Theory Prebicategory

(*  Title:       PreBicategory
    Author:      Eugene W. Stark <stark@cs.stonybrook.edu>, 2019
    Maintainer:  Eugene W. Stark <stark@cs.stonybrook.edu>
*)

  text ‹
    The objective of this section is to construct a formalization of bicategories that is
    compatible with our previous formulation of categories cite"Category3-AFP"
    and that permits us to carry over unchanged as much of the work done on categories as possible.
    For these reasons, we conceive of a bicategory in what might be regarded as a somewhat
    unusual fashion.  Rather than a traditional development, which would typically define
    a bicategory to be essentially ``a `category' whose homs themselves have the structure
    of categories,'' here we regard a bicategory as ``a (vertical) category that has been
    equipped with a suitable (horizontal) weak composition.''  Stated another way, we think
    of a bicategory as a generalization of a monoidal category in which the tensor product is
    a partial operation, rather than a total one.  Our definition of bicategory can thus
    be summarized as follows: a bicategory is a (vertical) category that has been equipped
    with idempotent endofunctors src› and trg› that assign to each arrow its ``source''
    and ``target'' subject to certain commutativity constraints,
    a partial binary operation ⋆› of horizontal composition that is suitably functorial on
    the ``hom-categories'' determined by the assignment of sources and targets,
    ``associativity'' isomorphisms «𝖺[f, g, h] : (f ⋆ g) ⋆ h ⇒ f ⋆ (g ⋆ h)»› for each horizontally
    composable triple of vertical identities f›, g›, h›, subject to the usual naturality
    and coherence conditions, and for each ``object'' a› (defined to be an arrow that is
    its own source and target) a ``unit isomorphism'' «𝗂[a] : a ⋆ a ⇒ a»›.
    As is the case for monoidal categories, the unit isomorphisms and associator isomorphisms
    together enable a canonical definition of left and right ``unit'' isomorphisms
    «𝗅[f] : a ⋆ f ⇒ f»› and «𝗋[f] : f ⋆ a ⇒ f»› when f› is a vertical identity
    horizontally composable on the left or right by a›, and it can be shown that these are
    the components of natural transformations.

    The definition of bicategory just sketched shares with a more traditional version the
    requirement that assignments of source and target are given as basic data, and these
    assignments determine horizontal composability in the sense that arrows μ› and ν›
    are composable if the chosen source of μ› coincides with the chosen target of ν›.
    Thus it appears, at least on its face, that composability of arrows depends on an assignment
    of sources and targets.  We are interested in establishing whether this is essential or
    whether bicategories can be formalized in a completely ``object-free'' fashion.

    It turns out that we can obtain such an object-free formalization through a rather direct
    generalization of the approach we used in the formalization of categories.
    Specifically, we define a \emph{weak composition} to be a partial binary operation ⋆›
    on the arrow type of a ``vertical'' category V›, such that the domain of definition of this
    operation is itself a category (of ``horizontally composable pairs of arrows''),
    the operation is functorial, and it is subject to certain matching conditions which include
    those satisfied by a category.
    From the axioms for a weak composition we can prove the existence of ``hom-categories'',
    which are subcategories of V› consisting of arrows horizontally composable on the
    left or right by a specified vertical identity.
    A \emph{weak unit} is defined to be a vertical identity a› such that a ⋆ a ≅ a›
    and is such that the mappings a ⋆ ‐› and ‐ ⋆ a› are fully faithful endofunctors
    of the subcategories of V› consisting of the arrows for which they are defined.
    We define the \emph{sources} of an arrow μ› to be the weak units that are horizontally
    composable with μ› on the right, and the \emph{targets} of μ› to be the weak units
    that are horizontally composable with μ› on the left.
    An \emph{associative weak composition} is defined to be a weak composition that is equipped
    with ``associator'' isomorphisms «𝖺[f, g, h] : (f ⋆ g) ⋆ h ⇒ f ⋆ (g ⋆ h)»› for horizontally
    composable vertical identities f›, g›, h›, subject to the usual naturality and coherence
    conditions.
    A \emph{prebicategory} is defined to be an associative weak composition for which every
    arrow has a source and a target.  We show that the sets of sources and targets of each
    arrow in a prebicategory is an isomorphism class of weak units, and that horizontal
    composability of arrows μ› and ν› is characterized by the set of sources of μ› being
    equal to the set of targets of ν›.

    We show that prebicategories are essentially ``bicategories without objects''.
    Given a prebicategory, we may choose an arbitrary representative of each
    isomorphism class of weak units and declare these to be ``objects''
    (this is analogous to choosing a particular unit object in a monoidal category).
    For each object we may choose a particular \emph{unit isomorphism} «𝗂[a] : a ⋆ a ⇒ a»›.
    This choice, together with the associator isomorphisms, enables a canonical definition
    of left and right unit isomorphisms «𝗅[f] : a ⋆ f ⇒ f»› and «𝗋[f] : f ⋆ a ⇒ f»›
    when f› is a vertical identity horizontally composable on the left or right by a›,
    and it can be shown that these are the components of natural isomorphisms.
    We may then define ``the source'' of an arrow to be the chosen representative of the
    set of its sources and ``the target'' to be the chosen representative of the set of its
    targets.  We show that the resulting structure is a bicategory, in which horizontal
    composability as given by the weak composition coincides with the ``syntactic'' version
    determined by the chosen sources and targets.
    Conversely, a bicategory determines a prebicategory, essentially by forgetting
    the sources, targets and unit isomorphisms.
    These results make it clear that the assignment of sources and targets to arrows in
    a bicategory is basically a convenience and that horizontal composability of arrows
    is not dependent on a particular choice.
›

theory Prebicategory
imports Category3.EquivalenceOfCategories Category3.Subcategory IsomorphismClass
begin

  section "Weak Composition"

  text ‹
    In this section we define a locale weak_composition›, which formalizes a functorial
    operation of ``horizontal'' composition defined on an underlying ``vertical'' category.
    The definition is expressed without the presumption of the existence of any sort
    of ``objects'' that determine horizontal composability.  Rather, just as we did
    in showing that the @{locale partial_magma} locale supported the definition of ``identity
    arrow'' as a kind of unit for vertical composition which ultimately served as a basis
    for the definition of ``domain'' and ``codomain'' of an arrow, here we show that the
    weak_composition› locale supports a definition of \emph{weak unit} for horizontal
    composition which can ultimately be used to define the \emph{sources} and \emph{targets}
    of an arrow with respect to horizontal composition.
    In particular, the definition of weak composition involves axioms that relate horizontal
    and vertical composability.  As a consequence of these axioms, for any fixed arrow μ›,
    the sets of arrows horizontally composable on the left and on the right with μ›
    form subcategories with respect to vertical composition.  We define the
    sources of μ› to be the weak units that are composable with μ› on the right,
    and the targets of μ› to be the weak units that are composable with μ›
    on the left.  Weak units are then characterized as arrows that are members
    of the set of their own sources (or, equivalently, of their own targets).
  ›

  subsection "Definition"

  locale weak_composition =
    category V +
    VxV: product_category V V +
    VoV: subcategory VxV.comp λμν. fst μν  snd μν  null +
    "functor" VoV.comp V λμν. fst μν  snd μν
  for V :: "'a comp"         (infixr "" 55)
  and H :: "'a comp"         (infixr "" 53) +
  assumes left_connected: "seq ν ν'  ν  μ  null  ν'  μ  null"
  and right_connected: "seq μ μ'  ν  μ  null  ν  μ'  null"
  and match_1: " ν  μ  null; (ν  μ)  τ  null   μ  τ  null"
  and match_2: " ν  (μ  τ)  null; μ  τ  null   ν  μ  null"
  and match_3: " μ  τ  null; ν  μ  null   (ν  μ)  τ  null"
  and match_4: " μ  τ  null; ν  μ  null   ν  (μ  τ)  null"
  begin

    text ‹
      We think of the arrows of the vertical category as ``2-cells'' and the vertical identities
      as ``1-cells''.  In the formal development, the predicate @{term arr} (``arrow'')
      will have its normal meaning with respect to the vertical composition, hence @{term "arr μ"}
      will mean, essentially, ``μ› is a 2-cell''.  This is somewhat unfortunate, as it is
      traditional when discussing bicategories to use the term ``arrow'' to refer to the 1-cells.
      However, we are trying to carry over all the formalism that we have already developed for
      categories and apply it to bicategories with as little change and redundancy as possible.
      It becomes too confusing to try to repurpose the name @{term arr} to mean @{term ide} and
      to introduce a replacement for the name @{term arr}, so we will simply tolerate the
      situation.  In informal text, we will prefer the terms ``2-cell'' and ``1-cell'' over
      (vertical) ``arrow'' and ``identity'' when there is a chance for confusion.

      We do, however, make the following adjustments in notation for @{term in_hom} so that
      it is distinguished from the notion @{term in_hhom} (``in horizontal hom'') to be
      introduced subsequently.
    ›

    no_notation in_hom      ("«_ : _  _»")
    notation in_hom         ("«_ : _  _»")

    lemma is_partial_magma:
    shows "partial_magma H"
    proof
      show "∃!n. f. n  f = n  f  n = n"
      proof
        show 1: "f. null  f = null  f  null = null"
          using is_extensional VoV.inclusion VoV.arr_charSbC by force
        show "n. f. n  f = n  f  n = n  n = null"
          using 1 VoV.arr_charSbC is_extensional not_arr_null by metis
      qed
    qed

    interpretation H: partial_magma H
      using is_partial_magma by auto
    interpretation H: partial_composition H
      ..

    lemma is_partial_composition:
    shows "partial_composition H"
      ..

    text ‹
      Either match_1› or match_2› seems essential for the next result, which states
      that the nulls for the horizontal and vertical compositions coincide.
    ›

    lemma null_agreement [simp]:
    shows "H.null = null"
      by (metis VoV.inclusion VxV.not_arr_null match_1 H.null_is_zero(1))

    lemma composable_implies_arr:
    assumes "ν  μ  null"
    shows "arr μ" and "arr ν"
      using assms is_extensional VoV.arr_charSbC VoV.inclusion by auto

    lemma hcomp_null [simp]:
    shows "null  μ = null" and "μ  null = null"
      using H.null_is_zero by auto

    lemma hcomp_simpsWC [simp]:
    assumes "ν  μ  null"
    shows "arr (ν  μ)" and "dom (ν  μ) = dom ν  dom μ" and "cod (ν  μ) = cod ν  cod μ"
      using assms preserves_arr preserves_dom preserves_cod VoV.arr_charSbC VoV.inclusion
            VoV.dom_simp VoV.cod_simp
      by force+

    lemma ide_hcompWC:
    assumes "ide f" and "ide g" and "g  f  null"
    shows "ide (g  f)"
      using assms preserves_ide VoV.ide_charSbC by force

    lemma hcomp_in_homWC [intro]:
    assumes "ν  μ  null"
    shows "«ν  μ : dom ν  dom μ  cod ν  cod μ»"
      using assms by auto

    text ‹
      Horizontal composability of arrows is determined by horizontal composability of
      their domains and codomains (defined with respect to vertical composition).
    ›

    lemma hom_connected:
    shows "ν  μ  null  dom ν  μ  null"
    and "ν  μ  null  ν  dom μ  null"
    and "ν  μ  null  cod ν  μ  null"
    and "ν  μ  null  ν  cod μ  null"
    proof -
      show "ν  μ  null  dom ν  μ  null"
        using left_connected [of ν "dom ν" μ] composable_implies_arr arr_dom_iff_arr by force
      show "ν  μ  null  cod ν  μ  null"
        using left_connected [of  "cod ν" ν μ] composable_implies_arr arr_cod_iff_arr by force
      show "ν  μ  null  ν  dom μ  null"
        using right_connected [of μ "dom μ" ν] composable_implies_arr arr_dom_iff_arr by force
      show "ν  μ  null  ν  cod μ  null"
        using right_connected [of "cod μ" μ ν] composable_implies_arr arr_cod_iff_arr by force
    qed

    lemma isomorphic_implies_equicomposable:
    assumes "f  g"
    shows "τ  f  null  τ  g  null"
    and "f  σ  null  g  σ  null"
      using assms isomorphic_def hom_connected by auto

    lemma interchange:
    assumes "seq ν μ" and "seq τ σ"
    shows "(ν  μ)  (τ  σ) = (ν  τ)  (μ  σ)"
    proof -
      have "μ  σ = null  ?thesis"
        by (metis assms null_is_zero(2) dom_comp hom_connected(1-2))
      moreover have "μ  σ  null  ?thesis"
      proof -
        assume μσ: "μ  σ  null"
        have 1: "VoV.arr (μ, σ)"
          using μσ VoV.arr_charSbC by auto
        have ντ: "(ν, τ)  VoV.hom (VoV.cod (μ, σ)) (VoV.cod (ν, τ))"
        proof -
          have "VoV.arr (ν, τ)"
            using assms 1 hom_connected VoV.arr_charSbC
            by (elim seqE, auto, metis)
          thus ?thesis
            using assms μσ VoV.dom_charSbC VoV.cod_charSbC by fastforce
        qed
        show ?thesis
        proof -
          have "VoV.seq (ν, τ) (μ, σ)"
            using assms 1 μσ ντ VoV.seqI by blast
          thus ?thesis
            using assms 1 μσ ντ VoV.comp_char preserves_comp [of "(ν, τ)" "(μ, σ)"] VoV.seqI
            by fastforce
        qed
      qed
      ultimately show ?thesis by blast
    qed

    lemma paste_1:
    shows "ν  μ = (cod ν  μ)  (ν  dom μ)"
      using interchange composable_implies_arr comp_arr_dom comp_cod_arr
            hom_connected(2-3)
      by (metis null_is_zero(2))

    lemma paste_2:
    shows "ν  μ = (ν  cod μ)  (dom ν  μ)"
      using interchange composable_implies_arr comp_arr_dom comp_cod_arr
            hom_connected(1,4)
      by (metis null_is_zero(2))

    lemma whisker_left:
    assumes "seq ν μ" and "ide f"
    shows "f  (ν  μ) = (f  ν)  (f  μ)"
      using assms interchange [of f f ν μ] hom_connected by auto

    lemma whisker_right:
    assumes "seq ν μ" and "ide f"
    shows "(ν  μ)  f = (ν  f)  (μ  f)"
      using assms interchange [of ν μ f f] hom_connected by auto

    subsection "Hom-Subcategories"

    definition left
    where "left τ  λμ. τ  μ  null"

    definition right
    where "right σ  λμ. μ  σ  null"

    lemma right_iff_left:
    shows "right σ τ  left τ σ"
      using right_def left_def by simp

    lemma left_respects_isomorphic:
    assumes "f  g"
    shows "left f = left g"
      using assms isomorphic_implies_equicomposable left_def by auto

    lemma right_respects_isomorphic:
    assumes "f  g"
    shows "right f = right g"
      using assms isomorphic_implies_equicomposable right_def by auto

    lemma left_iff_left_inv:
    assumes "iso μ"
    shows "left τ μ  left τ (inv μ)"
      using assms left_def inv_in_hom hom_connected(2) hom_connected(4) [of τ "inv μ"]
      by auto
        
    lemma right_iff_right_inv:
    assumes "iso μ"
    shows "right σ μ  right σ (inv μ)"
      using assms right_def inv_in_hom hom_connected(1) hom_connected(3) [of "inv μ" σ]
      by auto

    lemma left_hom_is_subcategory:
    assumes "arr μ"
    shows "subcategory V (left μ)"
      using composable_implies_arr hom_connected(2,4)
      apply (unfold left_def, unfold_locales)
         apply auto
      by (metis cod_comp seqI)

    lemma right_hom_is_subcategory:
    assumes "arr μ"
    shows "subcategory V (right μ)"
      using composable_implies_arr hom_connected(1,3)
      apply (unfold right_def, unfold_locales)
         apply auto
      by (metis cod_comp seqI)

    abbreviation Left
    where "Left a  subcategory.comp V (left a)"

    abbreviation Right
    where "Right a  subcategory.comp V (right a)"

    text ‹
      We define operations of composition on the left or right with a fixed 1-cell,
      and show that such operations are functorial in case that 1-cell is
      horizontally self-composable.
    ›

    definition HL
    where "HL g  λμ. g  μ"

    definition HR
    where "HR f  λμ. μ  f"

    (* TODO: Why do the following fail when I use @{thm ...} *)
    text ‹
      Note that match_3› and match_4› are required for the next results.
    ›

    lemma endofunctor_HL:
    assumes "ide g" and "g  g  null"
    shows "endofunctor (Left g) (HL g)"
    proof -
      interpret L: subcategory V left g using assms left_hom_is_subcategory by simp
      have *: "μ. L.arr μ  HL g μ = g  μ"
        using assms HL_def by simp
      have preserves_arr: "μ. L.arr μ  L.arr (HL g μ)"
        using assms * L.arr_charSbC left_def match_4 by force
      show "endofunctor L.comp (HL g)"
        using assms *
        apply unfold_locales
        using HL_def L.arr_charSbC L.null_char left_def
            apply force
        using preserves_arr
           apply blast
          apply (metis L.dom_simp L.not_arr_null L.null_char hcomp_simpsWC(2) ide_char
            preserves_arr HL_def)
         apply (metis HL_def L.arrE L.cod_simp hcomp_simpsWC(3) ide_char left_def preserves_arr)
        by (metis L.comp_def L.comp_simp L.seq_charSbC hcomp_simpsWC(1) whisker_left preserves_arr)
    qed

    lemma endofunctor_HR:
    assumes "ide f" and "f  f  null"
    shows "endofunctor (Right f) (HR f)"
    proof -
      interpret R: subcategory V right f using assms right_hom_is_subcategory by simp
      have *: "μ. R.arr μ  HR f μ = μ  f"
        using assms HR_def by simp
      have preserves_arr: "μ. R.arr μ  R.arr (HR f μ)"
        using assms * R.arr_charSbC right_def match_3 by force
      show "endofunctor R.comp (HR f)"
        using assms *
        apply unfold_locales
        using HR_def R.arr_charSbC R.null_char right_def
            apply force
        using preserves_arr
           apply blast
          apply (metis R.dom_simp R.not_arr_null R.null_char hcomp_simpsWC(2) ide_char
            preserves_arr HR_def)
         apply (metis HR_def R.arrE R.cod_simp hcomp_simpsWC(3) ide_char right_def preserves_arr)
        by (metis R.comp_def R.comp_simp R.seq_charSbC hcomp_simpsWC(1) whisker_right preserves_arr)
    qed

  end

  locale left_hom =
    weak_composition V H +
    S: subcategory V left ω
  for V :: "'a comp"        (infixr "" 55)
  and H :: "'a comp"        (infixr "" 53)
  and ω :: 'a +
  assumes arr_ω: "arr ω"
  begin

    no_notation in_hom      ("«_ : _  _»")
    notation in_hom         ("«_ : _  _»")
    notation S.comp         (infixr "S" 55)
    notation S.in_hom       ("«_ : _ S _»")

    lemma right_hcomp_closed:
    assumes "«μ : x S y»" and "«ν : c  d»" and "μ  ν  null"
    shows "«μ  ν : x  c S y  d»"
      using assms arr_ω S.arr_charSbC S.dom_simp S.cod_simp left_def match_4
      by (elim S.in_homE, intro S.in_homI) auto

    lemma interchange:
    assumes "S.seq ν μ" and "S.seq τ σ" and "μ  σ  null"
    shows "(ν S μ)  (τ S σ) = (ν  τ) S (μ  σ)"
    proof -
      have 1: "ν  τ  null"
        using assms hom_connected(1) [of ν σ] hom_connected(2) [of ν τ] hom_connected(3-4)
              S.dom_simp S.cod_simp
        by force
      have "(ν S μ)  (τ S σ) = (ν  μ)  (τ  σ)"
        using assms S.comp_char S.seq_charSbC by metis
      also have "... = (ν  τ)  (μ  σ)"
        using assms interchange S.seq_charSbC S.arr_charSbC by simp
      also have "... = (ν  τ) S (μ  σ)"
        using assms 1
        by (metis S.arr_charSbC S.comp_char S.seq_charSbC ext match_4 left_def)
      finally show ?thesis by blast
    qed

    lemma inv_char:
    assumes "S.arr φ" and "iso φ"
    shows "S.inverse_arrows φ (inv φ)"
    and "S.inv φ = inv φ"
    proof -
      have 1: "S.arr (inv φ)"
        using assms S.arr_charSbC left_iff_left_inv
        by (intro S.arrISbC) meson
      show "S.inv φ = inv φ"
        using assms 1 S.inv_charSbC S.iso_charSbC by blast
      thus "S.inverse_arrows φ (inv φ)"
        using assms 1 S.iso_charSbC S.inv_is_inverse by metis
    qed

    lemma iso_char:
    assumes "S.arr φ"
    shows "S.iso φ  iso φ"
      using assms S.iso_charSbC inv_char by auto

  end

  locale right_hom =
    weak_composition V H +
    S: subcategory V right ω
  for V :: "'a comp"        (infixr "" 55)
  and H :: "'a comp"        (infixr "" 53)
  and ω :: 'a +
  assumes arr_ω: "arr ω"
  begin

    no_notation in_hom      ("«_ : _  _»")
    notation in_hom         ("«_ : _  _»")
    notation S.comp         (infixr "S" 55)
    notation S.in_hom       ("«_ : _ S _»")

    lemma left_hcomp_closed:
    assumes "«μ : x S y»" and "«ν : c  d»" and "ν  μ  null"
    shows "«ν  μ : c  x S d  y»"
      using assms arr_ω S.arr_charSbC S.dom_simp S.cod_simp right_def match_3
      by (elim S.in_homE, intro S.in_homI) auto

    lemma interchange:
    assumes "S.seq ν μ" and "S.seq τ σ" and "μ  σ  null"
    shows "(ν S μ)  (τ S σ) = (ν  τ) S (μ  σ)"
    proof -
      have 1: "ν  τ  null"
        using assms hom_connected(1) [of ν σ] hom_connected(2) [of ν τ] hom_connected(3-4)
              S.dom_simp S.cod_simp
        by fastforce
      have "(ν S μ)  (τ S σ) = (ν  μ)  (τ  σ)"
        using assms S.comp_char S.seq_charSbC by metis
      also have "... = (ν  τ)  (μ  σ)"
        using assms interchange S.seq_charSbC S.arr_charSbC by simp
      also have "... = (ν  τ) S (μ  σ)"
        using assms 1
        by (metis S.arr_charSbC S.comp_char S.seq_charSbC ext match_3 right_def)
      finally show ?thesis by blast
    qed

    lemma inv_char:
    assumes "S.arr φ" and "iso φ"
    shows "S.inverse_arrows φ (inv φ)"
    and "S.inv φ = inv φ"
    proof -
      have 1: "S.arr (inv φ)"
        using assms S.arr_charSbC right_iff_right_inv
        by (intro S.arrISbC) meson
      show "S.inv φ = inv φ"
        using assms 1 S.inv_charSbC S.iso_charSbC by blast
      thus "S.inverse_arrows φ (inv φ)"
        using assms 1 S.iso_charSbC S.inv_is_inverse by metis
    qed

    lemma iso_char:
    assumes "S.arr φ"
    shows "S.iso φ  iso φ"
      using assms S.iso_charSbC inv_char by auto

  end

  subsection "Weak Units"

  text ‹
    We now define a \emph{weak unit} to be an arrow a› such that:
    \begin{enumerate}
    \item  a ⋆ a› is isomorphic to a›
           (and hence a› is a horizontally self-composable 1-cell).
    \item  Horizontal composition on the left with a› is a fully faithful endofunctor of the
           subcategory of arrows that are composable on the left with a›.
    \item  Horizontal composition on the right with a› is fully faithful endofunctor of the
           subcategory of arrows that are composable on the right with a›.
    \end{enumerate}
  ›

  context weak_composition
  begin

    definition weak_unit :: "'a  bool"
    where "weak_unit a  a  a  a 
                         fully_faithful_functor (Left a) (Left a) (HL a) 
                         fully_faithful_functor (Right a) (Right a) (HR a)"

    lemma weak_unit_self_composable:
    assumes "weak_unit a"
    shows "ide a" and "ide (a  a)" and "a  a  null"
    proof -
      obtain φ where φ: "«φ : a  a  a»  iso φ"
        using assms weak_unit_def isomorphic_def by blast
      have 1: "arr φ" using φ by blast
      show "ide a" using φ ide_cod by blast
      thus "ide (a  a)" using φ ide_dom by force
      thus "a  a  null" using not_arr_null ideD(1) by metis
    qed

    lemma weak_unit_self_right:
    assumes "weak_unit a"
    shows "right a a"
      using assms weak_unit_self_composable right_def by simp

    lemma weak_unit_self_left:
    assumes "weak_unit a"
    shows "left a a"
      using assms weak_unit_self_composable left_def by simp

    lemma weak_unit_in_vhom:
    assumes "weak_unit a"
    shows "«a : a  a»"
      using assms weak_unit_self_composable left_def by auto

    text ‹
      If a› is a weak unit, then there exists a ``unit isomorphism'' «ι : a ⋆ a ⇒ a»›.
      It need not be unique, but we may choose one arbitrarily.
    ›

    definition some_unit
    where "some_unit a  SOME ι. iso ι  «ι : a  a  a»"

    lemma iso_some_unit:
    assumes "weak_unit a"
    shows "iso (some_unit a)"
    and "«some_unit a : a  a  a»"
    proof -
      let ?P = "λι. iso ι  «ι : a  a  a»"
      have "ι. ?P ι"
        using assms weak_unit_def by auto
      hence 1: "?P (some_unit a)"
        using someI_ex [of ?P] some_unit_def by simp
      show "iso (some_unit a)" using 1 by blast
      show "«some_unit a : a  a  a»" using 1 by blast
    qed

    text ‹
      The \emph{sources} of an arbitrary arrow μ› are the weak units that are composable with μ›
      on the right.  Similarly, the \emph{targets} of μ› are the weak units that are composable
      with μ› on the left.
    ›

    definition sources
    where "sources μ  {a. weak_unit a  μ  a  null}"

    lemma sourcesI [intro]:
    assumes "weak_unit a" and "μ  a  null"
    shows "a  sources μ"
      using assms sources_def by blast

    lemma sourcesD [dest]:
    assumes "a  sources μ"
    shows "ide a" and "weak_unit a" and "μ  a  null"
      using assms sources_def weak_unit_self_composable by auto

    definition targets
    where "targets μ  {b. weak_unit b  b  μ  null}"

    lemma targetsI [intro]:
    assumes "weak_unit b" and "b  μ  null"
    shows "b  targets μ"
      using assms targets_def by blast

    lemma targetsD [dest]:
    assumes "b  targets μ"
    shows "ide b" and "weak_unit b" and "b  μ  null"
      using assms targets_def weak_unit_self_composable by auto

    lemma sources_dom [simp]:
    assumes "arr μ"
    shows "sources (dom μ) = sources μ"
      using assms hom_connected(1) by blast

    lemma sources_cod [simp]:
    assumes "arr μ"
    shows "sources (cod μ) = sources μ"
      using assms hom_connected(3) by blast

    lemma targets_dom [simp]:
    assumes "arr μ"
    shows "targets (dom μ) = targets μ"
      using assms hom_connected(2) by blast

    lemma targets_cod [simp]:
    assumes "arr μ"
    shows "targets (cod μ) = targets μ"
      using assms hom_connected(4) by blast

    lemma weak_unit_iff_self_source:
    shows "weak_unit a  a  sources a"
      using weak_unit_self_composable by auto

    lemma weak_unit_iff_self_target:
    shows "weak_unit b  b  targets b"
      using weak_unit_self_composable by auto

    abbreviation (input) in_hhomWC  ("«_ : _ WC _»")
    where "in_hhomWC μ f g  arr μ  f  sources μ  g  targets μ"

    lemma sources_hcomp:
    assumes "ν  μ  null"
    shows "sources (ν  μ) = sources μ"
      using assms match_1 match_3 null_agreement by blast

    lemma targets_hcomp:
    assumes "ν  μ  null"
    shows "targets (ν  μ) = targets ν"
      using assms match_2 match_4 null_agreement by blast

    lemma HR_preserved_along_iso:
    assumes "weak_unit a" and "a  a'"
    shows "endofunctor (Right a) (HR a')"
    proof -
      have a: "ide a  weak_unit a" using assms isomorphic_def by auto
      have a': "ide a'" using assms isomorphic_def by auto
      (* TODO: The following interpretation re-introduces unwanted notation for "in_hom" *)
      interpret R: subcategory V right a using a right_hom_is_subcategory by simp
      have *: "μ. R.arr μ  HR a' μ = μ  a'"
        using assms HR_def by simp
      have preserves_arr: "μ. R.arr μ  R.arr (HR a' μ)"
        using assms a' * R.arr_charSbC right_def weak_unit_def weak_unit_self_composable
              isomorphic_implies_equicomposable R.ide_char match_3 hcomp_simpsWC(1)
              null_agreement
        by metis
      show "endofunctor R.comp (HR a')"
      proof
        show "μ. ¬ R.arr μ  HR a' μ = R.null"
          using assms R.arr_charSbC R.null_char right_def HR_def null_agreement
                right_respects_isomorphic
          by metis
        fix μ
        assume "R.arr μ"
        hence μ: "R.arr μ  arr μ  right a μ  right a' μ  μ  a  null  μ  a'  null"
          using assms R.arr_charSbC right_respects_isomorphic composable_implies_arr null_agreement
                right_def
          by metis
        show "R.arr (HR a' μ)" using μ preserves_arr by blast
        show "R.dom (HR a' μ) = HR a' (R.dom μ)"
          using a' μ * R.arr_charSbC R.dom_charSbC preserves_arr hom_connected(1) right_def
          by simp
        show "R.cod (HR a' μ) = HR a' (R.cod μ)"
          using a' μ * R.arr_charSbC R.cod_charSbC preserves_arr hom_connected(3) right_def
          by simp
        next
        fix μ ν
        assume μν: "R.seq ν μ"
        have μ: "R.arr μ  arr μ  right a μ  right a' μ  μ  a  null  μ  a'  null"
          using assms μν R.arr_charSbC right_respects_isomorphic composable_implies_arr
                null_agreement right_def
          by (elim R.seqE) metis
        have ν: "«ν : R.cod μ  R.cod ν»  arr ν 
                 right a ν  H ν a  null  right a' ν  H ν a'  null"
          by (metis "*" R.cod_simp R.comp_def R.inclusion R.not_arr_null R.null_char R.seqE
              μν in_homI preserves_arr right_def)
        show "HR a' (R.comp ν μ) = R.comp (HR a' ν) (HR a' μ)"
        proof -
          have 1: "R.arr (HR a' ν)"
            using ν preserves_arr by blast
          have 2: "seq (ν  a') (μ  a')"
            using a' μ ν R.arr_charSbC R.inclusion R.dom_charSbC R.cod_charSbC
                   isomorphic_implies_equicomposable
            by auto
          show ?thesis
            using a' μ ν μν 1 2 preserves_arr HR_def R.dom_simp R.cod_simp R.comp_char
                  R.seq_charSbC R.inclusion whisker_right
            by metis
        qed
      qed
    qed

    lemma HL_preserved_along_iso:
    assumes "weak_unit a" and "a  a'"
    shows "endofunctor (Left a) (HL a')"
    proof -
      have a: "ide a  weak_unit a" using assms isomorphic_def by auto
      have a': "ide a'" using assms isomorphic_def by auto
      (* TODO: The following interpretation re-introduces unwanted notation for "in_hom" *)
      interpret L: subcategory V left a using a left_hom_is_subcategory by simp
      have *: "μ. L.arr μ  HL a' μ = a'  μ"
        using assms HL_def by simp
      have preserves_arr: "μ. L.arr μ  L.arr (HL a' μ)"
        using assms a' * L.arr_charSbC left_def weak_unit_def weak_unit_self_composable
              isomorphic_implies_equicomposable L.ide_char match_4 hcomp_simpsWC(1)
              null_agreement
        by metis
      show "endofunctor L.comp (HL a')"
      proof
        show "μ. ¬ L.arr μ  HL a' μ = L.null"
          using assms L.arr_charSbC L.null_char left_def HL_def null_agreement
                left_respects_isomorphic
          by metis
        fix μ
        assume "L.arr μ"
        hence μ: "L.arr μ  arr μ  left a μ  left a' μ  a  μ  null  a'  μ  null"
          using assms L.arr_charSbC left_respects_isomorphic composable_implies_arr null_agreement
                left_def
          by metis
        show "L.arr (HL a' μ)" using μ preserves_arr by blast
        show "L.dom (HL a' μ) = HL a' (L.dom μ)"
          using a' μ * L.arr_charSbC L.dom_charSbC preserves_arr hom_connected(2) left_def
          by simp
        show "L.cod (HL a' μ) = HL a' (L.cod μ)"
          using a' μ * L.arr_charSbC L.cod_charSbC preserves_arr hom_connected(4) left_def
          by simp
        next
        fix μ ν
        assume μν: "L.seq ν μ"
        have "L.arr μ"
          using μν by (elim L.seqE, auto)
        hence μ: "L.arr μ  arr μ  left a μ  left a' μ  a  μ  null  a'  μ  null"
          using assms L.arr_charSbC left_respects_isomorphic composable_implies_arr null_agreement
                left_def
          by metis
        have ν: "«ν : L.cod μ  L.cod ν»  arr ν 
                 left a ν  a  ν  null  left a' ν  a'  ν  null"
          by (metis (mono_tags, opaque_lifting) L.arrE L.cod_simp L.seq_charSbC μν assms(2)
              in_homI seqE left_def left_respects_isomorphic)
        show "HL a' (L.comp ν μ) = L.comp (HL a' ν) (HL a' μ)"
        proof -
          have 1: "L.arr (HL a' ν)"
            using ν preserves_arr by blast
          have 2: "seq (a'  ν) (a'  μ)"
            using a' μ ν L.arr_charSbC L.inclusion L.dom_charSbC L.cod_charSbC
                  isomorphic_implies_equicomposable
            by auto
          show ?thesis
            using a' μ ν μν 1 2 preserves_arr HL_def L.dom_simp L.cod_simp L.comp_char
                  L.seq_charSbC L.inclusion whisker_left
            by metis
        qed
      qed
    qed

  end

  subsection "Regularity"

  text ‹
    We call a weak composition \emph{regular} if f ⋆ a ≅ f› whenever a› is a source of
    1-cell f›, and b ⋆ f ≅ f› whenever b› is a target of f›.  A consequence of regularity
    is that horizontal composability of 2-cells is fully determined by their sets of
    sources and targets.
  ›

  locale regular_weak_composition =
    weak_composition +
  assumes comp_ide_source: " a  sources f; ide f   f  a  f"
  and comp_target_ide: " b  targets f; ide f   b  f  f"
  begin

    lemma sources_determine_composability:
    assumes "a  sources τ"
    shows "τ  μ  null  a  μ  null"
    proof -
      have *: "τ. ide τ  a  sources τ  τ  μ  null  a  μ  null"
        using assms comp_ide_source isomorphic_implies_equicomposable match_1 match_3
        by (meson sourcesD(3))
      show ?thesis
      proof -
        have "arr τ" using assms composable_implies_arr by auto
        thus ?thesis
          using assms * [of "dom τ"] hom_connected(1) by auto
      qed
    qed

    lemma targets_determine_composability:
    assumes "b  targets μ"
    shows "τ  μ  null  τ  b  null"
    proof -
      have *: "μ. ide μ  b  targets μ  τ  μ  null  τ  b  null"
        using assms comp_target_ide isomorphic_implies_equicomposable match_2 match_4
        by (meson targetsD(3))
      show ?thesis
      proof -
        have "arr μ" using assms composable_implies_arr by auto
        thus ?thesis
          using assms * [of "dom μ"] hom_connected(2) by auto
      qed
    qed

    lemma composable_if_connected:
    assumes "sources ν  targets μ  {}"
    shows "ν  μ  null"
      using assms targets_determine_composability by blast

    lemma connected_if_composable:
    assumes "ν  μ  null"
    shows "sources ν = targets μ"
      using assms sources_determine_composability targets_determine_composability by blast

    lemma iso_hcompRWC:
    assumes "iso μ" and "iso ν" and "sources ν  targets μ  {}"
    shows "iso (ν  μ)"
    and "inverse_arrows (ν  μ) (inv ν  inv μ)"
    proof -
      have μ: "arr μ  «μ : dom μ  cod μ» 
               iso μ  «inv μ : cod μ  dom μ»"
        using assms inv_in_hom arr_iff_in_hom iso_is_arr by auto
      have ν: "arr ν  «ν : dom ν  cod ν» 
               iso ν  «inv ν : cod ν  dom ν»"
        using assms inv_in_hom by blast
      have 1: "sources (inv ν)  targets (inv μ)  {}"
        using assms μ ν sources_dom sources_cod targets_dom targets_cod arr_inv cod_inv
        by metis
      show "inverse_arrows (ν  μ) (inv ν  inv μ)"
        using assms 1 μ ν inv_in_hom inv_is_inverse comp_inv_arr
              interchange [of "inv ν" ν "inv μ" μ] composable_if_connected
              ide_hcompWC sources_dom targets_dom interchange [of ν "inv ν" μ "inv μ"]
              ide_hcompWC sources_cod targets_cod ide_compE ide_dom comp_arr_inv'
              inverse_arrowsE seqI' inverse_arrowsI
        by metis
      thus "iso (ν  μ)" by auto
    qed

    lemma inv_hcompRWC:
    assumes "iso μ" and "iso ν" and "sources ν  targets μ  {}"
    shows "inv (ν  μ) = inv ν  inv μ"
      using assms iso_hcompRWC(2) [of μ ν] inverse_arrow_unique [of "H ν μ"] inv_is_inverse
      by auto

  end

  subsection "Associativity"

  text ‹
    An \emph{associative weak composition} consists of a weak composition that has been
    equipped with an \emph{associator} isomorphism: «𝖺[f, g, h] : (f ⋆ g) ⋆ h ⇒ f ⋆ g ⋆ h»›
    for each composable triple (f, g, h)› of 1-cells, subject to naturality and
    coherence conditions.
  ›

  locale associative_weak_composition =
    weak_composition +
  fixes 𝖺 :: "'a  'a  'a  'a"    ("𝖺[_, _, _]")
  assumes assoc_in_vhomAWC:
           " ide f; ide g; ide h; f  g  null; g  h  null  
              «𝖺[f, g, h] : (f  g)  h  f  g  h»"
  and assoc_naturalityAWC:
           " τ  μ  null; μ  ν  null  
              𝖺[cod τ, cod μ, cod ν]  ((τ  μ)  ν) = (τ  μ  ν)  𝖺[dom τ, dom μ, dom ν]"
  and iso_assocAWC: " ide f; ide g; ide h; f  g  null; g  h  null   iso 𝖺[f, g, h]"
  and pentagonAWC:
           " ide f; ide g; ide h; ide k; sources f  targets g  {};
              sources g  targets h  {}; sources h  targets k  {}  
              (f  𝖺[g, h, k])  𝖺[f, g  h, k]  (𝖺[f, g, h]  k) = 𝖺[f, g, h  k]  𝖺[f  g, h, k]"
  begin

    lemma assoc_in_homAWC:
    assumes "ide f" and "ide g" and "ide h"
    and "f  g  null" and "g  h  null"
    shows "sources 𝖺[f, g, h] = sources h" and "targets 𝖺[f, g, h] = targets f"
    and "«𝖺[f, g, h] : (f  g)  h  f  g  h»"
    proof -
      show 1: "«𝖺[f, g, h] : (f  g)  h  f  g  h»"
        using assms assoc_in_vhomAWC by simp
      show "sources 𝖺[f, g, h] = sources h"
        using assms 1 sources_dom [of "𝖺[f, g, h]"] sources_hcomp match_3
        by (elim in_homE, auto)
      show "targets 𝖺[f, g, h] = targets f"
        using assms 1 targets_cod [of "𝖺[f, g, h]"] targets_hcomp match_4
        by (elim in_homE, auto)
    qed

    lemma assoc_simpsAWC [simp]:
    assumes "ide f" and "ide g" and "ide h"
    and "f  g  null" and "g  h  null"
    shows "arr 𝖺[f, g, h]"
    and "dom 𝖺[f, g, h] = (f  g)  h"
    and "cod 𝖺[f, g, h] = f  g  h"
    proof -
      have 1: "«𝖺[f, g, h] : (f  g)  h  f  g  h»"
        using assms assoc_in_homAWC by auto
      show "arr 𝖺[f, g, h]" using 1 by auto
      show "dom 𝖺[f, g, h] = (f  g)  h" using 1 by auto
      show "cod 𝖺[f, g, h] = f  g  h" using 1 by auto
    qed

    lemma assoc'_in_homAWC:
    assumes "ide f" and "ide g" and "ide h"
    and "f  g  null" and "g  h  null"
    shows "sources (inv 𝖺[f, g, h]) = sources h" and "targets (inv 𝖺[f, g, h]) = targets f"
    and "«inv 𝖺[f, g, h] :  f  g  h  (f  g)  h»"
    proof -
      show 1: "«inv 𝖺[f, g, h] :  f  g  h  (f  g)  h»"
        using assms assoc_in_homAWC iso_assocAWC inv_in_hom by auto
      show "sources (inv 𝖺[f, g, h]) = sources h"
        using assms 1 sources_hcomp [of "f  g" h] sources_cod match_3 null_agreement
        by (elim in_homE, metis)
      show "targets (inv 𝖺[f, g, h]) = targets f"
        using assms 1 targets_hcomp [of f "g  h"] targets_dom match_4 null_agreement
        by (elim in_homE, metis)
    qed

    lemma assoc'_simpsAWC [simp]:
    assumes "ide f" and "ide g" and "ide h"
    and "f  g  null" and "g  h  null"
    shows "arr (inv 𝖺[f, g, h])"
    and "dom (inv 𝖺[f, g, h]) = f  g  h"
    and "cod (inv 𝖺[f, g, h]) = (f  g)  h"
    proof -
      have 1: "«inv 𝖺[f, g, h] : f  g  h  (f  g)  h»"
        using assms assoc'_in_homAWC by auto
      show "arr (inv 𝖺[f, g, h])" using 1 by auto
      show "dom (inv 𝖺[f, g, h]) = f  g  h" using 1 by auto
      show "cod (inv 𝖺[f, g, h]) = (f  g)  h" using 1 by auto
    qed

    lemma assoc'_naturalityAWC:
    assumes "τ  μ  null" and "μ  ν  null"
    shows "inv 𝖺[cod τ, cod μ, cod ν]  (τ  μ  ν) = ((τ  μ)  ν)  inv 𝖺[dom τ, dom μ, dom ν]"
    proof -
      have τμν: "arr τ  arr μ  arr ν"
        using assms composable_implies_arr by simp
      have 0: "dom τ  dom μ  null  dom μ  dom ν  null 
               cod τ  cod μ  null  cod μ  cod ν  null"
        using assms τμν hom_connected by simp
      have 1: "«τ  μ  ν : dom τ  dom μ  dom ν  cod τ  cod μ  cod ν»"
        using assms match_4 by auto
      have 2: "«(τ  μ)  ν : (dom τ  dom μ)  dom ν  (cod τ  cod μ)  cod ν»"
        using assms match_3 by auto
      have "(inv 𝖺[cod τ, cod μ, cod ν]  (τ  μ  ν))  𝖺[dom τ, dom μ, dom ν] = (τ  μ)  ν"
      proof -
        have "(τ  μ)  ν = (inv 𝖺[cod τ, cod μ, cod ν]  𝖺[cod τ, cod μ, cod ν])  ((τ  μ)  ν)"
          using 0 2 τμν assoc_in_homAWC iso_assocAWC comp_inv_arr inv_is_inverse comp_cod_arr
          by auto
        thus ?thesis
          using assms τμν 0 2 assoc_naturalityAWC comp_assoc by metis
      qed
      thus ?thesis
        using 0 1 2 τμν iso_assocAWC assoc'_in_homAWC inv_in_hom invert_side_of_triangle(2)
        by auto
      qed

  end

  subsection "Unitors"

  text ‹
    For an associative weak composition with a chosen unit isomorphism ι : a ⋆ a ⇒ a›,
    where a› is a weak unit, horizontal composition on the right by a› is a fully faithful
    endofunctor R› of the subcategory of arrows composable on the right with a›, and is
    consequently an endo-equivalence of that subcategory.  This equivalence, together with the
    associator isomorphisms and unit isomorphism ι›, canonically associate, with each
    identity arrow f› composable on the right with a›, a \emph{right unit} isomorphism
    «𝗋[f] : f ⋆ a ⇒ f»›.  These isomorphisms are the components of a natural isomorphism
    from R› to the identity functor.
  ›

  locale right_hom_with_unit =
    associative_weak_composition V H 𝖺 +
    right_hom V H a
  for V :: "'a comp"                  (infixr "" 55)
  and H :: "'a comp"                  (infixr "" 53)
  and 𝖺 :: "'a  'a  'a  'a"      ("𝖺[_, _, _]")
  and ι :: 'a
  and a :: 'a +
  assumes weak_unit_a: "weak_unit a"
  and ι_in_hom: "«ι : a  a  a»"
  and iso_ι: "iso ι"
  begin

    abbreviation R
    where "R  HR a"

    interpretation R: endofunctor S.comp R
      using weak_unit_a weak_unit_self_composable endofunctor_HR by simp
    interpretation R: fully_faithful_functor S.comp S.comp R
      using weak_unit_a weak_unit_def by simp

    lemma fully_faithful_functor_R:
    shows "fully_faithful_functor S.comp S.comp R"
      ..

    definition runit  ("𝗋[_]")
    where "runit f  THE μ. «μ : R f S f»  R μ = (f  ι) S 𝖺[f, a, a]"

    lemma iso_unit:
    shows "S.iso ι" and "«ι : a  a S a»"
    proof -
      show "«ι : a  a S a»"
        using weak_unit_a S.ide_char S.arr_charSbC right_def weak_unit_self_composable
              S.ideD(1) R.preserves_arr HR_def S.in_hom_charSbC right_def
              ι_in_hom S.ideD(1) hom_connected(3) in_homE
        by metis
      thus "S.iso ι"
        using iso_ι iso_char by blast
    qed

    lemma characteristic_iso:
    assumes "S.ide f"
    shows "«𝖺[f, a, a] : (f  a)  a S f  a  a»"
    and "«f  ι : f  a  a S f  a»"
    and "«(f  ι) S 𝖺[f, a, a] : R (R f) S R f»"
    and "S.iso ((f  ι) S 𝖺[f, a, a])"
    proof -
      have f: "S.ide f  ide f"
        using assms S.ide_charSbC by simp
      have a: "weak_unit a  ide a  S.ide a"
        using weak_unit_a S.ide_charSbC weak_unit_def S.arr_charSbC right_def
              weak_unit_self_composable
        by metis
      have fa: "f  a  null  (f  a)  a  null  ((f  a)  a)  a  null"
        using assms S.ideD(1) R.preserves_arr HR_def S.not_arr_null S.null_char
        by metis
      have aa: "a  a  null"
        using a S.ideD(1) R.preserves_arr HR_def S.not_arr_null weak_unit_self_composable
        by auto
      have f_ia: "f  ι  null"
        using assms S.ide_char right_def S.arr_charSbC hom_connected(4) ι_in_hom by auto
      show assoc_in_hom: "«𝖺[f, a, a] : (f  a)  a S f  a  a»"
        using a f fa hom_connected(1) [of "𝖺[f, a, a]" a] S.arr_charSbC right_def
              match_3 match_4 S.in_hom_charSbC weak_unit_self_composable
        by auto
      show 1: "«f  ι : f  a  a S f  a»"
        using a f fa iso_unit left_hcomp_closed
        by (simp add: f_ia ide_in_hom)
      have unit_part: "«f  ι : f  a  a S f  a»  S.iso (f  ι)"
      proof -
        have "S.iso (f  ι)"
          using a f fa f_ia 1 VoV.arr_charSbC VxV.inv_simp
               inv_in_hom hom_connected(2) [of f "inv ι"] VoV.arr_charSbC VoV.iso_charSbC
                preserves_iso iso_char iso_ι S.dom_simp S.cod_simp
          by auto
        thus ?thesis using 1 by blast
      qed
      show "S.iso ((f  ι) S 𝖺[f, a, a])"
        using assms a f fa aa hom_connected(1) [of "𝖺[f, a, a]" a] right_def
              iso_assocAWC iso_char S.arr_charSbC unit_part assoc_in_hom isos_compose
              S.isos_compose S.seqI' by auto
      show "«(f  ι) S 𝖺[f, a, a] : R (R f) S R f»"
        unfolding HR_def using unit_part assoc_in_hom by blast
    qed

    lemma runit_char:
    assumes "S.ide f"
    shows "«𝗋[f] : R f S f»" and "R 𝗋[f] = (f  ι) S 𝖺[f, a, a]"
    and "∃!μ. «μ : R f S f»  R μ = (f  ι) S 𝖺[f, a, a]"
    proof -
      let ?P = "λμ. «μ : R f S f»  R μ = (f  ι) S 𝖺[f, a, a]"
      show "∃!μ. ?P μ"
      proof -
        have "μ. ?P μ"
          using assms S.ide_charSbC S.arr_charSbC R.preserves_ide characteristic_iso(3) R.is_full
          by auto
        moreover have "μ μ'. ?P μ  ?P μ'  μ = μ'"
          using R.is_faithful S.in_homE by metis
        ultimately show ?thesis by blast
      qed
      hence "?P (THE μ. ?P μ)"
        using theI' [of ?P] by fastforce
      hence 1: "?P 𝗋[f]"
        unfolding runit_def by blast
      show "«𝗋[f] : R f S f»" using 1 by fast
      show "R 𝗋[f] = (f  ι) S 𝖺[f, a, a]" using 1 by fast
    qed

    lemma iso_runit:
    assumes "S.ide f"
    shows "S.iso 𝗋[f]"
      using assms characteristic_iso(4) runit_char R.reflects_iso by metis

    lemma runit_eqI:
    assumes "«f : a S b»" and "«μ : R f S f»"
    and "R μ = ((f  ι) S 𝖺[f, a, a])"
    shows "μ = 𝗋[f]"
      using assms S.ide_cod runit_char [of f] by blast

    lemma runit_naturality:
    assumes "S.arr μ"
    shows "𝗋[S.cod μ] S R μ = μ S 𝗋[S.dom μ]"
    proof -
      have 1: "«𝗋[S.cod μ] S R μ : R (S.dom μ) S S.cod μ»"
        using assms runit_char(1) S.ide_cod by blast
      have 2: "S.par (𝗋[S.cod μ] S R μ) (μ S 𝗋[S.dom μ])"
        using assms 1 S.ide_dom runit_char(1)
        by (metis S.comp_in_homI' S.in_homE)
      moreover have "R (𝗋[S.cod μ] S R μ) = R (μ S 𝗋[S.dom μ])"
      proof -
        have 3: "«μ  a  a : S.dom μ  a  a S S.cod μ  a  a»"
          using assms weak_unit_a R.preserves_hom HR_def S.arr_iff_in_hom S.arr_charSbC
          by (metis match_4 weak_unit_in_vhom weak_unit_self_right S.in_hom_charSbC
              left_hcomp_closed S.not_arr_null S.null_char)
        have 4: "R (𝗋[S.cod μ] S R μ) = R 𝗋[S.cod μ] S R (R μ)"
          using assms 1 R.as_nat_trans.preserves_comp_2 by blast
        also have 5: "... = ((S.cod μ  ι) S 𝖺[S.cod μ, a, a]) S ((μ  a)  a)"
          using assms R.preserves_arr runit_char S.ide_cod HR_def by auto
        also have 6: "... = (S.cod μ  ι) S 𝖺[S.cod μ, a, a] S ((μ  a)  a)"
          using assms S.comp_assoc by simp
        also have "... = (S.cod μ  ι) S (μ  a  a) S 𝖺[S.dom μ, a, a]"
        proof -
          have "(μ  a  a) S 𝖺[S.dom μ, a, a] = 𝖺[S.cod μ, a, a] S ((μ  a)  a)"
          proof -
            have "(μ  a  a) S 𝖺[S.dom μ, a, a] = (μ  a  a)  𝖺[S.dom μ, a, a]"
              using assms 3 S.ide_dom characteristic_iso(1) S.in_hom_charSbC
                    S.comp_char S.dom_simp
              by fastforce
            also have "... = 𝖺[S.cod μ, a, a]  ((μ  a)  a)"
              using assms weak_unit_a assoc_naturalityAWC [of μ a a] S.dom_simp S.cod_simp
                    weak_unit_self_composable S.arr_charSbC right_def
              by simp
            also have "... = 𝖺[S.cod μ, a, a] S ((μ  a)  a)"
              using S.in_hom_charSbC S.comp_char
              by (metis 2 4 5 6 R.preserves_arr S.seq_charSbC)
            finally show ?thesis by blast
          qed
         thus ?thesis by argo
        qed
        also have "... = ((S.cod μ  ι) S (μ  a  a)) S 𝖺[S.dom μ, a, a]"
          using S.comp_assoc by auto
        also have "... = ((μ  a) S (S.dom μ  ι)) S 𝖺[S.dom μ, a, a]"
        proof -
          have "μ  a  a  null"
            using 3 S.not_arr_null by auto
          moreover have "S.dom μ  ι  null"
            using assms S.not_arr_null
            by (metis S.dom_charSbC ι_in_hom calculation hom_connected(1-2) in_homE)
          ultimately have "(S.cod μ  ι) S (μ  a  a) = (μ  a) S (S.dom μ  ι)"
            using assms weak_unit_a iso_unit S.comp_arr_dom S.comp_cod_arr
                  interchange [of "S.cod μ" μ ι "a  a"] interchange [of μ "S.dom μ" a ι]
            by auto
          thus ?thesis by argo
        qed
        also have "... = (μ  a) S (S.dom μ  ι) S 𝖺[S.dom μ, a, a]"
          using S.comp_assoc by auto
        also have "... = R μ S R 𝗋[S.dom μ]"
          using assms runit_char(2) S.ide_dom HR_def by auto
        also have "... = R (μ S 𝗋[S.dom μ])"
          using assms S.arr_iff_in_hom [of μ] runit_char(1) S.ide_dom by fastforce
        finally show ?thesis by blast
      qed
      ultimately show "𝗋[S.cod μ] S (R μ) = μ S 𝗋[S.dom μ]"
        using R.is_faithful by blast
    qed

    abbreviation 𝔯
    where "𝔯 μ  if S.arr μ then μ S 𝗋[S.dom μ] else null"

    interpretation 𝔯: natural_transformation S.comp S.comp R S.map 𝔯
    proof -
      interpret 𝔯: transformation_by_components S.comp S.comp R S.map runit
        using runit_char(1) runit_naturality by unfold_locales simp_all
      have "𝔯.map = 𝔯"
        using 𝔯.is_extensional 𝔯.map_def 𝔯.naturality 𝔯.map_simp_ide S.ide_dom S.ide_cod
              S.map_def
        by auto
      thus "natural_transformation S.comp S.comp R S.map 𝔯"
        using 𝔯.natural_transformation_axioms by auto
    qed

    lemma natural_transformation_𝔯:
    shows "natural_transformation S.comp S.comp R S.map 𝔯" ..

    interpretation 𝔯: natural_isomorphism S.comp S.comp R S.map 𝔯
      using S.ide_is_iso iso_runit runit_char(1) S.isos_compose
      by unfold_locales force

    lemma natural_isomorphism_𝔯:
    shows "natural_isomorphism S.comp S.comp R S.map 𝔯" ..

    interpretation R: equivalence_functor S.comp S.comp R
      using natural_isomorphism_𝔯 R.isomorphic_to_identity_is_equivalence by blast

    lemma equivalence_functor_R:
    shows "equivalence_functor S.comp S.comp R"
      ..

    lemma runit_commutes_with_R:
    assumes "S.ide f"
    shows "𝗋[R f] = R 𝗋[f]"
      using assms runit_char(1) R.preserves_hom [of "𝗋[f]" "R f" f]
            runit_naturality iso_runit S.iso_is_section
            S.section_is_mono S.monoE
      by (metis S.in_homE S.seqI')

  end

  text ‹
    Symmetric results hold for the subcategory of all arrows composable on the left with
    a specified weak unit b›.  This yields the \emph{left unitors}.
  ›

  locale left_hom_with_unit =
    associative_weak_composition V H 𝖺 +
    left_hom V H b
  for V :: "'a comp"                  (infixr "" 55)
  and H :: "'a comp"                  (infixr "" 53)
  and 𝖺 :: "'a  'a  'a  'a"      ("𝖺[_, _, _]")
  and ι :: 'a
  and b :: 'a +
  assumes weak_unit_b: "weak_unit b"
  and ι_in_hom: "«ι : b  b  b»"
  and iso_ι: "iso ι"
  begin

    abbreviation L
    where "L  HL b"

    interpretation L: endofunctor S.comp L
      using weak_unit_b weak_unit_self_composable endofunctor_HL by simp
    interpretation L: fully_faithful_functor S.comp S.comp L
      using weak_unit_b weak_unit_def by simp

    lemma fully_faithful_functor_L:
    shows "fully_faithful_functor S.comp S.comp L"
      ..

    definition lunit  ("𝗅[_]")
    where "lunit f  THE μ. «μ : L f S f»  L μ = (ι  f) S (inv 𝖺[b, b, f])"

    lemma iso_unit:
    shows "S.iso ι" and "«ι : b  b S b»"
    proof -
      show "«ι : b  b S b»"
        using weak_unit_b S.ide_char S.arr_charSbC left_def weak_unit_self_composable
              S.ideD(1) L.preserves_arr HL_def S.in_hom_charSbC S.arr_charSbC left_def
              ι_in_hom S.ideD(1) hom_connected(4) in_homE
        by metis
      thus "S.iso ι"
        using iso_ι iso_char by blast
    qed

    lemma characteristic_iso:
    assumes "S.ide f"
    shows "«inv 𝖺[b, b, f] :  b  b  f S (b  b)  f»"
    and "«ι  f : (b  b)  f S b  f»"
    and "«(ι  f) S inv 𝖺[b, b, f] : L (L f) S L f»"
    and "S.iso ((ι  f) S inv 𝖺[b, b, f])"
    proof -
      have f: "S.ide f  ide f"
        using assms S.ide_charSbC by simp
      have b: "weak_unit b  ide b  S.ide b"
        using weak_unit_b S.ide_charSbC weak_unit_def S.arr_charSbC left_def
              weak_unit_self_composable
        by metis
      have bf: "b  f  null  b  b  b  f  null"
        using assms S.ideD(1) L.preserves_arr HL_def S.not_arr_null S.null_char
        by metis
      have bb: "b  b  null"
        using b S.ideD(1) L.preserves_arr HL_def S.not_arr_null weak_unit_self_composable
        by auto
      have ib_f: "ι  f  null"
        using assms S.ide_char left_def S.arr_charSbC hom_connected(3) ι_in_hom
        by auto
      show assoc_in_hom: "«inv 𝖺[b, b, f] : b  b  f S (b  b)  f»"
        using b f bf bb hom_connected(2) [of b "inv 𝖺[b, b, f]"] left_def
        by (metis S.arrISbC S.cod_closed S.in_hom_charSbC assoc'_in_homAWC(3) assoc'_simpsAWC(2-3))
      show 1: "«ι  f : (b  b)  f S b  f»"
        using b f bf right_hcomp_closed
        by (simp add: ib_f ide_in_hom iso_unit(2))
      have unit_part: "«ι  f : (b  b)  f S b  f»  S.iso (ι  f)"
      proof -
        have "S.iso (ι  f)"
          using b f bf ib_f 1 VoV.arr_charSbC VxV.inv_simp
               inv_in_hom hom_connected(1) [of "inv ι" f] VoV.arr_charSbC VoV.iso_charSbC
                preserves_iso iso_char iso_ι S.dom_simp S.cod_simp
          by auto
        thus ?thesis using 1 by blast
      qed
      show "S.iso ((ι  f) S inv 𝖺[b, b, f])"
        using assms b f bf bb hom_connected(2) [of b "inv 𝖺[b, b, f]"] left_def
              iso_assocAWC iso_char S.arr_charSbC unit_part assoc_in_hom isos_compose
              S.isos_compose S.seqI' by auto
      show "«(ι  f) S inv 𝖺[b, b, f] : L (L f) S L f»"
        unfolding HL_def using unit_part assoc_in_hom by blast
    qed

    lemma lunit_char:
    assumes "S.ide f"
    shows "«𝗅[f] : L f S f»" and "L 𝗅[f] = (ι  f) S inv 𝖺[b, b, f]"
    and "∃!μ. «μ : L f S f»  L μ = (ι  f) S inv 𝖺[b, b, f]"
    proof -
      let ?P = "λμ. «μ : L f S f»  L μ = (ι  f) S inv 𝖺[b, b, f]"
      show "∃!μ. ?P μ"
      proof -
        have "μ. ?P μ"
        proof -
          have 1: "S.ide f"
            using assms S.ide_charSbC S.arr_charSbC by simp
          moreover have "S.ide (L f)"
            using 1 L.preserves_ide by simp
          ultimately show ?thesis
            using assms characteristic_iso(3) L.is_full by blast
        qed
        moreover have "μ μ'. ?P μ  ?P μ'  μ = μ'"
          using L.is_faithful S.in_homE by metis
        ultimately show ?thesis by blast
      qed
      hence "?P (THE μ. ?P μ)"
        using theI' [of ?P] by fastforce
      hence 1: "?P 𝗅[f]"
        unfolding lunit_def by blast
      show "«𝗅[f] : L f S f»" using 1 by fast
      show "L 𝗅[f] = (ι  f) S inv 𝖺[b, b, f]" using 1 by fast
    qed

    lemma iso_lunit:
    assumes "S.ide f"
    shows "S.iso 𝗅[f]"
      using assms characteristic_iso(4) lunit_char L.reflects_iso by metis

    lemma lunit_eqI:
    assumes "«f : a S b»" and "«μ : L f S f»"
    and "L μ = ((ι  f) S inv 𝖺[b, b, f])"
    shows "μ = 𝗅[f]"
      using assms S.ide_cod lunit_char [of f] by blast

    lemma lunit_naturality:
    assumes "S.arr μ"
    shows "𝗅[S.cod μ] S L μ = μ S 𝗅[S.dom μ]"
    proof -
      have 1: "«𝗅[S.cod μ] S L μ : L (S.dom μ) S S.cod μ»"
        using assms lunit_char(1) [of "S.cod μ"] S.ide_cod by blast
      have "S.par (𝗅[S.cod μ] S L μ) (μ S 𝗅[S.dom μ])"
        using assms 1 S.ide_dom lunit_char(1)
        by (metis S.comp_in_homI' S.in_homE)
      moreover have "L (𝗅[S.cod μ] S L μ) = L (μ S 𝗅[S.dom μ])"
      proof -
        have 2: "«b  b  μ : b  b  S.dom μ S b  b  S.cod μ»"
          using assms weak_unit_b L.preserves_hom HL_def S.arr_iff_in_hom [of μ] S.arr_charSbC
          by simp
        have 3: "«(b  b)  μ : (b  b)  S.dom μ S (b  b)  S.cod μ»"
          using assms weak_unit_b L.preserves_hom HL_def S.arr_iff_in_hom S.arr_charSbC
          by (metis match_3 weak_unit_in_vhom weak_unit_self_left S.in_hom_charSbC
              S.not_arr_null S.null_char right_hcomp_closed)

        have "L (𝗅[S.cod μ] S L μ) = L 𝗅[S.cod μ] S L (L μ)"
          using assms 1 L.as_nat_trans.preserves_comp_2 by blast
        also have "... = ((ι  S.cod μ) S inv 𝖺[b, b, S.cod μ]) S (b  b  μ)"
          using assms L.preserves_arr lunit_char S.ide_cod HL_def by auto
        also have "... = (ι  S.cod μ) S inv 𝖺[b, b, S.cod μ] S (b  b  μ)"
          using S.comp_assoc by auto
        also have "... = (ι  S.cod μ) S ((b  b)  μ) S inv 𝖺[b, b, S.dom μ]"
        proof -
          have "inv 𝖺[b, b, S.cod μ] S (b  b  μ) = ((b  b)  μ) S inv 𝖺[b, b, S.dom μ]"
          proof -
            have "((b  b)  μ) S inv 𝖺[b, b, S.dom μ] = ((b  b)  μ)  inv 𝖺[b, b, S.dom μ]"
              using assms 3 S.in_hom_charSbC S.comp_char [of "(b  b)  μ" "inv 𝖺[b, b, S.dom μ]"]
              by (metis S.ide_dom characteristic_iso(1) ext)
            also have "... = inv 𝖺[b, b, S.cod μ]  (b  b  μ)"
              using assms weak_unit_b assoc'_naturalityAWC [of b b μ] S.dom_simp S.cod_simp
                    weak_unit_self_composable S.arr_charSbC left_def
              by simp
            also have "... = inv 𝖺[b, b, S.cod μ] S (b  b  μ)"
              using assms 2 S.in_hom_charSbC S.comp_char
              by (metis S.comp_simp S.ide_cod S.seqI' characteristic_iso(1))
            finally show ?thesis by argo
          qed
         thus ?thesis by argo
        qed
        also have "... = ((ι  S.cod μ) S ((b  b)  μ)) S inv 𝖺[b, b, S.dom μ]"
          using S.comp_assoc by auto
        also have "... = ((b  μ) S (ι  S.dom μ)) S inv 𝖺[b, b, S.dom μ]"
        proof -
          have "(b  b)  μ  null"
            using 3 S.not_arr_null by (elim S.in_homE, auto)
          moreover have "ι  S.dom μ  null"
            using assms S.not_arr_null
            by (metis S.dom_charSbC ι_in_hom calculation hom_connected(1-2) in_homE)
          ultimately have "(ι  S.cod μ) S ((b  b)  μ) = (b  μ) S (ι  S.dom μ)"
            using assms weak_unit_b iso_unit S.comp_arr_dom S.comp_cod_arr
                  interchange [of ι "b  b" "S.cod μ" μ ] interchange [of b ι μ "S.dom μ"]
            by auto
          thus ?thesis by argo
        qed
        also have "... = (b  μ) S (ι  S.dom μ) S inv 𝖺[b, b, S.dom μ]"
          using S.comp_assoc by auto
        also have "... = L μ S L 𝗅[S.dom μ]"
          using assms lunit_char(2) S.ide_dom HL_def by auto
        also have "... = L (μ S 𝗅[S.dom μ])"
          using assms S.arr_iff_in_hom [of μ] lunit_char(1) S.ide_dom S.seqI
          by fastforce
        finally show ?thesis by blast
      qed
      ultimately show "𝗅[S.cod μ] S L μ = μ S 𝗅[S.dom μ]"
        using L.is_faithful by blast
    qed

    abbreviation 𝔩
    where "𝔩 μ  if S.arr μ then μ S 𝗅[S.dom μ] else null"

    interpretation 𝔩: natural_transformation S.comp S.comp L S.map 𝔩
    proof -
      interpret 𝔩: transformation_by_components S.comp S.comp L S.map lunit
        using lunit_char(1) lunit_naturality by (unfold_locales, simp_all)
      have "𝔩.map = 𝔩"
        using 𝔩.is_extensional 𝔩.map_def 𝔩.naturality 𝔩.map_simp_ide S.ide_dom S.ide_cod
              S.map_def
        by auto
      thus "natural_transformation S.comp S.comp L S.map 𝔩"
        using 𝔩.natural_transformation_axioms by auto
    qed

    lemma natural_transformation_𝔩:
    shows "natural_transformation S.comp S.comp L S.map 𝔩" ..

    interpretation 𝔩: natural_isomorphism S.comp S.comp L S.map 𝔩
      using S.ide_is_iso iso_lunit lunit_char(1) S.isos_compose
      by (unfold_locales, force)

    lemma natural_isomorphism_𝔩:
    shows "natural_isomorphism S.comp S.comp L S.map 𝔩" ..

    interpretation L: equivalence_functor S.comp S.comp L
      using natural_isomorphism_𝔩 L.isomorphic_to_identity_is_equivalence by blast

    lemma equivalence_functor_L:
    shows "equivalence_functor S.comp S.comp L"
      ..

    lemma lunit_commutes_with_L:
    assumes "S.ide f"
    shows "𝗅[L f] = L 𝗅[f]"
      using assms lunit_char(1) L.preserves_hom [of "𝗅[f]" "L f" f]
            lunit_naturality iso_lunit S.iso_is_section
            S.section_is_mono S.monoE
      by (metis S.in_homE S.seqI')

  end

  subsection "Prebicategories"

  text ‹
    A \emph{prebicategory} is an associative weak composition satisfying the additional assumption
    that every arrow has a source and a target.
  ›

  locale prebicategory =
    associative_weak_composition +
  assumes arr_has_source: "arr μ  sources μ  {}"
  and arr_has_target: "arr μ  targets μ  {}"
  begin

    lemma arr_iff_has_src:
    shows "arr μ  sources μ  {}"
      using arr_has_source composable_implies_arr by auto

    lemma arr_iff_has_trg:
    shows "arr μ  targets μ  {}"
      using arr_has_target composable_implies_arr by auto

  end

  text ‹
    The horizontal composition of a prebicategory is regular.
  ›

  sublocale prebicategory  regular_weak_composition V H
  proof
    show "a f. a  sources f  ide f  f  a  f"
    proof -
      fix a f
      assume a: "a  sources f" and f: "ide f"
      interpret Right_a: subcategory V right a
        using a right_hom_is_subcategory weak_unit_self_composable by force
      interpret Right_a: right_hom_with_unit V H 𝖺 some_unit a a
        using a iso_some_unit by (unfold_locales, auto)
      show "f  a  f"
      proof -
        have "Right_a.ide f"
          using a f Right_a.ide_charSbC Right_a.arr_charSbC right_def by auto
        hence "Right_a.iso (Right_a.runit f)  (Right_a.runit f)  Right_a.hom (f  a) f"
          using Right_a.iso_runit Right_a.runit_char(1) HR_def by simp
        hence "iso (Right_a.runit f)  (Right_a.runit f)  hom (f  a) f"
          using Right_a.iso_char Right_a.hom_char by auto
        thus ?thesis using f isomorphic_def by auto
      qed
    qed
    show "b f. b  targets f  ide f  b  f  f"
    proof -
      fix b f
      assume b: "b  targets f" and f: "ide f"
      interpret Left_b: subcategory V left b
        using b left_hom_is_subcategory weak_unit_self_composable by force
      interpret Left_b: left_hom_with_unit V H 𝖺 some_unit b b
        using b iso_some_unit by (unfold_locales, auto)
      show "b  f  f"
      proof -
        have "Left_b.ide f"
          using b f Left_b.ide_charSbC Left_b.arr_charSbC left_def by auto
        hence "Left_b.iso (Left_b.lunit f)  (Left_b.lunit f)  Left_b.hom (b  f) f"
          using b f Left_b.iso_lunit Left_b.lunit_char(1) HL_def by simp
        hence "iso (Left_b.lunit f)  (Left_b.lunit f)  hom (b  f) f"
          using Left_b.iso_char Left_b.hom_char by auto
        thus ?thesis using isomorphic_def by auto
      qed
    qed
  qed

  text ‹
    The regularity allows us to show that, in a prebicategory, all sources of
    a given arrow are isomorphic, and similarly for targets.
  ›

  context prebicategory
  begin

    lemma sources_are_isomorphic:
    assumes "a  sources μ" and "a'  sources μ"
    shows "a  a'"
    proof -
      have μ: "arr μ" using assms composable_implies_arr by auto
      have "f.  ide f; a  sources f; a'  sources f   a  a'"
        using μ assms(1) comp_ide_source comp_target_ide [of a a']
              weak_unit_self_composable(1) [of a] weak_unit_self_composable(1) [of a']
              isomorphic_transitive isomorphic_symmetric
              sources_determine_composability sourcesD(2-3)
        by (metis (full_types) connected_if_composable)
      moreover have "ide (dom μ)  a  sources (dom μ)  a'  sources (dom μ)"
        using assms μ sources_dom by auto
      ultimately show ?thesis by auto
    qed
      
    lemma targets_are_isomorphic:
    assumes "b  targets μ" and "b'  targets μ"
    shows "b  b'"
    proof -
      have μ: "arr μ" using assms composable_implies_arr by auto
      have "f.  ide f; b  targets f; b'  targets f   b  b'"
        by (metis connected_if_composable sources_are_isomorphic targetsD(3))
      moreover have "ide (dom μ)  b  targets (dom μ)  b'  targets (dom μ)"
        using assms μ targets_dom [of μ] by auto
      ultimately show ?thesis by auto
    qed

    text ‹
      In fact, we now show that the sets of sources and targets of a 2-cell are
      isomorphism-closed, and hence are isomorphism classes.
      We first show that the notion ``weak unit'' is preserved under isomorphism.
    ›

    interpretation H: partial_composition H
      using is_partial_composition by auto

    lemma isomorphism_respects_weak_units:
    assumes "weak_unit a" and "a  a'"
    shows "weak_unit a'"
    proof -
      obtain φ where φ: "iso φ  «φ : a  a'»"
        using assms by auto
      interpret Left_a: subcategory V left a
        using assms left_hom_is_subcategory by fastforce
      interpret Left_a: left_hom_with_unit V H 𝖺 some_unit a a
        using assms iso_some_unit weak_unit_self_composable
        apply unfold_locales by auto
      interpret Right_a: subcategory V "right a"
        using assms right_hom_is_subcategory by fastforce
      interpret Right_a: right_hom_with_unit V H 𝖺 some_unit a a
        using assms iso_some_unit weak_unit_self_composable
        apply unfold_locales by auto
      have a': "ide a'  a  a'  null  a'  a  null  a'  a'  null 
                φ  a'  null  Left_a.ide a'"
        by (metis (no_types, lifting) Left_a.left_hom_axioms Right_a.weak_unit_a φ assms(2)
            ide_cod hom_connected(1) in_homE isomorphic_implies_equicomposable(1)
            left_def left_hom_def subcategory.ideISbC isomorphic_implies_equicomposable(2)
            weak_unit_self_composable(3))
      have iso: "a'  a'  a'"
      proof -
        have 1: "Right a' = Right a"
          using assms right_respects_isomorphic by simp
        interpret Right_a': subcategory V right a'
          using assms right_hom_is_subcategory by fastforce
        (* TODO: The previous interpretation brings in unwanted notation for in_hom. *)
        interpret Ra': endofunctor Right a' HR a'
          using assms a' endofunctor_HR by auto
        let  = "Left_a.lunit a'  inv (φ  a')"
        have "iso   « : a'  a'  a'»"
        proof -
          have "iso (Left_a.lunit a')  «Left_a.lunit a' : a  a'  a'»"
            using a' Left_a.lunit_char(1) Left_a.iso_lunit Left_a.iso_char
                  Left_a.in_hom_charSbC HL_def
            by auto
          moreover have "iso (φ  a')  «φ  a' : a  a'  a'  a'»"
            using a' φ 1 Right_a'.arr_charSbC Right_a'.in_hom_charSbC Right_a.iso_char
                  right_def Ra'.preserves_iso Ra'.preserves_hom Right_a'.iso_charSbC
                  Ra'.preserves_dom Ra'.preserves_cod Right_a'.arr_iff_in_hom HR_def
            by metis
          ultimately show ?thesis
            using isos_compose by blast
        qed
        thus ?thesis using isomorphic_def by auto
      qed
      text ‹
        We show that horizontal composition on the left and right by @{term a'}
        is naturally isomorphic to the identity functor.  This follows from the fact
        that if @{term a} is isomorphic to @{term a'}, then horizontal composition with @{term a}
        is naturally isomorphic to horizontal composition with @{term a'}, hence the latter is
        naturally isomorphic to the identity if the former is.
        This is conceptually simple, but there are tedious composability details to handle.
      ›  
      have 1: "Left a' = Left a  Right a' = Right a"
        using assms left_respects_isomorphic right_respects_isomorphic by simp

      interpret L: fully_faithful_functor Left a Left a HL a
        using assms weak_unit_def by simp
      interpret L': endofunctor Left a HL a'
        using a' 1 endofunctor_HL [of a'] by auto
      interpret Φ: natural_isomorphism Left a Left a HL a HL a' HL φ
      proof
        fix μ
        show "¬ Left_a.arr μ  HL φ μ = Left_a.null"
          using left_def φ HL_def hom_connected(1) Left_a.null_char null_agreement
                Left_a.arr_charSbC
          by auto
        assume "Left_a.arr μ"
        hence μ: "Left_a.arr μ  arr μ  a  μ  null"
          using Left_a.arr_charSbC left_def composable_implies_arr by simp
        have 2: "φ  μ  null"
          using assms φ μ Left_a.arr_charSbC left_def hom_connected by auto
        show "Left_a.dom (HL φ μ) = HL a (Left_a.dom μ)"
          using assms 2 φ μ Left_a.arr_charSbC left_def hom_connected(2) [of a φ]
                weak_unit_self_composable match_4 Left_a.dom_charSbC HL_def by auto
        show "Left_a.cod (HL φ μ) = HL a' (Left_a.cod μ)"
          using assms 2 φ μ Left_a.arr_charSbC left_def hom_connected(2) [of a φ]
                weak_unit_self_composable match_4 Left_a.cod_charSbC HL_def
          by auto
        show "Left_a.comp (HL a' μ) (HL φ (Left_a.dom μ)) = HL φ μ"
        proof -
          have "Left_a.comp (HL a' μ) (HL φ (Left_a.dom μ)) =
                Left_a.comp (a'  μ) (φ  dom μ)"
            using assms 1 2 φ μ Left_a.dom_charSbC left_def HL_def by simp
          also have "... = (a'  μ)  (φ  dom μ)"
          proof -
            have "Left_a.seq (a'  μ) (φ  dom μ)"
            proof (intro Left_a.seqI)
              show 3: "Left_a.arr (φ  dom μ)"
                using assms 2 φ μ Left_a.arr_charSbC left_def
                by (metis HL_def L'.preserves_arr hcomp_simpsWC(1) in_homE right_connected
                    paste_1)
              show 4: "Left_a.arr (a'  μ)"
                using μ HL_def L'.preserves_arr by auto
              show "Left_a.dom (a'  μ) = Left_a.cod (φ  dom μ)"
                using a' φ μ 2 3 4 Left_a.dom_charSbC Left_a.cod_charSbC
                by (metis Left_a.seqE Left_a.seq_charSbC hcomp_simpsWC(1) in_homE paste_1)
            qed
            thus ?thesis using Left_a.comp_char Left_a.arr_charSbC left_def by auto
          qed
          also have "... = a'  φ  μ  dom μ"
            using a' φ μ interchange hom_connected by auto
          also have "... = φ  μ"
            using φ μ comp_arr_dom comp_cod_arr by auto
          finally show ?thesis using HL_def by simp
        qed
        show "Left_a.comp (HL φ (Left_a.cod μ)) (Left_a.L μ) = HL φ μ"
        proof -
          have "Left_a.comp (HL φ (Left_a.cod μ)) (Left_a.L μ) = Left_a.comp (φ  cod μ) (a  μ)"
            using assms 1 2 φ μ Left_a.cod_charSbC left_def HL_def by simp
          also have "... = (φ  cod μ)  (a  μ)"
          proof -
            have "Left_a.seq (φ  cod μ) (a  μ)"
            proof (intro Left_a.seqI)
              show 3: "Left_a.arr (φ  cod μ)"
                using φ μ 2 Left_a.arr_charSbC left_def
                by (metis (no_types, lifting) HL_def L.preserves_arr hcomp_simpsWC(1)
                    in_homE right_connected paste_2)
              show 4: "Left_a.arr (a  μ)"
                using assms μ Left_a.arr_charSbC left_def
                using HL_def L.preserves_arr by auto
              show "Left_a.dom (φ  cod μ) = Left_a.cod (a  μ)"
                using assms φ μ 2 3 4 Left_a.dom_charSbC Left_a.cod_charSbC
                by (metis Left_a.seqE Left_a.seq_charSbC hcomp_simpsWC(1) in_homE paste_2)
            qed
            thus ?thesis using Left_a.comp_char Left_a.arr_charSbC left_def by auto
          qed
          also have "... = φ  a  cod μ  μ"
            using φ μ interchange hom_connected by auto
          also have "... = φ  μ"
            using φ μ comp_arr_dom comp_cod_arr by auto
          finally show ?thesis using HL_def by simp
        qed
        next
        fix μ
        assume μ: "Left_a.ide μ"
        have 1: "φ  μ  null"
          using assms φ μ Left_a.ide_char Left_a.arr_charSbC left_def hom_connected by auto
        show "Left_a.iso (HL φ μ)"
        proof -
          have "iso (φ  μ)"
          proof -
            have "a  sources φ  targets μ"
              using assms φ μ 1 hom_connected weak_unit_self_composable
                    Left_a.ide_char Left_a.arr_charSbC left_def connected_if_composable
              by auto
            thus ?thesis
              using φ μ Left_a.ide_charSbC ide_is_iso iso_hcompRWC(1) by blast
          qed
          moreover have "left a (φ  μ)"
            using assms 1 φ weak_unit_self_composable hom_connected(2) [of a φ]
                  left_def match_4 null_agreement
            by auto
          ultimately show ?thesis
            using Left_a.iso_char Left_a.arr_charSbC left_iff_left_inv Left_a.inv_char HL_def
            by metis
        qed
      qed
      interpret L': equivalence_functor Left a' Left a' HL a'
      proof -
        have "naturally_isomorphic (Left a') (Left a') (HL a') (identity_functor.map (Left a'))"
        proof -
          have "naturally_isomorphic (Left a) (Left a) (HL a')
                                     (identity_functor.map (Left a))"
            by (meson Left_a.natural_isomorphism_𝔩 Φ.natural_isomorphism_axioms
                naturally_isomorphic_def naturally_isomorphic_symmetric
                naturally_isomorphic_transitive)
          thus ?thesis
            using 1 by auto
        qed
        thus "equivalence_functor (Left a') (Left a') (HL a')"
          using 1 L'.isomorphic_to_identity_is_equivalence naturally_isomorphic_def
          by fastforce
      qed

      text ‹
        Now we do the same for R'›.
      ›
      interpret R: fully_faithful_functor Right a Right a HR a
        using assms weak_unit_def by simp
      interpret R': endofunctor Right a HR a'
        using a' 1 endofunctor_HR [of a'] by auto
      interpret Ψ: natural_isomorphism Right a Right a HR a HR a' HR φ
      proof
        fix μ
        show "¬ Right_a.arr μ  HR φ μ = Right_a.null"
          using right_def φ HR_def hom_connected Right_a.null_char Right_a.arr_charSbC
          by auto
        assume "Right_a.arr μ"
        hence μ: "Right_a.arr μ  arr μ  μ  a  null"
          using Right_a.arr_charSbC right_def composable_implies_arr by simp
        have 2: "μ  φ  null"
          using assms φ μ Right_a.arr_charSbC right_def hom_connected by auto
        show "Right_a.dom (HR φ μ) = HR a (Right_a.dom μ)"
          by (metis "2" HR_def R'.is_extensional Right_a.dom_simp Right_a.null_char
              Right_a.arr μ φ a' hcomp_simpsWC(2) in_homE match_3)
        show "Right_a.cod (HR φ μ) = HR a' (Right_a.cod μ)"
          using assms 2 a' φ μ Right_a.arr_charSbC right_def hom_connected(3) [of φ a]
                weak_unit_self_composable match_3 Right_a.cod_charSbC HR_def
          by auto
        show "Right_a.comp (HR a' μ) (HR φ (Right_a.dom μ)) = HR φ μ"
        proof -
          have "Right_a.comp (HR a' μ) (HR φ (Right_a.dom μ)) =
                Right_a.comp (μ  a') (dom μ  φ)"
            using assms 1 2 φ μ Right_a.dom_charSbC right_def HR_def by simp
          also have "... = (μ  a')  (dom μ  φ)"
          proof -
            have "Right_a.seq (μ  a') (dom μ  φ)"
            proof (intro Right_a.seqI)
              show 3: "Right_a.arr (dom μ  φ)"
                using assms 2 φ μ Right_a.arr_charSbC right_def
                by (metis HR_def R'.preserves_arr hcomp_simpsWC(1) in_homE left_connected
                          paste_2)
              show 4: "Right_a.arr (μ  a')"
                using μ HR_def R'.preserves_arr by auto
              show "Right_a.dom (μ  a') = Right_a.cod (dom μ  φ)"
                using a' φ μ 2 3 4 Right_a.dom_charSbC Right_a.cod_charSbC
                by (metis Right_a.seqE Right_a.seq_charSbC hcomp_simpsWC(1) in_homE paste_2)
            qed
            thus ?thesis using Right_a.comp_char Right_a.arr_charSbC right_def by auto
          qed
          also have "... = μ  dom μ  a'  φ"
            using a' φ μ interchange hom_connected by auto
          also have "... = μ  φ"
            using φ μ comp_arr_dom comp_cod_arr by auto
          finally show ?thesis using HR_def by simp
        qed
        show "Right_a.comp (HR φ (Right_a.cod μ)) (Right_a.R μ) = HR φ μ"
        proof -
          have "Right_a.comp (HR φ (Right_a.cod μ)) (Right_a.R μ)
                  = Right_a.comp (cod μ  φ) (μ  a)"
            using assms 1 2 φ μ Right_a.cod_charSbC right_def HR_def by simp
          also have "... = (cod μ  φ)  (μ  a)"
          proof -
            have "Right_a.seq (cod μ  φ) (μ  a)"
            proof (intro Right_a.seqI)
              show 3: "Right_a.arr (cod μ  φ)"
                using φ μ 2 Right_a.arr_charSbC right_def
                by (metis (no_types, lifting) HR_def R.preserves_arr hcomp_simpsWC(1)
                    in_homE left_connected paste_1)
              show 4: "Right_a.arr (μ  a)"
                using assms μ Right_a.arr_charSbC right_def
                using HR_def R.preserves_arr by auto
              show "Right_a.dom (cod μ  φ) = Right_a.cod (μ  a)"
                using assms φ μ 2 3 4 Right_a.dom_charSbC Right_a.cod_charSbC
                by (metis Right_a.seqE Right_a.seq_charSbC hcomp_simpsWC(1) in_homE paste_1)
            qed
            thus ?thesis using Right_a.comp_char Right_a.arr_charSbC right_def by auto
          qed
          also have "... = cod μ  μ  φ  a"
            using φ μ interchange hom_connected by auto
          also have "... = μ  φ"
            using φ μ comp_arr_dom comp_cod_arr by auto
          finally show ?thesis using HR_def by simp
        qed
        next
        fix μ
        assume μ: "Right_a.ide μ"
        have 1: "μ  φ  null"
          using assms φ μ Right_a.ide_char Right_a.arr_charSbC right_def hom_connected by auto
        show "Right_a.iso (HR φ μ)"
        proof -
          have "iso (μ  φ)"
          proof -
            have "a  targets φ  sources μ"
              using assms φ μ 1 hom_connected weak_unit_self_composable
                    Right_a.ide_char Right_a.arr_charSbC right_def connected_if_composable
              by (metis (full_types) IntI targetsI)
            thus ?thesis
              using φ μ Right_a.ide_charSbC ide_is_iso iso_hcompRWC(1) by blast
          qed
          moreover have "right a (μ  φ)"
            using assms 1 φ weak_unit_self_composable hom_connected(1) [of φ a]
                  right_def match_3 null_agreement
            by auto
          ultimately show ?thesis
            using Right_a.iso_char Right_a.arr_charSbC right_iff_right_inv
                  Right_a.inv_char HR_def
            by metis
        qed
      qed
      interpret R': equivalence_functor Right a' Right a' HR a'
      proof -
        have "naturally_isomorphic (Right a') (Right a') (HR a')
                                   (identity_functor.map (Right a'))"
        proof -
          have "naturally_isomorphic (Right a) (Right a) (HR a') Right_a.map"
            by (meson Right_a.natural_isomorphism_𝔯 Ψ.natural_isomorphism_axioms
                naturally_isomorphic_def naturally_isomorphic_symmetric
                naturally_isomorphic_transitive)
          thus ?thesis
            using 1 by auto
        qed
        thus "equivalence_functor (Right a') (Right a') (HR a')"
          using 1 R'.isomorphic_to_identity_is_equivalence naturally_isomorphic_def
          by fastforce
      qed
      show "weak_unit a'"
        using weak_unit_def iso L'.fully_faithful_functor_axioms R'.fully_faithful_functor_axioms
        by blast
    qed

    lemma sources_iso_closed:
    assumes "a  sources μ" and "a  a'"
    shows "a'  sources μ"
      using assms isomorphism_respects_weak_units isomorphic_implies_equicomposable
      by blast

    lemma targets_iso_closed:
    assumes "a  targets μ" and "a  a'"
    shows "a'  targets μ"
      using assms isomorphism_respects_weak_units isomorphic_implies_equicomposable
      by blast

    lemma sources_eqI:
    assumes "sources μ  sources ν  {}"
    shows "sources μ = sources ν"
      using assms sources_iso_closed sources_are_isomorphic by blast

    lemma targets_eqI:
    assumes "targets μ  targets ν  {}"
    shows "targets μ = targets ν"
      using assms targets_iso_closed targets_are_isomorphic by blast

    text ‹
      The sets of sources and targets of a weak unit are isomorphism classes.
    ›

    lemma sources_char:
    assumes "weak_unit a"
    shows "sources a = {x. x  a}"
      using assms sources_iso_closed weak_unit_iff_self_source sources_are_isomorphic
            isomorphic_symmetric
      by blast

    lemma targets_char:
    assumes "weak_unit a"
    shows "targets a = {x. x  a}"
      using assms targets_iso_closed weak_unit_iff_self_target targets_are_isomorphic
            isomorphic_symmetric
      by blast

  end

  section "Horizontal Homs"

  text ‹
    Here we define a locale that axiomatizes a (vertical) category V› that has been
    punctuated into ``horizontal homs'' by the choice of idempotent endofunctors src› and trg›
    that assign a specific ``source'' and ``target'' 1-cell to each of its arrows.
    The functors src› and trg› are also subject to further conditions that constrain how
    they commute with each other.
  ›

  locale horizontal_homs =
    category V +
    src: endofunctor V src +
    trg: endofunctor V trg
  for V :: "'a comp"      (infixr "" 55)
  and src :: "'a  'a"
  and trg :: "'a  'a" +
  assumes ide_src [simp]: "arr μ  ide (src μ)"
  and ide_trg [simp]: "arr μ  ide (trg μ)"
  and src_src [simp]: "arr μ  src (src μ) = src μ"
  and trg_trg [simp]: "arr μ  trg (trg μ) = trg μ"
  and trg_src [simp]: "arr μ  trg (src μ) = src μ"
  and src_trg [simp]: "arr μ  src (trg μ) = trg μ"
  begin

    no_notation in_hom        ("«_ : _  _»")
    notation in_hom           ("«_ : _  _»")

    text ‹
      We define an \emph{object} to be an arrow that is its own source
      (or equivalently, its own target).
    ›

    definition obj
    where "obj a  arr a  src a = a"

    lemma obj_def':
    shows "obj a  arr a  trg a = a"
      using trg_src src_trg obj_def by metis

    lemma objI_src:
    assumes "arr a" and "src a = a"
    shows "obj a"
      using assms obj_def by simp

    lemma objI_trg:
    assumes "arr a" and "trg a = a"
    shows "obj a"
      using assms obj_def' by simp

    lemma objE [elim]:
    assumes "obj a" and " ide a; src a = a; trg a = a   T"
    shows T
      using assms obj_def obj_def' ide_src ide_trg by metis

    (*
     * I believe I have sorted out the looping issues that were making these less than
     * useful, but do not make them default simps because it slows things down too much
     * and they are not used all that often.
     *)
    lemma obj_simps (* [simp] *):
    assumes "obj a"
    shows "arr a" and "src a = a" and "trg a = a" and "dom a = a" and "cod a = a"
      using assms by auto

    lemma obj_src [intro, simp]:
    assumes "arr μ"
    shows "obj (src μ)"
      using assms objI_src by auto

    lemma obj_trg [intro, simp]:
    assumes "arr μ"
    shows "obj (trg μ)"
      using assms objI_trg by auto

    definition in_hhom  ("«_ : _  _»")
    where "in_hhom μ a b  arr μ  src μ = a  trg μ = b"

    abbreviation hhom
    where "hhom a b  {μ. «μ : a  b»}"

    abbreviation (input) hseqHH
    where "hseqHH  λμ ν. arr μ  arr ν  src μ = trg ν"

    lemma in_hhomI [intro, simp]:
    assumes "arr μ" and "src μ = a" and "trg μ = b"
    shows "«μ : a  b»"
      using assms in_hhom_def by auto

    lemma in_hhomE [elim]:
    assumes "«μ : a  b»"
    and " arr μ; obj a; obj b; src μ = a; trg μ = b   T"
    shows "T"
      using assms in_hhom_def by auto

    (*
     * TODO: I tried removing the second assertion here, thinking that it should already
     * be covered by the category locale, but in fact it breaks some proofs in
     * SpanBicategory that ought to be trivial.  So it seems that the presence of
     * this introduction rule adds something, and I should consider whether this rule
     * should be added to the category locale.
     *)
    lemma ide_in_hom [intro]:
    assumes "ide f"
    shows "«f : src f  trg f»" and "«f : f  f»"
      using assms by auto

    lemma src_dom [simp]:
    shows "src (dom μ) = src μ"
      by (metis arr_dom_iff_arr obj_simps(4) obj_src src.is_extensional src.preserves_dom)

    lemma src_cod [simp]:
    shows "src (cod μ) = src μ"
      by (metis arr_cod_iff_arr obj_simps(5) obj_src src.is_extensional src.preserves_cod)

    lemma trg_dom [simp]:
    shows "trg (dom μ) = trg μ"
      by (metis arr_dom_iff_arr ide_char ide_trg trg.is_extensional trg.preserves_dom)

    lemma trg_cod [simp]:
    shows "trg (cod μ) = trg μ"
      by (metis arr_cod_iff_arr ide_char ide_trg trg.is_extensional trg.preserves_cod)

    (*
     * TODO: In theory, the following simps should already be available from the fact
     * that src and trg are endofunctors.  But they seem not to get used.
     *)
    lemma dom_src [simp]:
    shows "dom (src μ) = src μ"
      by (metis dom_null ideD(2) ide_src src.is_extensional)

    lemma cod_src [simp]:
    shows "cod (src μ) = src μ"
      by (metis cod_null ideD(3) ide_src src.is_extensional)

    lemma dom_trg [simp]:
    shows "dom (trg μ) = trg μ"
      by (metis dom_null ideD(2) ide_trg trg.is_extensional)

    lemma cod_trg [simp]:
    shows "cod (trg μ) = trg μ"
      by (metis cod_null ideD(3) ide_trg trg.is_extensional)

    lemma vcomp_in_hhom [intro, simp]:
    assumes "seq ν μ" and "src ν = a" and "trg ν = b"
    shows "«ν  μ : a  b»"
      using assms src_cod [of "ν  μ"] trg_cod [of "ν  μ"] by auto

    lemma src_vcomp [simp]:
    assumes "seq ν μ"
    shows "src (ν  μ) = src ν"
      using assms src_cod [of "ν  μ"] by auto

    lemma trg_vcomp [simp]:
    assumes "seq ν μ"
    shows "trg (ν  μ) = trg ν"
      using assms trg_cod [of "ν  μ"] by auto

    lemma vseq_implies_hpar:
    assumes "seq ν μ"
    shows "src ν = src μ" and "trg ν = trg μ"
      using assms src_dom [of "ν  μ"] trg_dom [of "ν  μ"] src_cod [of "ν  μ"]
            trg_cod [of "ν  μ"]
      by auto

    lemma vconn_implies_hpar:
    assumes "«μ : f  g»"
    shows "src μ = src f" and "trg μ = trg f" and "src g = src f" and "trg g = trg f"
      using assms by auto

    lemma src_inv [simp]:
    assumes "iso μ"
    shows "src (inv μ) = src μ"
      using assms inv_in_hom iso_is_arr src_dom src_cod iso_inv_iso dom_inv by metis

    lemma trg_inv [simp]:
    assumes "iso μ"
    shows "trg (inv μ) = trg μ"
      using assms inv_in_hom iso_is_arr trg_dom trg_cod iso_inv_iso cod_inv by metis

    lemma inv_in_hhom [intro, simp]:
    assumes "iso μ" and "src μ = a" and "trg μ = b"
    shows "«inv μ : a  b»"
      using assms iso_is_arr by simp

    lemma hhom_is_subcategory:
    shows "subcategory V (λμ. «μ : a  b»)"
      using src_dom trg_dom src_cod trg_cod by (unfold_locales, auto)

    lemma isomorphic_objects_are_equal:
    assumes "obj a" and "obj b" and "a  b"
    shows "a = b"
      using assms isomorphic_def
      by (metis dom_inv in_homE objE src_dom src_inv)


    text ‹
      Having the functors src› and trg› allows us to form categories VV and VVV
      of formally horizontally composable pairs and triples of arrows.
    ›

    sublocale VxV: product_category V V ..
    sublocale VV: subcategory VxV.comp λμν. hseqHH (fst μν) (snd μν)
      by (unfold_locales, auto)

    lemma subcategory_VV:
    shows "subcategory VxV.comp (λμν. hseqHH (fst μν) (snd μν))"
      ..

    sublocale VxVxV: product_category V VxV.comp ..
    sublocale VVV: subcategory VxVxV.comp
                            λτμν. arr (fst τμν)  VV.arr (snd τμν) 
                                   src (fst τμν) = trg (fst (snd τμν))
      using VV.arr_charSbC
      by (unfold_locales, auto)

    lemma subcategory_VVV:
    shows "subcategory VxVxV.comp
             (λτμν. arr (fst τμν)  VV.arr (snd τμν) 
                    src (fst τμν) = trg (fst (snd τμν)))"
      ..

  end

  subsection "Prebicategories with Homs"

  text ‹
    A \emph{weak composition with homs} consists of a weak composition that is
    equipped with horizontal homs in such a way that the chosen source and
    target of each 2-cell μ› in fact lie in the set of sources and targets,
    respectively, of μ›, such that horizontal composition respects the
    chosen sources and targets, and such that if 2-cells μ› and ν› are
    horizontally composable, then the chosen target of μ› coincides with
    the chosen source of ν›.
  ›

  locale weak_composition_with_homs =
    weak_composition +
    horizontal_homs +
  assumes src_in_sources: "arr μ  src μ  sources μ"
  and trg_in_targets: "arr μ  trg μ  targets μ"
  and src_hcomp': "ν  μ  null  src (ν  μ) = src μ"
  and trg_hcomp': "ν  μ  null  trg (ν  μ) = trg ν"
  and seq_if_composable: "ν  μ  null  src ν = trg μ"

  locale prebicategory_with_homs =
    prebicategory +
    weak_composition_with_homs
  begin

    lemma composable_charPBH:
    shows "ν  μ  null  arr μ  arr ν  src ν = trg μ"
      using trg_in_targets src_in_sources composable_if_connected sourcesD(3)
            targets_determine_composability seq_if_composable composable_implies_arr
      by metis

    lemma hcomp_in_homPBH:
    assumes "«μ : a WC b»" and "«ν : b WC c»"
    shows "«ν  μ : a WC c»"
    and "«ν  μ : dom ν  dom μ  cod ν  cod μ»"
    proof -
      show "«ν  μ : a WC c»"
        using assms sources_determine_composability sources_hcomp targets_hcomp by auto
      thus "«ν  μ : dom ν  dom μ  cod ν  cod μ»"
        using assms by auto
    qed

    text ‹
      In a prebicategory with homs, if a› is an object (i.e. src a = a› and trg a = a›),
      then a› is a weak unit.  The converse need not hold: there can be weak units that the
      src› and trg› mappings send to other 1-cells in the same isomorphism class.
    ›

    lemma obj_is_weak_unit:
    assumes "obj a"
    shows "weak_unit a"
    proof -
      have "a  sources a"
        using assms objE src_in_sources ideD(1) by metis
      thus ?thesis by auto
    qed

  end

  subsection "Choosing Homs"

  text ‹
    Every prebicategory extends to a prebicategory with homs, by choosing an arbitrary
    representative of each isomorphism class of weak units to serve as an object.
    ``The source'' of a 2-cell is defined to be the chosen representative of the set of
     all its sources (which is an isomorphism class), and similarly for ``the target''.
  ›

  context prebicategory
  begin

    definition rep
    where "rep f  SOME f'. f'  { f'. f  f' }"

    definition some_src
    where "some_src μ  if arr μ then rep (SOME a. a  sources μ) else null"

    definition some_trg
    where "some_trg μ  if arr μ then rep (SOME b. b  targets μ) else null"

    lemma isomorphic_ide_rep:
    assumes "ide f"
    shows "f  rep f"
    proof -
      have "f'. f'  { f'. f  f' }"
        using assms isomorphic_reflexive by blast
      thus ?thesis using rep_def someI_ex by simp
    qed

    lemma rep_rep:
    assumes "ide f"
    shows "rep (rep f) = rep f"
    proof -
      have "rep f  { f'. f  f' }"
        using assms isomorphic_ide_rep by simp
      have "{ f'. f  f' } = { f'. rep f  f' }"
      proof -
        have "f'. f  f'  rep f  f'"
        proof
          fix f'
          assume f': "f  f'"
          show "rep f  f'"
          proof -
            obtain φ where φ: "φ  hom f f'  iso φ"
              using f' by auto
            obtain ψ where ψ: "ψ  hom f (rep f)  iso ψ"
              using assms isomorphic_ide_rep by blast
            have "inv ψ  hom (rep f) f  iso (inv ψ)"
              using ψ by simp
            hence "iso (V φ (inv ψ))  V φ (inv ψ)  hom (rep f) f'"
              using φ isos_compose by auto
            thus ?thesis using isomorphic_def by auto
          qed
          next
          fix f'
          assume f': "rep f  f'"
          show "f  f'"
            using assms f' isomorphic_ide_rep isos_compose isomorphic_def
            by (meson isomorphic_transitive)
        qed
        thus ?thesis by auto
      qed
      hence "rep (rep f) = (SOME f'. f'  { f'. f  f' })"
        using assms rep_def by fastforce
      also have "... = rep f"
        using assms rep_def by simp
      finally show ?thesis by simp
    qed

    lemma some_src_in_sources:
    assumes "arr μ"
    shows "some_src μ  sources μ"
    proof -
      have 1: "(SOME a. a  sources μ)  sources μ"
        using assms arr_iff_has_src someI_ex [of "λa. a  sources μ"] by blast
      moreover have "ide (SOME a. a  sources μ)"
        using 1 weak_unit_self_composable by auto
      ultimately show ?thesis
        using assms 1 some_src_def sources_iso_closed isomorphic_ide_rep by metis
    qed

    lemma some_trg_in_targets:
    assumes "arr μ"
    shows "some_trg μ  targets μ"
    proof -
      have 1: "(SOME a. a  targets μ)  targets μ"
        using assms arr_iff_has_trg someI_ex [of "λa. a  targets μ"] by blast
      moreover have "ide (SOME a. a  targets μ)"
        using 1 weak_unit_self_composable by auto
      ultimately show ?thesis
        using assms 1 some_trg_def targets_iso_closed isomorphic_ide_rep by metis
    qed

    lemma some_src_dom:
    assumes "arr μ"
    shows "some_src (dom μ) = some_src μ"
      using assms some_src_def sources_dom by simp

    lemma some_src_cod:
    assumes "arr μ"
    shows "some_src (cod μ) = some_src μ"
      using assms some_src_def sources_cod by simp

    lemma some_trg_dom:
    assumes "arr μ"
    shows "some_trg (dom μ) = some_trg μ"
      using assms some_trg_def targets_dom by simp

    lemma some_trg_cod:
    assumes "arr μ"
    shows "some_trg (cod μ) = some_trg μ"
      using assms some_trg_def targets_cod by simp

    lemma ide_some_src:
    assumes "arr μ"
    shows "ide (some_src μ)"
      using assms some_src_in_sources weak_unit_self_composable by blast

    lemma ide_some_trg:
    assumes "arr μ"
    shows "ide (some_trg μ)"
      using assms some_trg_in_targets weak_unit_self_composable by blast

    lemma some_src_composable:
    assumes "arr τ"
    shows "τ  μ  null  some_src τ  μ  null"
      using assms some_src_in_sources sources_determine_composability by blast

    lemma some_trg_composable:
    assumes "arr σ"
    shows "μ  σ  null  μ  some_trg σ  null"
      using assms some_trg_in_targets targets_determine_composability by blast

    lemma sources_some_src:
    assumes "arr μ"
    shows "sources (some_src μ) = sources μ"
      using assms sources_determine_composability some_src_in_sources by blast

    lemma targets_some_trg:
    assumes "arr μ"
    shows "targets (some_trg μ) = targets μ"
      using assms targets_determine_composability some_trg_in_targets by blast

    lemma src_some_src:
    assumes "arr μ"
    shows "some_src (some_src μ) = some_src μ"
      using assms some_src_def ide_some_src sources_some_src by force

    lemma trg_some_trg:
    assumes "arr μ"
    shows "some_trg (some_trg μ) = some_trg μ"
      using assms some_trg_def ide_some_trg targets_some_trg by force

    lemma sources_char':
    assumes "arr μ"
    shows "a  sources μ  some_src μ  a"
      using assms some_src_in_sources sources_iso_closed sources_are_isomorphic by meson

    lemma targets_char':
    assumes "arr μ"
    shows "a  targets μ  some_trg μ  a"
      using assms some_trg_in_targets targets_iso_closed targets_are_isomorphic by meson

    text ‹
      An arbitrary choice of sources and targets in a prebicategory results in a notion of
      formal composability that coincides with the actual horizontal composability
      of the prebicategory.
    ›

    lemma composable_charPB:
    shows "τ  σ  null  arr σ  arr τ  some_src τ = some_trg σ"
    proof
        assume στ: "τ  σ  null"
        show "arr σ  arr τ  some_src τ = some_trg σ"
          using στ composable_implies_arr connected_if_composable some_src_def some_trg_def
          by force
        next
        assume στ: "arr σ  arr τ  some_src τ = some_trg σ"
        show "τ  σ  null"
          using στ some_src_in_sources some_trg_composable by force
    qed

    text ‹
      A 1-cell is its own source if and only if it is its own target.
    ›

    lemma self_src_iff_self_trg:
    assumes "ide a"
    shows "a = some_src a  a = some_trg a"
    proof
      assume a: "a = some_src a"
      have "weak_unit a  a  a  null"
        using assms a some_src_in_sources [of a] by force
      thus "a = some_trg a" using a composable_charPB by simp
      next
      assume a: "a = some_trg a"
      have "weak_unit a  a  a  null"
        using assms a some_trg_in_targets [of a] by force
      thus "a = some_src a" using a composable_charPB by simp
    qed

    lemma some_trg_some_src:
    assumes "arr μ"
    shows "some_trg (some_src μ) = some_src μ"
      using assms ide_some_src some_src_def some_trg_def some_src_in_sources sources_char
            targets_char sources_some_src
      by force

    lemma src_some_trg:
    assumes "arr μ"
    shows "some_src (some_trg μ) = some_trg μ"
      using assms ide_some_trg some_src_def some_trg_def some_trg_in_targets sources_char
            targets_char targets_some_trg
      by force

    lemma some_src_eqI:
    assumes "a  sources μ" and "some_src a = a"
    shows "some_src μ = a"
      using assms sources_char' some_src_def some_src_in_sources sources_are_isomorphic
            isomorphic_symmetric isomorphic_transitive
      by (metis composable_charPB sourcesD(3))

    lemma some_trg_eqI:
    assumes "b  targets μ" and "some_trg b = b"
    shows "some_trg μ = b"
      using assms targets_char' some_trg_def some_trg_in_targets targets_are_isomorphic
            isomorphic_symmetric isomorphic_transitive
      by (metis composable_charPB targetsD(3))

    lemma some_src_comp:
    assumes "τ  σ  null"
    shows "some_src (τ  σ) = some_src σ"
    proof (intro some_src_eqI [of "some_src σ" "τ  σ"])
      show "some_src (some_src σ) = some_src σ"
        using assms src_some_src composable_implies_arr by simp
      show "some_src σ  sources (H τ σ)"
        using assms some_src_in_sources composable_charPB
        by (simp add: sources_hcomp)
    qed

    lemma some_trg_comp:
    assumes "τ  σ  null"
    shows "some_trg (τ  σ) = some_trg τ"
    proof (intro some_trg_eqI [of "some_trg τ" "τ  σ"])
      show "some_trg (some_trg τ) = some_trg τ"
        using assms trg_some_trg composable_implies_arr by simp
      show "some_trg τ  targets (H τ σ)"
        using assms some_trg_in_targets composable_charPB
        by (simp add: targets_hcomp)
    qed

    text ‹
      The mappings that take an arrow to its chosen source or target are endofunctors
      of the vertical category, which commute with each other in the manner required
      for horizontal homs.
    ›

    interpretation S: endofunctor V some_src
      using some_src_def ide_some_src some_src_dom some_src_cod
      apply unfold_locales
          apply auto[4]
    proof -
      fix ν μ
      assume μν: "seq ν μ"
      show "some_src (ν  μ) = some_src ν  some_src μ"
        using μν some_src_dom [of "ν  μ"] some_src_dom some_src_cod [of "ν  μ"]
              some_src_cod ide_some_src
        by auto
    qed

    interpretation T: endofunctor V some_trg
      using some_trg_def ide_some_trg some_trg_dom some_trg_cod
      apply unfold_locales
          apply auto[4]
    proof -
      fix ν μ
      assume μν: "seq ν μ"
      show "some_trg (ν  μ) = some_trg ν  some_trg μ"
        using μν some_trg_dom [of "ν  μ"] some_trg_dom some_trg_cod [of "ν  μ"]
              some_trg_cod ide_some_trg
        by auto
    qed

    interpretation weak_composition_with_homs V H some_src some_trg
      apply unfold_locales
      using some_src_in_sources some_trg_in_targets
            src_some_src trg_some_trg src_some_trg some_trg_some_src
            some_src_comp some_trg_comp composable_charPB ide_some_src ide_some_trg
      by simp_all

    proposition extends_to_weak_composition_with_homs:
    shows "weak_composition_with_homs V H some_src some_trg"
      ..

    proposition extends_to_prebicategory_with_homs:
    shows "prebicategory_with_homs V H 𝖺 some_src some_trg"
      ..

  end

  subsection "Choosing Units"

  text ‹
    A \emph{prebicategory with units} is a prebicategory equipped with a choice,
    for each weak unit a›, of a ``unit isomorphism'' «𝗂[a] : a ⋆ a ⇒ a»›.
  ›

  locale prebicategory_with_units =
    prebicategory V H 𝖺 +
    weak_composition V H
  for V :: "'a comp"                  (infixr "" 55)
  and H :: "'a comp"                  (infixr "" 53)
  and 𝖺 :: "'a  'a  'a  'a"      ("𝖺[_, _, _]")
  and 𝗂 :: "'a  'a"                  ("𝗂[_]") +
  assumes unit_in_vhomPBU: "weak_unit a  «𝗂[a] : a  a  a»"
  and iso_unitPBU: "weak_unit a  iso 𝗂[a]"
  begin

    lemma unit_in_homPBU:
    assumes "weak_unit a"
    shows "«𝗂[a] : a WC a»" and "«𝗂[a] : a  a  a»"
    proof -
      show 1: "«𝗂[a] : a  a  a»"
        using assms unit_in_vhomPBU by auto
      show "«𝗂[a] : a WC a»"
        using assms 1 weak_unit_iff_self_source weak_unit_iff_self_target
              sources_cod [of "𝗂[a]"] targets_cod [of "𝗂[a]"]
        by (elim in_homE, auto)
    qed

    lemma unit_simps [simp]:
    assumes "weak_unit a"
    shows "arr 𝗂[a]" and "dom 𝗂[a] = a  a" and "cod 𝗂[a] = a"
      using assms unit_in_vhomPBU by auto

  end

  text ‹
    Every prebicategory extends to a prebicategory with units, simply by choosing the
    unit isomorphisms arbitrarily.
  ›

  context prebicategory
  begin

    proposition extends_to_prebicategory_with_units:
    shows "prebicategory_with_units V H 𝖺 some_unit"
      using iso_some_unit by (unfold_locales, auto)

  end

  subsection "Horizontal Composition"

  text ‹
    The following locale axiomatizes a (vertical) category V› with horizontal homs,
    which in addition has been equipped with a functorial operation H› of
    horizontal composition from VV› to V›, assumed to preserve source and target.
  ›

  locale horizontal_composition =
    horizontal_homs V src trg +
    H: "functor" VV.comp V λμν. H (fst μν) (snd μν)
  for V :: "'a comp"          (infixr "" 55)
  and H :: "'a  'a  'a"   (infixr "" 53)
  and src :: "'a  'a"
  and trg :: "'a  'a" +
  assumes src_hcomp: "arr (μ  ν)  src (μ  ν) = src ν"
  and trg_hcomp: "arr (μ  ν)  trg (μ  ν) = trg μ"
  begin
    (* TODO: Why does this get re-introduced? *)
    no_notation in_hom        ("«_ : _  _»")

    text H› is a partial composition, which shares its null with V›.
    ›

    lemma is_partial_composition:
    shows "partial_composition H" and "partial_magma.null H = null"
    proof -
      have 1: "f. null  f = null  f  null = null"
        using H.is_extensional VV.arr_charSbC not_arr_null by auto
      interpret H: partial_composition H
        using 1 VV.arr_charSbC H.is_extensional not_arr_null
        by unfold_locales metis
      show "partial_composition H" ..
      show "H.null = null"
        using 1 H.null_def the1_equality [of "λn. f. n  f = n  f  n = n"]
        by metis
    qed

    text ‹
      \textbf{Note:} The following is ``almost'' H.seq›, but for that we would need
      H.arr = V.arr›.
      This would be unreasonable to expect, in general, as the definition of H.arr› is based
      on ``strict'' units rather than weak units.
      Later we will show that we do have H.arr = V.arr› if the vertical category is discrete.
    ›

    abbreviation hseq
    where "hseq ν μ  arr (ν  μ)"

    lemma hseq_char:
    shows "hseq ν μ  arr μ  arr ν  src ν = trg μ"
    proof -
      have "hseq ν μ  VV.arr (ν, μ)"
        using H.is_extensional H.preserves_arr by force
      also have "...  arr μ  arr ν  src ν = trg μ"
        using VV.arr_charSbC by force
      finally show ?thesis by blast
    qed

    lemma hseq_char':
    shows "hseq ν μ  ν  μ  null"
      using VV.arr_charSbC H.preserves_arr H.is_extensional hseq_char [of ν μ] by auto

    lemma hseqI' [intro, simp]:
    assumes "arr μ" and "arr ν" and "src ν = trg μ"
    shows "hseq ν μ"
      using assms hseq_char by simp

    lemma hseqI:
    assumes "«μ : a  b»" and "«ν : b  c»"
    shows "hseq ν μ"
      using assms hseq_char by auto

    lemma hseqE [elim]:
    assumes "hseq ν μ"
    and "arr μ  arr ν  src ν = trg μ  T"
    shows "T"
      using assms hseq_char by simp

    lemma hcomp_simps [simp]:
    assumes "hseq ν μ"
    shows "src (ν  μ) = src μ" and "trg (ν  μ) = trg ν"
    and "dom (ν  μ) = dom ν  dom μ" and "cod (ν  μ) = cod ν  cod μ"
      using assms VV.arr_charSbC src_hcomp apply blast
      using assms VV.arr_charSbC trg_hcomp apply blast
      using assms VV.arr_charSbC H.preserves_dom VV.dom_simp apply force
      using assms VV.arr_charSbC H.preserves_cod VV.cod_simp by force

    lemma ide_hcomp [intro, simp]:
    assumes "ide ν" and "ide μ" and "src ν = trg μ"
    shows "ide (ν  μ)"
      using assms VV.ide_charSbC VV.arr_charSbC H.preserves_ide [of "(ν, μ)"] by auto

    lemma hcomp_in_hhom [intro]:
    assumes "«μ : a  b»" and "«ν : b  c»"
    shows "«ν  μ : a  c»"
      using assms hseq_char by fastforce

    lemma hcomp_in_hhom' (* [simp] *):
    assumes "arr μ" and "arr ν" and "src μ = a" and "trg ν = c" and "src ν = trg μ"
    shows "«ν  μ : a  c»"
      using assms hseq_char by fastforce

    lemma hcomp_in_hhomE [elim]:
    assumes "«ν  μ : a  c»"
    and " arr μ; arr ν; src ν = trg μ; src μ = a; trg ν = c   T"
    shows T
      using assms in_hhom_def by fastforce

    lemma hcomp_in_vhom [intro]:
    assumes "«μ : f  g»" and "«ν : h  k»" and "src h = trg f"
    shows "«ν  μ : h  f  k  g»"
      using assms by fastforce

    lemma hcomp_in_vhom' (* [simp] *):
    assumes "hseq ν μ"
    and "dom μ = f" and "dom ν = h" and "cod μ = g" and "cod ν = k"
    assumes "«μ : f  g»" and "«ν : h  k»" and "src h = trg f"
    shows "«ν  μ : h  f  k  g»"
      using assms by fastforce

    lemma hcomp_in_vhomE [elim]:
    assumes "«ν  μ : f  g»"
    and " arr μ; arr ν; src ν = trg μ; src μ = src f; src μ = src g;
           trg ν = trg f; trg ν = trg g   T"
    shows T
      using assms in_hom_def
      by (metis in_homE hseqE src_cod src_dom src_hcomp trg_cod trg_dom trg_hcomp)

    text ‹
      A horizontal composition yields a weak composition by simply forgetting
      the src› and trg› functors.
    ›

    lemma match_1:
    assumes "ν  μ  null" and "(ν  μ)  τ  null"
    shows "μ  τ  null"
      using assms H.is_extensional not_arr_null VV.arr_charSbC hseq_char hseq_char' by auto

    lemma match_2:
    assumes "ν  (μ  τ)  null" and "μ  τ  null"
    shows "ν  μ  null"
      using assms H.is_extensional not_arr_null VV.arr_charSbC hseq_char hseq_char' by auto

    lemma match_3:
    assumes "μ  τ  null" and "ν  μ  null"
    shows "(ν  μ)  τ  null"
      using assms H.is_extensional not_arr_null VV.arr_charSbC hseq_char hseq_char' by auto

    lemma match_4:
    assumes "μ  τ  null" and "ν  μ  null"
    shows "ν  (μ  τ)  null"
      using assms H.is_extensional not_arr_null VV.arr_charSbC hseq_char hseq_char' by auto

    lemma left_connected:
    assumes "seq ν ν'"
    shows "ν  μ  null  ν'  μ  null"
      using assms H.is_extensional not_arr_null VV.arr_charSbC hseq_char'
      by (metis hseq_char seqE vseq_implies_hpar(1))

    lemma right_connected:
    assumes "seq μ μ'"
    shows "H ν μ  null  H ν μ'  null"
      using assms H.is_extensional not_arr_null VV.arr_charSbC hseq_char'
      by (metis hseq_char seqE vseq_implies_hpar(2))

    proposition is_weak_composition:
    shows "weak_composition V H"
    proof -
      have 1: "(λμν. fst μν  snd μν  null)
                 = (λμν. arr (fst μν)  arr (snd μν)  src (fst μν) = trg (snd μν))"
        using hseq_char' by auto
      interpret VoV: subcategory VxV.comp λμν. fst μν  snd μν  null
        using 1 VV.subcategory_axioms by simp
      interpret H: "functor" VoV.comp V λμν. fst μν  snd μν
        using H.functor_axioms 1 by simp
      show ?thesis
        using match_1 match_2 match_3 match_4 left_connected right_connected
        by (unfold_locales, metis)
    qed

    interpretation weak_composition V H
      using is_weak_composition by auto

     text ‹
      It can be shown that arr ((ν ⋅ μ) ⋆ (τ ⋅ σ)) ⟹ (ν ⋅ μ) ⋆ (τ ⋅ σ) = (ν ⋆ τ) ⋅ (μ ⋆ σ)›.
      However, we do not have arr ((ν ⋆ τ) ⋅ (μ ⋆ σ)) ⟹ (ν ⋅ μ) ⋆ (τ ⋅ σ) = (ν ⋆ τ) ⋅ (μ ⋆ σ)›,
      because it does not follow from arr ((ν ⋆ τ) ⋅ (μ ⋆ σ))› that dom ν = cod μ›
      and dom τ = cod σ›, only that dom ν ⋆ dom τ = cod μ ⋆ cod σ›.
      So we don't get interchange unconditionally.
    ›

    lemma interchange:
    assumes "seq ν μ" and "seq τ σ"
    shows "(ν  μ)  (τ  σ) = (ν  τ)  (μ  σ)"
      using assms interchange by simp

    lemma whisker_right:
    assumes "ide f" and "seq ν μ"
    shows "(ν  μ)  f = (ν  f)  (μ  f)"
      using assms whisker_right by simp

    lemma whisker_left:
    assumes "ide f" and "seq ν μ"
    shows "f  (ν  μ) = (f  ν)  (f  μ)"
      using assms whisker_left by simp

    lemma inverse_arrows_hcomp:
    assumes "iso μ" and "iso ν" and "src ν = trg μ"
    shows "inverse_arrows (ν  μ) (inv ν  inv μ)"
    proof -
      show "inverse_arrows (ν  μ) (inv ν  inv μ)"
      proof
        show "ide ((inv ν  inv μ)  (ν  μ))"
        proof -
          have "(inv ν  inv μ)  (ν  μ) = dom ν  dom μ"
            using assms interchange iso_is_arr comp_inv_arr'
            by (metis arr_dom)
          thus ?thesis
            using assms iso_is_arr by simp
        qed
        show "ide ((ν  μ)  (inv ν  inv μ))"
        proof -
          have "(ν  μ)  (inv ν  inv μ) = cod ν  cod μ"
            using assms interchange iso_is_arr comp_arr_inv'
            by (metis arr_cod)
          thus ?thesis
            using assms iso_is_arr by simp
        qed
      qed
    qed

    lemma iso_hcomp [intro, simp]:
    assumes "iso μ" and "iso ν" and "src ν = trg μ"
    shows "iso (ν  μ)"
      using assms inverse_arrows_hcomp by auto

    (*
     * TODO: Maybe a good idea to change hcomp_in_vhom hypotheses to match this
     * and iso_hcomp.
     *)
    lemma hcomp_iso_in_hom [intro]:
    assumes "iso_in_hom μ f g" and "iso_in_hom ν h k" and "src ν = trg μ"
    shows "iso_in_hom (ν  μ) (h  f) (k  g)"
      unfolding iso_in_hom_def
      using assms hcomp_in_vhom iso_hcomp iso_in_hom_def vconn_implies_hpar(1-2) by auto

    lemma isomorphic_implies_ide:
    assumes "f  g"
    shows "ide f" and "ide g"
      using assms isomorphic_def by auto

    lemma hcomp_ide_isomorphic:
    assumes "ide f" and "g  h" and "src f = trg g"
    shows "f  g  f  h"
    proof -
      obtain μ where μ: "iso μ  «μ : g  h»"
        using assms isomorphic_def by auto
      have "iso (f  μ)  «f  μ : f  g  f  h»"
        using assms μ iso_hcomp by auto
      thus ?thesis
        using isomorphic_def by auto
    qed

    lemma hcomp_isomorphic_ide:
    assumes "f  g" and "ide h" and "src f = trg h"
    shows "f  h  g  h"
    proof -
      obtain μ where μ: "iso μ  «μ : f  g»"
        using assms isomorphic_def by auto
      have "iso (μ  h)  «μ  h : f  h  g  h»"
        using assms μ iso_hcomp by auto
      thus ?thesis
        using isomorphic_def by auto
    qed

    lemma isomorphic_implies_hpar:
    assumes "f  f'"
    shows "ide f" and "ide f'" and "src f = src f'" and "trg f = trg f'"
      using assms isomorphic_def by auto

    lemma inv_hcomp [simp]:
    assumes "iso ν" and "iso μ" and "src ν = trg μ"
    shows "inv (ν  μ) = inv ν  inv μ"
      using assms inverse_arrow_unique [of "ν  μ"] inv_is_inverse inverse_arrows_hcomp
      by auto

    text ‹
      The following define the two ways of using horizontal composition to compose three arrows.
    ›

    definition HoHV
    where "HoHV μ  if VVV.arr μ then (fst μ  fst (snd μ))  snd (snd μ) else null"

    definition HoVH
    where "HoVH μ  if VVV.arr μ then fst μ  fst (snd μ)  snd (snd μ) else null"

    lemma functor_HoHV:
    shows "functor VVV.comp V HoHV"
      apply unfold_locales
      using VVV.arr_charSbC VV.arr_charSbC VVV.dom_charSbC VVV.cod_charSbC VVV.comp_char HoHV_def
          apply auto[4]
    proof -
      fix f g
      assume fg: "VVV.seq g f"
      show "HoHV (VVV.comp g f) = HoHV g  HoHV f"
      proof -
        have "VxVxV.comp g f =
              (fst g  fst f, fst (snd g)  fst (snd f), snd (snd g)  snd (snd f))"
          using fg VVV.seq_charSbC VVV.arr_charSbC VV.arr_charSbC VxVxV.comp_char VxV.comp_char
          by (metis (no_types, lifting) VxV.seqEPC VxVxV.seqEPC)
        hence "HoHV (VVV.comp g f) =
              (fst g  fst f  fst (snd g)  fst (snd f))  snd (snd g)  snd (snd f)"
          using HoHV_def VVV.comp_simp fg by auto
        also have "... = ((fst g  fst (snd g))  snd (snd g)) 
                           ((fst f  fst (snd f))  snd (snd f))"
          using fg VVV.seq_charSbC VVV.arr_charSbC VV.arr_charSbC interchange
          by (metis (no_types, lifting) VxV.seqEPC VxVxV.seqEPC hseqI' src_vcomp trg_vcomp)
        also have "... = HoHV g  HoHV f"
          using HoHV_def fg by auto
        finally show ?thesis by simp
      qed
    qed

    sublocale HoHV: "functor" VVV.comp V HoHV
      using functor_HoHV by simp

    lemma functor_HoVH:
    shows "functor VVV.comp V HoVH"
      apply unfold_locales
      using VVV.arr_charSbC VV.arr_charSbC VVV.dom_charSbC VVV.cod_charSbC VVV.comp_char
            HoHV_def HoVH_def
          apply auto[4]
    proof -
      fix f g
      assume fg: "VVV.seq g f"
      show "HoVH (VVV.comp g f) = HoVH g  HoVH f"
      proof -
        have "VxVxV.comp g f =
              (fst g  fst f, fst (snd g)  fst (snd f), snd (snd g)  snd (snd f))"
          using fg VVV.seq_charSbC VVV.arr_charSbC VV.arr_charSbC VxVxV.comp_char VxV.comp_char
          by (metis (no_types, lifting) VxV.seqEPC VxVxV.seqEPC)
        hence "HoVH (VVV.comp g f) =
              fst g  fst f  fst (snd g)  fst (snd f)  snd (snd g)  snd (snd f)"
          using HoVH_def VVV.comp_simp fg by auto
        also have "... = (fst g  fst (snd g)  snd (snd g)) 
                           (fst f  fst (snd f)  snd (snd f))"
          using fg VVV.seq_charSbC VVV.arr_charSbC VV.arr_charSbC interchange
          by (metis (no_types, lifting) VxV.seqEPC VxVxV.seqEPC hseqI' src_vcomp trg_vcomp)
        also have "... = HoVH g  HoVH f"
          using fg VVV.seq_charSbC VVV.arr_charSbC HoVH_def VVV.comp_char VV.arr_charSbC
          by (metis (no_types, lifting))
        finally show ?thesis by simp
      qed
    qed

    sublocale HoVH: "functor" VVV.comp V HoVH
      using functor_HoVH by simp

    text ‹
      The following define horizontal composition of an arrow on the left by its target
      and on the right by its source.
    ›

    abbreviation L
    where "L  λμ. if arr μ then trg μ  μ else null"

    abbreviation R
    where "R  λμ. if arr μ then μ  src μ else null"

    sublocale L: endofunctor V L
      using vseq_implies_hpar(2) whisker_left
      by (unfold_locales, auto)

    lemma endofunctor_L:
    shows "endofunctor V L"
      ..

    sublocale R: endofunctor V R
      using vseq_implies_hpar(1) whisker_right
      by (unfold_locales, auto)

    lemma endofunctor_R:
    shows "endofunctor V R"
      ..

  end

end