¦))"
      by (rule truncate_float_bit_count)
    also have "... = ereal (10 + 4 * real r + 2 * log 2 (2 + (log 2 (real y))))"
      using True by simp
    also have "...  ereal (10 + 4 * real r + 2 * log 2 (2 + log 2 p))"
      using aux_1 aux_2 True p_gt_0 a_1 by simp
    also have "...  ereal (10 + 4 * real r + 2 * log 2 (log 2 4 + log 2 (2 * n + 40)))"
      using log_2_4 p_le_n p_gt_0
      by (intro ereal_mono add_mono mult_left_mono log_mono of_nat_mono add_pos_nonneg, auto)
    also have "... = ereal (10 + 4 * real r + 2 * log 2 (log 2 (8 * n + 160)))"
      by (simp add:log_mult[symmetric])
    also have "...  ereal (10 + 4 * real r + 2 * log 2 (log 2 ((n+13) powr 2)))"
      by (intro ereal_mono add_mono mult_left_mono log_mono of_nat_mono add_pos_nonneg)
       (auto simp add:power2_eq_square algebra_simps)
    also have "... = ereal (10 +  4 * real r + 2 * log 2 (log 2 4 * log 2 (n + 13)))"
      by (subst log_powr, simp_all add:log_2_4)
    also have "... = ereal (12 +  4 * real r + 2 * log 2 (log 2 (n + 13)))"
      by (subst log_mult, simp_all add:log_2_4)
    finally show ?thesis by simp
  next
    case False
    hence "y = 0" using a_1 by simp
    then show ?thesis by (simp add:float_bit_count_zero)
  qed

  have "bit_count (encode_f0_state (s, t, p, r, x, λi{..<s}. sketch_rv (x i)))  
        f0_space_usage (n, ε, δ)" if b: "x  {..<s} E space" for x
  proof -
    have c: "x  extensional {..<s}" using b by (simp add:PiE_def) 

    have d: "sketch_rv (x y)  (λk. float_of (truncate_down r k)) ` {..<p} "
      if d_1: "y < s" for y
    proof -
      have "sketch_rv (x y)  (λxa. float_of (truncate_down r (hash xa (x y)))) ` set as"
        using least_subset by (auto simp add:sketch_rv_def tr_hash_def) 
      also have "...  (λk. float_of (truncate_down r (real k))) ` {..<p}"
        using b hash_range as_lt_p d_1
        by (intro f_subset[where f="λx. float_of (truncate_down r (real x))"] image_subsetI)
         (simp add: PiE_iff mod_ring_carr)
      finally show ?thesis
        by simp
    qed

    have "y. y < s  finite (sketch_rv (x y))"
      unfolding sketch_rv_def by (rule finite_subset[OF least_subset], simp)
    moreover have card_sketch: "y. y < s  card (sketch_rv (x y))  t "
      by (simp add:sketch_rv_def card_least)
    moreover have "y z. y < s  z  sketch_rv (x y)  
      bit_count (Fe z)  ereal (12 + 4 * real r + 2 * log 2 (log 2 (real n + 13)))"
      using a d by auto
    ultimately have e: "y. y < s  bit_count (Se Fe (sketch_rv (x y))) 
       ereal (real t) * (ereal (12 + 4 * real r + 2 * log 2 (log 2 (real (n + 13)))) + 1) + 1"
      using float_encoding by (intro set_bit_count_est, auto)

    have f: "y. y < s  bit_count (Pe p 2 (x y))  ereal (real 2 * (log 2 (real p) + 1))"
      using p_gt_1 b
      by (intro bounded_degree_polynomial_bit_count) (simp_all add:space_def PiE_def Pi_def)

    have "bit_count (encode_f0_state (s, t, p, r, x, λi{..<s}. sketch_rv (x i))) =
      bit_count (Ne s) + bit_count (Ne t) +  bit_count (Ne p) + bit_count (Ne r) +
      bit_count (([0..<s] e Pe p 2) x) +
      bit_count (([0..<s] e Se Fe) (λi{..<s}. sketch_rv (x i)))"
      by (simp add:encode_f0_state_def dependent_bit_count lessThan_atLeast0
        s_def[symmetric] t_def[symmetric] p_def[symmetric] r_def[symmetric] ac_simps)
    also have "...  ereal (2* log 2 (real s + 1) + 1) + ereal  (2* log 2 (real t + 1) + 1)
      + ereal (2* log 2 (real p + 1) + 1) + ereal (2 * log 2 (real r + 1) + 1)
      + (ereal (real s) * (ereal (real 2 * (log 2 (real p) + 1)))) 
      + (ereal (real s) * ((ereal (real t) * 
            (ereal (12 + 4 * real r + 2 * log 2 (log 2 (real (n + 13)))) + 1) + 1)))"
      using c e f
      by (intro add_mono exp_golomb_bit_count fun_bit_count_est[where xs="[0..<s]", simplified])
       (simp_all add:lessThan_atLeast0)
    also have "... = ereal ( 4 + 2 * log 2 (real s + 1) + 2 * log 2 (real t + 1) + 
      2 * log 2 (real p + 1) + 2 * log 2 (real r + 1) + real s * (3 + 2 * log 2 (real p) + 
      real t * (13 + (4 * real r + 2 * log 2 (log 2 (real n + 13))))))"
      by (simp add:algebra_simps)
    also have "...  ereal ( 4 + 2 * log 2 (real s + 1)  + 2 * log 2 (real t + 1) + 
      2 * log 2 (2 * (21 + real n)) + 2 * log 2 (real r + 1) + real s * (3 + 2 * log 2 (2 * (21 + real n)) + 
      real t * (13 + (4 * real r + 2 * log 2 (log 2 (real n + 13))))))"
      using p_le_n p_gt_0
      by (intro ereal_mono add_mono mult_left_mono, auto)
    also have "... =  ereal (6 + 2 * log 2 (real s + 1) + 2 * log 2 (real t + 1) + 
      2 * log 2 (21 + real n) + 2 * log 2 (real r + 1) + real s * (5 + 2 * log 2 (21 + real n) + 
      real t * (13 + (4 * real r + 2 * log 2 (log 2 (real n + 13))))))"
      by (subst (1 2) log_mult, auto)
    also have "...  f0_space_usage (n, ε, δ)"
      by (simp add:s_def[symmetric] r_def[symmetric] t_def[symmetric] Let_def)
       (simp add:algebra_simps)
    finally show "bit_count (encode_f0_state (s, t, p, r, x, λi{..<s}. sketch_rv (x i)))  
        f0_space_usage (n, ε, δ)" by simp
  qed
  hence "x. x  set_pmf Ω0 
         bit_count (encode_f0_state (s, t, p, r, x, λi{..<s}. sketch_rv (x i)))   ereal (f0_space_usage (n, ε, δ))"
    by (simp add:Ω0_def set_prod_pmf del:f0_space_usage.simps)
  hence "y. y  set_pmf Ω  bit_count (encode_f0_state y)  ereal (f0_space_usage (n, ε, δ))"
    by (simp add: Ω_def f0_alg_sketch del:f0_space_usage.simps f0_init.simps)
     (metis (no_types, lifting) image_iff pmf.set_map)
  thus ?thesis
    by (simp add: AE_measure_pmf_iff del:f0_space_usage.simps)
qed

end

text ‹Main results of this section:›

theorem f0_alg_correct:
  assumes "ε  {0<..<1}"
  assumes "δ  {0<..<1}"
  assumes "set as  {..<n}"
  defines "Ω  fold (λa state. state  f0_update a) as (f0_init δ ε n)  f0_result"
  shows "𝒫(ω in measure_pmf Ω. ¦ω - F 0 as¦  δ * F 0 as)  1 - of_rat ε"
  using f0_alg_correct'[OF assms(1-3)] unfolding Ω_def by blast

theorem f0_exact_space_usage:
  assumes "ε  {0<..<1}"
  assumes "δ  {0<..<1}"
  assumes "set as  {..<n}"
  defines "Ω  fold (λa state. state  f0_update a) as (f0_init δ ε n)"
  shows "AE ω in Ω. bit_count (encode_f0_state ω)  f0_space_usage (n, ε, δ)"
  using f0_exact_space_usage'[OF assms(1-3)] unfolding Ω_def by blast

theorem f0_asymptotic_space_complexity:
  "f0_space_usage  O[at_top ×F at_right 0 ×F at_right 0](λ(n, ε, δ). ln (1 / of_rat ε) * 
  (ln (real n) + 1 / (of_rat δ)2 * (ln (ln (real n)) + ln (1 / of_rat δ))))"
  (is "_  O[?F](?rhs)")
proof -
  define n_of :: "nat × rat × rat  nat" where "n_of = (λ(n, ε, δ). n)"
  define ε_of :: "nat × rat × rat  rat" where "ε_of = (λ(n, ε, δ). ε)"
  define δ_of :: "nat × rat × rat  rat" where "δ_of = (λ(n, ε, δ). δ)"
  define t_of where "t_of = (λx. nat 80 / (real_of_rat (δ_of x))2)"
  define s_of where "s_of = (λx. nat -(18 * ln (real_of_rat (ε_of x))))"
  define r_of where "r_of = (λx. nat (4 * log 2 (1 / real_of_rat (δ_of x)) + 23))"

  define g where "g = (λx. ln (1 / of_rat (ε_of x)) * (ln (real (n_of x)) + 
    1 / (of_rat (δ_of x))2 * (ln (ln (real (n_of x))) + ln (1 / of_rat (δ_of x)))))"

  have evt: "(x. 
    0 < real_of_rat (δ_of x)  0 < real_of_rat (ε_of x)  
    1/real_of_rat (δ_of x)  δ  1/real_of_rat (ε_of x)  ε 
    real (n_of x)  n  P x)  eventually P ?F"  (is "(x. ?prem x  _)  _")
    for δ ε n P
    apply (rule eventually_mono[where P="?prem" and Q="P"])
    apply (simp add:ε_of_def case_prod_beta' δ_of_def n_of_def)
     apply (intro eventually_conj eventually_prod1' eventually_prod2' 
        sequentially_inf eventually_at_right_less inv_at_right_0_inf)
    by (auto simp add:prod_filter_eq_bot)

  have exp_pos: "exp k  real x  x > 0" for k x
    using exp_gt_zero gr0I by force 

  have exp_gt_1: "exp 1  (1::real)"
    by simp

  have 1: "(λ_. 1)  O[?F](λx. ln (1 / real_of_rat (ε_of x)))"
    by (auto intro!:landau_o.big_mono evt[where ε="exp 1"] iffD2[OF ln_ge_iff] simp add:abs_ge_iff)

  have 2: "(λ_. 1)  O[?F](λx. ln (1 / real_of_rat (δ_of x)))" 
    by (auto intro!:landau_o.big_mono evt[where δ="exp 1"] iffD2[OF ln_ge_iff] simp add:abs_ge_iff)

  have 3: " (λx. 1)  O[?F](λx. ln (ln (real (n_of x))) + ln (1 / real_of_rat (δ_of x)))"
    using exp_pos
    by (intro landau_sum_2 2 evt[where n="exp 1" and δ="1"] ln_ge_zero  iffD2[OF ln_ge_iff], auto)
  have 4: "(λ_. 1)  O[?F](λx. 1 / (real_of_rat (δ_of x))2)" 
    using one_le_power
    by (intro landau_o.big_mono evt[where δ="1"], auto simp add:power_one_over[symmetric])

  have "(λx. 80 * (1 / (real_of_rat (δ_of x))2))  O[?F](λx. 1 / (real_of_rat (δ_of x))2)"
    by (subst landau_o.big.cmult_in_iff, auto)
  hence 5: "(λx. real (t_of x))  O[?F](λx. 1 / (real_of_rat (δ_of x))2)"
    unfolding  t_of_def 
    by (intro landau_real_nat landau_ceil 4, auto)

  have "(λx. ln (real_of_rat (ε_of x)))  O[?F](λx. ln (1 / real_of_rat (ε_of x)))"
    by (intro landau_o.big_mono evt[where ε="1"], auto simp add:ln_div)
  hence 6: "(λx. real (s_of x))  O[?F](λx. ln (1 / real_of_rat (ε_of x)))"
    unfolding s_of_def by (intro landau_nat_ceil 1, simp)

  have 7: " (λx. 1)  O[?F](λx. ln (real (n_of x)))"
    using exp_pos by (auto intro!: landau_o.big_mono evt[where n="exp 1"] iffD2[OF ln_ge_iff] simp: abs_ge_iff)

  have 8:" (λ_. 1)  
    O[?F](λx. ln (real (n_of x)) + 1 / (real_of_rat (δ_of x))2 * (ln (ln (real (n_of x))) + ln (1 / real_of_rat (δ_of x))))"
    using order_trans[OF exp_gt_1] exp_pos
    by (intro landau_sum_1 7 evt[where n="exp 1" and δ="1"] ln_ge_zero  iffD2[OF ln_ge_iff] 
        mult_nonneg_nonneg add_nonneg_nonneg) auto

  have "(λx. ln (real (s_of x) + 1))  O[?F](λx. ln (1 / real_of_rat (ε_of x)))"
    by (intro landau_ln_3 sum_in_bigo 6 1, simp)

  hence 9: "(λx. log 2 (real (s_of x) + 1))  O[?F](g)"
    unfolding g_def by (intro landau_o.big_mult_1 8, auto simp:log_def)
  have 10: "(λx. 1)  O[?F](g)"
    unfolding g_def by (intro landau_o.big_mult_1 8 1)

  have "(λx. ln (real (t_of x) + 1))  
    O[?F](λx. 1 / (real_of_rat (δ_of x))2 * (ln (ln (real (n_of x))) + ln (1 / real_of_rat (δ_of x))))"
    using 5 by (intro landau_o.big_mult_1 3 landau_ln_3 sum_in_bigo 4, simp_all)
  hence " (λx. log 2 (real (t_of x) + 1))  
  O[?F](λx. ln (real (n_of x)) + 1 / (real_of_rat (δ_of x))2 * (ln (ln (real (n_of x))) + ln (1 / real_of_rat (δ_of x))))"
    using order_trans[OF exp_gt_1] exp_pos
    by (intro landau_sum_2  evt[where n="exp 1" and δ="1"] ln_ge_zero  iffD2[OF ln_ge_iff] 
        mult_nonneg_nonneg add_nonneg_nonneg) (auto simp add:log_def)
  hence 11: "(λx. log 2 (real (t_of x) + 1))  O[?F](g)"
    unfolding g_def  by (intro landau_o.big_mult_1' 1, auto)
  have " (λx. 1)  O[?F](λx. real (n_of x))" 
    by (intro landau_o.big_mono evt[where n="1"], auto)
  hence "(λx. ln (real (n_of x) + 21))  O[?F](λx. ln (real (n_of x)))" 
    by (intro landau_ln_2[where a="2"] evt[where n="2"] sum_in_bigo, auto)

  hence 12: "(λx. log 2 (real (n_of x) + 21))  O[?F](g)"
    unfolding g_def using exp_pos order_trans[OF exp_gt_1]
    by (intro landau_o.big_mult_1' 1 landau_sum_1  evt[where n="exp 1" and δ="1"] 
        ln_ge_zero  iffD2[OF ln_ge_iff] mult_nonneg_nonneg add_nonneg_nonneg)  (auto simp add:log_def)

  have "(λx. ln (1 / real_of_rat (δ_of x)))  O[?F](λx. 1 / (real_of_rat (δ_of x))2)" 
    by (intro landau_ln_3 evt[where δ="1"] landau_o.big_mono) 
      (auto simp add:power_one_over[symmetric] self_le_power)
  hence " (λx. real (nat (4*log 2 (1 / real_of_rat (δ_of x))+23)))  O[?F](λx. 1 / (real_of_rat (δ_of x))2)"
    using 4 by (auto intro!: landau_real_nat sum_in_bigo landau_ceil simp:log_def)
  hence " (λx. ln (real (r_of x) + 1))  O[?F](λx. 1 / (real_of_rat (δ_of x))2)"
    unfolding r_of_def
    by (intro landau_ln_3 sum_in_bigo 4, auto)
  hence " (λx. log 2 (real (r_of x) + 1))  
    O[?F](λx. (1 / (real_of_rat (δ_of x))2) * (ln (ln (real (n_of x))) + ln (1 / real_of_rat (δ_of x))))"
    by (intro landau_o.big_mult_1 3, simp add:log_def)
  hence " (λx. log 2 (real (r_of x) + 1))  
    O[?F](λx. ln (real (n_of x)) + 1 / (real_of_rat (δ_of x))2 * (ln (ln (real (n_of x))) + ln (1 / real_of_rat (δ_of x))))"
    using exp_pos order_trans[OF exp_gt_1]
    by (intro landau_sum_2 evt[where n="exp 1" and δ="1"] ln_ge_zero  
        iffD2[OF ln_ge_iff] add_nonneg_nonneg mult_nonneg_nonneg) (auto)
  hence 13: "(λx. log 2 (real (r_of x) + 1))  O[?F](g)"
    unfolding g_def  by (intro landau_o.big_mult_1' 1, auto)
  have 14: "(λx. 1)  O[?F](λx. real (n_of x))" 
    by (intro landau_o.big_mono evt[where n="1"], auto)

  have "(λx. ln (real (n_of x) + 13))  O[?F](λx. ln (real (n_of x)))" 
    using 14 by (intro landau_ln_2[where a="2"]  evt[where n="2"] sum_in_bigo, auto)

  hence "(λx. ln (log 2 (real (n_of x) + 13)))  O[?F](λx. ln (ln (real (n_of x))))"
    using exp_pos by (intro landau_ln_2[where a="2"] iffD2[OF ln_ge_iff] evt[where n="exp 2"])
        (auto simp add:log_def)

  hence "(λx. log 2 (log 2 (real (n_of x) + 13)))  O[?F](λx. ln (ln (real (n_of x))) + ln (1 / real_of_rat (δ_of x)))"
    using exp_pos by (intro landau_sum_1 evt[where n="exp 1" and δ="1"] ln_ge_zero  iffD2[OF ln_ge_iff])
     (auto simp add:log_def)

  moreover have  "(λx. real (r_of x))  O[?F](λx. ln (1 / real_of_rat (δ_of x)))"
    unfolding r_of_def using 2
    by (auto intro!: landau_real_nat sum_in_bigo landau_ceil simp:log_def)
  hence "(λx. real (r_of x))  O[?F](λx. ln (ln (real (n_of x))) + ln (1 / real_of_rat (δ_of x)))"
    using exp_pos 
    by (intro landau_sum_2 evt[where n="exp 1" and δ="1"] ln_ge_zero  iffD2[OF ln_ge_iff], auto)

  ultimately have 15:" (λx. real (t_of x) * (13 + 4 * real (r_of x) + 2 * log 2 (log 2 (real (n_of x) + 13))))
       O[?F](λx. 1 / (real_of_rat (δ_of x))2 * (ln (ln (real (n_of x))) + ln (1 / real_of_rat (δ_of x))))"
    using 5 3 
    by (intro landau_o.mult sum_in_bigo, auto)

  have "(λx. 5 + 2 * log 2 (21 + real (n_of x)) + real (t_of x) * (13 + 4 * real (r_of x) + 2 * log 2 (log 2 (real (n_of x) + 13))))
       O[?F](λx. ln (real (n_of x)) + 1 / (real_of_rat (δ_of x))2 * (ln (ln (real (n_of x))) + ln (1 / real_of_rat (δ_of x))))"
  proof -
    have "F x in ?F. 0  ln (real (n_of x))" 
      by (intro evt[where n="1"] ln_ge_zero, auto)
    moreover have "F x in ?F. 0  1 / (real_of_rat (δ_of x))2 * (ln (ln (real (n_of x))) + ln (1 / real_of_rat (δ_of x)))"
      using exp_pos
      by (intro evt[where n="exp 1" and δ="1"] mult_nonneg_nonneg add_nonneg_nonneg 
          ln_ge_zero iffD2[OF ln_ge_iff]) auto
    moreover have " (λx. ln (21 + real (n_of x)))  O[?F](λx. ln (real (n_of x)))" 
      using 14 by (intro landau_ln_2[where a="2"] sum_in_bigo evt[where n="2"], auto)
    hence "(λx. 5 + 2 * log 2 (21 + real (n_of x)))  O[?F](λx. ln (real (n_of x)))"
      using 7  by (intro sum_in_bigo, auto simp add:log_def)
    ultimately show ?thesis
      using 15 by (rule landau_sum)
  qed

  hence 16: "(λx. real (s_of x) * (5 + 2 * log 2 (21 + real (n_of x)) + real (t_of x) *
    (13 + 4 * real (r_of x) + 2 * log 2 (log 2 (real (n_of x) + 13)))))   O[?F](g)"
    unfolding g_def
    by (intro landau_o.mult 6, auto)

  have "f0_space_usage = (λx. f0_space_usage (n_of x, ε_of x, δ_of x))"
    by (simp add:case_prod_beta' n_of_def ε_of_def δ_of_def)
  also have "...   O[?F](g)"
    using 9 10 11 12 13 16
    by (simp add:fun_cong[OF s_of_def[symmetric]] fun_cong[OF t_of_def[symmetric]] 
        fun_cong[OF r_of_def[symmetric]] Let_def) (intro sum_in_bigo, auto)
  also have "... = O[?F](?rhs)"
    by (simp add:case_prod_beta' g_def n_of_def ε_of_def δ_of_def)
  finally show ?thesis
    by simp
qed

end