Theory PMLinHOL_deep_further_tests
theory PMLinHOL_deep_further_tests
imports PMLinHOL_deep_tests
begin
lemma K_Dia: "⊨⇧d (□⇧d(φ ⊃⇧d ψ)) ⊃⇧d ((◇⇧dφ) ⊃⇧d ◇⇧dψ)" by auto
lemma T1a: "⊨⇧d □⇧dp⇧d ⊃⇧d ((◇⇧dq⇧d) ⊃⇧d ◇⇧d(p⇧d ∧⇧d q⇧d))" by auto
lemma T1b: "⊨⇧d □⇧dp⇧d ⊃⇧d ((◇⇧dq⇧d) ⊃⇧d ◇⇧d(p⇧d ∧⇧d q⇧d))"
proof -
have 1: "⊨⇧d p⇧d ⊃⇧d (q⇧d ⊃⇧d (p⇧d ∧⇧d q⇧d))" unfolding AndD_def using H1 H2 H3 MP by metis
have 2: "⊨⇧d □⇧d(p⇧d ⊃⇧d (q⇧d ⊃⇧d (p⇧d ∧⇧d q⇧d)))" using 1 Nec by metis
have 3: "⊨⇧d □⇧dp⇧d ⊃⇧d □⇧d(q⇧d ⊃⇧d (p⇧d ∧⇧d q⇧d))" using 2 Dist MP by metis
have 4: "⊨⇧d (□⇧d(q⇧d ⊃⇧d (p⇧d ∧⇧d q⇧d))) ⊃⇧d ((◇⇧dq⇧d) ⊃⇧d ◇⇧d(p⇧d ∧⇧d q⇧d))" using K_Dia by metis
have 5: "⊨⇧d □⇧dp⇧d ⊃⇧d ((◇⇧dq⇧d) ⊃⇧d ◇⇧d(p⇧d ∧⇧d q⇧d))" using 3 4 H1 H2 MP by metis
thus ?thesis .
qed
end