Theory HOL-Algebra.Generated_Fields
theory Generated_Fields
imports Generated_Rings Subrings Multiplicative_Group
begin
inductive_set
  generate_field :: "('a, 'b) ring_scheme β 'a set β 'a set"
  for R and H where
    one  : "πβRβ β generate_field R H"
  | incl : "h β H βΉ h β generate_field R H"
  | a_inv: "h β generate_field R H βΉ ββRβ h β generate_field R H"
  | m_inv: "β¦ h β generate_field R H; h β  π¬βRβ β§ βΉ invβRβ h β generate_field R H"
  | eng_add : "β¦ h1 β generate_field R H; h2 β generate_field R H β§ βΉ h1 ββRβ h2 β generate_field R H"
  | eng_mult: "β¦ h1 β generate_field R H; h2 β generate_field R H β§ βΉ h1 ββRβ h2 β generate_field R H"
subsectionβΉBasic Properties of Generated Rings - First PartβΊ
lemma (in field) generate_field_in_carrier:
  assumes "H β carrier R"
  shows "h β generate_field R H βΉ h β carrier R"
  apply (induction rule: generate_field.induct)
  using assms field_Units
  by blast+
lemma (in field) generate_field_incl:
  assumes "H β carrier R"
  shows "generate_field R H β carrier R"
  using generate_field_in_carrier[OF assms] by auto
       
lemma (in field) zero_in_generate: "π¬βRβ β generate_field R H"
  using one a_inv generate_field.eng_add one_closed r_neg
  by metis
lemma (in field) generate_field_is_subfield:
  assumes "H β carrier R"
  shows "subfield (generate_field R H) R"
proof (intro subfieldI', simp_all add: m_inv)
  show "subring (generate_field R H) R"
    by (auto intro: subringI[of "generate_field R H"]
             simp add: eng_add a_inv eng_mult one generate_field_in_carrier[OF assms])
qed
lemma (in field) generate_field_is_add_subgroup:
  assumes "H β carrier R"
  shows "subgroup (generate_field R H) (add_monoid R)"
  using subring.axioms(1)[OF subfieldE(1)[OF generate_field_is_subfield[OF assms]]] .
lemma (in field) generate_field_is_field :
  assumes "H β carrier R"
  shows "field (R β¦ carrier := generate_field R H β¦)"
  using subfield_iff generate_field_is_subfield assms by simp
lemma (in field) generate_field_min_subfield1:
  assumes "H β carrier R"
    and "subfield E R" "H β E"
  shows "generate_field R H β E"
proof
  fix h
  assume h: "h β generate_field R H"
  show "h β E"
    using h and assms(3) and subfield_m_inv[OF assms(2)]
    by (induct rule: generate_field.induct)
       (auto simp add: subringE(3,5-7)[OF subfieldE(1)[OF assms(2)]])
qed
lemma (in field) generate_fieldI:
  assumes "H β carrier R"
    and "subfield E R" "H β E"
    and "βK. β¦ subfield K R; H β K β§ βΉ E β K"
  shows "E = generate_field R H"
proof
  show "E β generate_field R H"
    using assms generate_field_is_subfield generate_field.incl by (metis subset_iff)
  show "generate_field R H β E"
    using generate_field_min_subfield1[OF assms(1-3)] by simp
qed
lemma (in field) generate_fieldE:
  assumes "H β carrier R" and "E = generate_field R H"
  shows "subfield E R" and "H β E" and "βK. β¦ subfield K R; H β K β§ βΉ E β K"
proof -
  show "subfield E R" using assms generate_field_is_subfield by simp
  show "H β E" using assms(2) by (simp add: generate_field.incl subsetI)
  show "βK. subfield K R  βΉ H β K βΉ E β K"
    using assms generate_field_min_subfield1 by auto
qed
lemma (in field) generate_field_min_subfield2:
  assumes "H β carrier R"
  shows "generate_field R H = β{K. subfield K R β§ H β K}"
proof
  have "subfield (generate_field R H) R β§ H β generate_field R H"
    by (simp add: assms generate_fieldE(2) generate_field_is_subfield)
  thus "β{K. subfield K R β§ H β K} β generate_field R H" by blast
next
  have "βK. subfield K R β§ H β K βΉ generate_field R H β K"
    by (simp add: assms generate_field_min_subfield1)
  thus "generate_field R H β β{K. subfield K R β§ H β K}" by blast
qed
lemma (in field) mono_generate_field:
  assumes "I β J" and "J β carrier R"
  shows "generate_field R I β generate_field R J"
proof-
  have "I β generate_field R J "
    using assms generate_fieldE(2) by blast
  thus "generate_field R I β generate_field R J"
    using generate_field_min_subfield1[of I "generate_field R J"] assms generate_field_is_subfield[OF assms(2)]
    by blast
qed
lemma (in field) subfield_gen_incl :
  assumes "subfield H R"
    and  "subfield K R"
    and "I β H"
    and "I β K"
  shows "generate_field (Rβ¦carrier := Kβ¦) I β generate_field (Rβ¦carrier := Hβ¦) I"
proof
  have incl_HK: "generate_field (R β¦ carrier := J β¦) I β J"
    if J_def : "subfield J R" "I β J" for J
    using field.mono_generate_field[of "(Rβ¦carrier := Jβ¦)" I J] subfield_iff(2)[OF J_def(1)]
      field.generate_field_in_carrier[of "Rβ¦carrier := Jβ¦"]  field_axioms J_def
    by auto
  fix x
  have "x β generate_field (Rβ¦carrier := Kβ¦) I βΉ x β generate_field (Rβ¦carrier := Hβ¦) I"
  proof (induction  rule : generate_field.induct)
    case one
    have "πβRβ¦carrier := Hβ¦β β πβRβ¦carrier := Kβ¦β = πβRβ¦carrier := Hβ¦β" by simp
    moreover have "πβRβ¦carrier := Hβ¦β β πβRβ¦carrier := Kβ¦β = πβRβ¦carrier := Kβ¦β" by simp
    ultimately show ?case using assms generate_field.one by metis
  next
    case (incl h)
    thus ?case using generate_field.incl by force
  next
    case (a_inv h)
    have "a_inv (Rβ¦carrier := Kβ¦) h = a_inv R h" 
      using assms group.m_inv_consistent[of "add_monoid R" K] a_comm_group incl_HK[of K] a_inv
        subring.axioms(1)[OF subfieldE(1)[OF assms(2)]]
      unfolding comm_group_def a_inv_def by auto
    moreover have "a_inv (Rβ¦carrier := Hβ¦) h = a_inv R h"
      using assms group.m_inv_consistent[of "add_monoid R" H] a_comm_group incl_HK[of H] a_inv
        subring.axioms(1)[OF subfieldE(1)[OF assms(1)]]
      unfolding  comm_group_def a_inv_def by auto
    ultimately show ?case using generate_field.a_inv a_inv.IH by fastforce
  next
    case (m_inv h) 
    have h_K : "h β (K - {π¬})" using incl_HK[OF assms(2) assms(4)] m_inv by auto
    hence "m_inv (Rβ¦carrier := Kβ¦) h = m_inv R h" 
      using  field.m_inv_mult_of[OF subfield_iff(2)[OF assms(2)]]
        group.m_inv_consistent[of "mult_of R" "K - {π¬}"] field_mult_group units_of_inv
        subgroup_mult_of subfieldE[OF assms(2)] unfolding mult_of_def apply simp
      by (metis h_K mult_of_def mult_of_is_Units subgroup.mem_carrier units_of_carrier assms(2))
    moreover have h_H : "h β (H - {π¬})" using incl_HK[OF assms(1) assms(3)] m_inv by auto
    hence "m_inv (Rβ¦carrier := Hβ¦) h = m_inv R h"
      using  field.m_inv_mult_of[OF subfield_iff(2)[OF assms(1)]]
        group.m_inv_consistent[of "mult_of R" "H - {π¬}"] field_mult_group 
        subgroup_mult_of[OF assms(1)]  unfolding mult_of_def apply simp
      by (metis h_H field_Units m_inv_mult_of mult_of_is_Units subgroup.mem_carrier units_of_def)
    ultimately show ?case using generate_field.m_inv m_inv.IH h_H by fastforce
  next
    case (eng_add h1 h2)
    thus ?case using incl_HK assms generate_field.eng_add by force
  next
    case (eng_mult h1 h2)
    thus ?case using generate_field.eng_mult by force
  qed
  thus "x β generate_field (Rβ¦carrier := Kβ¦) I βΉ x β generate_field (Rβ¦carrier := Hβ¦) I"
    by auto
qed
lemma (in field) subfield_gen_equality:
  assumes "subfield H R" "K β H"
  shows "generate_field R K = generate_field (R β¦ carrier := H β¦) K"
  using subfield_gen_incl[OF assms(1) carrier_is_subfield assms(2)] assms subringE(1)
        subfield_gen_incl[OF carrier_is_subfield assms(1) _ assms(2)] subfieldE(1)[OF assms(1)]
  by force
end