Theory Pairing_Heap_List1_Analysis

(* Author: Tobias Nipkow (based on Hauke Brinkop's tree proofs) *)

subsection ‹Okasaki's Pairing Heap›

theory Pairing_Heap_List1_Analysis
imports
  Pairing_Heap.Pairing_Heap_List1
  Amortized_Framework
  Priority_Queue_ops_merge
  Lemmas_log
begin

text
‹Amortized analysis of pairing heaps as defined by Okasaki cite"Okasaki".›

fun hps where
"hps (Hp _ hs) = hs"

lemma merge_Empty[simp]: "merge heap.Empty h = h"
by(cases h) auto

lemma merge2: "merge (Hp x lx) h = (case h of heap.Empty  Hp x lx | (Hp y ly)  
    (if x < y then Hp x (Hp y ly # lx) else Hp y (Hp x lx # ly)))"
by(auto split: heap.split)

lemma pass1_Nil_iff: "pass1 hs = []  hs = []"
by(cases hs rule: pass1.cases) auto


subsubsection ‹Invariant›

fun no_Empty :: "'a :: linorder heap  bool" where
"no_Empty heap.Empty = False" |
"no_Empty (Hp x hs) = (h  set hs. no_Empty h)"

abbreviation no_Emptys :: "'a :: linorder heap list  bool" where
"no_Emptys hs  h  set hs. no_Empty h"

fun is_root :: "'a :: linorder heap  bool" where
"is_root heap.Empty = True" |
"is_root (Hp x hs) = no_Emptys hs"


lemma is_root_if_no_Empty: "no_Empty h  is_root h"
by(cases h) auto

lemma no_Emptys_hps: "no_Empty h  no_Emptys(hps h)"
by(induction h) auto

lemma no_Empty_merge: " no_Empty h1; no_Empty h2  no_Empty (merge h1 h2)"
by (cases "(h1,h2)" rule: merge.cases) auto

lemma is_root_merge: " is_root h1; is_root h2  is_root (merge h1 h2)"
by (cases "(h1,h2)" rule: merge.cases) auto

lemma no_Emptys_pass1:
  "no_Emptys hs  no_Emptys (pass1 hs)"
by(induction hs rule: pass1.induct)(auto simp: no_Empty_merge)

lemma is_root_pass2: "no_Emptys hs  is_root(pass2 hs)"
proof(induction hs)
  case (Cons _ hs)
  show ?case
  proof cases
    assume "hs = []" thus ?thesis using Cons by (auto simp: is_root_if_no_Empty)
  next
    assume "hs  []" thus ?thesis using Cons by(auto simp: is_root_merge is_root_if_no_Empty)
  qed
qed simp


subsubsection ‹Complexity›

fun size_hp :: "'a heap  nat" where
"size_hp heap.Empty = 0" |
"size_hp (Hp x hs) = sum_list(map size_hp hs) + 1"

abbreviation size_hps where
"size_hps hs  sum_list(map size_hp hs)"

fun Φ_hps :: "'a heap list  real" where
"Φ_hps [] = 0" |
"Φ_hps (heap.Empty # hs) = Φ_hps hs" |
"Φ_hps (Hp x hsl # hsr) =
 Φ_hps hsl + Φ_hps hsr + log 2 (size_hps hsl + size_hps hsr + 1)"

fun Φ :: "'a heap  real" where
"Φ heap.Empty = 0" |
"Φ (Hp _ hs) = Φ_hps hs + log 2 (size_hps(hs)+1)"

lemma Φ_hps_ge0: "Φ_hps hs  0"
by (induction hs rule: Φ_hps.induct) auto

lemma no_Empty_ge0: "no_Empty h  size_hp h > 0"
by(cases h) auto

declare algebra_simps[simp]

lemma Φ_hps1: "Φ_hps [h] = Φ h"
by(cases h) auto

lemma size_hp_merge: "size_hp(merge h1 h2) = size_hp h1 + size_hp h2" 
by (induction h1 h2 rule: merge.induct) simp_all

lemma pass1_size[simp]: "size_hps (pass1 hs) = size_hps hs" 
by (induct hs rule: pass1.induct) (simp_all add: size_hp_merge)

lemma ΔΦ_insert:
  "Φ (Pairing_Heap_List1.insert x h) - Φ h  log 2 (size_hp h + 1)"
by(cases h)(auto simp: size_hp_merge)

lemma ΔΦ_merge:
  "Φ (merge h1 h2) - Φ h1 - Φ h2
   log 2 (size_hp h1 + size_hp h2 + 1) + 1"
proof(induction h1 h2 rule: merge.induct)
  case (3 x lx y ly)
  thus ?case
    using ld_le_2ld[of "size_hps lx" "size_hps ly"]
      log_le_cancel_iff[of 2 "size_hps lx + size_hps ly + 2" "size_hps lx + size_hps ly + 3"]
    by (auto simp del: log_le_cancel_iff)
qed auto

fun sum_ub :: "'a heap list  real" where
  "sum_ub [] = 0"
| "sum_ub [_] = 0"
| "sum_ub [h1, h2] = 2*log 2 (size_hp h1 + size_hp h2)" 
| "sum_ub (h1 # h2 # hs) = 2*log 2 (size_hp h1 + size_hp h2 + size_hps hs) 
    - 2*log 2 (size_hps hs) - 2 + sum_ub hs"

lemma ΔΦ_pass1_sum_ub: "no_Emptys hs 
  Φ_hps (pass1 hs) - Φ_hps hs   sum_ub hs" (is "_  ?P hs")
proof (induction hs rule: sum_ub.induct)
  case (3 h1 h2)
  then obtain x hsx y hsy where [simp]: "h1 = Hp x hsx" "h2 = Hp y hsy"
    by simp (meson no_Empty.elims(2))
  have 0: "x y::real. 0  x  x  y  x  2*y" by linarith
  show ?case using 3 by (auto simp add: add_increasing 0)
next
  case (4 h1 h2 h3 hs)
  hence IH: "?P(h3#hs)" by auto
  from "4.prems" obtain x hsx y hsy where [simp]: "h1 = Hp x hsx" "h2 = Hp y hsy"
    by simp (meson no_Empty.elims(2))
  from "4.prems" have s3: "size_hp h3 > 0"
    apply auto using size_hp.elims by force
  let ?ry = "h3 # hs"
  let ?rx = "Hp y hsy # ?ry"
  let ?h = "Hp x hsx # ?rx"
  have "Φ_hps(pass1 ?h) - Φ_hps ?h  
     log 2 (1 + size_hps hsx + size_hps hsy) - log 2 (1 + size_hps hsy + size_hps ?ry) + sum_ub ?ry"
    using IH by simp
  also have "log 2 (1 + size_hps hsx + size_hps hsy) - log 2 (1 + size_hps hsy + size_hps ?ry) 
     2*log 2 (size_hps ?h) - 2*log 2 (size_hps ?ry) - 2"
  proof -
    have "log 2 (1 + size_hps hsx + size_hps hsy) + log 2 (size_hps ?ry) - 2*log 2 (size_hps ?h) 
      = log 2 ((1 + size_hps hsx + size_hps hsy)/(size_hps ?h) ) + log 2 (size_hps ?ry / size_hps ?h)"
      using s3 by (simp add: log_divide)
    also have "  -2" 
    proof -
      have "2 + 
         2*log 2 ((1 + size_hps hsx + size_hps hsy) / size_hps ?h +  size_hps ?ry / size_hps ?h)"  
        using ld_sum_inequality [of "(1 + size_hps hsx + size_hps hsy) / size_hps ?h" "(size_hps ?ry / size_hps ?h)"] using s3 by simp
      also have "  0" by (simp add: field_simps log_divide add_pos_nonneg)
      finally show ?thesis by linarith
    qed 
    finally have "log 2 (1 + size_hps hsx + size_hps hsy) + log 2 (size_hps ?ry) + 2
        2*log 2 (size_hps ?h)" by simp
    moreover have "log 2 (size_hps ?ry)  log 2 (size_hps ?rx)" using s3 by simp
    ultimately have "log 2 (1 + size_hps hsx + size_hps hsy) -  
        2*log 2 (size_hps ?h) - 2*log 2 (size_hps ?ry) - 2" by linarith
    thus ?thesis by simp
  qed
  finally show ?case by (simp)
qed simp_all

lemma ΔΦ_pass1: assumes "hs  []" "no_Emptys hs"
  shows "Φ_hps (pass1 hs) - Φ_hps hs  2 * log 2 (size_hps hs) - length hs + 2"
proof - 
  have "sum_ub hs  2 * log 2 (size_hps hs) - length hs + 2" 
    using assms by (induct hs rule: sum_ub.induct) (auto dest: no_Empty_ge0)
  thus ?thesis using ΔΦ_pass1_sum_ub[OF assms(2)] by linarith
qed

lemma size_hps_pass2: "hs  []  no_Emptys hs 
  no_Empty(pass2 hs) & size_hps hs = size_hps(hps(pass2 hs))+1"
apply(induction hs rule: Φ_hps.induct)
  apply (fastforce simp: merge2 split: heap.split)+
done

lemma ΔΦ_pass2: "hs  []  no_Emptys hs 
  Φ (pass2 hs) - Φ_hps hs  log 2 (size_hps hs)"
proof (induction hs)
  case (Cons h hs)
  thus ?case
  proof cases
    assume "hs = []"
    thus ?thesis using Cons by (auto simp add: Φ_hps1 dest: no_Empty_ge0)
  next
    assume *: "hs  []"
    obtain x hs2 where [simp]: "h = Hp x hs2"
      using Cons.prems(2)by simp (meson no_Empty.elims(2))
    show ?thesis
    proof (cases "pass2 hs")
      case Empty thus ?thesis using Φ_hps_ge0[of hs]
        by(simp add: add_increasing xt1(3)[OF mult_2, OF add_increasing])
    next
      case (Hp y hs3)
      with Cons * size_hps_pass2[of hs] show ?thesis by(auto simp: add_mono)
    qed
  qed
qed simp

lemma ΔΦ_del_min: assumes "hps h  []" "no_Empty h"
  shows "Φ (del_min h) - Φ h 
   3 * log 2 (size_hps(hps h)) - length(hps h) + 2"
proof -
  obtain x hs where [simp]: "h = Hp x hs" using assms(2) by (cases h) auto
  let ?ΔΦ1 = "Φ_hps(hps h) - Φ h" 
  let ?ΔΦ2 = "Φ(pass2(pass1 (hps h))) - Φ_hps (hps h)"
  let ?ΔΦ = "Φ (del_min h) - Φ h"
  have "Φ(pass2(pass1(hps h))) - Φ_hps (pass1(hps h))  log 2 (size_hps(hps h))" 
    using ΔΦ_pass2[of "pass1(hps h)"] using assms
    by (auto simp: pass1_Nil_iff no_Emptys_pass1 dest: no_Emptys_hps)
  moreover have "Φ_hps (pass1 (hps h)) - Φ_hps (hps h)   2* - length (hps h) + 2"
    using ΔΦ_pass1[OF assms(1) no_Emptys_hps[OF assms(2)]] by blast
  moreover have "?ΔΦ1  0" by simp
  moreover have "?ΔΦ = ?ΔΦ1 + ?ΔΦ2" by simp
  ultimately show ?thesis by linarith
qed


fun exec :: "'a :: linorder op  'a heap list  'a heap" where
"exec Empty [] = heap.Empty" | 
"exec Del_min [h] = del_min h" |
"exec (Insert x) [h] = Pairing_Heap_List1.insert x h" |
"exec Merge [h1,h2] = merge h1 h2"

fun Tpass1 :: "'a heap list  nat" where
  "Tpass1 [] = 1"
| "Tpass1 [_] = 1"
| "Tpass1 (_ # _ # hs) = 1 + Tpass1 hs"

fun Tpass2 :: "'a heap list  nat" where
 "Tpass2 [] = 1"
| "Tpass2 (_ # hs) = 1 + Tpass2 hs"

fun cost :: "'a :: linorder op  'a heap list  nat" where
"cost Empty _ = 1" |
"cost Del_min [heap.Empty] = 1" |
"cost Del_min [Hp x hs] = Tpass2 (pass1 hs) + Tpass1 hs" |
"cost (Insert a) _ = 1" |
"cost Merge _ = 1"

fun U :: "'a :: linorder op  'a heap list  real" where
"U Empty _ = 1" |
"U (Insert a) [h] = log 2 (size_hp h + 1) + 1" |
"U Del_min [h] = 3*log 2 (size_hp h + 1) + 4" |
"U Merge [h1,h2] = log 2 (size_hp h1 + size_hp h2 + 1) + 2"

interpretation pairing: Amortized
where arity = arity and exec = exec and cost = cost and inv = "is_root"
and Φ = Φ and U = U
proof (standard, goal_cases)
  case (1 ss f) show ?case
  proof (cases f)
    case Empty with 1 show ?thesis by simp
  next
    case Insert thus ?thesis using 1 by(auto simp: is_root_merge)
  next
    case Merge
    thus ?thesis using 1 by(auto simp: is_root_merge numeral_eq_Suc)
  next
    case [simp]: Del_min
    then obtain h where [simp]: "ss = [h]" using 1 by auto
    show ?thesis
    proof (cases h)
      case [simp]: (Hp _ hs)
      show ?thesis
      proof cases
        assume "hs = []" thus ?thesis by simp
      next
        assume "hs  []" thus ?thesis
          using 1(1) no_Emptys_pass1 by (auto intro: is_root_pass2)
      qed
    qed simp
  qed
next
  case (2 s) show ?case by (cases s) (auto simp: Φ_hps_ge0)
next
  case (3 ss f) show ?case
  proof (cases f)
    case Empty with 3 show ?thesis by(auto)
  next
    case Insert thus ?thesis using ΔΦ_insert 3 by auto
  next
    case [simp]: Del_min
    then obtain h where [simp]: "ss = [h]" using 3 by auto
    show ?thesis
    proof (cases h)
      case [simp]: (Hp x hs)
      have "Tpass2 (pass1 hs) + Tpass1 hs  2 + length hs"
        by (induct hs rule: pass1.induct) simp_all
      hence  "cost f ss  " by simp
      moreover have  "Φ (del_min h) - Φ h  3*log 2 (size_hp h + 1) - length hs + 2"
      proof (cases "hs = []")
        case False
        hence "Φ (del_min h) - Φ h  3*log 2 (size_hps hs) - length hs + 2"
          using  ΔΦ_del_min[of h] 3(1) by simp
        also have "  3*log 2 (size_hp h + 1) - length hs + 2"
          using False 3(1) size_hps_pass2 by fastforce
        finally show ?thesis .
      qed simp
      ultimately show ?thesis by simp
    qed simp
  next
    case [simp]: Merge
    then obtain h1 h2 where [simp]: "ss = [h1, h2]"
      using 3 by(auto simp: numeral_eq_Suc)
    show ?thesis
    proof (cases "h1 = heap.Empty  h2 = heap.Empty")
      case True thus ?thesis by auto
    next                  
      case False
      then obtain x1 x2 hs1 hs2 where [simp]: "h1 = Hp x1 hs1" "h2 = Hp x2 hs2"
        by (meson hps.cases) 
      have "Φ (merge h1 h2) - Φ h1 - Φ h2  log 2 (size_hp h1 + size_hp h2 + 1) + 1"
        using ΔΦ_merge[of h1 h2] by simp
      thus ?thesis by(simp)
    qed
  qed
qed

end