Theory HOL-Algebra.Bij
theory Bij
imports Group
begin
section ‹Bijections of a Set, Permutation and Automorphism Groups›
definition
  Bij :: "'a set ⇒ ('a ⇒ 'a) set"
    
   where "Bij S = extensional S ∩ {f. bij_betw f S S}"
definition
  BijGroup :: "'a set ⇒ ('a ⇒ 'a) monoid"
  where "BijGroup S =
    ⦇carrier = Bij S,
     mult = λg ∈ Bij S. λf ∈ Bij S. compose S g f,
     one = λx ∈ S. x⦈"
declare Id_compose [simp] compose_Id [simp]
lemma Bij_imp_extensional: "f ∈ Bij S ⟹ f ∈ extensional S"
  by (simp add: Bij_def)
lemma Bij_imp_funcset: "f ∈ Bij S ⟹ f ∈ S → S"
  by (auto simp add: Bij_def bij_betw_imp_funcset)
subsection ‹Bijections Form a Group›
lemma restrict_inv_into_Bij: "f ∈ Bij S ⟹ (λx ∈ S. (inv_into S f) x) ∈ Bij S"
  by (simp add: Bij_def bij_betw_inv_into)
lemma id_Bij: "(λx∈S. x) ∈ Bij S "
  by (auto simp add: Bij_def bij_betw_def inj_on_def)
lemma compose_Bij: "⟦x ∈ Bij S; y ∈ Bij S⟧ ⟹ compose S x y ∈ Bij S"
  by (auto simp add: Bij_def bij_betw_compose) 
lemma Bij_compose_restrict_eq:
     "f ∈ Bij S ⟹ compose S (restrict (inv_into S f) S) f = (λx∈S. x)"
  by (simp add: Bij_def compose_inv_into_id)
theorem group_BijGroup: "group (BijGroup S)"
  apply (simp add: BijGroup_def)
  apply (rule groupI)
      apply (auto simp: compose_Bij id_Bij Bij_imp_funcset Bij_imp_extensional compose_assoc [symmetric])
  apply (blast intro: Bij_compose_restrict_eq restrict_inv_into_Bij)
  done
subsection‹Automorphisms Form a Group›
lemma Bij_inv_into_mem: "⟦ f ∈ Bij S;  x ∈ S⟧ ⟹ inv_into S f x ∈ S"
by (simp add: Bij_def bij_betw_def inv_into_into)
lemma Bij_inv_into_lemma:
  assumes eq: "⋀x y. ⟦x ∈ S; y ∈ S⟧ ⟹ h(g x y) = g (h x) (h y)"
      and hg: "h ∈ Bij S" "g ∈ S → S → S" and "x ∈ S" "y ∈ S"
  shows "inv_into S h (g x y) = g (inv_into S h x) (inv_into S h y)"
proof -
  have "h ` S = S"
    by (metis (no_types) Bij_def Int_iff assms(2) bij_betw_def mem_Collect_eq)
  with ‹x ∈ S› ‹y ∈ S› have "∃x'∈S. ∃y'∈S. x = h x' ∧ y = h y'"
    by auto
  then show ?thesis
    using assms
    by (auto simp add: Bij_def bij_betw_def eq [symmetric] inv_f_f funcset_mem [THEN funcset_mem])
qed
definition
  auto :: "('a, 'b) monoid_scheme ⇒ ('a ⇒ 'a) set"
  where "auto G = hom G G ∩ Bij (carrier G)"
definition
  AutoGroup :: "('a, 'c) monoid_scheme ⇒ ('a ⇒ 'a) monoid"
  where "AutoGroup G = BijGroup (carrier G) ⦇carrier := auto G⦈"
lemma (in group) id_in_auto: "(λx ∈ carrier G. x) ∈ auto G"
  by (simp add: auto_def hom_def restrictI group.axioms id_Bij)
lemma (in group) mult_funcset: "mult G ∈ carrier G → carrier G → carrier G"
  by (simp add:  Pi_I group.axioms)
lemma (in group) restrict_inv_into_hom:
      "⟦h ∈ hom G G; h ∈ Bij (carrier G)⟧
       ⟹ restrict (inv_into (carrier G) h) (carrier G) ∈ hom G G"
  by (simp add: hom_def Bij_inv_into_mem restrictI mult_funcset
                group.axioms Bij_inv_into_lemma)
lemma inv_BijGroup:
     "f ∈ Bij S ⟹ m_inv (BijGroup S) f = (λx ∈ S. (inv_into S f) x)"
apply (rule group.inv_equality [OF group_BijGroup])
apply (simp_all add:BijGroup_def restrict_inv_into_Bij Bij_compose_restrict_eq)
done
lemma (in group) subgroup_auto:
      "subgroup (auto G) (BijGroup (carrier G))"
proof (rule subgroup.intro)
  show "auto G ⊆ carrier (BijGroup (carrier G))"
    by (force simp add: auto_def BijGroup_def)
next
  fix x y
  assume "x ∈ auto G" "y ∈ auto G" 
  thus "x ⊗⇘BijGroup (carrier G)⇙ y ∈ auto G"
    by (force simp add: BijGroup_def is_group auto_def Bij_imp_funcset 
                        group.hom_compose compose_Bij)
next
  show "𝟭⇘BijGroup (carrier G)⇙ ∈ auto G" by (simp add:  BijGroup_def id_in_auto)
next
  fix x 
  assume "x ∈ auto G" 
  thus "inv⇘BijGroup (carrier G)⇙ x ∈ auto G"
    by (simp del: restrict_apply
        add: inv_BijGroup auto_def restrict_inv_into_Bij restrict_inv_into_hom)
qed
theorem (in group) AutoGroup: "group (AutoGroup G)"
by (simp add: AutoGroup_def subgroup.subgroup_is_group subgroup_auto 
              group_BijGroup)
end