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Abstract

In this contribution, we show how correctness proofs for intra- [7]
and interprocedural slicing [8] can be used to prove that slicing is able
to guarantee information flow noninterference. Moreover, we also illus-
trate how to lift the control flow graphs of the respective frameworks
such that they fulfil the additional assumptions needed in the nonin-
terference proofs. A detailed description of the intraprocedural proof
and its interplay with the slicing framework can be found in [9].

1 Introduction

Information Flow Control (IFC) encompasses algorithms which determines
if a given program leaks secret information to public entities. The major
group are so called IFC type systems, where well-typed means that the
respective program is secure. Several IFC type systems have been verified
in proof assistants, e.g. see [1, 2, 5, 3, 6].

However, type systems have some drawbacks which can lead to false
alarms. To overcome this problem, an IFC approach basing on slicing has
been developed [4], which can significantly reduce the amount of false alarms.
This contribution presents the first machine-checked proof that slicing is able
to guarantee IFC noninterference. It bases on previously published machine-
checked correctness proofs for slicing [7, 8]. Details for the intraprocedural
case can be found in [9].
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