An Isabelle/HOL Formalization of the
Textbook Proof of Huffman’s Algorithm*

Jasmin Christian Blanchette
Institut fiir Informatik, Technische Universitdt Miinchen, Germany
blanchette@in.tum.de

October 15, 2008

Abstract

Huffman’s algorithm is a procedure for constructing a binary tree
with minimum weighted path length. This report presents a for-
mal proof of the correctness of Huffman’s algorithm written using Is-
abelle/HOL. Our proof closely follows the sketches found in standard
algorithms textbooks, uncovering a few snags in the process. Another
distinguishing feature of our formalization is the use of custom induc-
tion rules to help Isabelle’s automatic tactics, leading to very short
proofs for most of the lemmas.

Contents

1 Introduction
1.1 BinaryCodes
12 BinaryTrees
1.3 Huffman’s Algorithm
1.4 The Textbook Proof
1.5 Overview of the Formalization
1.6 Overview of Isabelle’s HOL Logic
1.7 Head of the Theory File

2 Definition of Prefix Code Trees and Forests
2.1 TreeDatatype
22 PorestDatatype
23 Alphabet

*This work was supported by the DFG grant NI 491/11-1.

24 Consistency e 10

25 SymbolDepths 11
26 Height 12
2.7 Symbol Frequencies 13
28 Weight 13
29 Cost . ..o 14
210 Optimality 15
3 Functional Implementation of Huffman’s Algorithm 16
31 CachedWeight 16
32 TreeUnion e 16
3.3 Ordered TreeInsertion 17
3.4 The Main Algorithm 18
4 Definition of Auxiliary Functions Used in the Proof 18
41 SiblingofaSymbol L 18
42 LeafInterchange. 21
43 SymbolInterchange 24
44 Four-Way Symbol Interchange 25
45 SiblingMerge 27
46 LeafSplit 29
47 WeightSortOrder 30
4.8 Pair of Minimal Symbols o 0oL 31
5 Formalization of the Textbook Proof 31
5.1 Four-Way Symbol Interchange Cost Lemma 31
5.2 Leaf Split Optimality Lemma 32
5.3 Leaf Split Commutativity Lemma 34
54 Optimality Theorem 36
6 Related Work 37
7 Conclusion 38

1 Introduction

1.1 Binary Codes

Suppose we want to encode strings over a finite source alphabet to sequences of
bits. The approach used by ASCII and most other charsets is to map each source
symbol to a distinct k-bit codeword, where k is fixed and is typically 8 or 16. To
encode a string of symbols, we simply encode each symbol in turn. Decoding
involves mapping each k-bit block back to the symbol it represents.

Fixed-length codes are simple and fast, but they generally waste space. If we
know the frequency w, of each source symbol 2, we can save some bits by using
shorter codewords for the most frequent symbols. We say that a (variable-length)
code is optimum if it minimizes the sum), w,d,, where J, is the length of the
binary codeword for a. Information theory tells us that a code is optimum if for
each source symbol c the codeword representing c has length

1
dc =log, o where p. = ZZ“;W.

This number is generally not an integer, so we cannot use it directly. Nonetheless,
the above criterion is a useful yardstick and paves the way for arithmetic coding
[10], a generalization of the method presented here.

As an example, consider the source string ‘abacabad’. We have

/pC:

AN

;7 Po =

N[—=

pa = , Pd= g

Q=

The optimum lengths for the binary codewords are all integers, namely
ba=1 0,=2, 6c=3, 64=3,
and they are realized by the code
Ci={a—0,b— 10, c— 110, d — 111}.

Encoding ‘abacabad’ produces the 14-bit codeword 01001100100111. The code C;
is optimum: No code that unambiguously encodes source symbols one at a time
could do better than C; on the input ‘abacabad’. In particular, with a fixed-length
code such as

C;={a—00,b—01,c+—10,d — 11}

we need at least 16 bits to encode ‘abacabad’.

1.2 Binary Trees

Inside a program, binary codes like C; and C; can be represented by binary trees.
For example, the trees

0 1
a 0 1
0 1 and
b 0 1 0 1
0/ \1 a b C d
C d

correspond to C; and C, respectively. The codeword for a symbol is given along
the path from the root to that symbol, with 0 meaning “left child” and 1 meaning
“right child”.

To avoid ambiguities, we require that only leaf nodes are labeled with sym-
bols. This ensures that no codeword is a prefix of another, thereby eliminating
the source of all ambiguities.! Codes that have this property are called prefix
codes. As an example of a code that doesn’t have this property, consider the code
associated with the tree

C d

and observe that ‘bbb’, ‘bd’, and ‘db” all map to the codeword 111.

Each node in a code tree is assigned a weight. For a leaf node, the weight is
the frequency of its symbol; for an inner node, it is the sum of the weights of its
subtrees. Code trees can be annotated with their weights:

For our purposes, it is sufficient to consider only full binary trees (trees whose
inner nodes all have two children). This is because any inner node with only one

IStrictly speaking, there is another potential source of ambiguity. If the alphabet consists of a
single symbol g, that symbol could be mapped to the empty codeword, and then any string aa .. .a
would map to the empty bit sequence, giving the decoder no way to recover the original string’s
length. This scenario can be ruled out by requiring that the alphabet has cardinality 2 or more.

child can advantageously be eliminated; for example,

becomes C

1.3 Huffman’s Algorithm

David Huffman [5] discovered a simple algorithm for constructing an optimum
prefix code tree for specified symbol frequencies: Create a forest consisting of
only leaf nodes, one for each symbol in the alphabet. Then take the two trees

and

with the lowest weights and replace them with the tree

Repeat this process until only one tree is left.
As an illustration, executing the algorithm for the frequencies

fd:3/ fe:11/ ff:5/ fS:7/ fZ:2

gives rise to the following sequence of states:

(1) d f s e (2) f
; 3 5 7 11 e 5 ? 161
z d

Tree (5) is an optimum tree for the given frequencies.

1.4 The Textbook Proof

Why does the algorithm work? In his article, Huffman gave some motivation but
no real proof. For a proof sketch, we turn to Donald Knuth [6, p. 403—404]:

It is not hard to prove that this method does in fact minimize the
weighted path length [i.e., }_, w;é,], by induction on m. Suppose we
have w; < wy < wsz < -+ < wy,, where m > 2, and suppose that we
are given a tree that minimizes the weighted path length. (Such a tree
certainly exists, since only finitely many binary trees with m terminal
nodes are possible.) Let V be an internal node of maximum distance
from the root. If w; and w, are not the weights already attached to the
children of V, we can interchange them with the values that are al-
ready there; such an interchange does not increase the weighted path
length. Thus there is a tree that minimizes the weighted path length
and contains the subtree

w1 w2

Now it is easy to prove that the weighted path length of such a tree is
minimized if and only if the tree with

replaced by W1+,

w1 w»

has minimum path length for the weights wy + wy, w3, ..., wy,.

There is, however, a small oddity in this proof: It is not clear why we must assert
the existence of an optimum tree that contains the subtree

w1 wr

(The formalization works without it.)
Cormen et al. [3, p. 385-391] provide a very similar proof, articulated around
the following propositions:

Lemma 16.2

Let C be an alphabet in which each character ¢ € C has frequency
fc]. Let x and y be two characters in C having the lowest frequencies.
Then there exists an optimal prefix code for C in which the codewords
for x and y have the same length and differ only in the last bit.

Lemma 16.3

Let C be a given alphabet with frequency f|c] defined for each charac-
ter c € C. Let x and y be two characters in C with minimum frequency.
Let C’ be the alphabet C with characters x, y removed and (new) char-
acter z added, so that C' = C — {x,y} U {z}; define f for C’ as for C,
except that f[z] = f[x] + f[y]. Let T' be any tree representing an opti-
mal prefix code for the alphabet C'. Then the tree T, obtained from T’
by replacing the leaf node for z with an internal node having x and y
as children, represents an optimal prefix code for the alphabet C.

Theorem 16.4
Procedure HUFFMAN produces an optimal prefix code.

1.5 Overview of the Formalization

This report presents a formalization of the proof of Huffman’s algorithm writ-
ten using Isabelle/HOL [9]. Our proof is based on the informal proofs given by
Knuth and Cormen et al. The development was done independently of Laurent
Théry’s Coq proof [11, 12], which through its “cover” concept represents a con-
siderable departure from the standard proof.

The development consists of 90 lemmas and 5 theorems. Most of them have
very short proofs thanks to the extensive use of simplification rules and custom
induction rules. The remaining proofs are written using the structured proof
format Isar [13] and are accompanied by informal arguments and diagrams.

The report is organized as follows. Section 2 defines the datatypes for binary
code trees and forests and develops a small library of related functions. (Inci-
dentally, there is nothing special about binary codes and binary trees. Huffman’s

7

algorithm and its proof can be generalized to n-ary trees [6, p. 405 and 595].) Sec-
tion 3 presents a functional implementation of the algorithm. Section 4 defines
several tree manipulation functions needed for the proof. Section 5 presents three
key lemmas and concludes with the optimality theorem. Section 6 compares our
work with Théry’s Coq proof. Finally, Section 7 concludes the report.

1.6 Overview of Isabelle’s HOL Logic

This section presents a brief overview of the Isabelle/HOL logic, so that readers
not familiar with the system can at least understand the lemmas and theorems,
if not the proofs. Readers who already know Isabelle are encouraged to skip this
section.

Isabelle is a generic theorem prover whose built-in metalogic is a fragment
of higher-order logic [4, 9]. The metalogical operators are material implication,
written [@1; ...; ¢u] = ¥ (“if p1 and ... and ¢,, then ¢”), universal quantifi-
cation, written Axq ... x,. ¢ (“forall xy,...,x, we have 1”), and equality, written
t=u.

The incarnation of Isabelle that we use in this development, Isabelle/HOL,
provides a more elaborate version of higher-order logic, complete with the famil-
iar connectives and quantifiers (-, A, V, —, V, and 3) on terms of type bool. In
addition, = expresses equivalence. The formulas A\xy ... Xp. [@1; ...; ¢u] = ¢
and Vxi. ... Vxu,. ¢1 A -+ A @, — ¢ are logically equivalent, but they interact
differently with Isabelle’s proof tactics.

The term language consists of simply typed A-terms written in an ML-like
syntax [8]. In particular, function application expects no parentheses around the
argument list and no commas between the arguments, as in f x y. Syntactic sugar
provides an infix syntax for common operators, such as x = y and x + y. Types
are inferred automatically in most cases, but they can always be supplied using
an annotation #::7, where f is a term and 7 is its type. The type of total functions
from ‘a to b is written ‘s = 'b. Variables may range over functions.

The type of natural numbers is called nat. The type of lists over type a, writ-
ten ‘a list, features the empty list [], the infix constructor x - xs (where x is an
element of type 'z and xs is a list over), and the conversion function set from
lists to sets. The type of sets over a is written 'z set. Operations on sets are written
using traditional mathematical notations.

1.7 Head of the Theory File

The Isabelle theory starts in the standard way.

theory Huffman
imports Main
begin

We attach the simp attribute to some predefined lemmas to add them to the de-

fault set of simplification rules.

declare Int_Un_distrib [simp]
Int_Un_distrib2 [simp]
min_max.sup_absorbl [simp]
min_max.sup_absorb2 [simp]

2 Definition of Prefix Code Trees and Forests

2.1 Tree Datatype

A prefix code tree is a full binary tree in which leaf nodes are of the form Leaf w a,
where a is a symbol and w is the frequency associated with a, and inner nodes are
of the form InnerNode w t; t,, where t; and t; are the left and right subtrees and w
caches the sum of the weights of t; and t,. Prefix code trees are polymorphic on
the symbol datatype ‘.

datatype a tree =
Leaf nat 'a
InnerNode nat (‘a tree) ('a tree)

2.2 Forest Datatype

The intermediate steps of Huffman'’s algorithm involve a list of prefix code trees,
or prefix code forest.

types 'a forest = 'a tree list

2.3 Alphabet
The alphabet of a code tree is the set of symbols appearing in the tree’s leaf nodes.

primrec alphabet :: 'a tree = 'a set where
alphabet (Leaf w a) = {a}
alphabet (InnerNode w t; tp) = alphabet t; U alphabet t,

For set and predicates, Isabelle gives us the choice between inductive definitions
(inductive_set and inductive) and recursive functions (primrec, fun, and func-
tion). In this development, we consistently favor recursion over induction, for
two reasons:

e Recursion gives rise to simplification rules that greatly help automatic proof
tactics. In contrast, reasoning about inductively defined sets and predicates
involves introduction and elimination rules, which are more clumsy than
simplification rules.

e Isabelle’s counterexample generator quickcheck [2], which is very useful
when developing proofs top down (together with sorry), has limited sup-
port for inductive definitions.

The alphabet of a forest is defined as the union of the alphabets of the trees
that compose it. Although Isabelle supports overloading for non-overlapping
types, we avoid many type inference problems by attaching an ‘r’ subscript to
the forest generalizations of functions defined on trees.

primrec alphabetr :: ‘a forest = ‘a set where

alphabetr [| = {}
alphabetr (t - ts) = alphabet t U alphabetr ts

Alphabets are central to our proofs, and we need the following basic facts about
them.

lemma finite_alphabet [simp]:
finite (alphabet t)
{proof)

lemma exists_in_alphabet:
Jda. a € alphabet t

(proof)

2.4 Consistency

A tree is consistent if for each inner node the alphabet of the two subtrees are dis-
joint. Intuitively, this means that every symbol in the alphabet occurs in exactly
one leaf node. Although this well-formedness property isn’'t mentioned in algo-
rithms textbooks [1, 3, 6], it is essential and appears as an assumption in many of
our lemmas.

primrec consistent :: 'a tree = bool where
consistent (Leaf w a) = True
consistent (InnerNode w t; tp) =
(consistent t1 A consistent ty A alphabet t; N alphabet t; = {})

primrec consistentr :: 'a forest = bool where
consistentr [| = True
consistentr (t-ts) =
(consistent t A consistentr ts A\ alphabet t N alphabetr ts = {})

Several of our proofs are by structural induction on consistent trees t and involve
one symbol a. These proofs typically distinguish the following cases.

CONSISTENCY CHECK: The property holds if t is inconsistent. (This is al-
ways the case when consistent t occurs among the property’s assumptions.)

10

BASE CASE: t = Leaf w b.

INDUCTION STEP: t = InnerNode w t1 to.
SUBCASE 1: a belongs to ¢; but not to £,.
SUBCASE 2: a belongs to ¢, but not to t;.

SUBCASE 3: a belongs to neither ¢; nor ;.

Thanks to the consistency check, we can rule out the subcase where a belongs to
both subtrees.

Instead of performing the above case distinction manually, we encode it in a
custom induction rule. This saves us from writing repetitive proof scripts and
helps Isabelle’s automatic proof tactics.

lemma tree_induct_consistent:

[Ata. — consistent t =—> P t a;

Awy b a. P (Leaf wy, b) a;

Aw tq tr a.
[consistent t1; consistent t; alphabet t; N alphabet t; = {};
a € alphabet t1; a & alphabet ty; Pty a; Pty a] =
P (InnerNode w t1 t5) a;

Aw t1 tp a.
[consistent t1; consistent t; alphabet t; N alphabet ty = {};
a & alphabet t1; a € alphabet ty; Pty a; Ptya] =
P (InnerNode w t t;) a;

Aw t1 tp a.
[consistent t1; consistent t; alphabet t; N alphabet t; = {};
a & alphabet t1; a & alphabet ty; Pty a; Pty a] —
P (InnerNode w ty t) a] =

P t a(proof)

2.5 Symbol Depths

The depth of a symbol is the length of the path from the root to the leaf node
labeled with that symbol. Symbols that don’t occur in the tree or that occur at
the root of a one-node tree have depth 0. If a symbol occurs in several leaf nodes
(which may happen with inconsistent trees), the depth is arbitrarily defined in
terms of the leftmost node labeled with that symbol.

primrec depth :: 'a tree = 'a = nat where

depth (Leaf wb) a =0

depth (InnerNode w t; tr) a =
(if a € alphabet t, then depth t1 a + 1
else if a € alphabet t, then depth ty a + 1
else 0)

11

2.6 Height

The height of a tree is the length of the longest path from the root to a leaf node.
This is readily generalized to forests by taking the maximum of the trees” heights.
Note that a tree has height 0 if and only if it is a leaf node, and that a forest has
height 0 if and only if all its trees are leaf nodes.

primrec height :: 'a tree = nat where
height (Leaf wa) =0
height (InnerNode w ty tp) = max (height t;) (height t;) + 1

primrec heightp :: 'a forest = nat where
heightr [| =0
heightr (t - ts) = max (height t) (heightr ts)

The depth of any symbol in the tree is bounded by the tree’s height, and there
exists a symbol with a depth equal to the height.

lemma depth_le_height:
depth t a < height t

{proof)

lemma exists_at_height:
consistent t = Ja € alphabet t. depth t a = height t

{proof)

The following elimination rules help Isabelle’s classical prover, notably the auto
tactic. They are easy consequences of the inequation depth t a < height t.

lemma depth_max_heightE_left [elim!]:

[depth t1 a = max (height t1) (height t;);

[depth t; a = height t1; height t; > height] = P] =
P

{proof)

lemma depth_max_heightE_right [elim!]:

[depth tp a = max (height t1) (height t);

[depth t; a = height ty; height t, > height t1] = P] =
p

(proof)

We also need the following lemma.

lemma height_gt_0_alphabet_eq_imp_height_gt_0:
assumes height t > 0 consistent t alphabet t = alphabet u
shows height u > 0

(proof)

12

2.7 Symbol Frequencies

The frequency of a symbol is the sum of the weights attached to the leaf nodes
labeled with that symbol. If the tree is consistent, the sum comprises at most one
nonzero term. The generalization to forests is straightforward. If two trees have
the same alphabet and symbol frequencies, we say that they are compatible.

primrec freq :: 'a tree = 'a = nat where
freq (Leaf wa) = (Ab. if b = a then w else 0)
freq (InnerNode w t1 t) = (Ab. freq t1 b + freq t, b)

primrec freqgr :: 'a forest = 'a = nat where

freqe [] = (Ab. 0)
freqe (t - ts) = (Ab. freq t b+ freqr ts)

Alphabet and symbol frequencies are intimately related. Simplification rules en-
sure that sums of the form freq t; a + freq t, a collapse to a single term when we
know which tree a belongs to.

lemma notin_alphabet_imp_freq_0 [simp]:
a ¢ alphabet t = freqta =0
{proof)

lemma notin_alphabetr_imp_freqr_0 [simp]:
a & alphabetr ts = freqr tsa =0

{proof)

lemma freq_0_right [simp]:

[alphabet t; N alphabet t; = {}; a € alphabet t] = freqtya =0
{proof)

lemma freq_0_left [simp]:

[alphabet t; N alphabet t; = {}; a € alphabet t,] = freqt;a =0
{proof)

We close this section with a more technical lemma.

lemma heightr_0_imp_Leaf freqr_in_set:
[consistentr ts; heightp ts = 0; a € alphabetr ts] —>
Leaf (freqr tsa) a € set ts

{proof)

2.8 Weight

The weight function returns the weight of a tree. In the InnerNode case, we ignore
the weight cached in the node and instead compute the tree’s weight recursively.
This is more robust than relying on the cache and simplifies reasoning.

13

primrec weight :: 'a tree = nat where
weight (Leaf w a) = w
weight (InnerNode w ty t) = weight t + weight t;

The weight of a tree is the sum of the frequencies of its symbols.

lemma weight_eq_Sum_freq:

consistent t = weight t = Z freqgta

acalphabet t
{proof)
The assumption consistent t is not necessary, but it simplifies the proof by letting

us invoke the lemma setsum_Un_disjoint:

[finite A; finite B; ANB={}] = Y gx+) gx=) g

xeA xX€EB xeAUB

2.9 Cost

The cost of a consistent tree (sometimes called the weighted path length) is given
by the sum) coppnaper ¢ freq t a X depth t a. It obeys a simple recursive law.

primrec cost :: 'a tree = nat where
cost (Leafwa) =0
cost (InnerNode w ty tp) = weight t; + cost ty + weight t, + cost t;

One interpretation of this recursive law is that the cost of a tree is the sum of the
weights of its inner nodes [6, p. 405]. (Recall that weight (InnerNode w t; t) =
weight t1 + weight t;.) Since the cost of a tree is such a fundamental concept, it
seems necessary to prove that the above function definition is correct.

theorem cost_eq_Sum_freq_mult_depth:

consistent t == cost t = Z freqta x depthta
acalphabet t

The proof is by structural induction on t. If t = Leaf w b, both sides of the equation
simplify to 0. This leaves the case t = InnerNode w t t,. Let A, Ay, and A, stand

14

for alphabet t, alphabet t;, and alphabet t,, respectively. We have

cost t

= (definition of cost)
weight t1 + cost t; + weight t, + cost t;

= (induction hypothesis)
weight t1 + Y ,c 4, freq t1a X depth ty a +
weight ty + Y, 4, freq ta a X depth tr a

= (definition of depth, consistency)
weight ty + Yy, freq tia x (depthta — 1) +
weight ty 4+ Y ,c 4, freqtaa x (depthta — 1)

= (distributivity of x and) over —)
weight t1 + Y ,cp, fregtia X depthta — Y ,ca, freqtya +
weight ty + Y,cp, freqtra X depthta — Y ,c 0, freq taa

= (weight_eq_Sum_freq)
Yoaca, fregtia X depthta + Y ,ca, freqtaa X depth ta

= (definition of freq, consistency)
Yoaca, freqta X depthta + Y ,cp, freqta X depthta

= (setsum_Un_disjoint, consistency)

YacA,ua, freqta x depth ta
- (definition of alphabet)

Yacn freqta x depth t a.

The structured proof closely follows this argument.

{proof)

Finally, it should come as no surprise that trees with height 0 have cost 0.

lemma height_0_imp_cost_0 [simp]:
heightt =0 = cost t =0

{proof)

210 Optimality

A tree is optimum if and only if its cost is not greater than the cost of any com-
patible tree. We can ignore inconsistent trees without loss of generality.

definition optimum :: 'a tree = bool where
optimum t =
Yu. consistent u — alphabet t = alphabet u — freq t = frequ —
cost t < cost u

15

3 Functional Implementation of Huffman’s Algorithm

3.1 Cached Weight

The cached weight of a node is the weight stored directly in the node. Our ar-
guments rely on the computed weight (embodied by the weight function) rather
than the cached weight, but the implementation of Huffman’s algorithm uses the
cached weight for performance reasons.

primrec cachedWeight :: 'a tree = nat where
cachedWeight (Leaf w a) = w
cachedWeight (InnerNode w t tp) = w

The cached weight of a leaf node is identical to its computed weight.

lemma height_0_imp_cachedWeight_eq_weight [simp]:
height t = 0 == cachedWeight t = weight t

{proof)

3.2 Tree Union
The implementation of Huffman’s algorithm builds on two additional auxiliary

functions. The first one, uniteTrees, takes two trees

and

and returns the tree

definition uniteTrees :: 'a tree = 'a tree = 'n tree where
uniteTrees ty ty = InnerNode (cachedWeight t1 + cachedWeight tp) t t;

The alphabet, consistency, and symbol frequencies of a united tree are easy to
connect to the homologous properties of the subtrees.

lemma alphabet_uniteTrees [simp]:
alphabet (uniteTrees ty ty) = alphabet t; U alphabet tp

{proof)

lemma consistent_uniteTrees [simp]:

16

[consistent t1; consistent t; alphabet t1 N alphabet t, = {}] =
consistent (uniteTrees t1 tp)

{proof)

lemma freq_uniteTrees [simp]:
freq (uniteTrees t1 ty) = (Aa. freq t; a + freq ty a)
{proof)

3.3 Ordered Tree Insertion

The auxiliary function insortTree inserts a tree into a forest sorted by cached weight,
preserving the sort order.

primrec insortTree :: 'a tree = 'a forest = 'a forest where
insortTree u [| = [u]
insortTree u (t - ts) =
(if cachedWeight u < cachedWeight t then u - t - ts
else t - insortTree u ts)

The resulting forest contains one more tree than the original forest. Clearly, it
cannot be empty.

lemma length_insortTree [simp]:
length (insortTree t ts) = length ts + 1

{proof)

lemma insortTree_ne_Nil [simp]:
insortTree t ts # |]

{proof)

The alphabet, consistency, symbol frequencies, and height of a forest after inser-
tion are easy to relate to the homologous properties of the original forest and the
inserted tree.

lemma alphabety_insortTree [simp]:
alphabet (insortTree t ts) = alphabet t U alphabetr ts

{proof)

lemma consistentp_insortTree [simp]:
consistentr (insortTree t ts) = consistentr (f - ts)

(proof)

lemma freqr_insortTree [simp):
freqp (insortTree t ts) = (Aa. freq t a + freqr ts a)

(proof)

lemma heightr_insortTree [simp|:

17

heightr (insortTree t ts) = max (height t) (heightr ts)
(proof)

3.4 The Main Algorithm

Huffman’s algorithm repeatedly unites the first two trees of the forest it receives
as argument until a single tree is left. It should initially be invoked with a list of
leaf nodes sorted by weight.

fun huffiman :: 'a forest = 'a tree where

huffman [t] =t
huffman (t; - tp - ts) = huffman (insortTree (uniteTrees t1 ty) ts)

The tree returned by the algorithm preserves the alphabet, consistency, and sym-
bol frequencies of the original forest.

theorem alphabet_huffman [simp]:
ts # [| = alphabet (huffman ts) = alphabetr ts

{proof)

theorem consistent_huffman [simp]:
[consistentr ts; ts # [|]| == consistent (huffiman ts)

{proof)

theorem freq_huffman [simp]:
ts # [| = freq (huffman ts) = freqr ts
(proof)

4 Definition of Auxiliary Functions Used in the Proof

4.1 Sibling of a Symbol

The sibling of a symbol a in a tree ¢ is the label of the node that is the (left or right)
sibling of the node labeled with a in t. If the symbol a is not in t’s alphabet or it
occurs in a node with no sibling leaf, we define the sibling as being a itself. Thus,
we have sibling t a = b, sibling t b = a, and sibling t ¢ = c for the tree

fun sibling :: 'a tree = 'a = 'a where

18

sibling (Leaf wy b) a = a
sibling (InnerNode w (Leaf wy b) (Leaf w. c)) a =
(ifa = b then c else if a = c then b else a)
sibling (InnerNode w t1 tp) a =
(if a € alphabet t, then sibling t1 a
else if a € alphabet t; then sibling t, a
else a)

Because sibling is defined using sequential pattern matching [7], reasoning about
it can become tedious. Simplification rules therefore play an important role.

lemma notin_alphabet_imp_sibling_id [simp):
a & alphabet t = siblingta =a

(proof)

lemma height_0_imp_sibling_id [simp]:
height t = 0 = siblingta =a

(proof)

lemma height_gt_0_in_alphabet_imp_sibling_left [simp):
[height t; > 0; a € alphabet t1] =
sibling (InnerNode w t ty) a = sibling t; a

{proof)

lemma height_gt_0_in_alphabet_imp_sibling_right [simp]:
[height t, > 0; a € alphabet t1] =
sibling (InnerNode w t ty) a = sibling t; a

{proof)

lemma height_gt_0_notin_alphabet_imp_sibling_left [simp]:
[height t; > 0; a ¢ alphabet t] —
sibling (InnerNode w t tp) a = sibling t, a

(proof)

lemma height_gt_0_notin_alphabet_imp_sibling_right [simp|:
[height t, > 0; a & alphabet t]] —
sibling (InnerNode w t tp) a = sibling t, a

(proof)

lemma either_height_gt_0_imp_sibling [simp):
height t; > 0 V height t; > 0 =
sibling (InnerNode w t1 tp) a =

(if a € alphabet t, then sibling t; a else sibling t, a)
(procf)

The following rules are also useful for reasoning about siblings and alphabets.

19

lemma in_alphabet_imp_sibling_in_alphabet:
a € alphabet t = sibling t a € alphabet t
(proof)

lemma sibling_ne_imp_sibling_in_alphabet:
sibling t a # a = sibling t a € alphabet t

(proof)

The default induction rule for sibling distinguishes four cases.

BASE CASE: t = Leaf w b.
INDUCTION STEP 1: t = InnerNode w (Leaf wy, b) (Leaf we c).
INDUCTION STEP 2: t = InnerNode w (InnerNode wq t11 t12) to.

INDUCTION STEP 3: t = InnerNode w t1 (InnerNode w; t1 t27).

This rule leaves much to be desired. First, the last two cases overlap and can
normally be handled the same way, so they should be combined. Second, the
nested InnerNode constructors in the last two cases reduce readability. Third, un-
der the assumption that t is consistent, we would like to perform the same case
distinction on a as we did for tree_induct_consistent, with the same benefits for
automation.

These observations lead us to develop a custom induction rule that distin-
guishes the following cases.

CONSISTENCY CHECK: The property holds if t is inconsistent.
BASE CASE: t = Leaf w b.
INDUCTION STEP 1: t = InnerNode w (Leaf wy, b) (Leaf w, c) with b # c.

INDUCTION STEP 2: t = InnerNode w t; t, and either t; or t, has nonzero
height.

SUBCASE 1: a belongs to ¢; but not to t,.
SUBCASE 2: a belongs to t, but not to t;.

SUBCASE 3: a belongs to neither ¢; nor t,.

The statement of the rule and its proof are similar to what we did for con-
sistent trees, the main difference being that we now have two induction steps
instead of one.

lemma sibling_induct_consistent:
[Ata. — consistent t —> P t a;
Awba. P (Leafwb) a;

20

Aw wy b we ca. b # c = P (InnerNode w (Leaf wy, b) (Leaf w. c)) a;
/\w t1 tp a.
[consistent t1; consistent tp; alphabet t; N alphabet t, = {};
height t; > 0 \ height t, > 0; a € alphabet t;;
sibling t1 a € alphabet t1; a & alphabet t;
sibling ty a & alphabet ty; P t; a] —
P (InnerNode w t t5) a;
Aw t1 tp a.
[consistent t1; consistent t; alphabet t; N alphabet ty = {};
height t1 > 0 V height t; > 0; a & alphabet t,;
sibling ty a ¢ alphabet t1; a € alphabet t;
sibling tp a € alphabet ty; Pty a] =
P (InnerNode w t t;) a;
Aw t1 tp a.
[consistent t1; consistent t; alphabet t; N alphabet t; = {};
height ty > 0 \ height t; > 0; a & alphabet t,; a & alphabet ;]| —>
P (InnerNode w ty t) a] =
Pta

{proof)

The custom induction rule allows us to prove new properties of sibling with little
effort.

lemma sibling_sibling_id [simp]:
consistent t == sibling t (sibling ta) =a

{proof)

lemma sibling_reciprocal:
[consistent t; sibling t a = b]] = siblingtb=a

{proof)

lemma depth_height_imp_sibling_ne:

[depth t a = height t; consistent t; height t > 0; a € alphabet t] =
siblingta #a

{proof)

lemma depth_sibling [simp]:

consistent t == depth t (sibling t a) = depth t a

{proof)

4.2 Leaf Interchange

The swapLeaves function takes a tree t together with two symbols 4, b and their
frequencies w,, wy, and returns the tree t in which the leaf nodes labeled with a
and b are exchanged. When invoking swapLeaves, we normally pass freq t a and

21

freq t b for w, and wy,.

Notice that we do not bother updating the cached weight of the ancestor
nodes when performing the interchange. The cached weight is used only in the
implementation of Huffman'’s algorithm, which doesn’t invoke swapLeaves.

primrec swapLeaves :: 'a tree = nat = ‘a = nat = 'a = 'a tree where
swapLeaves (Leaf w. ¢) w, a w, b =

(if c = a then Leaf wy, b else if c = b then Leaf w, a else Leaf w, c)
swapLeaves (InnerNode w t1 tp) w, a wy b =

InnerNode w (swapLeaves t1 w, a wy, b) (swapLeaves ty w, a wy b)

Swapping a symbol a with itself leaves the tree t unchanged if 2 does not belong
to it or if the specified frequencies w, and w; equal freq t a.

lemma swapLeaves_id_when_notin_alphabet [simp]:
a & alphabet t = swapLeaves t waw’'a =t

(proof)

lemma swapLeaves_id [simp]:
consistent t = swapLeaves t (freq ta) a (freqta)a =t

{proof)

The alphabet, consistency, symbol depths, height, and symbol frequencies of the
tree swapLeaves t w, a wy, b can be related to the homologous properties of t.

lemma alphabet_swapLeaves:
alphabet (swapLeaves t w, a wy, b) =
(if a € alphabet t then
if b € alphabet t then alphabet t else (alphabet t — {a}) U {b}
else
if b € alphabet t then (alphabet t — {b}) U {a} else alphabet t)

{proof)

lemma consistent_swapLeaves [simp]:
consistent t == consistent (swapLeaves t w, a wy b)

{proof)

lemma depth_swapLeaves_neither [simp]:
[consistent t; ¢ # a; ¢ # b]] = depth (swapLeaves t w, a w, b) ¢ = depth t ¢

(proof)

lemma height_swapLeaves [simp]:
height (swapLeaves t w, a wy b) = height t
{proof)

lemma freq_swapLeaves [simp]:
[consistent t; a # b] =

22

freq (swapLeaves t w, a wy b) =
(Ac. if c = a then if b € alphabet t then w, else 0
else if c = b then if a € alphabet t then wy, else 0
else freq t c)
(proof)

For the lemmas concerned with the resulting tree’s weight and cost, we avoid
subtraction on natural numbers by rearranging terms. For example, we write

weight (swapLeaves t w, a wy b) + freq t a = weight t + wy,
rather than the more conventional
weight (swapLeaves t w, a wy b) = weight t + wy, — freq t a.

In Isabelle/HOL, these two equations are not equivalent, because by definition
m—n = 0if n > m. We could use the second equation and additionally assert
that freq t a < weight t (an easy consequence of weight_eq_Sum_freq), and then
apply the arith tactic, but it is much simpler to use the first equation and stay
with simp and auto. Another option would be to use integers instead of natural
numbers.

lemma weight_swapLeaves:
[consistent t; a # b] =
if a € alphabet t then
if b € alphabet t then
weight (swapLeaves t w, a wy b) + freqta + freqt b =
weight t + w, + wy,
else
weight (swapLeaves t w, a wy b) + freq t a = weight t + wy,
else
if b € alphabet t then
weight (swapLeaves t w, a wy b) + freq t b = weight t + w,
else
weight (swapLeaves t w, a wy, b) = weight t

{proof)

lemma cost_swapLeaves:
[consistent t; a # b] =
if a € alphabet t then
if b € alphabet t then
cost (swapLeaves t w, a wy b) + freqt a x depth ta
+ fregt b x deptht b =
cost t + w, X deptht b+ wy, x depth ta
else
cost (swapLeaves t w, a wy b) + freqta x depth ta =

23

cost t + wy X depth ta
else
if b € alphabet t then
cost (swapLeaves t w, a wy b) + freq t b x depth t b =
cost t + w, X depthtb
else
cost (swapLeaves t w, a wy, b) = cost t

(proof)

Common sense tells us that the following statement is valid: “If Astrid exchanges
her house with Bernard’s neighbor, Bernard becomes Astrid’s new neighbor.” A
similar property holds for binary trees.

lemma sibling_swapLeaves_sibling [simp]:
[consistent t; sibling t b # b; a # b]] =
sibling (swapLeaves t w, a ws (sibling tb))a ="

(proof)

4.3 Symbol Interchange

The swapSyms function provides a simpler interface to swapLeaves, with freq t a
and freq t b in place of w, and w,. Most lemmas about swapSyms are directly
adapted from the homologous results about swapLeaves.

definition swapSyms :: 'a tree = 'a = 'a = 'a tree where
swapSyms t a b = swapLeaves t (freq t a) a (freq t b) b

lemma swapSyms_id [simp|:

consistent t = swapSymstaa =t

{proof)

lemma alphabet_swapSyms [simp]:
[a € alphabet t; b € alphabet t] = alphabet (swapSyms t a b) = alphabet t

{proof)

lemma consistent_swapSyms [simp]:
consistent t == consistent (swapSyms t a b)

(proof)

lemma depth_swapSyms_neither [simp]:
[consistent t; ¢ # a; ¢ # V] =

depth (swapSyms t a b) ¢ = depth t c
(proof)

lemma freq_swapSyms [simp|:
[consistent t; a € alphabet t; b € alphabet t] —>

24

freq (swapSyms t a b) = freq t
(proof)

lemma cost_swapSyms:

assumes consistent t a € alphabet t b € alphabet t

shows cost (swapSyms tab) + freqta x depthta + freqt b x depth t b =
costt + fregta x deptht b + freqt b x depth t a

(proof)

If a’s frequency is lower than or equal to b’s, and a is higher up in the tree than b
or at the same level, then interchanging a and b does not increase the tree’s cost.

lemma le_le_imp_sum_mult_le_sum_mult:
[i<j;m<(mmat)] =ixn+jxm<ixm+jxn

(proof)

lemma cost_swapSyms_le:

assumes consistent t a € alphabet t b € alphabet t freq t a < freqt b
depthta <depthtb

shows cost (swapSyms t a b) < cost t

{proof)

As stated earlier, “If Astrid exchanges her house with Bernard’s neighbor, Bernard
becomes Astrid’s new neighbor.”

lemma sibling_swapSyms_sibling [simp|:
[consistent t; sibling t b # b; a # b]] =
sibling (swapSyms t a (sibling t b)) a ="b
{proof)

“If Astrid exchanges her house with Bernard, Astrid becomes Bernard’s old neigh-
bor’s new neighbor.”

lemma sibling_swapSyms_other_sibling [simp]:
[consistent t; sibling t b # a; sibling t b # b; a # b| =
sibling (swapSyms t a b) (sibling tb) =a

{proof)

4.4 Four-Way Symbol Interchange

The swapSyms function exchanges two symbols a and b. We use it to define the
four-way symbol interchange function swapFourSyms, which takes four symbols
a,b,c,dwitha # band ¢ # d, and exchanges them so that a and b occupy
c and d’s positions.

A naive definition of this function would be

swapFourSyms ta b ¢ d = swapSyms (swapSyms tac) b d.

25

This definition fails in the face of aliasing: If 2 = d, but b # c, then swapFourSyms
abcdwould leave a in b’s position. Incidentally, Cormen et al. [3, p. 390] forgot
to consider this case in their proof.?

definition swapFourSyms :: 'a tree = 'a = 'a = 'a = 'a = 'a tree where
swapFourSymstabcd =

if a = d then swapSyms t b c

else if b = c then swapSyms t a d

else swapSyms (swapSyms tac) b d

Lemmas about swapFourSyms are easy to prove by expanding its definition.

lemma alphabet_swapFourSyms [simp]:
[a € alphabet t; b € alphabet t; ¢ € alphabet t; d € alphabet t] =
alphabet (swapFourSyms t a b c d) = alphabet t

(proof)

lemma consistent_swapFourSyms [simp]:
consistent t == consistent (swapFourSymstabcd)

{proof)

lemma freq_swapFourSyms [simp]:

[consistent t; a € alphabet t; b € alphabet t; ¢ € alphabet t;
d € alphabet t] =
freq (swapFourSyms tabcd) = freq t

{proof)

More Astrid and Bernard insanity: “If Astrid and Bernard exchange their houses
with Carmen and her neighbor, Astrid and Bernard will now be neighbors.”

lemma sibling_swapFourSyms_when_4th_is_sibling:

assumes consistent t a € alphabet t b € alphabet t c € alphabet t
a # bsiblingtc #c

shows sibling (swapFourSyms ta b c (sibling tc))a=">

(proof)

2Thomas Cormen indicated in a personal communication that this will be corrected in the next
edition of the book.

26

4.5 Sibling Merge

Given a symbol a, the mergeSibling function transforms the tree

into

a b

The frequency of a in the result is the sum of the original frequencies of a and b,
so as not to alter the tree’s weight.

fun mergeSibling :: 'a tree = 'a = ' tree where
mergeSibling (Leaf wy b) a = Leaf wy, b
mergeSibling (InnerNode w (Leaf wy, b) (Leaf we ¢)) a =
(ifa =0V a=c then Leaf (w, + w.) a
else InnerNode w (Leaf wy, b) (Leaf w, c))
mergeSibling (InnerNode w t1 tp) a =
InnerNode w (mergeSibling t1 a) (mergeSibling t, a)

The definition of mergeSibling has essentially the same structure as that of sibling.
As a result, the custom induction rule that we derived for sibling works equally
well for reasoning about mergeSibling.

lemmas mergeSibling_induct_consistent = sibling_induct_consistent

The properties of mergeSibling echo those of sibling. Like with sibling, simplifica-
tion rules are crucial.

lemma notin_alphabet_imp_mergeSibling_id [simp|:
a ¢ alphabet t = mergeSibling ta =t

(proof)

lemma height_gt_0_imp_mergeSibling_left [simp]:
height t; > 0 =
mergeSibling (InnerNode w t1 ty) a =

InnerNode w (mergeSibling t1 a) (mergeSibling t; a)
{proof)

lemma height_gt_0_imp_mergeSibling_right [simp]:
height t; > 0 =
mergeSibling (InnerNode w t1 tp) a =

27

InnerNode w (mergeSibling t1 a) (mergeSibling t, a)
{proof)

lemma either_height_gt_0_imp_mergeSibling [simp]:
height t; > 0 V height t; > 0 =
mergeSibling (InnerNode w t1 tp) a =

InnerNode w (mergeSibling t1 a) (mergeSibling t; a)
(proof)

lemma alphabet_mergeSibling [simp|:

[consistent t; a € alphabet t] —>

alphabet (mergeSibling t a) = (alphabet t — {sibling ta}) U {a}
(proof)

lemma consistent_mergeSibling [simp]:
consistent t == consistent (mergeSibling t a)

(proof)

lemma freq_mergeSibling:
[consistent t; a € alphabet t; sibling t a # a]] =
freq (mergeSibling t a) =
(Ac. if c = a then freq t a + freq t (sibling t a)
else if c = sibling t a then 0
else freq t c)
(procf)

lemma weight_mergeSibling [simp]:
weight (mergeSibling t a) = weight t
(proof)

If a has a sibling, merging a and its sibling reduces t’s cost by freq t a + freq t
(sibling t a).

lemma cost_mergeSibling:

[consistent t; sibling t a # a] =

cost (mergeSibling t a) + freq t a + freq t (sibling t a) = cost t
{proof)

28

4.6 Leaf Split

The splitLeaf function undoes the merging performed by mergeSibling: Given two
symbols a, b and two frequencies w,, wy, it transforms

into

a b

In the resulting tree, a has frequency w, and b has frequency w;,. We normally
invoke it with w, and wj, such that freq t a = w, + wy,.

primrec splitLeaf :: 'a tree = nat = ‘a = nat = 'a = 'a tree where
splitLeaf (Leaf w. ¢) w, a w, b=

(if c = a then InnerNode w, (Leaf w, a) (Leaf wy, b) else Leaf w, c)
splitLeaf (InnerNode w t1 ty) w, a wy b =

InnerNode w (splitLeaf t1 w, a wy, b) (splitLeaf ty w, a wy b)

primrec splitLeaf :: ‘a forest = nat = 'a = nat = 'a = 'a forest where
splitLeafp [] wa a wy b =[]
splitLeafp (t - ts) woa wy b =

splitLeaf t w, a wy b - splitLeaf p ts w, a wy b

Splitting leaf nodes affects the alphabet, consistency, symbol frequencies, weight,
and cost in unsurprising ways.

lemma notin_alphabet_imp_splitLeaf_id [simp]:
a ¢ alphabet t = splitLeaf t w, a wy, b =t

{proof)

lemma notin_alphabetr_imp_splitLeaf p_id [simp]:
a & alphabetr ts = splitLeafr ts w, a wy b = ts

(proof)

lemma alphabet_splitLeaf [simp|:
alphabet (splitLeaf t w, a wy b) =

(if a € alphabet t then alphabet t U {b} else alphabet t)
(proof)

lemma consistent_splitLeaf [simp]:
[consistent t; b ¢ alphabet t] = consistent (splitLeaf t w, a wy, b)

29

(proof)

lemma freq_splitLeaf [simp]:
[consistent t; b ¢ alphabet t] —>
freq (splitLeaf t w, a wy b) =
(if a € alphabet t then
(Ac. if c = a then wy, else if c = b then wy, else freq t c)
else
freq 1
(procf)

lemma weight_splitLeaf [simp]:

[consistent t; a € alphabet t; freq t a = w, + wy] =
weight (splitLeaf t w, a wy, b) = weight

(proof)

lemma cost_splitLeaf [simp]:
[consistent t; a € alphabet t; freq t a = w, + wy] =
cost (splitLeaf t w, a wy b) = cost t + w, + wy

{proof)

4.7 Weight Sort Order

An invariant of Huffman’s algorithm is that the forest is sorted by weight. This
is expressed by the sortedByWeight function.

fun sortedByWeight :: 'a forest = bool where
sortedByWeight [] = True
sortedByWeight [t| = True
sortedByWeight (ty - tp - ts) =
(weight t1 < weight ty N\ sortedByWeight (t; - ts))

The function obeys the following fairly obvious laws.

lemma sortedByWeight_Cons_imp_sorted ByWeight:
sortedByWeight (t - ts) = sortedByWeight ts

(proof)

lemma sortedByWeight_Cons_imp_forall_weight_ge:
sortedByWeight (t - ts) == Yu € set ts. weight u > weight t

(proof)

lemma sorted ByWeight_insortTree:

[sortedByWeight ts; height t = 0; heightr ts = 0] =
sortedByWeight (insortTree t ts)

(proof)

30

4.8 Pair of Minimal Symbols

The minima predicate expresses that two symbols a, b € alphabet t have the lowest
frequencies in the tree t and that freq t a < freq t b. Minimal symbols need not be
uniquely defined.

definition minima :: 'a tree = 'a = 'a = bool where
minimatab =
a € alphabet t \ b € alphabett Na #b A freqta < freqtb
N (Ve € alphabett. c #a — c #b —

fregtc>freqta A freqtc > freqtb)

5 Formalization of the Textbook Proof

5.1 Four-Way Symbol Interchange Cost Lemma

If a and b are minima, and ¢ and d are at the very bottom of the tree, then ex-
changing a and b with ¢ and d doesn’t increase the cost. Graphically, we have

cost < cost

a b c d

This cost property is part of Knuth’s proof:

Let V be an internal node of maximum distance from the root. If w;
and w, are not the weights already attached to the children of V, we
can interchange them with the values that are already there; such an
interchange does not increase the weighted path length.

Lemma 16.2 in Cormen et al. [3, p. 389] expresses a similar property, which turns
out to be a corollary of our cost property:

Let C be an alphabet in which each character ¢ € C has frequency
flc]. Let x and y be two characters in C having the lowest frequencies.
Then there exists an optimal prefix code for C in which the codewords
for x and y have the same length and differ only in the last bit.

31

lemma cost_swapFourSyms_le:

assumes consistent t minima t a b c € alphabet t d € alphabet t
depth t ¢ = height t depth t d = height t ¢ # d

shows cost (swapFourSymstabcd) < cost t

{proof)

5.2 Leaf Split Optimality Lemma

The tree splitLeaf t w, a wy, b is optimum if ¢ is optimum, under a few assumptions,
notably that 4 and b are minima of the new tree and that freq t a = w, + wy.
Graphically:

optimum => optimum

This corresponds to the following fragment of Knuth’s proof:

Now it is easy to prove that the weighted path length of such a tree is
minimized if and only if the tree with

replaced by w1+ W,

w1 w7

has minimum path length for the weights wy + wy, w3, ..., wy,.

(We only need the “if” direction of Knuth's equivalence.) Lemma 16.3 in Cormen
et al. [3, p. 391] expresses essentially the same property:

Let C be a given alphabet with frequency f|c| defined for each charac-
terc € C. Let x and y be two characters in C with minimum frequency.
Let C’ be the alphabet C with characters x, y removed and (new) char-
acter z added, so that C' = C — {x,y} U {z}; define f for C’ as for C,
except that f[z] = f[x] + f[y]. Let T’ be any tree representing an opti-
mal prefix code for the alphabet C’. Then the tree T, obtained from T’
by replacing the leaf node for z with an internal node having x and y
as children, represents an optimal prefix code for the alphabet C.

32

The proof is as follows: We assume that f has a cost less than or equal to that of
any other compatible tree v and show that splitLeaf t w, a wy b has a cost less
than or equal to that of any other compatible tree u. By exists_at_height and
depth_height_imp_sibling_ne, we know that some symbols ¢ and d appear in sib-
ling nodes at the very bottom of u:

(The question mark is there to remind us that we know nothing specific about u’s
structure.) From u we construct a new tree swapFourSyms u a b ¢ d in which the
minima a4 and b are siblings:

Merging a and b gives a tree compatible with f, which we can use to instantiate v
in the assumption:

33

With this instantiation, the proof is easy:

cost (splitLeaf t a w, b wy)

= (cost_splitLeaf)
costt + w, + wy

< % (assumption)

cost (mergeSibling (swapFourSyms uabcd) a) + w, + wy

= (cost_mergeSibling)
cost (swapFourSyms uabcd)

IN

(cost_swapFourSyms_le)
cost u.

The proof in Cormen et al. is by contradiction: Essentially, they assume that there
exists a tree u with a lower cost than splitLeaf t a w, b w, and show that there
exists a tree v with a lower cost than ¢, contradicting the hypothesis that ¢ is
optimum. In place of cost_swapFourSyms_le, they invoke their lemma 16.2, which
is questionable since u is not necessarily optimum.?

Our proof relies on the following lemma, which asserts that 2 and b are min-
ima of u.

lemma twice_freq_le_imp_minima:

[Vc € alphabet t. w, < freqtc N\ wy < freq t c;

alphabet u = alphabet t U {b}; a € alphabet u; a # b;

freq u = (Ac. if c = a then w, else if c = b then wy, else freq t ¢);
w, < wpl] =

minimau ab

{proof)

Now comes the key lemma.

lemma optimum_splitLeaf:

assumes consistent t optimum t a € alphabet t b & alphabet t
fregta =w, + wy, Yc € alphabet t. freqt c > w, A freqtc > wy
Wy < Wy

shows optimum (splitLeaf t w, a wy b)

{proof)

5.3 Leaf Split Commutativity Lemma

A key property of Huffman’s algorithm is that once it has combined two lowest-
weight trees using uniteTrees, it doesn’t visit these trees ever again. This suggests
that splitting a leaf node before applying the algorithm should give the same
result as applying the algorithm first and splitting the leaf node afterward. The
diagram below illustrates the situation:

3Thomas Cormen commented that this step will be clarified in the next edition of the book.

34

A AL
(2a) (2b) A A

(3a) (3b)

From the original forest (1), we can either run the algorithm (2a) and then split a
(3a) or split a (2b) and then run the algorithm (3b). Our goal is to show that trees
(3a) and (3b) are identical. Formally, we prove that

splitLeaf (huffman ts) w, a wy, b = huffman (splitLeaf r ts w, a wy b)

when ts is consistent, a € alphabetr ts, b & alphabetr ts, and freqr tsa = w, + wy,.
But before we can prove this commutativity lemma, we need to introduce a few
simple lemmas.

lemma cachedWeight_splitLeaf [simp]:
cachedWeight (splitLeaf t w, a wy, b) = cachedWeight t

(proof)

lemma splitLeaf p_insortTree_when_in_alphabet_left [simp]:
[a € alphabet t; consistent t; a & alphabetr ts; freq t a = w, + wy]| =
splitLeaf ¢ (insortTree t ts) w, a wy, b = insortTree (splitLeaf t w, a wy b) ts

{proof)

lemma splitLeaf p_insortTree_when_in_alphabetr_tail [simp]:
[a € alphabetr ts; consistentr ts; a & alphabet t; freqr ts a = w, + w,] =
splitLeaf p (insortTree t ts) w, a wy b =

35

insortTree t (splitLeafp ts w, a wy b)

{proof)

We are now ready to prove the commutativity lemma.

lemma splitLeaf_huffman_commute:

[consistentp ts; ts # [|; a € alphabetr ts; freqr ts a = w, + wy]] =
splitLeaf (huffman ts) w, a wy, b = huffman (splitLeaf ts w, a wy, b)
{proof)

An important consequence of the commutativity lemma is that applying Huff-
man’s algorithm on a forest of the form

c| () [a]..]:
We Wq Wy
a b
Wy Wy

gives the same result as applying the algorithm on the “flat” forest

c a d| . |z
We| |Watwp| |Wa W,

followed by splitting the leaf node a into two nodes a, b with frequencies w,, wy,.
This effectively provides a way to flatten the forest at each step of the algorithm.
Its invocation is implicit in the textbook proof.

5.4 Optimality Theorem
We are one lemma away from our main result.

lemma max_0_imp_0 [simp]:
(max xy = (0::nat)) = (x =0 Ay =0)
{proof)

theorem optimum_huffman:
[consistentr ts; heightr ts = 0; sortedByWeight ts; ts # [|] =
optimum (huffman ts) (proof)

end

Theorem optimum_huffman assumes that the forest fs passed to huffiman consists
exclusively of leaf nodes. It is tempting to relax this restriction, by requiring
instead that the forest ts is optimum. We would define optimality of a forest as

36

follows:

optimump ts = (Yus. length ts = length us — consistentr us —
alphabetr ts = alphabetr us — freqr ts = freqr us —
costp ts < costp us)

with costr [= 0and costr (t - ts) = cost t + costp ts. However, the modified propo-
sition does not hold. A counterexample is the optimum forest

6 Related Work

Laurent Théry’s Coq formalization of Huffman’s algorithm [11, 12] is an obvious
yardstick for our work. It has a somewhat wider scope, proving among others
the isomorphism between prefix codes and binary trees. With 291 theorems, it is
also much larger.

Théry identified the following difficulties in formalizing the textbook proof:

1. The leaf interchange process that brings the two minimal symbols together
is tedious to formalize.

2. The sibling merging process requires introducing a new symbol for the
merged node, which complicates the formalization.

3. The algorithm constructs the tree in a bottom-up fashion. While top-down
procedures can usually be proved by structural induction, bottom-up pro-
cedures often require more sophisticated induction principles and larger
invariants.

4. The informal proof relies on the notion of depth of a node. Defining this
notion formally is problematic, because the depth can only be seen as a
function if the tree is composed of distinct subtrees.

37

To circumvent these difficulties, Théry introduced the ingenious concept of
cover. A forest ts is a cover of a tree t if t can be built from ts by adding inner
nodes on top of the trees in fs. (The term “cover” is easier to understand if the
binary trees are drawn with the root at the bottom of the page, like natural trees.)
Huffman’s algorithm is then a refinement of the cover concept. The main proof
consists in showing that the cost of huffman ts is less than or equal to that of any
other tree for which ts is a cover. It relies on a few auxiliary definitions, notably an
“ordered cover” concept that facilitates structural induction and a four-argument
depth predicate (confusingly called height). Permutations also play a central role.

Incidentally, our experience suggests that the potential problems identified
by Théry can be overcome without too much work:

1. Formalizing the leaf interchange did not prove overly tedious. Among
our 95 lemmas and theorems, 24 concern swapLeaves, swapSyms, and swap-
FourSyms.

2. The generation of a new symbol for the resulting node when merging two
sibling nodes in mergeSibling was trivially solved by reusing one of the two
merged symbols.

3. The bottom-up nature of the tree construction process was addressed by
using the length of the forest as the induction measure and by merging the
two minimal symbols, as in Knuth’s proof.

4. By restricting our attention to consistent trees, we were able to define the
depth function simply and meaningfully.

7 Conclusion

The goal of most formal proofs is to increase our confidence in a result. In the
case of Huffman’s algorithm, however, the chances that a bug would have gone
unnoticed for the 56 years since its publication, under the scrutiny of leading
computer scientists, seem extremely low; and the existence of a Coq proof should
be sufficient to remove any remaining doubts.

The main contribution of this report was to demonstrate that the textbook
proof of Huffman’s algorithm can be formalized in a straightforward manner us-
ing a state-of-the-art theorem prover such as Isabelle/HOL. In the process, we
uncovered a few minor snags in the proof given in Cormen et al. [3]. Concerning
Isabelle, the main lesson to draw from the Huffman proof is that custom induc-
tion rules, in combination with suitable simplification rules, greatly help the au-
tomatic proof tactics, sometimes reducing 30-line proof scripts to one-liners. We
successfully applied this approach for handling both the ubiquitous “datatype
+ well-formedness predicate” combination (a tree + consistent) and functions de-
fined by sequential pattern matching (sibling and mergeSibling).

38

In addition, formalizing the proof of Huffman’s algorithm led to a deeper un-
derstanding of this classic algorithm. Many of the lemmas, notably the leaf split
commutativity lemma of Section 5.3, have not been found in the literature and
express fundamental properties of the algorithm. Other discoveries didn’t find
their way into the final proof. In particular, each step of the algorithm appears to
preserve the invariant that the nodes in a forest are ordered by weight from left
to right, bottom to top, as in the example below:

It is not hard to prove formally that a tree exhibiting this property is optimum.
On the other hand, proving that the algorithm preserves this invariant seems
difficult—more difficult than formalizing the textbook proof—and remains a sug-
gestion for future work.

A few other directions for future work suggest themselves. First, we could
formalize some of our hypotheses, notably our restriction to full and consistent
binary trees. The next step could be to extend the proof’s scope to to cover en-
code / decode functions and connect prefix code trees to prefix codes, as done in the
Coq development. Independently, we could generalize the development to n-ary
trees.

Acknowledgments

I am grateful to several people for their help in producing this report. Tobias
Nipkow suggested that I cut my teeth on Huffman coding and discussed several
(sometimes flawed) drafts of the proof. He also provided many insights into Is-
abelle, which led to considerable simplifications. Alexander Krauss answered all
my Isabelle questions and helped me with the trickier proofs. Thomas Cormen
and Donald Knuth were both gracious enough to discuss their proofs with me,
and Donald Knuth also suggested a terminology change. Finally, Mark Summer-
field proposed many textual improvements.

References

[1] Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. Data Structures and
Algorithms. Addison-Wesley, 1983.

39

[2] Stephan Berghofer and Tobias Nipkow. Random testing in Isabelle/HOL.
In J. Cuellar and Z. Liu, editors, Software Engineering and Formal Meth-
ods (SEFM 2004), 230-239, IEEE Computer Society, 2004. Available online at
http://isabelle.in.tum.de/~nipkow/pubs/sefm04.html

[3] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford
Stein. Introduction to Algorithms (Second Edition). MIT Press, 2001 and
McGraw-Hill, 2002.

[4] M.]. C. Gordon and T. E. Melham, editors. Introduction to HOL: A Theorem
Proving Environment for Higher Order Logic. Cambridge University Press,
1993.

[5] David A. Huffman. A method for the construction of minimum-redundancy
codes. Proceedings of the Institute of Radio Engineers 40(9):1098-1101,
September 1952. Available online at http://compression.ru/download/
articles/huff/fhuffman_1952 minimum-redundancy-codes.pdf

[6] Donald E. Knuth. The Art of Computer Programming, Vol. 1: Fundamental
Algorithms (Third Edition). Addison-Wesley, 1997.

[7] Alexander Krauss. Defining Recursive Functions in Isabelle/HOL. Depart-
ment of Informatics, Technische Universitdt Miinchen, 2007. Updated ver-
sion, http://isabelle.in.tum.de/doc/functions.pdf , June 8, 2008.

[8] Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. The Defi-
nition of Standard ML (Revised Edition). MIT Press, 1997.

[9] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL:
A Proof Assistant for Higher-Order Logic. Volume 2283 of Lecture Notes
in Computer Science, Springer-Verlag, 2002. Updated version, http://
isabelle.in.tum.de/doc/tutorial. pdf , June 8, 2008.

[10] J.]. Rissanen. Generalized Kraft inequality and arithmetic coding. IBM Jour-
nal of Research and Development 20(3):198-203, May 1976. Available online
at http://www.research.ibm.com/journal/rd/203/ibmrd2003B.pdf

[11] Laurent Théry. A Correctness Proof of Huffman Algorithm. http://coq.
inria.fr/contribs/Huffman.html , October 2003.

[12] Laurent Théry. Formalising Huffman’s Algorithm. Technical report TRCS
034/2004, Department of Informatics, University of L’ Aquila, 2004.

[13] Markus Wenzel. The Isabelle/Isar Reference Manual. Department of Infor-
matics, Technische Universitdt Miinchen, 2002. Updated version, http://
isabelle.in.tum.de/doc/isar-ref.pdf , June 8, 2008.

40

	Introduction
	Binary Codes
	Binary Trees
	Huffman's Algorithm
	The Textbook Proof
	Overview of the Formalization
	Overview of Isabelle's HOL Logic
	Head of the Theory File

	Definition of Prefix Code Trees and Forests
	Tree Datatype
	Forest Datatype
	Alphabet
	Consistency
	Symbol Depths
	Height
	Symbol Frequencies
	Weight
	Cost
	Optimality

	Functional Implementation of Huffman's Algorithm
	Cached Weight
	Tree Union
	Ordered Tree Insertion
	The Main Algorithm

	Definition of Auxiliary Functions Used in the Proof
	Sibling of a Symbol
	Leaf Interchange
	Symbol Interchange
	Four-Way Symbol Interchange
	Sibling Merge
	Leaf Split
	Weight Sort Order
	Pair of Minimal Symbols

	Formalization of the Textbook Proof
	Four-Way Symbol Interchange Cost Lemma
	Leaf Split Optimality Lemma
	Leaf Split Commutativity Lemma
	Optimality Theorem

	Related Work
	Conclusion

