
Slicing Guarantees Information Flow

Noninterference

Daniel Wasserrab

March 12, 2013

Abstract

In this contribution, we show how correctness proofs for intra- [7]
and interprocedural slicing [8] can be used to prove that slicing is able
to guarantee information flow noninterference. Moreover, we also illus-
trate how to lift the control flow graphs of the respective frameworks
such that they fulfil the additional assumptions needed in the nonin-
terference proofs. A detailed description of the intraprocedural proof
and its interplay with the slicing framework can be found in [9].

1 Introduction

Information Flow Control (IFC) encompasses algorithms which determines
if a given program leaks secret information to public entities. The major
group are so called IFC type systems, where well-typed means that the
respective program is secure. Several IFC type systems have been verified
in proof assistants, e.g. see [1, 2, 5, 3, 6].

However, type systems have some drawbacks which can lead to false
alarms. To overcome this problem, an IFC approach basing on slicing has
been developed [4], which can significantly reduce the amount of false alarms.
This contribution presents the first machine-checked proof that slicing is able
to guarantee IFC noninterference. It bases on previously published machine-
checked correctness proofs for slicing [7, 8]. Details for the intraprocedural
case can be found in [9].

References

[1] G. Barthe and L. P. Nieto. Secure information flow for a concurrent
language with scheduling. Journal of Computer Security, 15(6):647–689,
2007.

[2] G. Barthe, D. Pichardie, and T. Rezk. A certified lightweight non-
interference Java bytecode verifier. In ESOP 2007, volume 4421 of LNCS,
pages 125–140. Springer, 2007.

1



[3] L. Beringer and M. Hofmann. Secure information flow and program
logics. In Archive of Formal Proofs. http://afp.sf.net/entries/SIFPL.
shtml, November 2008. Formal proof development.

[4] C. Hammer and G. Snelting. Flow-sensitive, context-sensitive, and
object-sensitive information flow control based on program dependence
graphs. International Journal of Information Security, 8(6):399–422,
2009.

[5] F. Kammüller. Formalizing non-interference for a simple bytecode lan-
guage in Coq. Formal Aspects of Computing, 20(3):259–275, 2008.

[6] G. Snelting and D. Wasserrab. A correctness proof for the Vol-
pano/Smith security typing system. In G. Klein, T. Nipkow, and
L. Paulson, editors, Archive of Formal Proofs. http://afp.sf.net/entries/
VolpanoSmith.shtml, September 2008. Formal proof development.

[7] D. Wasserrab. Towards certified slicing. In G. Klein, T. Nipkow, and
L. Paulson, editors, Archive of Formal Proofs. http://afp.sf.net/entries/
Slicing.shtml, September 2008. Formal proof development.

[8] D. Wasserrab. Backing up slicing: Verifying the interprocedural two-
phase Horwitz-Reps-Binkley slicer. In Archive of Formal Proofs. http:
//afp.sf.net/entries/HRB-Slicing.shtml, September 2009. Formal proof
development.

[9] D. Wasserrab, D. Lohner, and G. Snelting. On PDG-based noninterfer-
ence and its modular proof. In Proc. of PLAS ’09, pages 31–44. ACM,
June 2009.

2

http://afp.sf.net/entries/SIFPL.shtml
http://afp.sf.net/entries/SIFPL.shtml
http://afp.sf.net/entries/VolpanoSmith.shtml
http://afp.sf.net/entries/VolpanoSmith.shtml
http://afp.sf.net/entries/Slicing.shtml
http://afp.sf.net/entries/Slicing.shtml
http://afp.sf.net/entries/HRB-Slicing.shtml
http://afp.sf.net/entries/HRB-Slicing.shtml

	Introduction

