Theory HOL-Decision_Procs.Dense_Linear_Order
section ‹Dense linear order without endpoints
  and a quantifier elimination procedure in Ferrante and Rackoff style›
theory Dense_Linear_Order
imports Main
begin
ML_file ‹langford_data.ML›
ML_file ‹ferrante_rackoff_data.ML›
context linorder
begin
lemma less_not_permute[no_atp]: "¬ (x < y ∧ y < x)"
  by (simp add: not_less linear)
lemma gather_simps[no_atp]:
  "(∃x. (∀y ∈ L. y < x) ∧ (∀y ∈ U. x < y) ∧ x < u ∧ P x) ⟷
    (∃x. (∀y ∈ L. y < x) ∧ (∀y ∈ (insert u U). x < y) ∧ P x)"
  "(∃x. (∀y ∈ L. y < x) ∧ (∀y ∈ U. x < y) ∧ l < x ∧ P x) ⟷
    (∃x. (∀y ∈ (insert l L). y < x) ∧ (∀y ∈ U. x < y) ∧ P x)"
  "(∃x. (∀y ∈ L. y < x) ∧ (∀y ∈ U. x < y) ∧ x < u) ⟷
    (∃x. (∀y ∈ L. y < x) ∧ (∀y ∈ (insert u U). x < y))"
  "(∃x. (∀y ∈ L. y < x) ∧ (∀y ∈ U. x < y) ∧ l < x) ⟷
    (∃x. (∀y ∈ (insert l L). y < x) ∧ (∀y ∈ U. x < y))"
  by auto
lemma gather_start [no_atp]: "(∃x. P x) ≡ (∃x. (∀y ∈ {}. y < x) ∧ (∀y∈ {}. x < y) ∧ P x)"
  by simp
text‹Theorems for ‹∃z. ∀x. x < z ⟶ (P x ⟷ P⇩-⇩∞)››
lemma minf_lt[no_atp]:  "∃z . ∀x. x < z ⟶ (x < t ⟷ True)" by auto
lemma minf_gt[no_atp]: "∃z . ∀x. x < z ⟶  (t < x ⟷  False)"
  by (simp add: not_less) (rule exI[where x="t"], auto simp add: less_le)
lemma minf_le[no_atp]: "∃z. ∀x. x < z ⟶ (x ≤ t ⟷ True)" by (auto simp add: less_le)
lemma minf_ge[no_atp]: "∃z. ∀x. x < z ⟶ (t ≤ x ⟷ False)"
  by (auto simp add: less_le not_less not_le)
lemma minf_eq[no_atp]: "∃z. ∀x. x < z ⟶ (x = t ⟷ False)" by auto
lemma minf_neq[no_atp]: "∃z. ∀x. x < z ⟶ (x ≠ t ⟷ True)" by auto
lemma minf_P[no_atp]: "∃z. ∀x. x < z ⟶ (P ⟷ P)" by blast
text‹Theorems for ‹∃z. ∀x. x < z ⟶ (P x ⟷ P⇩+⇩∞)››
lemma pinf_gt[no_atp]:  "∃z. ∀x. z < x ⟶ (t < x ⟷ True)" by auto
lemma pinf_lt[no_atp]: "∃z. ∀x. z < x ⟶  (x < t ⟷  False)"
  by (simp add: not_less) (rule exI[where x="t"], auto simp add: less_le)
lemma pinf_ge[no_atp]: "∃z. ∀x. z < x ⟶ (t ≤ x ⟷ True)" by (auto simp add: less_le)
lemma pinf_le[no_atp]: "∃z. ∀x. z < x ⟶ (x ≤ t ⟷ False)"
  by (auto simp add: less_le not_less not_le)
lemma pinf_eq[no_atp]: "∃z. ∀x. z < x ⟶ (x = t ⟷ False)" by auto
lemma pinf_neq[no_atp]: "∃z. ∀x. z < x ⟶ (x ≠ t ⟷ True)" by auto
lemma pinf_P[no_atp]: "∃z. ∀x. z < x ⟶ (P ⟷ P)" by blast
lemma nmi_lt[no_atp]: "t ∈ U ⟹ ∀x. ¬True ∧ x < t ⟶  (∃u∈ U. u ≤ x)" by auto
lemma nmi_gt[no_atp]: "t ∈ U ⟹ ∀x. ¬False ∧ t < x ⟶  (∃u∈ U. u ≤ x)"
  by (auto simp add: le_less)
lemma  nmi_le[no_atp]: "t ∈ U ⟹ ∀x. ¬True ∧ x≤ t ⟶  (∃u∈ U. u ≤ x)" by auto
lemma  nmi_ge[no_atp]: "t ∈ U ⟹ ∀x. ¬False ∧ t≤ x ⟶  (∃u∈ U. u ≤ x)" by auto
lemma  nmi_eq[no_atp]: "t ∈ U ⟹ ∀x. ¬False ∧  x = t ⟶  (∃u∈ U. u ≤ x)" by auto
lemma  nmi_neq[no_atp]: "t ∈ U ⟹∀x. ¬True ∧ x ≠ t ⟶  (∃u∈ U. u ≤ x)" by auto
lemma  nmi_P[no_atp]: "∀x. ~P ∧ P ⟶  (∃u∈ U. u ≤ x)" by auto
lemma  nmi_conj[no_atp]: "⟦∀x. ¬P1' ∧ P1 x ⟶  (∃u∈ U. u ≤ x) ;
  ∀x. ¬P2' ∧ P2 x ⟶  (∃u∈ U. u ≤ x)⟧ ⟹
  ∀x. ¬(P1' ∧ P2') ∧ (P1 x ∧ P2 x) ⟶  (∃u∈ U. u ≤ x)" by auto
lemma  nmi_disj[no_atp]: "⟦∀x. ¬P1' ∧ P1 x ⟶  (∃u∈ U. u ≤ x) ;
  ∀x. ¬P2' ∧ P2 x ⟶  (∃u∈ U. u ≤ x)⟧ ⟹
  ∀x. ¬(P1' ∨ P2') ∧ (P1 x ∨ P2 x) ⟶  (∃u∈ U. u ≤ x)" by auto
lemma  npi_lt[no_atp]: "t ∈ U ⟹ ∀x. ¬False ∧  x < t ⟶  (∃u∈ U. x ≤ u)" by (auto simp add: le_less)
lemma  npi_gt[no_atp]: "t ∈ U ⟹ ∀x. ¬True ∧ t < x ⟶  (∃u∈ U. x ≤ u)" by auto
lemma  npi_le[no_atp]: "t ∈ U ⟹ ∀x. ¬False ∧  x ≤ t ⟶  (∃u∈ U. x ≤ u)" by auto
lemma  npi_ge[no_atp]: "t ∈ U ⟹ ∀x. ¬True ∧ t ≤ x ⟶  (∃u∈ U. x ≤ u)" by auto
lemma  npi_eq[no_atp]: "t ∈ U ⟹ ∀x. ¬False ∧  x = t ⟶  (∃u∈ U. x ≤ u)" by auto
lemma  npi_neq[no_atp]: "t ∈ U ⟹ ∀x. ¬True ∧ x ≠ t ⟶  (∃u∈ U. x ≤ u )" by auto
lemma  npi_P[no_atp]: "∀x. ~P ∧ P ⟶  (∃u∈ U. x ≤ u)" by auto
lemma  npi_conj[no_atp]: "⟦∀x. ¬P1' ∧ P1 x ⟶  (∃u∈ U. x ≤ u) ;  ∀x. ¬P2' ∧ P2 x ⟶  (∃u∈ U. x ≤ u)⟧
  ⟹  ∀x. ¬(P1' ∧ P2') ∧ (P1 x ∧ P2 x) ⟶  (∃u∈ U. x ≤ u)" by auto
lemma  npi_disj[no_atp]: "⟦∀x. ¬P1' ∧ P1 x ⟶  (∃u∈ U. x ≤ u) ; ∀x. ¬P2' ∧ P2 x ⟶  (∃u∈ U. x ≤ u)⟧
  ⟹ ∀x. ¬(P1' ∨ P2') ∧ (P1 x ∨ P2 x) ⟶  (∃u∈ U. x ≤ u)" by auto
lemma lin_dense_lt[no_atp]:
  "t ∈ U ⟹
    ∀x l u. (∀t. l < t ∧ t < u ⟶ t ∉ U) ∧ l < x ∧ x < u ∧ x < t ⟶ (∀y. l < y ∧ y < u ⟶ y < t)"
proof clarsimp
  fix x l u y
  assume tU: "t ∈ U"
    and noU: "∀t. l < t ∧ t < u ⟶ t ∉ U"
    and lx: "l < x"
    and xu: "x < u"
    and px: "x < t"
    and ly: "l < y"
    and yu: "y < u"
  from tU noU ly yu have tny: "t ≠ y" by auto
  have False if H: "t < y"
  proof -
    from less_trans[OF lx px] less_trans[OF H yu] have "l < t ∧ t < u"
      by simp
    with tU noU show ?thesis
      by auto
  qed
  then have "¬ t < y"
    by auto
  then have "y ≤ t"
    by (simp add: not_less)
  then show "y < t"
    using tny by (simp add: less_le)
qed
lemma lin_dense_gt[no_atp]:
  "t ∈ U ⟹
    ∀x l u. (∀t. l < t ∧ t < u ⟶ t ∉ U) ∧ l < x ∧ x < u ∧ t < x ⟶ (∀y. l < y ∧ y < u ⟶ t < y)"
proof clarsimp
  fix x l u y
  assume tU: "t ∈ U"
    and noU: "∀t. l < t ∧ t < u ⟶ t ∉ U"
    and lx: "l < x"
    and xu: "x < u"
    and px: "t < x"
    and ly: "l < y"
    and yu: "y < u"
  from tU noU ly yu have tny: "t ≠ y" by auto
  have False if H: "y < t"
  proof -
    from less_trans[OF ly H] less_trans[OF px xu] have "l < t ∧ t < u"
      by simp
    with tU noU show ?thesis
      by auto
  qed
  then have "¬ y < t"
    by auto
  then have "t ≤ y"
    by (auto simp add: not_less)
  then show "t < y"
    using tny by (simp add: less_le)
qed
lemma lin_dense_le[no_atp]:
  "t ∈ U ⟹
    ∀x l u. (∀t. l < t ∧ t < u ⟶ t ∉ U) ∧ l < x ∧ x < u ∧ x ≤ t ⟶ (∀y. l < y ∧ y < u ⟶ y ≤ t)"
proof clarsimp
  fix x l u y
  assume tU: "t ∈ U"
    and noU: "∀t. l < t ∧ t < u ⟶ t ∉ U"
    and lx: "l < x"
    and xu: "x < u"
    and px: "x ≤ t"
    and ly: "l < y"
    and yu: "y < u"
  from tU noU ly yu have tny: "t ≠ y" by auto
  have False if H: "t < y"
  proof -
    from less_le_trans[OF lx px] less_trans[OF H yu]
    have "l < t ∧ t < u" by simp
    with tU noU show ?thesis by auto
  qed
  then have "¬ t < y" by auto
  then show "y ≤ t" by (simp add: not_less)
qed
lemma lin_dense_ge[no_atp]:
  "t ∈ U ⟹
    ∀x l u. (∀t. l < t ∧ t < u ⟶ t ∉ U) ∧ l < x ∧ x < u ∧ t ≤ x ⟶ (∀y. l < y ∧ y < u ⟶ t ≤ y)"
proof clarsimp
  fix x l u y
  assume tU: "t ∈ U"
    and noU: "∀t. l < t ∧ t < u ⟶ t ∉ U"
    and lx: "l < x"
    and xu: "x < u"
    and px: "t ≤ x"
    and ly: "l < y"
    and yu: "y < u"
  from tU noU ly yu have tny: "t ≠ y" by auto
  have False if H: "y < t"
  proof -
    from less_trans[OF ly H] le_less_trans[OF px xu]
    have "l < t ∧ t < u" by simp
    with tU noU show ?thesis by auto
  qed
  then have "¬ y < t" by auto
  then show "t ≤ y" by (simp add: not_less)
qed
lemma lin_dense_eq[no_atp]:
  "t ∈ U ⟹
    ∀x l u. (∀t. l < t ∧ t < u ⟶ t ∉ U) ∧ l < x ∧ x < u ∧ x = t ⟶ (∀y. l < y ∧ y < u ⟶ y = t)"
  by auto
lemma lin_dense_neq[no_atp]:
  "t ∈ U ⟹
    ∀x l u. (∀t. l < t ∧ t < u ⟶ t ∉ U) ∧ l < x ∧ x < u ∧ x ≠ t ⟶ (∀y. l < y ∧ y < u ⟶ y ≠ t)"
  by auto
lemma lin_dense_P[no_atp]:
  "∀x l u. (∀t. l < t ∧ t < u ⟶ t ∉ U) ∧ l < x ∧ x < u ∧ P ⟶ (∀y. l < y ∧ y < u ⟶ P)"
  by auto
lemma lin_dense_conj[no_atp]:
  "⟦∀x l u. (∀t. l < t ∧ t < u ⟶ t ∉ U) ∧ l < x ∧ x < u ∧ P1 x
  ⟶ (∀y. l < y ∧ y < u ⟶ P1 y) ;
  ∀x l u. (∀t. l < t ∧ t < u ⟶ t ∉ U) ∧ l < x ∧ x < u ∧ P2 x
  ⟶ (∀y. l < y ∧ y < u ⟶ P2 y)⟧ ⟹
  ∀x l u. (∀t. l < t ∧ t < u ⟶ t ∉ U) ∧ l < x ∧ x < u ∧ (P1 x ∧ P2 x)
  ⟶ (∀y. l < y ∧ y < u ⟶ (P1 y ∧ P2 y))"
  by blast
lemma lin_dense_disj[no_atp]:
  "⟦∀x l u. (∀t. l < t ∧ t < u ⟶ t ∉ U) ∧ l < x ∧ x < u ∧ P1 x
  ⟶ (∀y. l < y ∧ y < u ⟶ P1 y) ;
  ∀x l u. (∀t. l < t ∧ t < u ⟶ t ∉ U) ∧ l < x ∧ x < u ∧ P2 x
  ⟶ (∀y. l < y ∧ y < u ⟶ P2 y)⟧ ⟹
  ∀x l u. (∀t. l < t ∧ t < u ⟶ t ∉ U) ∧ l < x ∧ x < u ∧ (P1 x ∨ P2 x)
  ⟶ (∀y. l < y ∧ y < u ⟶ (P1 y ∨ P2 y))"
  by blast
lemma npmibnd[no_atp]: "⟦∀x. ¬ MP ∧ P x ⟶ (∃u∈ U. u ≤ x); ∀x. ¬PP ∧ P x ⟶ (∃u∈ U. x ≤ u)⟧
  ⟹ ∀x. ¬ MP ∧ ¬PP ∧ P x ⟶ (∃u∈ U. ∃u' ∈ U. u ≤ x ∧ x ≤ u')"
  by auto
lemma finite_set_intervals[no_atp]:
  assumes px: "P x"
    and lx: "l ≤ x"
    and xu: "x ≤ u"
    and linS: "l∈ S"
    and uinS: "u ∈ S"
    and fS:"finite S"
    and lS: "∀x∈ S. l ≤ x"
    and Su: "∀x∈ S. x ≤ u"
  shows "∃a ∈ S. ∃b ∈ S. (∀y. a < y ∧ y < b ⟶ y ∉ S) ∧ a ≤ x ∧ x ≤ b ∧ P x"
proof -
  let ?Mx = "{y. y∈ S ∧ y ≤ x}"
  let ?xM = "{y. y∈ S ∧ x ≤ y}"
  let ?a = "Max ?Mx"
  let ?b = "Min ?xM"
  have MxS: "?Mx ⊆ S"
    by blast
  then have fMx: "finite ?Mx"
    using fS finite_subset by auto
  from lx linS have linMx: "l ∈ ?Mx"
    by blast
  then have Mxne: "?Mx ≠ {}"
    by blast
  have xMS: "?xM ⊆ S"
    by blast
  then have fxM: "finite ?xM"
    using fS finite_subset by auto
  from xu uinS have linxM: "u ∈ ?xM"
    by blast
  then have xMne: "?xM ≠ {}"
    by blast
  have ax: "?a ≤ x"
    using Mxne fMx by auto
  have xb: "x ≤ ?b"
    using xMne fxM by auto
  have "?a ∈ ?Mx"
    using Max_in[OF fMx Mxne] by simp
  then have ainS: "?a ∈ S"
    using MxS by blast
  have "?b ∈ ?xM"
    using Min_in[OF fxM xMne] by simp
  then have binS: "?b ∈ S"
    using xMS by blast
  have noy: "∀y. ?a < y ∧ y < ?b ⟶ y ∉ S"
  proof clarsimp
    fix y
    assume ay: "?a < y" and yb: "y < ?b" and yS: "y ∈ S"
    from yS have "y ∈ ?Mx ∨ y ∈ ?xM"
      by (auto simp add: linear)
    then show False
    proof
      assume "y ∈ ?Mx"
      then have "y ≤ ?a"
        using Mxne fMx by auto
      with ay show ?thesis
        by (simp add: not_le[symmetric])
    next
      assume "y ∈ ?xM"
      then have "?b ≤ y"
        using xMne fxM by auto
      with yb show ?thesis
        by (simp add: not_le[symmetric])
    qed
  qed
  from ainS binS noy ax xb px show ?thesis
    by blast
qed
lemma finite_set_intervals2[no_atp]:
  assumes px: "P x"
    and lx: "l ≤ x"
    and xu: "x ≤ u"
    and linS: "l∈ S"
    and uinS: "u ∈ S"
    and fS: "finite S"
    and lS: "∀x∈ S. l ≤ x"
    and Su: "∀x∈ S. x ≤ u"
  shows "(∃s∈ S. P s) ∨ (∃a ∈ S. ∃b ∈ S. (∀y. a < y ∧ y < b ⟶ y ∉ S) ∧ a < x ∧ x < b ∧ P x)"
proof -
  from finite_set_intervals[where P="P", OF px lx xu linS uinS fS lS Su]
  obtain a and b where as: "a ∈ S" and bs: "b ∈ S"
    and noS: "∀y. a < y ∧ y < b ⟶ y ∉ S"
    and axb: "a ≤ x ∧ x ≤ b ∧ P x"
    by auto
  from axb have "x = a ∨ x = b ∨ (a < x ∧ x < b)"
    by (auto simp add: le_less)
  then show ?thesis
    using px as bs noS by blast
qed
end
section ‹The classical QE after Langford for dense linear orders›
context unbounded_dense_linorder
begin
lemma interval_empty_iff: "{y. x < y ∧ y < z} = {} ⟷ ¬ x < z"
  by (auto dest: dense)
lemma dlo_qe_bnds[no_atp]:
  assumes ne: "L ≠ {}"
    and neU: "U ≠ {}"
    and fL: "finite L"
    and fU: "finite U"
  shows "(∃x. (∀y ∈ L. y < x) ∧ (∀y ∈ U. x < y)) ≡ (∀l ∈ L. ∀u ∈ U. l < u)"
proof (simp only: atomize_eq, rule iffI)
  assume H: "∃x. (∀y∈L. y < x) ∧ (∀y∈U. x < y)"
  then obtain x where xL: "∀y∈L. y < x" and xU: "∀y∈U. x < y"
    by blast
  have "l < u" if l: "l ∈ L" and u: "u ∈ U" for l u
  proof -
    have "l < x" using xL l by blast
    also have "x < u" using xU u by blast
    finally show ?thesis .
  qed
  then show "∀l∈L. ∀u∈U. l < u" by blast
next
  assume H: "∀l∈L. ∀u∈U. l < u"
  let ?ML = "Max L"
  let ?MU = "Min U"
  from fL ne have th1: "?ML ∈ L" and th1': "∀l∈L. l ≤ ?ML"
    by auto
  from fU neU have th2: "?MU ∈ U" and th2': "∀u∈U. ?MU ≤ u"
    by auto
  from th1 th2 H have "?ML < ?MU"
    by auto
  with dense obtain w where th3: "?ML < w" and th4: "w < ?MU"
    by blast
  from th3 th1' have "∀l ∈ L. l < w"
    by auto
  moreover from th4 th2' have "∀u ∈ U. w < u"
    by auto
  ultimately show "∃x. (∀y∈L. y < x) ∧ (∀y∈U. x < y)"
    by auto
qed
lemma dlo_qe_noub[no_atp]:
  assumes ne: "L ≠ {}"
    and fL: "finite L"
  shows "(∃x. (∀y ∈ L. y < x) ∧ (∀y ∈ {}. x < y)) ≡ True"
proof (simp add: atomize_eq)
  from gt_ex[of "Max L"] obtain M where M: "Max L < M"
    by blast
  from ne fL have "∀x ∈ L. x ≤ Max L"
    by simp
  with M have "∀x∈L. x < M"
    by (auto intro: le_less_trans)
  then show "∃x. ∀y∈L. y < x"
    by blast
qed
lemma dlo_qe_nolb[no_atp]:
  assumes ne: "U ≠ {}"
    and fU: "finite U"
  shows "(∃x. (∀y ∈ {}. y < x) ∧ (∀y ∈ U. x < y)) ≡ True"
proof (simp add: atomize_eq)
  from lt_ex[of "Min U"] obtain M where M: "M < Min U"
    by blast
  from ne fU have "∀x ∈ U. Min U ≤ x"
    by simp
  with M have "∀x∈U. M < x"
    by (auto intro: less_le_trans)
  then show "∃x. ∀y∈U. x < y"
    by blast
qed
lemma exists_neq[no_atp]: "∃(x::'a). x ≠ t" "∃(x::'a). t ≠ x"
  using gt_ex[of t] by auto
lemmas dlo_simps[no_atp] = order_refl less_irrefl not_less not_le exists_neq
  le_less neq_iff linear less_not_permute
lemma axiom[no_atp]: "class.unbounded_dense_linorder (≤) (<)"
  by (rule unbounded_dense_linorder_axioms)
lemma atoms[no_atp]:
  shows "TERM (less :: 'a ⇒ _)"
    and "TERM (less_eq :: 'a ⇒ _)"
    and "TERM ((=) :: 'a ⇒ _)" .
declare axiom[langford qe: dlo_qe_bnds dlo_qe_nolb dlo_qe_noub gather: gather_start gather_simps atoms: atoms]
declare dlo_simps[langfordsimp]
end
lemmas dnf[no_atp] = conj_disj_distribL conj_disj_distribR
lemmas weak_dnf_simps[no_atp] = simp_thms dnf
lemma nnf_simps[no_atp]:
  "(¬ (P ∧ Q)) ⟷ (¬ P ∨ ¬ Q)"
  "(¬ (P ∨ Q)) ⟷ (¬ P ∧ ¬ Q)"
  "(P ⟶ Q) ⟷ (¬ P ∨ Q)"
  "(P ⟷ Q) ⟷ ((P ∧ Q) ∨ (¬ P ∧ ¬ Q))"
  "(¬ ¬ P) ⟷ P"
  by blast+
lemma ex_distrib[no_atp]: "(∃x. P x ∨ Q x) ⟷ ((∃x. P x) ∨ (∃x. Q x))"
  by blast
lemmas dnf_simps[no_atp] = weak_dnf_simps nnf_simps ex_distrib
ML_file ‹langford.ML›
method_setup dlo = ‹
  Scan.succeed (SIMPLE_METHOD' o Langford.dlo_tac)
› "Langford's algorithm for quantifier elimination in dense linear orders"
section ‹Contructive dense linear orders yield QE for linear arithmetic over ordered Fields›
text ‹Linear order without upper bounds›
locale linorder_stupid_syntax = linorder
begin
notation
  less_eq  (‹'(⊑')›) and
  less_eq  (‹(_/ ⊑ _)› [51, 51] 50) and
  less  (‹'(⊏')›) and
  less  (‹(_/ ⊏ _)›  [51, 51] 50)
end
locale linorder_no_ub = linorder_stupid_syntax +
  assumes gt_ex: "∃y. less x y"
begin
lemma ge_ex[no_atp]: "∃y. x ⊑ y"
  using gt_ex by auto
text ‹Theorems for ‹∃z. ∀x. z ⊏ x ⟶ (P x ⟷ P⇩+⇩∞)››
lemma pinf_conj[no_atp]:
  assumes ex1: "∃z1. ∀x. z1 ⊏ x ⟶ (P1 x ⟷ P1')"
    and ex2: "∃z2. ∀x. z2 ⊏ x ⟶ (P2 x ⟷ P2')"
  shows "∃z. ∀x. z ⊏  x ⟶ ((P1 x ∧ P2 x) ⟷ (P1' ∧ P2'))"
proof -
  from ex1 ex2 obtain z1 and z2
    where z1: "∀x. z1 ⊏ x ⟶ (P1 x ⟷ P1')"
    and z2: "∀x. z2 ⊏ x ⟶ (P2 x ⟷ P2')"
    by blast
  from gt_ex obtain z where z:"ord.max less_eq z1 z2 ⊏ z"
    by blast
  from z have zz1: "z1 ⊏ z" and zz2: "z2 ⊏ z"
    by simp_all
  have "(P1 x ∧ P2 x) ⟷ (P1' ∧ P2')" if H: "z ⊏ x" for x
    using less_trans[OF zz1 H] less_trans[OF zz2 H] z1 zz1 z2 zz2 by auto
  then show ?thesis
    by blast
qed
lemma pinf_disj[no_atp]:
  assumes ex1: "∃z1. ∀x. z1 ⊏ x ⟶ (P1 x ⟷ P1')"
    and ex2: "∃z2. ∀x. z2 ⊏ x ⟶ (P2 x ⟷ P2')"
  shows "∃z. ∀x. z ⊏  x ⟶ ((P1 x ∨ P2 x) ⟷ (P1' ∨ P2'))"
proof-
  from ex1 ex2 obtain z1 and z2
    where z1: "∀x. z1 ⊏ x ⟶ (P1 x ⟷ P1')"
    and z2: "∀x. z2 ⊏ x ⟶ (P2 x ⟷ P2')"
    by blast
  from gt_ex obtain z where z: "ord.max less_eq z1 z2 ⊏ z"
    by blast
  from z have zz1: "z1 ⊏ z" and zz2: "z2 ⊏ z"
    by simp_all
  have "(P1 x ∨ P2 x) ⟷ (P1' ∨ P2')" if H: "z ⊏ x" for x
    using less_trans[OF zz1 H] less_trans[OF zz2 H] z1 zz1 z2 zz2 by auto
  then show ?thesis
    by blast
qed
lemma pinf_ex[no_atp]:
  assumes ex: "∃z. ∀x. z ⊏ x ⟶ (P x ⟷ P1)"
    and p1: P1
  shows "∃x. P x"
proof -
  from ex obtain z where z: "∀x. z ⊏ x ⟶ (P x ⟷ P1)"
    by blast
  from gt_ex obtain x where x: "z ⊏ x"
    by blast
  from z x p1 show ?thesis
    by blast
qed
end
text ‹Linear order without upper bounds›
locale linorder_no_lb = linorder_stupid_syntax +
  assumes lt_ex: "∃y. less y x"
begin
lemma le_ex[no_atp]: "∃y. y ⊑ x"
  using lt_ex by auto
text ‹Theorems for ‹∃z. ∀x. x ⊏ z ⟶ (P x ⟷ P⇩-⇩∞)››
lemma minf_conj[no_atp]:
  assumes ex1: "∃z1. ∀x. x ⊏ z1 ⟶ (P1 x ⟷ P1')"
    and ex2: "∃z2. ∀x. x ⊏ z2 ⟶ (P2 x ⟷ P2')"
  shows "∃z. ∀x. x ⊏  z ⟶ ((P1 x ∧ P2 x) ⟷ (P1' ∧ P2'))"
proof -
  from ex1 ex2 obtain z1 and z2
    where z1: "∀x. x ⊏ z1 ⟶ (P1 x ⟷ P1')"
    and z2: "∀x. x ⊏ z2 ⟶ (P2 x ⟷ P2')"
    by blast
  from lt_ex obtain z where z: "z ⊏ ord.min less_eq z1 z2"
    by blast
  from z have zz1: "z ⊏ z1" and zz2: "z ⊏ z2"
    by simp_all
  have "(P1 x ∧ P2 x) ⟷ (P1' ∧ P2')" if H: "x ⊏ z" for x
    using less_trans[OF H zz1] less_trans[OF H zz2] z1 zz1 z2 zz2 by auto
  then show ?thesis
    by blast
qed
lemma minf_disj[no_atp]:
  assumes ex1: "∃z1. ∀x. x ⊏ z1 ⟶ (P1 x ⟷ P1')"
    and ex2: "∃z2. ∀x. x ⊏ z2 ⟶ (P2 x ⟷ P2')"
  shows "∃z. ∀x. x ⊏  z ⟶ ((P1 x ∨ P2 x) ⟷ (P1' ∨ P2'))"
proof -
  from ex1 ex2 obtain z1 and z2
    where z1: "∀x. x ⊏ z1 ⟶ (P1 x ⟷ P1')"
    and z2: "∀x. x ⊏ z2 ⟶ (P2 x ⟷ P2')"
    by blast
  from lt_ex obtain z where z: "z ⊏ ord.min less_eq z1 z2"
    by blast
  from z have zz1: "z ⊏ z1" and zz2: "z ⊏ z2"
    by simp_all
  have "(P1 x ∨ P2 x) ⟷ (P1' ∨ P2')" if H: "x ⊏ z" for x
    using less_trans[OF H zz1] less_trans[OF H zz2] z1 zz1 z2 zz2 by auto
  then show ?thesis
    by blast
qed
lemma minf_ex[no_atp]:
  assumes ex: "∃z. ∀x. x ⊏ z ⟶ (P x ⟷ P1)"
    and p1: P1
  shows "∃x. P x"
proof -
  from ex obtain z where z: "∀x. x ⊏ z ⟶ (P x ⟷ P1)"
    by blast
  from lt_ex obtain x where x: "x ⊏ z"
    by blast
  from z x p1 show ?thesis
    by blast
qed
end
locale constr_dense_linorder = linorder_no_lb + linorder_no_ub +
  fixes between
  assumes between_less: "less x y ⟹ less x (between x y) ∧ less (between x y) y"
    and between_same: "between x x = x"
begin
sublocale dlo: unbounded_dense_linorder
proof (unfold_locales, goal_cases)
  case (1 x y)
  then show ?case
    using between_less [of x y] by auto
next
  case 2
  then show ?case by (rule lt_ex)
next
  case 3
  then show ?case by (rule gt_ex)
qed
lemma rinf_U[no_atp]:
  assumes fU: "finite U"
    and lin_dense: "∀x l u. (∀t. l ⊏ t ∧ t⊏ u ⟶ t ∉ U) ∧ l⊏ x ∧ x ⊏ u ∧ P x
      ⟶ (∀y. l ⊏ y ∧ y ⊏ u ⟶ P y )"
    and nmpiU: "∀x. ¬ MP ∧ ¬PP ∧ P x ⟶ (∃u∈ U. ∃u' ∈ U. u ⊑ x ∧ x ⊑ u')"
    and nmi: "¬ MP"  and npi: "¬ PP"  and ex: "∃x.  P x"
  shows "∃u∈ U. ∃u' ∈ U. P (between u u')"
proof -
  from ex obtain x where px: "P x"
    by blast
  from px nmi npi nmpiU have "∃u∈ U. ∃u' ∈ U. u ⊑ x ∧ x ⊑ u'"
    by auto
  then obtain u and u' where uU: "u∈ U" and uU': "u' ∈ U" and ux: "u ⊑ x" and xu': "x ⊑ u'"
    by auto
  from uU have Une: "U ≠ {}"
    by auto
  let ?l = "linorder.Min less_eq U"
  let ?u = "linorder.Max less_eq U"
  have linM: "?l ∈ U"
    using fU Une by simp
  have uinM: "?u ∈ U"
    using fU Une by simp
  have lM: "∀t∈ U. ?l ⊑ t"
    using Une fU by auto
  have Mu: "∀t∈ U. t ⊑ ?u"
    using Une fU by auto
  have th: "?l ⊑ u"
    using uU Une lM by auto
  from order_trans[OF th ux] have lx: "?l ⊑ x" .
  have th: "u' ⊑ ?u"
    using uU' Une Mu by simp
  from order_trans[OF xu' th] have xu: "x ⊑ ?u" .
  from finite_set_intervals2[where P="P",OF px lx xu linM uinM fU lM Mu]
  consider u where "u ∈ U" "P u" |
    t1 t2 where "t1 ∈ U" "t2 ∈ U" "∀y. t1 ⊏ y ∧ y ⊏ t2 ⟶ y ∉ U" "t1 ⊏ x" "x ⊏ t2" "P x"
    by blast
  then show ?thesis
  proof cases
    case u: 1
    have "between u u = u" by (simp add: between_same)
    with u have "P (between u u)" by simp
    with u show ?thesis by blast
  next
    case 2
    note t1M = ‹t1 ∈ U› and t2M = ‹t2∈ U›
      and noM = ‹∀y. t1 ⊏ y ∧ y ⊏ t2 ⟶ y ∉ U›
      and t1x = ‹t1 ⊏ x› and xt2 = ‹x ⊏ t2›
      and px = ‹P x›
    from less_trans[OF t1x xt2] have t1t2: "t1 ⊏ t2" .
    let ?u = "between t1 t2"
    from between_less t1t2 have t1lu: "t1 ⊏ ?u" and ut2: "?u ⊏ t2" by auto
    from lin_dense noM t1x xt2 px t1lu ut2 have "P ?u" by blast
    with t1M t2M show ?thesis by blast
  qed
qed
theorem fr_eq[no_atp]:
  assumes fU: "finite U"
    and lin_dense: "∀x l u. (∀t. l ⊏ t ∧ t⊏ u ⟶ t ∉ U) ∧ l⊏ x ∧ x ⊏ u ∧ P x
     ⟶ (∀y. l ⊏ y ∧ y ⊏ u ⟶ P y )"
    and nmibnd: "∀x. ¬ MP ∧ P x ⟶ (∃u∈ U. u ⊑ x)"
    and npibnd: "∀x. ¬PP ∧ P x ⟶ (∃u∈ U. x ⊑ u)"
    and mi: "∃z. ∀x. x ⊏ z ⟶ (P x = MP)"  and pi: "∃z. ∀x. z ⊏ x ⟶ (P x = PP)"
  shows "(∃x. P x) ≡ (MP ∨ PP ∨ (∃u ∈ U. ∃u'∈ U. P (between u u')))"
  (is "_ ≡ (_ ∨ _ ∨ ?F)" is "?E ≡ ?D")
proof -
  have "?E ⟷ ?D"
  proof
    show ?D if px: ?E
    proof -
      consider "MP ∨ PP" | "¬ MP" "¬ PP" by blast
      then show ?thesis
      proof cases
        case 1
        then show ?thesis by blast
      next
        case 2
        from npmibnd[OF nmibnd npibnd]
        have nmpiU: "∀x. ¬ MP ∧ ¬PP ∧ P x ⟶ (∃u∈ U. ∃u' ∈ U. u ⊑ x ∧ x ⊑ u')" .
        from rinf_U[OF fU lin_dense nmpiU ‹¬ MP› ‹¬ PP› px] show ?thesis
          by blast
      qed
    qed
    show ?E if ?D
    proof -
      from that consider MP | PP | ?F by blast
      then show ?thesis
      proof cases
        case 1
        from minf_ex[OF mi this] show ?thesis .
      next
        case 2
        from pinf_ex[OF pi this] show ?thesis .
      next
        case 3
        then show ?thesis by blast
      qed
    qed
  qed
  then show "?E ≡ ?D" by simp
qed
lemmas minf_thms[no_atp] = minf_conj minf_disj minf_eq minf_neq minf_lt minf_le minf_gt minf_ge minf_P
lemmas pinf_thms[no_atp] = pinf_conj pinf_disj pinf_eq pinf_neq pinf_lt pinf_le pinf_gt pinf_ge pinf_P
lemmas nmi_thms[no_atp] = nmi_conj nmi_disj nmi_eq nmi_neq nmi_lt nmi_le nmi_gt nmi_ge nmi_P
lemmas npi_thms[no_atp] = npi_conj npi_disj npi_eq npi_neq npi_lt npi_le npi_gt npi_ge npi_P
lemmas lin_dense_thms[no_atp] = lin_dense_conj lin_dense_disj lin_dense_eq lin_dense_neq lin_dense_lt lin_dense_le lin_dense_gt lin_dense_ge lin_dense_P
lemma ferrack_axiom[no_atp]: "constr_dense_linorder less_eq less between"
  by (rule constr_dense_linorder_axioms)
lemma atoms[no_atp]:
  shows "TERM (less :: 'a ⇒ _)"
    and "TERM (less_eq :: 'a ⇒ _)"
    and "TERM ((=) :: 'a ⇒ _)" .
declare ferrack_axiom [ferrack minf: minf_thms pinf: pinf_thms
    nmi: nmi_thms npi: npi_thms lindense:
    lin_dense_thms qe: fr_eq atoms: atoms]
declaration ‹
let
  fun simps phi = map (Morphism.thm phi) [@{thm "not_less"}, @{thm "not_le"}]
  fun generic_whatis phi =
    let
      val [lt, le] = map (Morphism.term phi) [\<^term>‹(⊏)›, \<^term>‹(⊑)›]
      fun h x t =
        case Thm.term_of t of
          \<^Const_>‹HOL.eq _ for y z› =>
            if Thm.term_of x aconv y then Ferrante_Rackoff_Data.Eq
            else Ferrante_Rackoff_Data.Nox
       | \<^Const_>‹Not for \<^Const>‹HOL.eq _ for y z›› =>
            if Thm.term_of x aconv y then Ferrante_Rackoff_Data.NEq
            else Ferrante_Rackoff_Data.Nox
       | b$y$z => if Term.could_unify (b, lt) then
                     if Thm.term_of x aconv y then Ferrante_Rackoff_Data.Lt
                     else if Thm.term_of x aconv z then Ferrante_Rackoff_Data.Gt
                     else Ferrante_Rackoff_Data.Nox
                 else if Term.could_unify (b, le) then
                     if Thm.term_of x aconv y then Ferrante_Rackoff_Data.Le
                     else if Thm.term_of x aconv z then Ferrante_Rackoff_Data.Ge
                     else Ferrante_Rackoff_Data.Nox
                 else Ferrante_Rackoff_Data.Nox
       | _ => Ferrante_Rackoff_Data.Nox
  in h end
  fun ss phi ctxt =
    simpset_of (put_simpset HOL_ss ctxt addsimps (simps phi))
in
  Ferrante_Rackoff_Data.funs  @{thm "ferrack_axiom"}
    {isolate_conv = K (K (K Thm.reflexive)), whatis = generic_whatis, simpset = ss}
end
›
end
ML_file ‹ferrante_rackoff.ML›
method_setup ferrack = ‹
  Scan.succeed (SIMPLE_METHOD' o FerranteRackoff.dlo_tac)
› "Ferrante and Rackoff's algorithm for quantifier elimination in dense linear orders"
subsection ‹Ferrante and Rackoff algorithm over ordered fields›
lemma neg_prod_lt:
  fixes c :: "'a::linordered_field"
  assumes "c < 0"
  shows "c * x < 0 ≡ x > 0"
proof -
  have "c * x < 0 ⟷ 0 / c < x"
    by (simp only: neg_divide_less_eq[OF ‹c < 0›] algebra_simps)
  also have "… ⟷ 0 < x" by simp
  finally show "PROP ?thesis" by simp
qed
lemma pos_prod_lt:
  fixes c :: "'a::linordered_field"
  assumes "c > 0"
  shows "c * x < 0 ≡ x < 0"
proof -
  have "c * x < 0 ⟷ 0 /c > x"
    by (simp only: pos_less_divide_eq[OF ‹c > 0›] algebra_simps)
  also have "… ⟷ 0 > x" by simp
  finally show "PROP ?thesis" by simp
qed
lemma neg_prod_sum_lt:
  fixes c :: "'a::linordered_field"
  assumes "c < 0"
  shows "c * x + t < 0 ≡ x > (- 1 / c) * t"
proof -
  have "c * x + t < 0 ⟷ c * x < - t"
    by (subst less_iff_diff_less_0 [of "c * x" "- t"]) simp
  also have "… ⟷ - t / c < x"
    by (simp only: neg_divide_less_eq[OF ‹c < 0›] algebra_simps)
  also have "… ⟷ (- 1 / c) * t < x" by simp
  finally show "PROP ?thesis" by simp
qed
lemma pos_prod_sum_lt:
  fixes c :: "'a::linordered_field"
  assumes "c > 0"
  shows "c * x + t < 0 ≡ x < (- 1 / c) * t"
proof -
  have "c * x + t < 0 ⟷ c * x < - t"
    by (subst less_iff_diff_less_0 [of "c * x" "- t"]) simp
  also have "… ⟷ - t / c > x"
    by (simp only: pos_less_divide_eq[OF ‹c > 0›] algebra_simps)
  also have "… ⟷ (- 1 / c) * t > x" by simp
  finally show "PROP ?thesis" by simp
qed
lemma sum_lt:
  fixes x :: "'a::ordered_ab_group_add"
  shows "x + t < 0 ≡ x < - t"
  using less_diff_eq[where a= x and b=t and c=0] by simp
lemma neg_prod_le:
  fixes c :: "'a::linordered_field"
  assumes "c < 0"
  shows "c * x ≤ 0 ≡ x ≥ 0"
proof -
  have "c * x ≤ 0 ⟷ 0 / c ≤ x"
    by (simp only: neg_divide_le_eq[OF ‹c < 0›] algebra_simps)
  also have "… ⟷ 0 ≤ x" by simp
  finally show "PROP ?thesis" by simp
qed
lemma pos_prod_le:
  fixes c :: "'a::linordered_field"
  assumes "c > 0"
  shows "c * x ≤ 0 ≡ x ≤ 0"
proof -
  have "c * x ≤ 0 ⟷ 0 / c ≥ x"
    by (simp only: pos_le_divide_eq[OF ‹c > 0›] algebra_simps)
  also have "… ⟷ 0 ≥ x" by simp
  finally show "PROP ?thesis" by simp
qed
lemma neg_prod_sum_le:
  fixes c :: "'a::linordered_field"
  assumes "c < 0"
  shows "c * x + t ≤ 0 ≡ x ≥ (- 1 / c) * t"
proof -
  have "c * x + t ≤ 0 ⟷ c * x ≤ -t"
    by (subst le_iff_diff_le_0 [of "c*x" "-t"]) simp
  also have "… ⟷ - t / c ≤ x"
    by (simp only: neg_divide_le_eq[OF ‹c < 0›] algebra_simps)
  also have "… ⟷ (- 1 / c) * t ≤ x" by simp
  finally show "PROP ?thesis" by simp
qed
lemma pos_prod_sum_le:
  fixes c :: "'a::linordered_field"
  assumes "c > 0"
  shows "c * x + t ≤ 0 ≡ x ≤ (- 1 / c) * t"
proof -
  have "c * x + t ≤ 0 ⟷ c * x ≤ - t"
    by (subst le_iff_diff_le_0 [of "c*x" "-t"]) simp
  also have "… ⟷ - t / c ≥ x"
    by (simp only: pos_le_divide_eq[OF ‹c > 0›] algebra_simps)
  also have "… ⟷ (- 1 / c) * t ≥ x" by simp
  finally show "PROP ?thesis" by simp
qed
lemma sum_le:
  fixes x :: "'a::ordered_ab_group_add"
  shows "x + t ≤ 0 ≡ x ≤ - t"
  using le_diff_eq[where a= x and b=t and c=0] by simp
lemma nz_prod_eq:
  fixes c :: "'a::linordered_field"
  assumes "c ≠ 0"
  shows "c * x = 0 ≡ x = 0"
  using assms by simp
lemma nz_prod_sum_eq:
  fixes c :: "'a::linordered_field"
  assumes "c ≠ 0"
  shows "c * x + t = 0 ≡ x = (- 1/c) * t"
proof -
  have "c * x + t = 0 ⟷ c * x = - t"
    by (subst eq_iff_diff_eq_0 [of "c*x" "-t"]) simp
  also have "… ⟷ x = - t / c"
    by (simp only: nonzero_eq_divide_eq[OF ‹c ≠ 0›] algebra_simps)
  finally show "PROP ?thesis" by simp
qed
lemma sum_eq:
  fixes x :: "'a::ordered_ab_group_add"
  shows "x + t = 0 ≡ x = - t"
  using eq_diff_eq[where a= x and b=t and c=0] by simp