
Isabelle Collections Framework Userguide

By Peter Lammich

February 11, 2011

1

Contents

1 Introduction 3

2 Getting Started 3

3 Introductory Example 4

4 Theories 6

5 Iterators 6

6 Structure of the Framework 8

7 Naming Conventions 9

8 Extending the Framework 10

9 Interfaces 10

10 Functions 11

11 Generic Algorithm 12

12 Implementation 14

13 Instantiations (Generic Algorithm) 15

14 Design Issues 15

15 Data Refinement 16

16 Record Based Interfaces 16

17 Locales for Generic Algorithms 17

18 Explicit Invariants vs Typedef 17

2

theory Userguide
imports

Collections
Efficient-Nat

begin

1 Introduction

The Isabelle Collections Framework defines interfaces of various collection
types and provides some standard implementations and generic algorithms.

The relation between the data structures of the collection framework and
standard Isabelle types (e.g. for sets and maps) is established by abstraction
functions.

Currently, the following interfaces and data-structures are provided by the
Isabelle Collections Framework:

• Set and map implementations based on (associative) lists, red-black
trees, hashing and tries.

• An implementation of a FIFO-queue based on two stacks.

• Annotated lists implemented by finger trees.

• Priority queues implemented by binomial heaps, skew binomial heaps,
and annotated lists (via finger trees).

The red-black trees are imported from the standard isabelle library. The
binomial and skew binomial heaps are imported from the Binomial-Heaps
entry of the archive of formal proofs. The finger trees are imported from
the Finger-Trees entry of the archive of formal proofs.

2 Getting Started

To get started with the Isabelle Collections Framework (assuming that you
are already familiar with Isabelle/HOL and Isar), you should first read the
introduction (this section), that provides many basic examples. Section 6
explains the concepts of the Isabelle Collections Framework in more detail.
Section 8 provides information on extending the framework along with de-
tailed examples, and Section 14 contains a discussion on the design of this
framework. There is also a paper [1] on the design of the Isabelle Collections
Framework available.

3

3 Introductory Example

We introduce the Isabelle Collections Framework by a simple example.

Given a set of elements represented by a red-black tree, and a list, we want
to filter out all elements that are not contained in the set. This can be done
by Isabelle/HOL’s filter -function1:

definition rbt-restrict-list :: ′a::linorder rs ⇒ ′a list ⇒ ′a list
where rbt-restrict-list s l == [x←l . rs-memb x s]

The type ′a rs is the type of sets backed by red-black trees. Note that the
element type of sets backed by red-black trees must be of sort linorder. The
function rs-memb tests membership on such sets.

Next, we show correctness of our function:

lemma rbt-restrict-list-correct :
assumes [simp]: rs-invar s
shows rbt-restrict-list s l = [x←l . x∈rs-α s]
by (simp add : rbt-restrict-list-def rs.memb-correct)

The lemma rs.memb-correct :

True =⇒ rs-memb x s = (x ∈ rs-α s)

states correctness of the rs-memb-function. The function rs-α maps a red-
black-tree to the set that it represents. Moreover, we have to explicitely
keep track of the invariants of the used data structure, in this case red-
black trees. The premise True represents the invariant assumption for the
collection data structure. Red-black-trees are invariant-free, so this defaults
to True. For uniformity reasons, these (unnecessary) invariant assumptions
are present in all correctness lemmata.

Many of the correctness lemmas for standard RBT-set-operations are sum-
marized by the lemma rs-correct :

[[True; inj-on f (rs-α s ∩ dom f)]]
=⇒ rs-α (rs-inj-image-filter f s) = {b. ∃ a∈rs-α s. f a = Some b}
[[True; inj-on f (rs-α s ∩ dom f)]] =⇒ True
True =⇒
rs-α (rs-image-filter (λx . if P x then Some (f x) else None) s) =
f ‘ {x ∈ rs-α s. P x}
True =⇒ rs-α (rs-image-filter f s) = {b. ∃ a∈rs-α s. f a = Some b}
True =⇒ True
[[True; inj-on f (rs-α s)]] =⇒ rs-α (rs-inj-image f s) = f ‘ rs-α s
[[True; inj-on f (rs-α s)]] =⇒ True
[[True; True; rs-α s1 ∩ rs-α s2 = {}]]

1Note that Isabelle/HOL uses the list comprehension syntax [x←l . P x] as syntactic
sugar for filtering a list.

4

=⇒ rs-α (rs-union-dj s1 s2) = rs-α s1 ∪ rs-α s2
[[True; True; rs-α s1 ∩ rs-α s2 = {}]] =⇒ True
[[True; True]] =⇒ rs-α (rs-union s1 s2) = rs-α s1 ∪ rs-α s2
[[True; True]] =⇒ True
[[True; True]] =⇒ rs-α (rs-inter s1 s2) = rs-α s1 ∩ rs-α s2
[[True; True]] =⇒ True
True =⇒ rs-α (rs-image f s) = f ‘ rs-α s
True =⇒ True
[[True; x /∈ rs-α s]] =⇒ rs-α (rs-ins-dj x s) = insert x (rs-α s)
[[True; x /∈ rs-α s]] =⇒ True
True =⇒ rs-α (rs-delete x s) = rs-α s − {x}
True =⇒ True
True =⇒ rs-ball S P = (∀ x∈rs-α S . P x)
True =⇒ rs-α (rs-ins x s) = insert x (rs-α s)
True =⇒ True
True =⇒ rs-memb x s = (x ∈ rs-α s)
True =⇒ set (rs-to-list s) = rs-α s
True =⇒ distinct (rs-to-list s)
rs-α (list-to-rs l) = set l
True
True =⇒ rs-isEmpty s = (rs-α s = {})
True =⇒ rs-size s = card (rs-α s)
rs-α rs-empty = {}
True

All implementations provided by this library are compatible with the Is-
abelle/HOL code-generator. Now follow some examples of using the code-
generator and the related value-command:

There are conversion functions from lists to sets and, vice-versa, from sets
to lists:

value list-to-rs [1 ::int ..10]
value rs-to-list (list-to-rs [1 ::int .. 10])
value rs-to-list (list-to-rs [1 ::int ,5 ,6 ,7 ,3 ,4 ,9 ,8 ,2 ,7 ,6])

Note that sets make no guarantee about ordering, hence the only thing we
can prove about conversion from sets to lists is: rs.to-list-correct :

True =⇒ set (rs-to-list s) = rs-α s
True =⇒ distinct (rs-to-list s)

value rbt-restrict-list (list-to-rs [1 ::nat ,2 ,3 ,4 ,5]) [1 ::nat ,9 ,2 ,3 ,4 ,5 ,6 ,5 ,4 ,3 ,6 ,7 ,8 ,9]

definition test n = (list-to-rs [(1 ::int)..n])

ML 〈〈 @{code test} 9000 〉〉

5

4 Theories

To make available the whole collections framework to your formalization,
import the theory Collections.

Other theories in the Isabelle Colelction Framework include:

SetSpec Specification of sets and set functions

OrderedSet Specification of ordered sets and set functions

SetGA Generic algorithms for sets

SetStdImpl Standard set implementations (list, rb-tree, hashing, tries)

MapSpec Specification of maps

OrderedMap Specification of ordered maps

MapGA Generic algorithms for maps

MapStdImpl Standard map implementations (list,rb-tree, hashing, tries)

Algos Various generic algorithms

SetIndex Generic algorithm for building indices of sets

ListSpec Specification of lists

Fifo Amortized fifo queue

DatRef Data refinement for the while combinator

5 Iterators

An important concept when using collections are iterators. An iterator is
a kind of generalized fold-functional. Like the fold-functional, it applies a
function to all elements of a set and modifies a state. There are no guarantees
about the iteration order. But, unlike the fold functional, you can prove
useful properties of iterations even if the function is not left-commutative.
Proofs about iterations are done in invariant style, establishing an invariant
over the iteration.

The iterator combinator for red-black tree sets is rs-iterate, and the proof-
rule that is usually used is: rs.iterate-rule-P :

[[True; I (rs-α S) σ0 ;∧
x it σ. [[x ∈ it ; it ⊆ rs-α S ; I it σ]] =⇒ I (it − {x}) (f x σ);∧
σ. I {} σ =⇒ P σ]]

=⇒ P (rs-iterate f S σ0)

6

The invariant I is parameterized with the set of remaining elements that
have not yet been iterated over and the current state. The invariant has
to hold for all elements remaining and the initial state: I (rs-α S) σ0.
Moreover, the invariant has to be preserved by an iteration step:∧

x it σ. [[x ∈ it ; it ⊆ rs-α S ; I it σ]] =⇒ I (it − {x}) (f x σ)

And the proposition to be shown for the final state must be a consequence
of the invarant for no elements remaining:

∧
σ. I {} σ =⇒ P σ.

A generalization of iterators are interruptible iterators where iteration is
only continues while some condition on the state holds. Reasoning over
interruptible iterators is also done by invariants: rs.iteratei-rule-P :

[[True; I (rs-α S) σ0 ;∧
x it σ. [[c σ; x ∈ it ; it ⊆ rs-α S ; I it σ]] =⇒ I (it − {x}) (f x σ);∧
σ. I {} σ =⇒ P σ;

∧
σ it . [[it ⊆ rs-α S ; it 6= {}; ¬ c σ; I it σ]] =⇒ P σ]]

=⇒ P (rs-iteratei c f S σ0)

Here, interruption of the iteration is handled by the premise∧
σ it . [[it ⊆ rs-α S ; it 6= {}; ¬ c σ; I it σ]] =⇒ P σ

that shows the proposition from the invariant for any intermediate state of
the iteration where the continuation condition does not hold (and thus the
iteration is interrupted).

As an example of reasoning about results of iterators, we implement a func-
tion that converts a hashset to a list that contains precisely the elements of
the set.

definition hs-to-list ′ s == hs-iterate (op #) s []

The correctness proof works by establishing the invariant that the list con-
tains all elements that have already been iterated over. Again True denotes
the invariant for hashsets which defaults to True.

lemma hs-to-list ′-correct :
assumes INV : hs-invar s
shows set (hs-to-list ′ s) = hs-α s
apply (unfold hs-to-list ′-def)
apply (rule-tac

I =λit σ. set σ = hs-α s − it
in hs.iterate-rule-P [OF INV])

The resulting proof obligations are easily discharged using auto:

apply auto
done

As an example for an interruptible iterator, we define a bounded existential-
quantification over the list elements. As soon as the first element is found

7

that fulfills the predicate, the iteration is interrupted. The state of the itera-
tion is simply a boolean, indicating the (current) result of the quantification:

definition hs-bex s P == hs-iteratei (λσ. ¬ σ) (λx σ. P x) s False

lemma hs-bex-correct :
hs-invar s =⇒ hs-bex s P ←→ (∃ x∈hs-α s. P x)
apply (unfold hs-bex-def)

The invariant states that the current result matches the result of the quantification
over the elements already iterated over:

apply (rule-tac
I =λit σ. σ ←→ (∃ x∈hs-α s − it . P x)
in hs.iteratei-rule-P)

The resulting proof obligations are easily discharged by auto:

apply auto
done

6 Structure of the Framework

The concepts of the framework are roughly based on the object-oriented
concepts of interfaces, implementations and generic algorithms.

The concepts used in the framework are the following:

Interfaces An interface describes some concept by providing an abstrac-
tion mapping α to a related Isabelle/HOL-concept. The definition is
generic in the datatype used to implement the concept (i.e. the con-
crete data structure). An interface is specified by means of a locale
that fixes the abstraction mapping and an invariant. For example, the
set-interface contains an abstraction mapping to sets, and is specified
by the locale SetSpec.set. An interface roughly matches the concept
of a (collection) interface in Java, e.g. java.util.Set.

Functions A function specifies some functionality involving interfaces. A
function is specified by means of a locale. For example, membership
query for a set is specified by the locale SetSpec.set-memb and equal-
ity test between two sets is a function specified by SetSpec.set-equal.
A function roughly matches a method declared in an interface, e.g.
java.util.Set#contains, java.util.Set#equals.

Generic Algorithms A generic algorithm specifies, in a generic way, how
to implement a function using other functions. For example, the equal-
ity test for sets may be implemented using a subset function. It is
described by the constant SetGA.subset-equal and the corresponding
lemma SetGA.subset-equal-correct. There is no direct match of generic

8

algorithms in the Java Collections Framework. The most related con-
cept are abstract collection interfaces, that provide some default al-
gorithms, e.g. java.util.AbstractSet. The concept of Algorithm in the
C++ Standard Template Library [2] matches the concept of Generic
Algorithm quite well.

Implementation An implementation of an interface provides a data struc-
ture for that interface together with an abstraction mapping and an
invariant. Moreover, it provides implementations for some (or all)
functions of that interface. For example, red-black trees are an im-
plementation of the set-interface, with the abstraction mapping rs-α
and invariant rs-invar ; and the constant rs-ins implements the insert-
function, as stated by the lemma rs-ins-impl. An implementation
matches a concrete collection interface in Java, e.g. java.util.TreeSet,
and the methods implemented by such an interface, e.g. java.util.TreeSet#add.

Instantiation An instantiation of a generic algorithm provides actual im-
plementations for the used functions. For example, the generic equality-
test algorithm can be instantiated to use red-black-trees for both argu-
ments (resulting in the function rr-equal and the lemma rr-equal-impl).
While some of the functions of an implementation need to be imple-
mented specifically, many functions may be obtained by instantiating
generic algorithms. In Java, instantiation of a generic algorithm is
matched most closely by inheriting from an abstract collection inter-
face. In the C++ Standard Template Library instantiation of generic
algorithms is done implicitely when using them.

7 Naming Conventions

The Isabelle Collections Framework follows these general naming conven-
tions. Each implementation has a two-letter (or three-letter) and a one-
letter (or two-letter) abbreviation, that are used as prefixes for the related
constants, lemmas and instantiations.

The two-letter and three-letter abbreviations should be unique over all inter-
faces and instantiations, the one-letter abbreviations should be unique over
all implementations of the same interface. Names that reference the im-
plementation of only one interface are prefixed with that implementation’s
two-letter abbreviation (e.g. hs-ins for insertion into a HashSet (hs,h)),
names that reference more than one implementation are prefixed with the
one-letter (or two-letter) abbreviations (e.g. lhh-union for set union between
a ListSet(ls,l) and a HashSet(hs,h), yielding a HashSet)

Currently, there are the following abbreviations:

9

lm,l List Map

lmi,li List Map with explicit invariant

rm,r RB-Tree Map

hm,h Hash Map

ahm,a Array-based hash map

tm,t Trie Map

ls,l List Set

lsi,li List Set with explicit invariant

rs,r RB-Tree Set

hs,h Hash Set

ahs,a Array-based hash map

ts,t Trie Set

Each function name of an interface interface is declared in a locale interface-name.
This locale provides a fact name-correct. For example, there is the locale
set-ins providing the fact set-ins.ins-correct. An implementation instanti-
ates the locales of all implemented functions, using its two-letter abbrevia-
tion as instantiation prefix. For example, the HashSet-implementation in-
stantiates the locale set-ins with the prefix hs, yielding the lemma hs.ins-correct.
Moreover, an implementation with two-letter abbreviation aa provides a
lemma aa-correct that summarizes the correctness facts for the basic oper-
ations. It should only contain those facts that are safe to be used with the
simplifier. E.g., the correctness facts for basic operations on hash sets are
available via the lemma hs-correct.

8 Extending the Framework

This section illustrates, by example, how to add new interfaces, functions,
generic algorithms and implementations to the framework:

9 Interfaces

An interface provides a new concept, that is usually mapped to a related
Isabelle/HOL-concept. An interface is defined by providing a locale that
fixes an abstraction mapping and an invariant. For example, consider the
definition of an interface for sets:

10

locale set ′ =
— Abstraction mapping to Isabelle/HOL sets
fixes α :: ′s ⇒ ′a set
— Invariant
fixes invar :: ′s ⇒ bool

The invariant makes it possible for an implementation to restrict to cer-
tain subsets of the type’s universal set. Usually, it is convenient to hide
this invariant in a typedef and to set up the code generator approriately.
However, in some cases such invariants may enable more efficient implemen-
tations (e.g. disoint insert for distinct lists), so all specifications should be
with respect to a implementation-provided invariant. Most implementations
will just set this invariant to λ-. True.

10 Functions

A function describes some operation on instances of an interface. It is spec-
ified by providing a locale that includes the locale of the interface, fixes a
parameter for the operation and makes a correctness assumption. For an in-
terface interface and an operation name, the function’s locale has the name
interface-name, the fixed parameter has the name name and the correctness
assumption has the name name-correct.

As an example, consider the specifications of the insert function for sets and
the empty set:

locale set ′-ins = set ′ +
— Give reasonable names to types:
constrains α :: ′s ⇒ ′a set
— Parameter for function:
fixes ins :: ′a ⇒ ′s ⇒ ′s
— Correctness assumption. A correctness assumption usually consists of two
parts:

• A description of the operation on the abstract level, assuming that the
operands satisfy the invariants.

• The invariant preservation assumptions, i.e. assuming that the result satisfies
its invariants if the operands do.

assumes ins-correct :
invar s =⇒ α (ins x s) = insert x (α s)
invar s =⇒ invar (ins x s)

locale set ′-empty = set ′ +
constrains α :: ′s ⇒ ′a set
fixes empty :: ′s
assumes empty-correct :

11

α empty = {}
invar empty

In general, more than one interface or more than one instance of the same
interface may be involved in a function. Consider, for example, the inter-
section of two sets. It involves three instances of set interfaces, two for the
operands and one for the result:

locale set ′-inter = set ′ α1 invar1 + set ′ α2 invar2 + set ′ α3 invar3
for α1 :: ′s1 ⇒ ′a set and invar1
and α2 :: ′s2 ⇒ ′a set and invar2
and α3 :: ′s3 ⇒ ′a set and invar3
+
fixes inter :: ′s1 ⇒ ′s2 ⇒ ′s3
assumes inter-correct :

[[invar1 s1 ; invar2 s2]] =⇒ α3 (inter s1 s2) = α1 s1 ∩ α2 s2
[[invar1 s1 ; invar2 s2]] =⇒ invar3 (inter s1 s2)

For use in further examples, we also specify a function that converts a list
to a set

locale set ′-list-to-set = set ′ +
constrains α :: ′s ⇒ ′a set
fixes list-to-set :: ′a list ⇒ ′s
assumes list-to-set-correct :
α (list-to-set l) = set l
invar (list-to-set l)

11 Generic Algorithm

A generic algorithm describes how to implement a function using implemen-
tations of other functions. Thereby, it is parametric in the actual implemen-
tations of the functions.

A generic algorithm comes with the definition of a function and a correct-
ness lemma. The function takes the required functions as arguments. The
convention for argument order is that the required functions come first, then
the implemented function’s arguments.

Consider, for example, the generic algorithm to convert a list to a set2. This
function requires implementations of the empty and ins functions3:

fun list-to-set ′ :: ′s ⇒ (′a ⇒ ′s ⇒ ′s)
⇒ ′a list ⇒ ′s where
list-to-set ′ empt ins ′ [] = empt |
list-to-set ′ empt ins ′ (a#ls) = ins ′ a (list-to-set ′ empt ins ′ ls)

2To keep the presentation simple, we use a non-tail-recursive version here
3Due to name-clashes with Map.empty we have to use slightly different parameter

names here

12

lemma list-to-set ′-correct :
fixes empty ins
— Assumptions about the required function implementations:
assumes set ′-empty α invar empty
assumes set ′-ins α invar ins
— Provided function:
shows set ′-list-to-set α invar (list-to-set ′ empty ins)

proof −
interpret set ′-empty α invar empty by fact
interpret set ′-ins α invar ins by fact

{
fix l
have α (list-to-set ′ empty ins l) = set l

∧ invar (list-to-set ′ empty ins l)
by (induct l)

(simp-all add : empty-correct ins-correct)
}
thus ?thesis

by unfold-locales auto
qed

Generic Algorithms with ad-hoc function specification The collec-
tion framework also contains a few generic algorithms that do not imple-
ment a function that is specified via a locale, but the function is specified
ad-hoc within the correctness lemma. An example is the generic algorithm
Algos.map-to-nat that computes an injective map from the elements of a
given finite set to an initial segment of the natural numbers. There is no
locale specifying such a function, but the function is implicitly specified by
the correctness lemma map-to-nat-correct :

[[set-iterate α1 invar1 iterate1 ; map-empty α2 invar2 empty2 ;
map-update α2 invar2 update2 ; invar1 s]]

=⇒ dom (α2 (map-to-nat iterate1 empty2 update2 s)) = α1 s
[[set-iterate α1 invar1 iterate1 ; map-empty α2 invar2 empty2 ;
map-update α2 invar2 update2 ; invar1 s]]

=⇒ inj-on (α2 (map-to-nat iterate1 empty2 update2 s)) (α1 s)
[[set-iterate α1 invar1 iterate1 ; map-empty α2 invar2 empty2 ;
map-update α2 invar2 update2 ; invar1 s]]

=⇒ inatseg (ran (α2 (map-to-nat iterate1 empty2 update2 s)))
[[set-iterate α1 invar1 iterate1 ; map-empty α2 invar2 empty2 ;
map-update α2 invar2 update2 ; invar1 s]]

=⇒ invar2 (map-to-nat iterate1 empty2 update2 s)

This kind of ad-hoc specification should only be used when it is unlikely
that the same function may be implemented differently.

13

12 Implementation

An implementation of an interface defines an actual data structure, an in-
variant, and implementations of the functions. An implementation has a
two-letter (or three-letter) abbreviation that should be unique and a one-
letter (or two-letter) abbreviation that should be unique amongst all imple-
mentations of the same interface.

Consider, for example, a set implementation by distinct lists. It has the
abbreviations (lsi,li). To avoid name clashes with the existing list-set imple-
mentation in the framework, we use ticks (’) here and there to disambiguate
the names.

— The type of the data structure should be available as the two-letter abbrevia-
tion:

types ′a lsi ′ = ′a list
— The abstraction function:
definition lsi ′-α == set
— The invariant: In our case we constrain the lists to be distinct:
definition lsi ′-invar == distinct
— The locale of the interface is interpreted with the two-letter abbreviation as

prefix:
interpretation lsi ′: set ′ lsi ′-α lsi ′-invar .

Next, we implement some functions. The implementation of a function name
is prefixed by the two-letter prefix:

definition lsi ′-empty == []

Each function implementation has a corresponding lemma that shows the
instantiation of the locale. It is named by the function’s name suffixed with
-impl :

lemma lsi ′-empty-impl : set ′-empty lsi ′-α lsi ′-invar lsi ′-empty
by (unfold-locales) (auto simp add : lsi ′-empty-def lsi ′-invar-def lsi ′-α-def)

The corresponding function’s locale is interpreted with the function imple-
mentation and the interface’s two-letter abbreviation as prefix:

interpretation lsi ′: set ′-empty lsi ′-α lsi ′-invar lsi ′-empty
using lsi ′-empty-impl .

This generates the lemma lsi ′.empty-correct :

lsi ′-α lsi ′-empty = {}
lsi ′-invar lsi ′-empty

definition lsi ′-ins x l == if x∈set l then l else x#l

Correctness may optionally be established using separate lemmas. These
should be suffixed with aux to indicate that they should not be used by
other proofs:

14

lemma lsi ′-ins-correct-aux :
lsi ′-invar l =⇒ lsi ′-α (lsi ′-ins x l) = insert x (lsi ′-α l)
lsi ′-invar l =⇒ lsi ′-invar (lsi ′-ins x l)
by (auto simp add : lsi ′-ins-def lsi ′-invar-def lsi ′-α-def)

lemma lsi ′-ins-impl : set ′-ins lsi ′-α lsi ′-invar lsi ′-ins
by unfold-locales

(simp-all add : lsi ′-ins-correct-aux)

interpretation lsi ′: set ′-ins lsi ′-α lsi ′-invar lsi ′-ins
using lsi ′-ins-impl .

13 Instantiations (Generic Algorithm)

The instantiation of a generic algorithm substitutes actual implementations
for the required functions. A generic algorithm is instantiated by providing
a definition that fixes the function parameters accordingly. Moreover, an
impl -lemma and an interpretation of the implemented function’s locale is
provided. These can usually be constructed canonically from the generic
algorithm’s correctness lemma:

For example, consider conversion from lists to list-sets by instantiating the
list-to-set ′-algorithm:

definition lsi ′-list-to-set == list-to-set ′ lsi ′-empty lsi ′-ins
lemmas lsi ′-list-to-set-impl = list-to-set ′-correct [OF lsi ′-empty-impl lsi ′-ins-impl ,

folded lsi ′-list-to-set-def]
interpretation lsi ′: set ′-list-to-set lsi ′-α lsi ′-invar lsi ′-list-to-set

using lsi ′-list-to-set-impl .

Note that the actual framework slightly deviates from the naming conven-
tion here, the corresponding instantiation of SetGA.gen-list-to-set is called
list-to-ls, the impl -lemma is called list-to-ls-impl.

Generating all possible instantiations of generic algorithms based on the
available implementations can be done mechanically. Currently, we have not
implemented such an approach on the Isabelle ML-level. However, we used
an ad-hoc ruby-script (scripts/inst.rb) to generate the thy-file StdInst.thy
from the file StdInst.in.thy.

14 Design Issues

In this section, we motivate some of the design decisions of the Isabelle
Collections Framework and report our experience with alternatives. Many
of the design decisions are justified by restrictions of Isabelle/HOL and the
code generator, so that there may be better options if those restrictions
should vanish from future releases of Isabelle/HOL.

15

The main design goals of this development are:

1. Make available various implementations of collections under a unified
interface.

2. It should be easy to extend the framework by new interfaces, functions,
algorithms, and implementations.

3. Allow simple and concise reasoning over functions using collections.

4. Allow generic algorithms, that are independent of the actual data
structure that is used.

5. Support generation of executable code.

6. Let the user precisely control what data structures are used in the
implementation.

15 Data Refinement

In order to allow simple reasoning over collections, we use a data refinement
approach. Each collection interface has an abstraction function that maps
it on a related Isabelle/HOL concept (abstract level). The specification of
functions are also relative to the abstraction. This allows most of the cor-
rectness reasoning to be done on the abstract level. On this level, the tool
support is more elaborated and one is not yet fixed to a concrete implemen-
tation. In a next step, the abstract specification is refined to use an actual
implementation (concrete level). The correctness properties proven on the
abstract level usually transfer easily to the concrete level.

Moreover, the user has precise control how the refinement is done, i.e. what
data structures are used. An alternative would be to do refinement com-
pletely automatic, as e.g. done in the code generator setup of the The-
ory Executable-Set. This has the advantage that it induces less writing
overhead. The disadvantage is that the user loses a great amount of control
over the refinement. For example, in Executable-Set, all sets have to be rep-
resented by lists, and there is no possibility to represent one set differently
from another.

16 Record Based Interfaces

We have experimented with grouping functions of an interface together via
a record. This has the advantage that parameterization of generic algo-
rithms becomes simpler, as multiple function parameters are replaced by

16

a single record parameter. For maps and sets, theories RecordSetImpl and
RecordMapImpl provide these instantiations for all implementations (ex-
cept for tries). Moreover, the priority queue implementations contain such
records for all important operations. The records do not include operations
that depend on extra type variables because these operations would become
monomorphic due to Isabelle’s type system restrictions.

17 Locales for Generic Algorithms

Another tempting possibility to define a generic algorithm is to define a
locale that includes the locales of all required functions, and do the definition
of the generic algorithm inside that locale. This has the advantage that the
function parameters are made implicit, thus improving readability. On the
other hand, the code generator has problems with generating code from
definitions inside a locale. Currently, one has to manually set up the code
generator for such definitions. Moreover, when fixing function parameters
in the declaration of the locale, their types will be inferred independently of
the definitions later done in the locale context. In order to get the correct
types, one has to add explicit type constraints. These tend to become rather
lengthy, especially for iterator states. The approach taken in this framework
– passing the required functions as explicit parameters to a generic algorithm
– usually needs less type constraints, as type inference usually does most of
the job, in particular it infers the correct types of iterator states.

18 Explicit Invariants vs Typedef

The interfaces of this framework use explicit invariants. This provides a
more general specification which allows some operations to be sometimes
implemented more efficiently, cf. lsi-ins-dj in ListSetImpl-Invar.

Most implementations, however, hide the invariant in a typedef and setup
the code generator appropriately. In that case, the invariant is just skew-invar,
which still shows up in some premises and conclusions due to uniformity rea-
sons.

end

References

[1] P. Lammich and A. Lochbihler. The Isabelle collections framework.
In M. Kaufmann and L. Paulson, editors, Interactive Theorem Prov-
ing, volume 6172 of Lecture Notes in Computer Science, pages 339–354.
Springer, 2010.

17

[2] A. Stepanov and M. Lee. The standard template library. Technical
Report 95-11(R.1), HP Laboratories, November 1995.

18

	Introduction
	Getting Started
	Introductory Example
	Theories
	Iterators
	Structure of the Framework
	Naming Conventions
	Extending the Framework
	Interfaces
	Functions
	Generic Algorithm
	Implementation
	Instantiations (Generic Algorithm)
	Design Issues
	Data Refinement
	Record Based Interfaces
	Locales for Generic Algorithms
	Explicit Invariants vs Typedef

