Theory PMLinHOL_deep_Loeb_tests
theory PMLinHOL_deep_Loeb_tests
imports PMLinHOL_deep
begin
lemma Loeb1: "∀φ. ⊨⇧d □⇧d( □⇧dφ ⊃⇧dφ) ⊃⇧d □⇧dφ" nitpick[card 𝗐=1,card 𝒮=1] oops
lemma Loeb2: "(conversewf R ∧ transitive R) ⟶ (∀φ W V. ∀w:W. ⟨W,R,V⟩,w ⊨⇧d □⇧d(□⇧dφ ⊃⇧dφ) ⊃⇧d □⇧dφ)" oops
lemma Loeb3: "(conversewf R ∧ transitive R) ⟵ (∀φ W V. ∀w:W. ⟨W,R,V⟩,w ⊨⇧d □⇧d(□⇧dφ ⊃⇧dφ) ⊃⇧d □⇧dφ)" oops
lemma Loeb3a: "conversewf R ⟵ (∀φ W V. ∀w:W. ⟨W,R,V⟩,w ⊨⇧d □⇧d(□⇧dφ ⊃⇧dφ) ⊃⇧d □⇧dφ)" oops
lemma Loeb3b: "transitive R ⟵ (∀φ W V. ∀w:W. ⟨W,R,V⟩,w ⊨⇧d □⇧d(□⇧dφ ⊃⇧dφ) ⊃⇧d □⇧dφ)" oops
lemma Loeb3c: "irreflexive R ⟵ (∀φ W V. ∀w:W. ⟨W,R,V⟩,w ⊨⇧d □⇧d(□⇧dφ ⊃⇧dφ) ⊃⇧d □⇧dφ)" oops
end