Slicing Guarantees Information Flow
Noninterference

Daniel Wasserrab

March 12, 2013

Abstract

In this contribution, we show how correctness proofs for intra- [8]
and interprocedural slicing [9] can be used to prove that slicing is able
to guarantee information flow noninterference. Moreover, we also illus-
trate how to lift the control flow graphs of the respective frameworks
such that they fulfil the additional assumptions needed in the nonin-
terference proofs. A detailed description of the intraprocedural proof
and its interplay with the slicing framework can be found in [10].

1 Introduction

Information Flow Control (IFC) encompasses algorithms which determines
if a given program leaks secret information to public entities. The major
group are so called IFC type systems, where well-typed means that the
respective program is secure. Several IFC type systems have been verified
in proof assistants, e.g. see [1, 2, 5, 3, 7.

However, type systems have some drawbacks which can lead to false
alarms. To overcome this problem, an IFC approach basing on slicing has
been developed [4], which can significantly reduce the amount of false alarms.
This contribution presents the first machine-checked proof that slicing is able
to guarantee IFC noninterference. It bases on previously published machine-
checked correctness proofs for slicing [8, 9]. Details for the intraprocedural
case can be found in [10].

2 HRB Slicing guarantees IFC Noninterference
theory NonlInterferencelnter

imports ../ HRB— Slicing/ StaticInter /| FundamentalProperty
begin

2.1 Assumptions of this Approach

Classical IFC noninterference, a special case of a noninterference definition
using partial equivalence relations (per) [6], partitions the variables (i.e.
locations) into security levels. Usually, only levels for secret or high, written
H, and public or low, written L, variables are used. Basically, a program that
is noninterferent has to fulfil one basic property: executing the program in
two different initial states that may differ in the values of their H-variables
yields two final states that again only differ in the values of their H-variables;
thus the values of the H-variables did not influence those of the L-variables.

Every per-based approach makes certain assumptions: (i) all H-variables
are defined at the beginning of the program, (ii) all L-variables are observed
(or used in our terms) at the end and (iii) every variable is either H or
L. This security label is fixed for a variable and can not be altered during
a program run. Thus, we have to extend the prerequisites of the slicing
framework in [9] accordingly in a new locale:

locale NonlInterferencelnterGraph =
SDG sourcenode targetnode kind valid-edge Entry
get-proc get-return-edges procs Main Exit Def Use ParamDefs ParamUses
for sourcenode :: 'edge = 'node and targetnode :: 'edge = 'node
and kind :: ‘edge = ("var,’val,’'ret,’pname) edge-kind
and wvalid-edge :: 'edge = bool
and Entry :: 'node ('(’-Entry’-")) and get-proc :: 'node = 'pname
and get-return-edges :: 'edge = ’edge set
and procs :: (‘pname x 'var list x 'var list) list and Main :: 'pname
and FEzit::'node ('(’-Exit’-"))
and Def :: 'node = 'var set and Use :: 'node = "var set
and ParamDefs :: 'node = 'var list and ParamUses :: 'node = 'var set list +
fixes H :: 'var set
fixes L :: 'var set
fixes High :: 'node ('(’-High'-"))
fixes Low :: 'node ('(’-Low’-"))
assumes FEntry-edge-Ezit-or-High:
[valid-edge a; sourcenode a = (-Entry-)]
= targetnode a = (-Ezxit-) V targetnode a = (-High-)
and High-target- Entry-edge:
Fa. valid-edge a N sourcenode a = (-Entry-) A targetnode a = (-High-) A
kind a = (Xs. True),/
and Entry-predecessor-of-High:
[valid-edge a; targetnode a = (-High-)] = sourcenode a = (-Entry-)
and FErit-edge-Entry-or-Low: [valid-edge a; targetnode a = (-Exit-)]
= sourcenode a = (-Entry-) V sourcenode a = (-Low-)
and Low-source-Ezit-edge:
Ja. valid-edge a A sourcenode a = (-Low-) A targetnode a = (-Exit-) A
kind a = (As. True),,
and Ezit-successor-of-Low:
[valid-edge a; sourcenode a = (-Low-)] = targetnode a = (-Ewit-)

and DefHigh: Def (-High-) = H
and UseHigh: Use (-High-) = H
and UseLow: Use (-Low-) = L

and HighLowDistinct: H N L = {}
and HighLowUNIV: H U L = UNIV

begin

lemma Low-neq-Ezxit: assumes L # {} shows (-Low-) # (-Exit-)
proof

assume (-Low-) = (-Exit-)

have Use (-Ezit-) = {} by fastforce

with UseLow (L # {}> «(-Low-) = (-Ezit-)) show False by simp
qed

lemma valid-node-High [simp]:valid-node (-High-)
using High-target-Entry-edge by fastforce

lemma valid-node-Low [simp]:valid-node (-Low-)
using Low-source-FExit-edge by fastforce

lemma get-proc-Low:
get-proc (-Low-) = Main
proof —
from Low-source-FExit-edge obtain a where valid-edge a
and sourcenode a = (-Low-) and targetnode a = (-Eit-)
and intra-kind (kind a) by (fastforce simp:intra-kind-def)
from (valid-edge a) tintra-kind (kind a))
have get-proc (sourcenode a) = get-proc (targetnode a) by (rule get-proc-intra)
with (sourcenode a = (-Low-)) (targetnode a = (-Fxit-)) get-proc-Exit
show ?thesis by simp
qed

lemma get-proc-High:
get-proc (-High-) = Main
proof —
from High-target-Entry-edge obtain a where valid-edge a
and sourcenode a = (-Entry-) and targetnode a = (-High-)
and intra-kind (kind a) by (fastforce simp:intra-kind-def)
from (wvalid-edge a) tintra-kind (kind a)
have get-proc (sourcenode a) = get-proc (targetnode a) by (rule get-proc-intra)
with (sourcenode a = (-Entry-)) (targetnode a = (-High-)) get-proc-Entry
show ?thesis by simp
qed

lemma Entry-path-High-path:
assumes (-Entry-) —as—+ n and inner-node n
obtains a’ as’ where as = a'#as’ and (-High-) —as'—x n
and kind a’ = (Xs. True),,
proof (atomize-elim)
from «((-Entry-) —as—* n) ¢nner-node n»
show Ja’ as’. as = a'#as’ N (-High-) —as'—x n A kind o’ = (\s. True),,
proof (induct n'=(-Entry-) as n rule:path.induct)
case (Cons-path n'' as n’ a)
from (" —as—x n’ (nner-node n’y have n'' # (-Exit-)
by (fastforce simp:inner-node-def)
with walid-edge a) (sourcenode a = (-Entry-)) (targetnode a = n')
have n' = (-High-) by —(drule Entry-edge-Ezit-or-High,auto)
from High-target-Entry-edge
obtain a’ where valid-edge a’ and sourcenode o’ = (-Entry-)
and targetnode o' = (-High-) and kind o’ = (Xs. True),,

by blast
with (valid-edge @) (sourcenode a = (-Entry-)) (targetnode a = n'"
' = (-High-))

have a = o’ by(auto dest:edge-det)
with (' —as—* n’ (" = (-High-)) (kind o’ = (Xs. True),) show ?case by
blast
qed fastforce
qed

lemma FEzit-path-Low-path:
assumes n —as—#* (-Fzit-) and inner-node n
obtains a’ as’ where as = as’Q[a’] and n —as’—+ (-Low-)
and kind a’' = (Xs. True), ,
proof (atomize-elim)
from (n —as—* (-Ezit-)
show Jas’ a’. as = as'Q[a’] A n —as'—=x (-Low-) A kind o’ = (Xs. True),,
proof (induct as rule:rev-induct)

case Nil
with «nner-node n) show ?case by fastforce
next

case (snoc a' as’)
from (n —as'Q[a’]—x* (-Exit-)
have n —as’—x* sourcenode o’ and valid-edge o’ and targetnode o’ = (-Exit-)
by (auto elim:path-split-snoc)
{ assume sourcenode a’ = (-Entry-)
with (n —as’—x sourcenode oy have n = (-Entry-)
by (blast intro!:path- Entry-target)
with «nner-node n) have Fualse by (simp add:inner-node-def) }
with (valid-edge o’ <targetnode o’ = (-Exit-)) have sourcenode o’ = (-Low-)
by (blast dest!: Ezit-edge- Entry-or-Low)
from Low-source-Exit-edge
obtain ar where valid-edge ax and sourcenode ax = (-Low-)

and targetnode ax = (-Erit-) and kind ax = (\s. True),,

by blast
with (valid-edge o’ <targetnode o’ = (-Exit-)) (sourcenode o’ = (-Low-)
have o’ = az by (fastforce intro:edge-det)

with < —as’—x sourcenode a" (sourcenode a' = (-Low-)) (kind ax = ()s.
True)
show ?case by blast
qed
qed

lemma not-Low-High: V ¢ L = V € H
using HighLowUNIV
by fastforce

lemma not-High-Low: V ¢ H = V € L
using HighLowUNIV
by fastforce

2.2 Low Equivalence

In classical noninterference, an external observer can only see public values,
in our case the L-variables. If two states agree in the values of all L-variables,
these states are indistinguishable for him. Low equivalence groups those
states in an equivalence class using the relation =~ :

definition lowEquivalence :: ('var — 'val) list = (‘var — 'val) list = bool
(infix]l ~;, 50)
where s = s'=VV € L.hds V =hd s’V

The following lemmas connect low equivalent states with relevant vari-
ables as necessary in the correctness proof for slicing.

lemma relevant-vars-Entry:
assumes V € rv S (CFG-node (-Entry-)) and (-High-) ¢ | HRB-slice S|cpa
shows V € L
proof —
from (V € rv § (CFG-node (-Entry-))) obtain as n’
where (-Entry-) —as—,* parent-node n’
and n’ € HRB-slice S and V € Usegpa n’
and Vn'". valid-SDG-node n'’ A parent-node n'' € set (sourcenodes as)
— V & Def gpg n'' by(fastforce elim:rvE)
from «(-Entry-) —as—,* parent-node n'y have valid-node (parent-node n')
by (fastforce intro:path-valid-node simp:intra-path-def)
thus ?thesis
proof(cases parent-node n' rule:valid-node-cases)
case Entry
with «V € Usegpg n” have False
by —(drule SDG-Use-parent-Use,simp add:Entry-empty)
thus ?thesis by simp

next
case FEzit
with «(V € Usegpn n’ have Fulse
by —(drule SDG-Use-parent-Use,simp add:Ezit-empty)
thus ?thesis by simp
next
case inner
with «(-Entry-) —as— * parent-node n» obtain a’ as’ where as = a'#as’
and (-High-) —as’—* parent-node n'
by (fastforce elim: Entry-path-High-path simp:intra-path-def)
from «(-Entry-) —as—* parent-node n" (as = a'#as”
have sourcenode a’ = (-Entry-) by (fastforce elim:path.cases simp:intra-path-def)
show ?thesis
proof(cases as’ = |])
case True
with «(-High-) —as’— * parent-node n’ have parent-node n’ = (-High-)
by (fastforce simp:intra-path-def)
with (' € HRB-slice S) «(-High-) ¢ | HRB-slice S| opa
have Fulse
by (fastforce dest:valid-SDG-node-in-slice-parent-node-in-slice
simp:SDG-to-CFG-set-def)
thus ?thesis by simp
next
case Fulse
with «((-High-) —as'—* parent-node n"» have hd (sourcenodes as’) = (-High-)
by (fastforce intro:path-sourcenode simp:intra-path-def)
from Fualse have hd (sourcenodes as’) € set (sourcenodes as’)
by (fastforce intro:hd-in-set simp:sourcenodes-def)
with (as = a’#as” have hd (sourcenodes as’) € set (sourcenodes as)
by (simp add:sourcenodes-def)
from <hd (sourcenodes as’) = (-High-)
have wvalid-node (hd (sourcenodes as’)) by simp
have valid-SDG-node (CFG-node (-High-)) by simp
with hd (sourcenodes as’) = (-High-)
thd (sourcenodes as’) € set (sourcenodes as))
~n". valid-SDG-node n'" A parent-node n'' € set (sourcenodes as)
— V % DefSDG n'h
have V ¢ Def (-High-)
by (fastforce dest: CFG-Def-SDG-Def[OF «walid-node (hd (sourcenodes as’)))])
hence V ¢ H by(simp add:DefHigh)
thus ?thesis by (rule not-High-Low)
qged
qed
qed

lemma lowFEquivalence-relevant-nodes-Entry:
assumes s ~y, s’ and (-High-) ¢ |HRB-slice S| opq

shows VV € rv S (CFG-node (-Entry-)). hd s V.= hd s' V
proof
fix V assume V € rv S (CFG-node (-Entry-))
with («(-High-) ¢ | HRB-slice S| oy have V € L by —(rule relevant-vars-Entry)
with s =~ s show hd s V = hd s’ V by(simp add:lowEquivalence-def)
qed

2.3 The Correctness Proofs

In the following, we present two correctness proofs that slicing guarantees
IFC noninterference. In both theorems, CFG-node (-High-) ¢ HRB-slice S,
where CFG-node (-Low-) € S, makes sure that no high variable (which are
all defined in (-High-)) can influence a low variable (which are all used in
(-Low-)).

First, a theorem regarding (-Entry-) —as—x* (-Ezit-) paths in the control
flow graph (CFG), which agree to a complete program execution:

lemma slpa-rv-Low-Use-Low:
assumes CFG-node (-Low-) € S
shows [same-level-path-auz cs as; upd-cs cs as = []; same-level-path-aux cs as’
V¢ € set cs. valid-edge ¢; m —as—* (-Low-); m —as’—* (-Low-);
Vi < length ¢cs. YV € rv S (CFG-node (sourcenode (csli))).
fst (s'Suc i) V = fst (s'Suc i) V; Vi < Suc (length cs). snd (sli) = snd (s4);
VYV ervS (CFG-node m). state-val s V = state-val s" V;
preds (slice-kinds S as) s; preds (slice-kinds S as’) s’
length s = Suc (length cs); length s’ = Suc (length cs)]
= V'V € Use (-Low-). state-val (transfers(slice-kinds S as) s) V =
state-val (transfers(slice-kinds S as’) s') V
proof (induct arbitrary:m as’ s s’ rule:slpa-induct)
case (slpa-empty cs)
from (m —[|—* (-Low-)) have m = (-Low-) by fastforce
from (m —[]—x* (-Low-) have valid-node m
by (rule path-valid-node)+
{ fix V assume V € Use (-Low-)
moreover
from (wvalid-node m) <m = (-Low-)» have (-Low-) —[|—,* (-Low-)
by (fastforce intro:empty-path simp:intra-path-def)
moreover
from (walid-node m) «m = (-Low-)) (CFG-node (-Low-) € S)
have CFG-node (-Low-) € HRB-slice S
by (fastforce intro: HRB-slice-refl)
ultimately have V € rv § (CFG-node m)
using (m = (-Low-))
by (auto introl:rvl CFG-Use-SDG-Use simp:sourcenodes-def) }
hence VV € Use (-Low-). V € rv S (CFG-node m) by simp
show ?Zcase
proof(cases L = {})
case True with UseLow show f?thesis by simp
next

case False
from (m —as’—x (-Low-)) ¢<m = (-Low-)) have as’ = |]
proof (induct m as’ m'=(-Low-) rule:path.induct)
case (Cons-path m'' as a m)
from «walid-edge a) (sourcenode a = m) «m = (-Low-))
have targetnode a = (-Ezit-) by —(rule Ezit-successor-of-Low,simp+)
with (targetnode a = m'y <m”" —as—x (-Low-))
have (-Low-) = (-Ezit-) by —(drule path-Ezit-source,auto)
with False have False by —(drule Low-neq-FExit,simp)
thus “case by simp
qed simp
with vV € Use (-Low-). V € rv S (CFG-node m))
V'V ervS (CFG-node m). state-val s V = state-val s’ Vy Nil
show ?thesis by (auto simp:slice-kinds-def)
qed
next
case (slpa-intra cs a as)
note TH = (\m as’ s s'. Jupd-cs cs as = [|; same-level-path-auz cs as’
Y a€set cs. valid-edge a; m —as—x* (-Low-); m —as’—* (-Low-);
Vi<length cs. ¥ Verv S (CFG-node (sourcenode (cs ! 1))).
fst (s! Suci) V= fst (s'! Suci) V;
Vi<Suc (length cs). snd (s ! i) = snd (s’ ! i);
VY Verv S (CFG-node m). state-val s V = state-val s" V;
preds (slice-kinds S as) s; preds (slice-kinds S as’) s’
length s = Suc (length cs); length s’ = Suc (length cs)]
= V VeUse (-Low-). state-val (transfers(slice-kinds S as) s) V =
state-val (transfers(slice-kinds S as’) s’) V)
note rvs = Vi<length cs. VVerv S (CFG-node (sourcenode (cs ! i))).
fst (s ! Suci) V= fst (s Suci) V>
from (m —a # as—x* (-Low-)) have sourcenode a = m and valid-edge a
and targetnode a —as—x (-Low-) by (auto elim:path-split-Cons)
show ?case
proof(cases L = {})
case True with UseLow show ?thesis by simp
next
case Fulse
show ?thesis
proof(cases as’)
case Nil
with (m —as’—x (-Low-)) have m = (-Low-) by fastforce
with walid-edge a) (sourcenode a = m) have targetnode a = (-Exit-)
by —(rule Ezit-successor-of-Low,simp+)
from Low-source-Exit-edge obtain a’ where valid-edge a’
and sourcenode o’ = (-Low-) and targetnode o’ = (-Exit-)
and kind a’ = (Xs. True) , by blast
from (valid-edge a) <sourcenode a = m) «<m = (-Low-)
(targetnode a = (-Ezit-)) walid-edge o’ (sourcenode o' = (-Low-))
(targetnode a’ = (-Exit-))
have a = o’ by(fastforce dest:edge-det)

with kind o’ = (As. True),) have kind a = (\s. True),, by simp
with (targetnode a = (-Exit-)) (targetnode a —as—* (-Low-))
have (-Low-) = (-Ezit-) by —(drule path-Ezit-source,auto)
with False have Fualse by —(drule Low-neq-Exit,simp)
thus ?thesis by simp
next
case (Cons az asz)
with (m —as’—x (-Low-)) have sourcenode ax = m and valid-edge ax
and targetnode ax —ast—+ (-Low-) by (auto elim:path-split-Cons)
from (preds (slice-kinds S (a # as)) &
obtain cf cfs where [simp]:s = cf #cfs by(cases s)(auto simp:slice-kinds-def)
from «preds (slice-kinds S as’) s <as’ = ax # asm
obtain cf’ ¢fs’ where [simp]:s’ = c¢f '#cfs’
by (cases s’)(auto simp:slice-kinds-def)
have intra-kind (kind ax)
proof (cases kind az rule:edge-kind-cases)
case (Call Q v p fs)
have Fulse
proof (cases sourcenode a € | HRB-slice S| opq)
case True
with ntra-kind (kind o)) have slice-kind S a = kind a
by —(rule slice-intra-kind-in-slice)
from <(wvalid-edge ax) (kind ax = Q:r—pfs
have unique:3'a’. valid-edge a’ A sourcenode a’ = sourcenode azx A
intra-kind(kind o) by (rule call-only-one-intra-edge)
from (valid-edge ax> (kind ax = Q:r—pfs) obtain z
where © € get-return-edges ax by (fastforce dest:get-return-edge-call)
with (valid-edge az) obtain o’ where valid-edge a’
and sourcenode a' = sourcenode ax and kind o’ = (Acf. False),,
by (fastforce dest: call-return-node-edge)
with (valid-edge a> (sourcenode a = m) (sourcenode axr = m)
tntra-kind (kind a)» unique
have o’ = a by(fastforce simp:intra-kind-def)
with (kind o’ = (\cf. False),) (slice-kind S a = kind a)
(preds (slice-kinds S (a#as)) s
have Fulse by(cases s)(auto simp:slice-kinds-def)
thus ?thesis by simp
next
case Fulse
with (kind ax = Q:r—pfs) (sourcenode a = m) (sourcenode ax = m)
have slice-kind S ax = (Acf. False):r—pfs
by (fastforce intro:slice-kind-Call)
with (as’ = ax # asv) preds (slice-kinds S as’) s’
have Fualse by(cases s')(auto simp:slice-kinds-def)
thus ?thesis by simp
qed
thus “thesis by simp
next
case (Return Q p f)

from «walid-edge ax) kind ax = Q<=pf> walid-edge a> <intra-kind (kind a))
(sourcenode a = m) (sourcenode ax = m)
have Fualse by —(drule return-edges-only,auto simp:intra-kind-def)
thus “thesis by simp
qed simp
with (same-level-path-auz cs as’ <as’ = ax#asz
have same-level-path-auz cs asz by(fastforce simp:intra-kind-def)
show ?thesis
proof(cases targetnode a = targetnode az)
case True
with (valid-edge a) (valid-edge ax) (sourcenode a = m) (sourcenode axr = m)
have a = az by(fastforce intro:edge-det)
with walid-edge a) <intra-kind (kind a)) (sourcenode a = m»
~V Verv S (CFG-node m). state-val s V = state-val s’ V)
(preds (slice-kinds S (a # as)) &
(preds (slice-kinds S as’) s" as’ = ax # asv)
have rv:¥ Verv S (CFG-node (targetnode a)).
state-val (transfer (slice-kind S a) s) V =
state-val (transfer (slice-kind S a) s') V
by —(rule rv-edge-slice-kinds,auto)
from (upd-cs cs (a # as) = [«ntra-kind (kind a)
have upd-cs cs as = [| by(fastforce simp:intra-kind-def)
from <targetnode ax —asz—x (-Low-)) (a = ax
have targetnode a —asz—* (-Low-) by simp
from <(walid-edge) tintra-kind (kind a)
obtain cfx
where cfz:transfer (slice-kind S a) s = cfr#cfs N snd cfr = snd cf
apply(cases cf)
apply(cases sourcenode a € | HRB-slice S| opq) apply auto
apply (fastforce dest:slice-intra-kind-in-slice simp:intra-kind-def)
apply (auto simp:intra-kind-def)
apply (drule slice-kind-Upd) apply auto
by (erule kind-Predicate-notin-slice-slice-kind-Predicate) auto
from (valid-edge a) (intra-kind (kind a))
obtain cfz’
where cfz"transfer (slice-kind S a) s’ = cfr'#cfs’ N snd cfx’ = snd cf’
apply(cases cf)
apply(cases sourcenode a € |HRB-slice S| opq) apply auto
apply (fastforce dest:slice-intra-kind-in-slice simp:intra-kind-def)
apply(auto simp:intra-kind-def)
apply (drule slice-kind-Upd) apply auto
by (erule kind-Predicate-notin-slice-slice-kind-Predicate) auto
with cfr Vi < Suc (length cs). snd (sli) = snd (si)
have snds:V i<Suc(length cs).
snd (transfer (slice-kind S a) s! i) =
snd (transfer (slice-kind S a) s’ ! i)
by auto(case-tac i,auto)
from rvs cfr cfr’ have rvs"V i<length cs.
VVerv S (CFG-node (sourcenode (cs! i))).

10

fst (transfer (slice-kind S a) s ! Suc i) V =
fst (transfer (slice-kind S a) s'! Suc i) V
by fastforce
from (preds (slice-kinds S (a # as)) &
have preds (slice-kinds S as)
(transfer (slice-kind S a) s) by (simp add:slice-kinds-def)
moreover
from <(preds (slice-kinds S as’) s’ <as’ = ax # asx> (@ = az
have preds (slice-kinds S asz) (transfer (slice-kind S a) s’)
by (simp add:slice-kinds-def)
moreover
from (valid-edge a) tintra-kind (kind a))
have length (transfer (slice-kind S a) s) = length s
by (cases sourcenode a € |HRB-slice S|cpq)
(auto dest:slice-intra-kind-in-slice slice-kind-Upd
elim:kind- Predicate-notin-slice-slice-kind-Predicate simp:intra-kind-def)
with dength s = Suc (length cs)
have length (transfer (slice-kind S a) s) = Suc (length cs)
by simp
moreover
from (a = ax) walid-edge @ intra-kind (kind a))
have length (transfer (slice-kind S a) s’) = length s’
by (cases sourcenode ax € | HRB-slice S| opq)
(auto dest:slice-intra-kind-in-slice slice-kind-Upd
elim:kind- Predicate-notin-slice-slice-kind-Predicate simp:intra-kind-def)
with dength s’ = Suc (length cs)
have length (transfer (slice-kind S a) s’) = Suc (length cs)
by simp
moreover
from [H[OF <upd-cs cs as = [«same-level-path-auz cs asz
V c€set c¢s. valid-edge ¢ targetnode a —as—+ (-Low-))
(targetnode a —aszx—* (-Low-)) rvs’ snds rv calculation]
(as’ = axr # asr) (@ = am
show ?thesis by (simp add:slice-kinds-def)
next
case Fulse
from Vi < Suc(length cs). snd (sli) = snd (si)
have snd (hd s) = snd (hd s') by(erule-tac x=0 in allE) fastforce
with (valid-edge a) (valid-edge ax) (sourcenode a = m)
(sourcenode ax = my (as’' = ax # asz) False
untra-kind (kind a) <intra-kind (kind az))
(preds (slice-kinds S (a # as)) &
(preds (slice-kinds S as’) s
& Verv S (CFG-node m). state-val s V = state-val s’ V"
(length s = Suc (length cs)) dength s’ = Suc (length cs)
have False by (fastforce introl:rv-branching-edges-slice-kinds-False|of a az))
thus “thesis by simp
qed
qed

11

qed
next
case (slpa-Call ¢s a as Q T p fs)
note IH = (\m as’ s s’.
[upd-cs (a # cs) as = [|; same-level-path-auz (a # cs) as’
YV ceset (a # cs). valid-edge ¢; m —as—x (-Low-); m —as'—x (-Low-);
Vi<length (a # c¢s). VY Verv S (CFG-node (sourcenode ((a # cs) ! 1))).
fst (s ! Suci) V= fst (s’ Suci) V;
Vi<Suc (length (a # cs)). snd (s ! i) = snd (s’ i);
VVery S (CFG-node m). state-val s V = state-val s’ V;
preds (slice-kinds S as) s; preds (slice-kinds S as’) s’
length s = Suc (length (a # cs)); length s’ = Suc (length (a # cs))]
= V VeUse (-Low-). state-val (transfers(slice-kinds S as) s) V =
state-val (transfers(slice-kinds S as’) s") V>
note rvs = ¥V i<length cs. Y Verv S (CFG-node (sourcenode (cs ! 1))).
fst (s ! Suci) V= fst (s'! Suci) V)
from (n —a # as—x* (-Low-)) have sourcenode a = m and valid-edge a
and targetnode a —as—x (-Low-) by (auto elim:path-split-Cons)
from vV ce€set cs. valid-edge ¢ (valid-edge a)
have V ceset (a # cs). valid-edge ¢ by simp
show ?case
proof(cases L = {})
case True with UseLow show ?thesis by simp
next
case Fulse
show ?thesis
proof(cases as’)
case Nil
with (m —as’—x (-Low-)) have m = (-Low-) by fastforce
with «walid-edge a) (sourcenode a = m) have targetnode a = (-Exit-)
by —(rule Ezit-successor-of-Low,simp+)
from Low-source-Exit-edge obtain a’ where valid-edge a’
and sourcenode o’ = (-Low-) and targetnode o’ = (-Euit-)
and kind o’ = (Xs. True) , by blast
from (walid-edge a) <sourcenode a = m) «<m = (-Low-)
(targetnode a = (-Ezit-)) (valid-edge o’ (sourcenode a’ = (-Low-))
(targetnode o' = (-Exit-))
have a = o’ by(fastforce dest:edge-det)
with kind o’ = (As. True),) have kind a = (\s. True),, by simp
with (targetnode a = (-Ezit-)) (targetnode a —as—* (-Low-))
have (-Low-) = (-Ezit-) by —(drule path-Ezit-source,auto)
with False have Fualse by —(drule Low-neq-Exit,simp)
thus ?thesis by simp
next
case (Cons az asz)
with (m —as’—x (-Low-)) have sourcenode ax = m and valid-edge azx
and targetnode ax —ast—+ (-Low-) by (auto elim:path-split-Cons)
from «preds (slice-kinds S (a # as)) &
obtain cf cfs where [simp]:s = cf #cfs by(cases s)(auto simp:slice-kinds-def)

12

from «preds (slice-kinds S as’) s" <as’ = ax # asz
obtain cf’ cfs’ where [simp]:s’ = c¢f "#cfs’
by (cases s’)(auto simp:slice-kinds-def)
have 3 Q r p fs. kind az = Q:r—pfs
proof(cases kind ax rule:edge-kind-cases)
case Intra
have Fulse
proof (cases sourcenode ax € |HRB-slice S| opq)
case True
with <ntra-kind (kind ax))
have slice-kind S ax = kind az
by —(rule slice-intra-kind-in-slice)
from (valid-edge a) (kind a = Q:r—pfs
have unique:3'a’. valid-edge a’ A sourcenode a’ = sourcenode a A
intra-kind(kind o) by (rule call-only-one-intra-edge)
from (valid-edge a> (kind a = Q:r—pfs) obtain z
where z € get-return-edges a by (fastforce dest:get-return-edge-call)
with (valid-edge a> obtain o’ where valid-edge o’
and sourcenode a' = sourcenode a and kind a’ = (Acf. False)
by (fastforce dest:call-return-node-edge)
with (walid-edge ax) (sourcenode ax = m) (sourcenode a = m)
tntra-kind (kind az)) unique
have o’ = ax by(fastforce simp:intra-kind-def)
with «kind o’ = (Acf. False) p
slice-kind S az = kind ax) (as’' = ax # asm
(preds (slice-kinds S as’) s"
have Fualse by (simp add:slice-kinds-def)
thus ?thesis by simp
next
case Fulse
with (kind a = Q:r—=pfs) (sourcenode ax = m) (sourcenode a = m)
have slice-kind S a = (Acf. False):r—pfs
by (fastforce intro:slice-kind-Call)
with (preds (slice-kinds S (a # as)) s
have Fualse by (simp add:slice-kinds-def)
thus ?thesis by simp
qged
thus ?thesis by simp
next
case (Return Q' p' f)
from (valid-edge ax) kind ax = Q’<—°p/f " (walid-edge a) kind a = Q:r—pfs
(sourcenode a = m) (sourcenode ar = m)
have False by —(drule return-edges-only,auto)
thus ?thesis by simp
qed simp
have sourcenode a € |HRB-slice S| opq
proof (rule ccontr)
assume sourcenode a ¢ |HRB-slice S| opq
from this <kind a = Q:r—pfs

13

have slice-kind S a = (Acf. False):r—pfs
by (rule slice-kind-Call)
with preds (slice-kinds S (a # as)) s
show False by (simp add:slice-kinds-def)
qed
with (preds (slice-kinds S (a # as)) & (kind a = Q:r—pfs)
have pred (kind a) s
by (fastforce dest:slice-kind-Call-in-slice simp:slice-kinds-def)
from «sourcenode a € | HRB-slice S| opq
(sourcenode a = m) (sourcenode axr = m)
have sourcenode ax € | HRB-slice S|opq by simp
with (as’ = ax # asv) (preds (slice-kinds S as’) s’
3Q rpfs. kind ax = Q:r—pfs
have pred (kind az) s’
by (fastforce dest:slice-kind-Call-in-slice simp:slice-kinds-def)
{ fix V assume V € Use (sourcenode a)
from (valid-edge a) have sourcenode a —[]—,* sourcenode a
by (fastforce intro:empty-path simp:intra-path-def)
with (sourcenode a € | HRB-slice S| cpc
walid-edge a) (V€ Use (sourcenode a)
have V € rv S (CFG-node (sourcenode a))
by (auto introl:rvl CFG-Use-SDG-Use simp:SDG-to- CFG-set-def sourcenodes-def)

with vV Verv § (CFG-node m). state-val s V = state-val s’ V)
(sourcenode a = m)
have Use:V V € Use (sourcenode a). state-val s V = state-val s’ V by simp
from «Vi<Suc (length cs). snd (s ! i) = snd (s’ ! i)
have snd (hd s) = snd (hd s') by fastforce
with (valid-edge a) (kind o = Q:r—pfs) walid-edge az)
JQ rpfs. kind ax = Q:r—pfs) (sourcenode a = m) (sourcenode ax = m)
(pred (kind a) s» (pred (kind ax) s" Use dength s = Suc (length cs)
dength s’ = Suc (length cs))
have [simp]:az = a by(fastforce intro!: CFG-equal-Use-equal-call)
from (same-level-path-auz cs as’ <as’ = az#asw) kind a = Q:r—pfs)
dQ rpfs. kind ax = Q:r—pfs
have same-level-path-aux (a # cs) asz by simp
from (targetnode ax —aszx—* (-Low-)) have targetnode a —asx—* (-Low-)
by simp
from kind a = Q:r—pfs) wupd-cs cs (a # as) = [
have upd-cs (a # c¢s) as = [| by simp
from (sourcenode a € [HRB-slice S|opq kind a = Q:r—pfs
have slice-kind:slice-kind S a =
Q:r—p(cspp (targetnode a) (HRB-slice S) fs)
by (rule slice-kind-Call-in-slice)
from Vi<Suc (length cs). snd (s ! i) = snd (s'! i) slice-kind
have snds:V i<Suc (length (a # cs)).
snd (transfer (slice-kind S a) s! i) =
snd (transfer (slice-kind S a) s'! 1)
by auto(case-tac i,auto)

14

from <valid-edge a) <kind a = @Q:r—pfs) obtain ins outs
where (p,ins,outs) € set procs by(fastforce dest!:callee-in-procs)
with (valid-edge a) (kind o = Q:r—=pfs
have length (ParamUses (sourcenode a)) = length ins
by (fastforce intro: ParamUses-call-source-length)
with (walid-edge
have Vi < length ins. YV € (ParamUses (sourcenode a))li. V € Use
(sourcenode a)
by (fastforce intro: ParamUses-in-Use)
with vV V € Use (sourcenode a). state-val s V = state-val s’ V)
have Vi < length ins. V'V € (ParamUses (sourcenode a))i.
state-val s V = state-val 8" V
by fastforce
with walid-edge a) kind a = Q:r—pfs) (p,ins,outs) € set procs
(pred (kind a) s pred (kind az) s
have Vi < length ins. (params fs (fst (hd $)))'i = (params fs (fst (hd s')))\i
by (fastforce intro!: CFG-call-edge-params)
from walid-edge a) kind a = Q:r—pfs) «(p,ins,outs) € set procs
have length fs = length ins by (rule CFG-call-edge-length)
{ fix i assume i < length fs
with (ength fs = length ins) have i < length ins by simp
from « < length fs) have (params fs (fst ¢f))li = (fs!i) (fst ¢f)
by (rule params-nth)
moreover
from (i < length fs) have (params fs (fst ¢f)i = (fsli) (fst ¢f ")
by (rule params-nth)
ultimately have (fs!i) (fst (hd s)) = (fs!i) (fst (hd s"))
using « < length ins
i < length ins. (params fs (fst (hd s)))\i = (params fs (fst (hd "))l
by simp }
hence Vi < length fs. (fs ! i) (fst ¢f) = (fs ! i) (fst ¢f’) by simp
{ fix i assume i < length fs
with Vi < length fs. (fs ! 4) (fst ¢f) = (fs ! i) (fst cf ")
have (fs ! 1) (fst ¢f) = (fs ! i) (fst ¢f’) by simp
have ((csppa (targetnode a) (HRB-slice S) 0 fs)li)(fst cf) =
((csppa (targetnode a) (HRB-slice S) 0 fs)1i)(fst cf ")
proof(cases Formal-in(targetnode a,i + 0) € HRB-slice S)
case True
with « < length fs)
have (csppa (targetnode a) (HRB-slice S) 0 fs)li = fsli
by (rule csppa-Formal-in-in-slice)
with «(fs !) (fst ¢f) = (fs ! i) (fst ¢f’)) show ?thesis by simp
next
case Fulse
with « < length fs)
have (csppa (targetnode a) (HRB-slice S) 0 fs)li = empty
by (rule csppa-Formal-in-notin-slice)
thus ?thesis by simp
qed }

15

hence eq:Vi < length fs.
((cspp (targetnode a) (HRB-slice S) fs)li)(fst cf) =
((espp (targetnode a) (HRB-slice S) fs)li)(fst cf’)
by (simp add:cspp-def)
{ fix i assume i < length fs
hence (params (cspp (targetnode a) (HRB-slice S) fs)
(Jst ef)li =
((cspp (targetnode a) (HRB-slice S) fs)li)(fst cf)
by (fastforce intro:params-nth)
moreover
from « < length fs)
have (params (cspp (targetnode a) (HRB-slice S) fs)
(fst of)i =
((cspp (targetnode a) (HRB-slice S) fs)\i)(fst cf’)
by (fastforce intro:params-nth)
ultimately
have (params (cspp (targetnode a) (HRB-slice S) fs)
(fst ef))li =
(params (cspp (targetnode a) (HRB-slice S) fs)(fst ¢f)i
using eq < < length fs) by simp }
hence params (cspp (targetnode o) (HRB-slice S) fs)(fst ¢f) =
params (cspp (targetnode a) (HRB-slice S) fs)(fst cf)
by (simp add:list-eq-iff-nth-eq)
with slice-kind (p,ins,outs) € set procs
obtain cfx where [simp]:
transfer (slice-kind S a) (cf#cfs) = cfr#tcf#cfs
transfer (slice-kind S a) (cf '#cfs’) = cfr#cf #cfs’
by auto
hence rv:V Verv S (CFG-node (targetnode a)).
state-val (transfer (slice-kind S a) s) V =
state-val (transfer (slice-kind S a) s’) V by simp
from rvs vV Verv S (CFG-node m). state-val s V = state-val s’ V)
(sourcenode a = m)
have rvs"Vi<length (a # cs).
VVerv S (CFG-node (sourcenode ((a # cs) ! 1))).
fst ((transfer (slice-kind S a) s) ! Suc i) V =
fst ((transfer (slice-kind S a) s’) ! Suc i) V
by auto(case-tac i,auto)
from «preds (slice-kinds S (a # as)) s
have preds (slice-kinds S as)
(transfer (slice-kind S a) s) by(simp add:slice-kinds-def)
moreover
from (preds (slice-kinds S as’) s" <as’ = arasv
have preds (slice-kinds S asz)
(transfer (slice-kind S a) s") by(simp add:slice-kinds-def)
moreover
from ength s = Suc (length cs)
have length (transfer (slice-kind S a) s) =
Suc (length (a # cs)) by simp

16

moreover
from dength s’ = Suc (length cs)
have length (transfer (slice-kind S a) s’) =
Suc (length (a # cs)) by simp
moreover
from IH[OF <upd-cs (a # cs) as = [same-level-path-auz (a # cs) asv
/ c€set (a # cs). valid-edge ¢ <targetnode a —as—* (-Low-))
(targetnode a —asz—* (-Low-)) rvs’ snds rv calculation] (as’ = ax#asz
show %thesis by(simp add:slice-kinds-def)
qed
qed
next
case (slpa-Return cs a as Q p f ¢’ cs’)
note TH = (\m as’ s s'. Jupd-cs cs’ as = [|; same-level-path-auz cs’ as’;
Y ceset cs'. valid-edge c; m —as—x (-Low-); m —as’—x (-Low-);
Vi<length cs’. ¥V Verv S (CFG-node (sourcenode (¢s'! 1))).
fst (s ! Suci) V= fst (s'! Suci) V;
Vi<Suc (length cs’). snd (s i) = snd (s'!i);
VVery S (CFG-node m). state-val s V = state-val s’ V;
preds (slice-kinds S as) s; preds (slice-kinds S as’) s';
length s = Suc (length cs’); length s’ = Suc (length cs”)]
= V VeUse (-Low-). state-val (transfers(slice-kinds S as) s) V =
state-val (transfers(slice-kinds S as’) s’) V»
note rvs = « Vi<length ¢s. ¥ Verv S (CFG-node (sourcenode (cs ! i))).
fst (s ! Suci) V= fst (s'! Suci) V>
from (m —a # as—x* (-Low-)) have sourcenode a = m and wvalid-edge a
and targetnode a —as—x (-Low-) by (auto elim:path-split-Cons)
from <V ceset cs. valid-edge ¢ <cs = ¢’ # csh
have valid-edge ¢’ and V ce€set cs’. valid-edge ¢ by simp-all
show Zcase
proof(cases L = {})
case True with UseLow show ?thesis by simp
next
case Fulse
show ?thesis
proof(cases as’)
case Nil
with «m —as’—x (-Low-)) have m = (-Low-) by fastforce
with (walid-edge a) (sourcenode a = m) have targetnode a = (-Ewit-)
by —(rule Ezit-successor-of-Low,simp+)
from Low-source-Exit-edge obtain a’ where valid-edge a’
and sourcenode a’ = (-Low-) and targetnode o’ = (-Exit-)
and kind a’ = (As. True) , by blast
from (valid-edge a) <sourcenode a = m) ¢<m = (-Low-))
(targetnode a = (-Ezit-)) walid-edge a’ (sourcenode a’ = (-Low-))
(targetnode o' = (-Exit-))
have a = o’ by(fastforce dest:edge-det)
with kind o’ = (Xs. True),» have kind a = (\s. True),, by simp
with (targetnode a = (-Exit-)) targetnode a —as—x (-Low-)

17

have (-Low-) = (-Ezit-) by —(drule path-Ezit-source,auto)
with Fualse have False by —(drule Low-neq-Exit,simp)
thus ?thesis by simp
next
case (Cons azr ast)
with (m —as’—x (-Low-)) have sourcenode ax = m and valid-edge ax
and targetnode ax —asz—* (-Low-) by(auto elim:path-split-Cons)
from (valid-edge a) (valid-edge ax) (kind a = Q<pf)
(sourcenode a = m) (sourcenode ax = m)
have 3 Q f. kind ax = Q<«pf by(auto dest:return-edges-only)
with (same-level-path-auz cs as’ (as’ = ar#asr) (cs = ¢’ # csh
have azx € get-return-edges ¢’ and same-level-path-auz cs’ asx by auto
from (walid-edge ¢’ <ax € get-return-edges ¢’ <a € get-return-edges ¢’
have [simp]:az = a by(rule get-return-edges-unique)
from (targetnode ax —asx—* (-Low-)) have targetnode a —asx—* (-Low-)
by simp
from (upd-cs cs (a # as) = [} kind a = Q«>pf> <cs = ¢’ # csh
(a € get-return-edges c"
have upd-cs ¢s’ as = [| by simp
from dength s = Suc (length cs)) «cs = ¢’ # csh
obtain cf cfr cfs where s = cf#cfr#cfs
by (cases s,auto,case-tac list,fastforce+)
from dength s’ = Suc (length cs)) <cs = ¢’ # cs)
obtain cf’ cfr’ cfs’ where s’ = cf '#cfr'#cfs’
by (cases s’,auto,case-tac list,fastforce+)
from rvs <cs = ¢’ # csh s = cfF#cfrHcfs) 8" = cf 'H#cfr'#cfsh
have rvs1:Vi<length cs’.
VVerv S (CFG-node (sourcenode (cs'! 1))).
fst ((cfx#cfs) ! Suc i) V = fst ((cfx'#cfs") ! Suci) V
and V Verv S (CFG-node (sourcenode c')).
(fst cfx) V = (fst cfz’) V
by auto
from (valid-edge ¢’ (a € get-return-edges ¢
obtain Qz rz px fsz where kind ¢’ = Qu:rz— pgfsc
by (fastforce dest!:only-call-get-return-edges)
have VV € rv S (CFG-node (targetnode a)).
V € rv S (CFG-node (sourcenode c¢'))
proof
fix V assume V € rv S (CFG-node (targetnode a))
from (valid-edge c’ (a € get-return-edges c”
obtain a’ where edge:valid-edge a’ sourcenode a’ = sourcenode ¢’
targetnode a’ = targetnode a intra-kind (kind a”)
by —(drule call-return-node-edge,auto simp:intra-kind-def)
from (V € rv S (CFG-node (targetnode a))
obtain as n’ where targetnode a —as— * parent-node n'
and n’ € HRB-slice S and V € Usegpg n'
and all:Vn". valid-SDG-node n"" A parent-node n'' € set (sourcenodes as)

— V & Def gpg n'' by(fastforce elim:rvE)

18

{

from (targetnode a —as— * parent-node n') edge
have sourcenode ¢’ —a'#as—,* parent-node n’
by (fastforce intro: Cons-path simp:intra-path-def)
from (wvalid-edge ¢’ kind ¢’ = Qr:rr— pzfsz) have Def (sourcenode c’) =

by (rule call-source-Def-empty)
hence Vn'". valid-SDG-node n'' A\ parent-node n'' = sourcenode ¢’
— V ¢ Def gpq n”' by(fastforce dest:SDG-Def-parent-Def)
with all (sourcenode a’ = sourcenode ¢’
have V n'’. valid-SDG-node n'' A\ parent-node n'' € set (sourcenodes (a'#as))

— V & Def gpa n'' by(fastforce simp:sourcenodes-def)
with (sourcenode ¢’ —a'#as—,* parent-node n'
' € HRB-slice S) (V € Usegpg nh
show V € rv S (CFG-node (sourcenode c¢'))
by (fastforce intro:rvl)
qed
show ?thesis
proof(cases sourcenode a € | HRB-slice S| opq)
case True
from (valid-edge c’ (a € get-return-edges c’
have get-proc (targetnode ¢’) = get-proc (sourcenode a)
by —(drule intra-proc-additional-edge,
auto dest:get-proc-intra simp:intra-kind-def)
moreover
from (wvalid-edge ¢’ kind ¢’ = Qu:rr—pgfsr)
have get-proc (targetnode ¢’) = pz by (rule get-proc-call)
moreover
from walid-edge a) kind a = Q<«pf>
have get-proc (sourcenode a) = p by(rule get-proc-return)
ultimately have [simp]:pz = p by simp
from (valid-edge ¢’ kind ¢’ = Qu:rz—pgfsr)
obtain ins outs where (p,ins,outs) € set procs
by (fastforce dest!:callee-in-procs)
with (sourcenode a € | HRB-slice S| cpq
walid-edge @ (kind a = Q<>pf)
have slice-kind:slice-kind S a =
Qp(Xcf cf. rspp (targetnode a) (HRB-slice S) outs cf’ cf)
by (rule slice-kind-Return-in-slice)
with (s = cf#cfr#cfs) s’ = cf "#cfr'H#cfs)
have sz:transfer (slice-kind S a) s =
(rspp (targetnode a) (HRB-slice S) outs (fst cfx) (fst cf),
snd cfx)#cfs
and sz transfer (slice-kind S a) s’ =
(rspp (targetnode a) (HRB-slice S) outs (fst cfz’) (fst cf),
snd cfz)#cfs’
by simp-all
with rvs! have rvs”Vi<length cs’.
VVerv S (CFG-node (sourcenode (cs'! i))).

19

cSh

fst ((transfer (slice-kind S a) s) ! Suc i) V =
fst ((transfer (slice-kind S a) s') ! Suc i) V
by fastforce

from slice-kind ~Vi<Suc (length cs). snd (s ! i) = snd (s' i) <cs = ¢’ #

(s = cf#cfztcfs) s' = cf 'H#cfr'#cfsh
have snds:V i<Suc (length cs’).
snd (transfer (slice-kind S a) s! i) =
snd (transfer (slice-kind S a) s'! 1)
apply auto apply(case-tac i) apply auto
by (erule-tac z=Suc (Suc nat) in allE) auto
have V Verv S (CFG-node (targetnode a)).
(rspp (targetnode a) (HRB-slice S) outs
st cfr) (fst cf) V =
(rspp (targetnode a) (HRB-slice S) outs
(fst cfz”) (fst cf) V
proof
fix V assume V € rv S (CFG-node (targetnode a))
show (rspp (targetnode a) (HRB-slice S) outs
(fst cfe) (fot f)) V =
(rspp (targetnode a) (HRB-slice S) outs
(fst cfz”) (fst cf) V
proof(cases V € set (ParamDefs (targetnode a)))
case True
then obtain i where i < length (ParamDefs (targetnode a))
and (ParamDefs (targetnode a))li = V
by (fastforce simp:in-set-conv-nth)
from «walid-edge a) kind a = Q<«=pf) (p,ins,outs) € set procs
have length(ParamDefs (targetnode a)) = length outs
by (fastforce intro: ParamDefs-return-target-length)
show ?%thesis
proof(cases Actual-out(targetnode a,i) € HRB-slice S)
case True
with « < length (ParamDefs (targetnode a))) (valid-edge a)
(ength(ParamDefs (targetnode a)) = length outs)
((ParamDefs (targetnode a))li = V)[THEN sym]
have rspp-eq:(rspp (targetnode a)
(HRB-slice S) outs (fst cfr) (fst ¢f)) V =
(fst cf)(outs!i)
(rspp (targetnode a)
(HRB-slice S) outs (fst cfr’) (fst ¢f)) V =
(fst cf ") (outs'i)
by (auto intro:rspp-Actual-out-in-slice)
from «walid-edge a) kind a = Q<«=pf) (p,ins,outs) € set procs
haveV V € set outs. V € Use (sourcenode a) by (fastforce dest:outs-in-Use)
have V V' € Use (sourcenode a). V € rv S (CFG-node m)
proof
fix V assume V € Use (sourcenode a)
from <wvalid-edge a) (sourcenode a = m)

20

have parent-node (CFG-node m) —[|—,* parent-node (CFG-node m)
by (fastforce intro:empty-path simp:intra-path-def)
with (sourcenode a € | HRB-slice S| opq
(V€ Use (sourcenode a)) (sourcenode a = m) (valid-edge a)
show V € rv § (CFG-node m)
by —(rule rvl,
auto introl: CFG-Use-SDG-Use simp:SDG-to-CFG-set-def
sourcenodes-def)
qed
with Vv V € set outs. V € Use (sourcenode a))
have VV € set outs. V € rv S (CFG-node m) by simp
with v Verv S (CFG-node m). state-val s V = state-val s’ V)
(s = cf Fcfr#cfs) 8" = cf '#cfr'H#Hcfs)
have VV € set outs. (fst ¢f) V = (fst ¢f’) V by simp
with « < length (ParamDefs (targetnode a))»
dength(ParamDefs (targetnode a)) = length outs)
have (fst cf)(outs!i) = (fst cf ") (outs!i) by fastforce
with rspp-eq show ?thesis by simp
next
case Fulse
with ¢ < length (ParamDefs (targetnode a))) (walid-edge a)
dength(ParamDefs (targetnode a)) = length outs)
((ParamDefs (targetnode a))li = V)[THEN sym]
have rspp-eq:(rspp (targetnode a)
(HRB-slice S) outs (fst cfr) (fst ¢f)) V =
(fst cfz)((ParamDefs (targetnode a))i
(rspp (targetnode a)
(HRB-slice S) outs (fst cfr') (fst ¢f)) V =
(fst cfz”)((ParamDefs (targetnode a))'i)
by (auto intro:rspp-Actual-out-notin-slice)
from V Verv S (CFG-node (sourcenode c’)).
(fst cfr) V = (fst ¢fz’) V>
(V€ rv S (CFG-node (targetnode a)))
V'V e rvS (CFG-node (targetnode a)).
V € rv S (CFG-node (sourcenode c¢'))
((ParamDefs (targetnode a))li = V)[THEN sym]
have (fst cfr) (ParamDefs (targetnode a) ! i) =
(fst cfx’) (ParamDefs (targetnode a) ! i) by fastforce
with rspp-eq show ?thesis by fastforce
qed
next
case Fulse
with v Verv S (CFG-node (sourcenode c’)).
(fst cfx) V = (fst cfz’) V)
(V€ rv S (CFG-node (targetnode a))
V'V e rvS (CFG-node (targetnode a)).
V € rv S (CFG-node (sourcenode ¢')))
show ?thesis by (fastforce simp:rspp-def map-merge-def)
qed

21

qged
with sz sz’
have "V Verv S (CFG-node (targetnode a)).
state-val (transfer (slice-kind S a) s) V =
state-val (transfer (slice-kind S a) s') V
by fastforce
from (preds (slice-kinds S (a # as)) $
have preds (slice-kinds S as)
(transfer (slice-kind S a) s)
by (simp add:slice-kinds-def)
moreover
from «(preds (slice-kinds S as’) s’ <as’ = ar#asz
have preds (slice-kinds S asz)
(transfer (slice-kind S a) s')
by (simp add:slice-kinds-def)
moreover
from <length s = Suc (length cs)) «cs = ¢’ # cs sz
have length (transfer (slice-kind S a) s) = Suc (length cs’)
by (simp,simp add:(s = cf #cfr#cfs)
moreover
from <length s’ = Suc (length cs)) «cs = ¢’ # csh sz’
have length (transfer (slice-kind S a) s’) = Suc (length cs’)
by (simp,simp add:s’ = cf "#cfr'#cfsh)
moreover
from [H[OF <upd-cs cs’ as = [(same-level-path-auz cs' asz)
V ceset c¢s'. valid-edge ¢ <targetnode a —as—x (-Low-)
(targetnode a —asx—* (-Low-)) rvs’ snds v’ calculation] <as’ = ax#asx
show ?thesis by (simp add:slice-kinds-def)
next
case Fulse
from this <kind a = Q<pf>
have slice-kind:slice-kind S a = (Acf. True)=p(Acf cf . cf’)
by (rule slice-kind-Return)
with (s = cf#cfr#cfs) s’ = cf "#cfr'H#cfs)
have [simp]:transfer (slice-kind S a) s = cfx#cfs
transfer (slice-kind S a) s’ = cfx'#cfs’ by simp-all
from slice-kind ~Vi<Suc (length cs). snd (s i) = snd (s’ ! i)
(cs = ¢’ # csh s = cf #cfrHcfs) s = cf "#cfr'Hcfsh
have snds:V i<Suc (length cs’).
snd (transfer (slice-kind S a) s! i) =
snd (transfer (slice-kind S a) s’ ! i) by fastforce
from rvs! have rvs”Vi<length cs’.
VVerv S (CFG-node (sourcenode (cs'! i))).
fst ((transfer (slice-kind S a) s) ! Suc i) V =
fst ((transfer (slice-kind S a) s') ! Suc i) V
by fastforce
from VV € rv S (CFG-node (targetnode a)).
V e rv S (CFG-node (sourcenode ¢'))
& Verv S (CFG-node (sourcenode c')).

22

(fst cfr) V = (fst cfz’) V>

have "V Verv S (CFG-node (targetnode a)).
state-val (transfer (slice-kind S a) s) V =
state-val (transfer (slice-kind S a) s’) V by simp

from (preds (slice-kinds S (a # as)) &

have preds (slice-kinds S as)
(transfer (slice-kind S a) s)
by (simp add:slice-kinds-def)

moreover

from (preds (slice-kinds S as’) 8" <as’ = axftasz

have preds (slice-kinds S asx)
(transfer (slice-kind S a) s')
by (simp add:slice-kinds-def)

moreover

from <length s = Suc (length cs)) <cs = ¢’ # csh

have length (transfer (slice-kind S a) s) = Suc (length cs’)
by (simp,simp add:(s = cf #cfr#cfs)

moreover

from <length s’ = Suc (length cs)) «cs = ¢’ # csh

have length (transfer (slice-kind S a) s') = Suc (length cs’)
by (simp,simp add:<s’ = cf "#cfr'#cfsh)

moreover

from IH[OF (upd-cs cs’ as = []» (same-level-path-aux cs’ asz)
V ceset cs'. valid-edge ¢) <targetnode a —as—x (-Low-)
(targetnode a —asz—* (-Low-)) rvs’ snds rv’ calculation) <as’ = ax#tasm)

show ?thesis by (simp add:slice-kinds-def)

qed
qed
qed
qed

lemma rv-Low-Use-Low:
assumes m —as— * (-Low-) and m —as'— /% (-Low-) and get-proc m = Main
andVV € rv§ (CFG-node m). ¢f V.=cf' V
and preds (slice-kinds S as) [(cf ,undefined)]
and preds (slice-kinds S as’) [(cf’;undefined))
and CFG-node (-Low-) € S
shows VV € Use (-Low-).
state-val (transfers(slice-kinds S as) [(cf,undefined)]) V =
state-val (transfers(slice-kinds S as’) [(¢f',undefined)]) V
proof(cases as)
case Nil
with (m —as— /* (-Low-)) have valid-node m and m = (-Low-)
by (auto intro:path-valid-node simp:vp-def)
{ fix V assume V € Use (-Low-)
moreover
from (walid-node m) «m = (-Low-)» have (-Low-) —[|—,* (-Low-)
by (fastforce intro:empty-path simp:intra-path-def)

23

moreover
from (wvalid-node m) «m = (-Low-)) (CFG-node (-Low-) € S
have CFG-node (-Low-) € HRB-slice S
by (fastforce intro: HRB-slice-refl)
ultimately have V € rv S (CFG-node m) using (m = (-Low-))
by (auto introl:rvl CFG-Use-SDG-Use simp:sourcenodes-def) }
hence VV € Use (-Low-). V € rv S (CFG-node m) by simp
show ?thesis
proof(cases L = {})
case True with UseLow show ?thesis by simp
next
case Fulse
from «m —as’— ,x (-Low-)) have m —as'—x (-Low-) by(simp add:vp-def)
from (m —as’—x (-Low-)) ¢<m = (-Low-)) have as’ = ||
proof (induct m as’ m'=(-Low-) rule:path.induct)
case (Cons-path m'" as a m)
from (valid-edge a) <sourcenode a = m) ¢<m = (-Low-))
have targetnode a = (-Ezit-) by —(rule Ezit-successor-of-Low,simp+)
with «targetnode a = m’y «m’”’ —as—x* (-Low-)
have (-Low-) = (-Ezit-) by —(drule path-Ezit-source,auto)
with False have Fualse by —(drule Low-neq-Exit,simp)
thus ?case by simp
qed simp
with Nil ¥V € rv S (CFG-node m). ¢f V.= ¢f’ V)
N~V e Use (-Low-). V € rv S (CFG-node m)
show ?thesis by (fastforce simp:slice-kinds-def)
qed
next
case (Cons az asr)
with «m —as— /* (-Low-)) have sourcenode ax = m and wvalid-edge ax
and targetnode ar —asz—* (-Low-)
by (auto elim:path-split-Cons simp:vp-def)
show ?thesis
proof(cases L = {})
case True with UseLow show ?thesis by simp
next
case False
show ?thesis
proof(cases as’)
case Nil
with «m —as’— /x (-Low-)) have m = (-Low-) by (fastforce simp:vp-def)
with walid-edge ax) (sourcenode ax = m) have targetnode ax = (-Exit-)
by —(rule Erit-successor-of-Low,simp+)
from Low-source-Exit-edge obtain a’ where valid-edge a’
and sourcenode a’ = (-Low-) and targetnode a’ = (-Ezit-)
and kind a’ = (Xs. True) , by blast
from walid-edge ax) (sourcenode ax = m) «m = (-Low-)
(targetnode ax = (-Ezit-)y walid-edge a”y (sourcenode o’ = (-Low-))
(targetnode o' = (-Exit-))

24

have az = a’ by(fastforce dest:edge-det)
with (kind o’ = (Xs. True),, have kind ax = (Xs. True),, by simp
with (targetnode ax = (-Ezit-)) <targetnode ax —asx—* (-Low-))
have (-Low-) = (-Ezit-) by —(drule path-Ezit-source,auto)
with Fualse have False by —(drule Low-neq-Ezit,simp)
thus ?thesis by simp
next
case (Cons az’ asz’)
from on —as— /x (-Low-)) have valid-path-auz [| as and m —as—* (-Low-)
by (simp-all add:vp-def valid-path-def)
from this <as = axF#asz) (get-proc m = Main)
have same-level-path-aux || as A upd-cs [| as = []
by —(rule vpa-Main-slpa[of - - m (-Low-)],
(fastforce introl:get-proc-Low simp:valid-call-list-def)+)
hence same-level-path-auz || as and upd-cs || as = [| by simp-all
from (m —as'— /* (-Low-)) have valid-path-auz || as’and m —as'—* (-Low-)
by (simp-all add:vp-def valid-path-def)
from this <as’ = az'#asz’ (get-proc m = Main)
have same-level-path-aux [| as’ A upd-cs [| as’ = ||
by —(rule vpa-Main-slpalof - - m (-Low-)],
(fastforce intro!:get-proc-Low simp:valid-call-list-def)+)
hence same-level-path-auz [| as’ by simp
from (same-level-path-auz [as) «upd-cs || as = [
(same-level-path-auz [as’ «m —as—+ (-Low-)) (m —as’—* (-Low-)
NV ervS (CFG-node m). ¢f V= c¢f’ V> (CFG-node (-Low-) € S
(preds (slice-kinds S as) [(cf ,undefined))
(preds (slice-kinds S as’) [(cf',undefined)]
show %thesis by —(erule slpa-rv-Low-Use-Low,auto)
qed
qed
qed

lemma nonlnterference-path-to-Low:
assumes [¢f| ~1, [¢f'] and (-High-) ¢ |HRB-slice S| opa
and CFG-node (-Low-) € S
and (-Entry-) —as— /% (-Low-) and preds (kinds as) [(cf,undefined)]
and (-Entry-) —as'— /x (-Low-) and preds (kinds as’) [(cf',undefined)]
shows map fst (transfers (kinds as) [(cf ,undefined)]) ~p,
map fst (transfers (kinds as’) [(cf ';undefined)])
proof —
from «(-Entry-) —as— x (-Low-)) preds (kinds as) [(cf,undefined)]
(CFG-node (-Low-) € S
obtain asz where preds (slice-kinds S asz) [(cf ,undefined)]
and V'V € Use (-Low-).
state-val (transfers (slice-kinds S asz) [(cf ,undefined)]) V =
state-val (transfers (kinds as) [(cf,undefined)]) V
and slice-edges S [| as = slice-edges S [| asz

25

and transfers (kinds as) [(cf ,undefined)] # |]
and (-Entry-) —asz— /% (-Low-)
by (erule fundamental-property-of-static-slicing)

from «(-Entry-) —as'— s* (-Low-)) (preds (kinds as’) [(cf',undefined)]
(CFG-node (-Low-) € S

obtain asz’ where preds (slice-kinds S asz’) [(¢f ;undefined))
and V'V € Use (-Low-).
state-val (transfers(slice-kinds S asz’) [(c¢f ,undefined)]) V =
state-val (transfers(kinds as’) [(c¢f’,undefined)]) V
and slice-edges S [] as’ =
slice-edges S [asz’
and transfers (kinds as’) [(cf',undefined)] # ||
and (-Entry-) —asz'— % (-Low-)
by (erule fundamental-property-of-static-slicing)

from (cf] =y [¢f] «(-High-) ¢ | HRB-slice S| cpa

have VV € rv § (CFG-node (-Entry-)). ¢f V. = ¢f' V
by (fastforce dest:lowFEquivalence-relevant-nodes-Entry)

with «(-Entry-) —asz — ,*(-Low-)) «(-Entry-) —asz'— s+ (-Low-)
(CFG-node (-Low-) € S) «preds (slice-kinds S asz) [(cf ,undefined))
(preds (slice-kinds S asz”) [(cf',undefined)]

have YV € Use (-Low-).
state-val (transfers(slice-kinds S asx) [(cf ,undefined)]) V =
state-val (transfers(slice-kinds S asz’) [(¢f',undefined)]) V
by —(rule rv-Low-Use-Low,auto intro:get-proc-Entry)

with V V € Use (-Low-).
state-val (transfers (slice-kinds S asz) [(cf ,undefined)]) V =
state-val (transfers (kinds as) [(cf,undefined)]) V>
'V € Use (-Low-).
state-val (transfers(slice-kinds S asz’) [(¢f ’,undefined)]) V =
state-val (transfers(kinds as’) [(c¢f’,undefined)]) V>
(transfers (kinds as) [(cf ,undefined)] # [
(transfers (kinds as’) [(cf',undefined)] # [

show ?thesis by (fastforce simp:lowEquivalence-def UseLow negq-Nil-conv)

qed

theorem nonlinterference-path:
assumes [¢f] ~r, [cf'] and (-High-) ¢ |HRB-slice S| ora
and CFG-node (-Low-) € S
and (-Entry-) —as— s+ (-Ezit-) and preds (kinds as) [(cf ,undefined)]
and (-Entry-) —as'— s (-Ezit-) and preds (kinds as’) [(cf',undefined)]
shows map fst (transfers (kinds as) [(cf ,undefined)]) =y,
map fst (transfers (kinds as’) [(cf';undefined)])
proof —
from ((-Entry-) —as— s (-Ezit-)) obtain z s where as = z# s
and (-Entry-) = sourcenode z and valid-edge x
and targetnode © —xs—* (-Exit-)

apply(cases as = [])
apply (clarsimp simp:vp-def ,drule empty-path-nodes,drule Entry-noteq-Ezit,simp)

26

by (fastforce elim:path-split-Cons simp:vp-def)
from («(-Entry-) —as— s (-Ezit-)) have valid-path as by (simp add:vp-def)
from (wvalid-edge z) have valid-node (targetnode x) by simp
hence inner-node (targetnode)
proof(cases rule:valid-node-cases)
case Entry
with (walid-edge z) have False by (rule Entry-target)
thus ?thesis by simp
next
case Exit
with (targetnode ¥ —xs—x* (-Ezit-)) have zs = []
by —(drule path-Ezit-source,auto)
from FEntry-Ezit-edge obtain z where valid-edge z
and sourcenode z = (-Entry-) and targetnode z = (-Ewxit-)
and kind z = (Xs. False),, by blast
from (walid-edge) valid-edge 2) «(-Entry-) = sourcenode x)
(sourcenode z = (-Entry-)) Ezit (targetnode z = (-Exit-))
have = = z by(fastforce intro:edge-det)
with (preds (kinds as) [(c¢f,undefined)]) <as = z#xs) s = [
tkind z = (As. False)
have False by (simp add:kinds-def)
thus ?thesis by simp
qged simp
with (targetnode x —xs—+* (-Ezit-)) obtain z’ zs’ where zs = zs'Q[z]
and targetnode x —xs'—* (-Low-) and kind " = (Xs. True),,
by (fastforce elim: Exit-path-Low-path)
with «(-Entry-) = sourcenode) walid-edge x)
have (-Entry-) —z#axs'—x (-Low-) by(fastforce intro: Cons-path)
from (wvalid-path as) (as = x#zs) s = zs'Q[z')
have valid-path (z#tzs’)
by (simp add:valid-path-def del:valid-path-aux.simps)
(rule valid-path-auz-split,simp)
with «(-Entry-) —z#xs’—+ (-Low-)) have (-Entry-) —z#xs'— s (-Low-)
by (simp add:vp-def)
from <as = z#xs) s = z8'Q[z']) have as = (z#xs’)Q[z] by simp
with preds (kinds as) [(cf ,undefined)]
have preds (kinds (z#xs’)) [(cf ;undefined))
by (simp add:kinds-def preds-split)
from ((-Entry-) —as'— ,* (-Erit-)) obtain y ys where as’ = y#ys
and (-Entry-) = sourcenode y and valid-edge y
and targetnode y —ys—* (-Exit-)
apply(cases as’ = [])
apply (clarsimp simp:vp-def ,drule empty-path-nodes,drule Entry-noteq-Ezit,simp)
by (fastforce elim:path-split-Cons simp:vp-def)
from «(-Entry-) —as'— ,* (-Ezit-)) have valid-path as’ by (simp add:vp-def)
from (wvalid-edge y)> have valid-node (targetnode y) by simp
hence inner-node (targetnode y)
proof(cases rule:valid-node-cases)
case Entry

27

with (walid-edge y) have False by (rule Entry-target)
thus ?thesis by simp
next
case Exit
with <targetnode y —ys—* (-Ezit-)) have ys = []
by —(drule path-Exit-source,auto)
from FEntry-Ezit-edge obtain z where valid-edge z
and sourcenode z = (-Entry-) and targetnode z = (-Exit-)
and kind z = (Xs. False),, by blast
from (wvalid-edge y) <valid-edge z) (-Entry-) = sourcenode y
(sourcenode z = (-Entry-)) Ezit (targetnode z = (-Exit-)
have y = z by(fastforce intro:edge-det)
with (preds (kinds as’) [(cf ',undefined)) <as’ = y#ys> s = [
tkind z = (As. False)
have False by (simp add:kinds-def)
thus ?thesis by simp
qed simp
with <targetnode y —ys—* (-Ezit-)) obtain y’ ys’ where ys = ys'Q[y’]
and targetnode y —ys'—x (-Low-) and kind y' = (Xs. True),,
by (fastforce elim: Exit-path-Low-path)
with «(-Entry-) = sourcenode y) (wvalid-edge >
have (-Entry-) —y#ys'—x (-Low-) by(fastforce intro: Cons-path)
from (walid-path as’ <as’ = y#ys s = ys'Q[y’D
have valid-path (y#ys’)
by (simp add:valid-path-def del:valid-path-aux.simps)
(rule valid-path-auz-split,simp)
with «(-Entry-) —y#ys'—+* (-Low-)) have (-Entry-) —y#ys'— s+ (-Low-)
by (simp add:vp-def)
from <as’ = y#ys ys = ys'Q[y’) have as’ = (y#ys")Q[y'] by simp
with «preds (kinds as’) [(cf ';undefined))
have preds (kinds (y#ys’)) [(cf’,undefined)]
by (simp add:kinds-def preds-split)
from (cf] =~ [¢f] «(-High-) ¢ | HRB-slice S| cpq (CFG-node (-Low-) € S
(-Entry-) —z#as'— px (-Low-)) (preds (kinds (z#zs’)) [(cf ,undefined)]
(-Entry-) —y#ys'— s (-Low-)) (preds (kinds (y#ys’)) [(cf',undefined))
have map fst (transfers (kinds (z#xs")) [(cf ,undefined)]) ~r,
map fst (transfers (kinds (y#ys’) [(cf,undefined)))
by (rule nonInterference-path-to-Low)
with (as = z#ws) @s = 1s'Q[z"]) kind ' = (Xs. True))
as’ = y#ys) s = ys'Qy’) kind y' = (As. True) p
show ?thesis
apply (cases transfers (map kind xs’) (transfer (kind z) [(cf,undefined)]))
apply (auto simp add:kinds-def transfers-split)
by ((cases transfers (map kind ys’) (transfer (kind y) [(c¢f’,undefined)))),
(auto simp add:kinds-def transfers-split))+
qed

end

28

The second theorem assumes that we have a operational semantics,
whose evaluations are written (c¢,s) = (c¢’,s’) and which conforms to the
CFG. The correctness theorem then states that if no high variable influ-
enced a low variable and the initial states were low equivalent, the reulting
states are again low equivalent:

locale NonlInterferencelnter =
NonlInterferencelnterGraph sourcenode targetnode kind valid-edge Entry
get-proc get-return-edges procs Main Exit Def Use ParamDefs ParamUses
H L High Low +
SemanticsProperty sourcenode targetnode kind valid-edge Entry get-proc
get-return-edges procs Main Exit Def Use ParamDefs ParamUses sem identifies
for sourcenode :: 'edge = 'node and targetnode :: 'edge = 'node
and kind :: ‘edge = ('var,’val,'ret,'pname) edge-kind
and valid-edge :: 'edge = bool
and Entry :: 'node ('(’-Entry’-")) and get-proc :: 'node = 'pname
and get-return-edges :: 'edge = ’edge set
and procs :: (‘pname x 'var list x 'var list) list and Main :: 'pname
and Ezit::'node ('(’-Exit’-"))
and Def :: 'node = 'var set and Use :: 'node = 'var set
and ParamDefs :: 'node = 'var list and ParamUses :: 'node = "var set list
and sem :: 'com = (‘var — "val) list = 'com = ("var — 'val) list = bool
(((1(~/-) =/ (1(~/-))) [0,0,0,0] 81)
and identifies :: 'node = 'com = bool (- £ - [51,0] 80)
and H :: 'var set and L :: 'var set
and High :: 'node ('(’-High'-")) and Low :: 'node ('("-Low’-")) +
fixes final :: 'com = bool
assumes final-edge-Low: [final ¢; n £ (]
= Ja. valid-edge a A sourcenode a = n A targetnode a = (-Low-) A kind a =
id
begin
The following theorem needs the explicit edge from (-High-) to n. An
approach using a init predicate for initial statements, being reachable from
(-High-) via a (As. True),, edge, does not work as the same statement could
be identified by several nodes, some initial, some not. E.g., in the program
while (True) Skip;;Skip two nodes identify this inital statement: the ini-
tial node and the node within the loop (because of loop unrolling).

theorem nonlinterference:
assumes [cf1] =~ [¢f2] and (-High-) ¢ | HRB-slice S|cora
and CFG-node (-Low-) € S
and valid-edge a and sourcenode a = (-High-) and targetnode a = n
and kind a = (As. True) , and n = ¢ and final ¢’
and (c,[cf1]) = (c’,s1) and (c,[cf2]) = (c¢’,s2)
shows s1 ~[, $so
proof —
from High-target-Entry-edge obtain ax where valid-edge ax
and sourcenode ax = (-Entry-) and targetnode axz = (-High-)
and kind ax = (As. True),, by blast

29

from < £ o «(c,[cf1]) = (c¢',s1)
obtain n; as; cfs; where n —as;— * n; and n;
and preds (kinds as1) [(¢f1,undefined)]
and transfers (kinds asy) [(c¢f1,undefined)] = cfs1 and map fst cfs; = s;
by (fastforce dest:fundamental-property)
from (n —as1— % ny walid-edge a) (sourcenode a = (-High-)) <targetnode a =
n

A
:c/

kind a = (Xs. True) ,
have (-High-) —a#as1— s+ n1 by(fastforce intro: Cons-path simp:vp-def valid-path-def)
from (final ¢ n; = ¢’
obtain a; where valid-edge a1 and sourcenode a1 = nq
and targetnode a1 = (-Low-) and kind a1 = f}id by (fastforce dest:final-edge-Low)
hence ny —[a1]—x* (-Low-) by (fastforce intro:path-edge)
with («(-High-) —a#tasi— ,* np have (-High-) —(a#as1)Q[a;]—* (-Low-)
by (fastforce intro!:path-Append simp:vp-def)
with (walid-edge az) (sourcenode ax = (-Entry-) (targetnode ax = (-High-))
have (-Entry-) —az#((a#as1)Q[a1])—* (-Low-) by —(rule Cons-path)
moreover
from («(-High-) —a#as1— /* n1) have valid-path-auz [| (a#asy)
by (simp add:vp-def valid-path-def)
with kind a; = id) have valid-path-aux || ((a#as1)Qlaq])
by (fastforce intro:valid-path-auz-Append)
with kind az = (As. True),) have valid-path-aur [| (az#((a#as1)@[a1]))
by simp
ultimately have (-Entry-) —az#((a#as1)Qla1])— * (-Low-)
by (simp add:vp-def valid-path-def)
from «walid-edge a) kind a = (As. True)) (sourcenode a = (-High-)
(targetnode a = n)
have get-proc n = get-proc (-High-)
by (fastforce dest:get-proc-intra simp:intra-kind-def)
with get-proc-High have get-proc n = Main by simp
from «(walid-edge a1 (sourcenode a1 = ny) (targetnode a1 = (-Low-)) kind a1 =
Mid>
have get-proc n; = get-proc (-Low-)
by (fastforce dest:get-proc-intra simp:intra-kind-def)
with get-proc-Low have get-proc n1 = Main by simp
from —as1—x np have n —as;— g« ny
by(cases asy)
(auto dest!:vpa-Main-slpa intro:<get-proc ny = Main) (get-proc n = Main)
simp:vp-def valid-path-def valid-call-list-def slp-def
same-level-path-def simp del:valid-path-auz.simps)
then obtain cfr r where cfz:transfers (map kind asy) [(cf1,undefined)] =
[(cfr,r)]
by (fastforce elim:slp-callstack-length-equal simp:kinds-def)
from kind ax = (As. True)) kind a = (As. True) p
(preds (kinds as1) [(cf1,undefined)] (kind a1 = fid> cfx
have preds (kinds (az#((a#as1)@Q[a1]))) [(cf1,undefined)]
by (auto simp:kinds-def preds-split)
from < = o «(c,[cfa]) = (c';s2)

30

obtain ny asy cfs; where n —asy— /x ny and ny £ ¢/
and preds (kinds as2) [(cf2,undefined)]
and transfers (kinds as2) [(c¢f2,undefined)] = cfso and map fst cfss = so
by (fastforce dest:fundamental-property)
from (n —aso— % no) walid-edge a) (sourcenode a = (-High-)) <targetnode a =
n)
tkind a = (As. True),p
have (-High-) —a#asa— s* no by(fastforce intro: Cons-path simp:vp-def valid-path-def)
from (final ¢ (ny £ ¢’
obtain ay where valid-edge as and sourcenode as = no
and targetnode as = (-Low-) and kind as = ftid by (fastforce dest:final-edge-Low)
hence ny —[az]—* (-Low-) by(fastforce intro:path-edge)
with «(-High-) —a#asz— /% no) have (-High-) —(a#as2)Q[az]—* (-Low-)
by (fastforce introl:path-Append simp:vp-def)
with (valid-edge az) (sourcenode axz = (-Entry-) (targetnode ax = (-High-)
have (-Entry-) —az#((a#as2)Q[as])—* (-Low-) by —(rule Cons-path)
moreover
from «(-High-) —a#tasa— /% n) have valid-path-auz [| (a#asz)
by (simp add:vp-def valid-path-def)
with kind as = {}id) have valid-path-aux || ((a#tas2)Qlas])
by (fastforce intro:valid-path-auz-Append)
with kind ax = (As. True),» have valid-path-aux [| (az#((a# as2)@[az]))
by simp
ultimately have (-Entry-) —az#((a#as2)Qlas])— * (-Low-)
by (simp add:vp-def valid-path-def)
from «walid-edge a) kind a = (As. True)) <sourcenode a = (-High-)
(targetnode a = n)
have get-proc n = get-proc (-High-)
by (fastforce dest:get-proc-intra simp:intra-kind-def)
with get-proc-High have get-proc n = Main by simp
from <(walid-edge a2 (sourcenode ag = ng (targetnode ay = (-Low-)) kind ag =
Mid>
have get-proc ne = get-proc (-Low-)
by (fastforce dest:get-proc-intra simp:intra-kind-def)
with get-proc-Low have get-proc no = Main by simp
from < —aso— s* n have n —asy— g no
by (cases ass)
(auto dest!:vpa-Main-slpa intro:<get-proc ny = Mainy (get-proc n = Main)
simp:vp-def valid-path-def valid-call-list-def slp-def
same-level-path-def simp del:valid-path-auz.simps)
then obtain cfz’ r’
where cfz":transfers (map kind ass) [(cf 2,undefined)] = [(cfz’,r’))
by (fastforce elim:slp-callstack-length-equal simp:kinds-def)
from kind ax = (As. True),p <kind a = (As. True) p
(preds (kinds asa) [(cf2,undefined)] kind ay = fid) cfz’
have preds (kinds (az#((a#as2)Qlas)))) [(cf2,undefined)]
by (auto simp:kinds-def preds-split)
from (cf1] = [cf2] «(-High-) ¢ |HRB-slice S|cpq (CFG-node (-Low-) € S
((-BEntry-) —az#((a#as1)Qlas])— * (-Low-)

31

(preds (kinds (ax#((a#tas1)@[aq]))) [(¢f1,undefined)]s
((-Entry-) —ax#((a#as2)Qlaz])— s+ (-Low-)
(preds (kinds (az#((a#tas2)@Q[as]))) [(¢f2,undefined))

have map fst (transfers (kinds (az#((a#tas1)@Q[a1]))) [(¢f1,undefined)]) ~p,

map fst (transfers (kinds (ax#((a#as2)Q[az]))) [(cf2,undefined)])
by (rule nonInterference-path-to-Low)
with <kind ax = (Xs. True),p kind a = (Xs. True),p kind a; = frid> kind az
= fid>
(transfers (kinds asy) [(cf1,undefined)] = cfs1) (map fst c¢fsy = sp
(transfers (kinds ass) [(cf2,undefined)] = cfsa) (map fst cfsa = s2)
show ?thesis by (cases s1)(cases sa,(fastforce simp:kinds-def transfers-split)+)+
qed

end

end

3 Framework Graph Lifting for Noninterference

theory LiftingInter
imports Nonlnterferencelnter
begin

In this section, we show how a valid CFG from the slicing framework
in [8] can be lifted to fulfil all properties of the NonlInterferencelntraGraph
locale. Basically, we redefine the hitherto existing Entry and Ezit nodes
as new High and Low nodes, and introduce two new nodes NewEntry and
NewEzit. Then, we have to lift all functions to operate on this new graph.

3.1 Liftings
3.1.1 The datatypes

datatype 'node LDCFG-node = Node 'node
| NewEntry
| NewEwit

type-synonym (’edge,’node,’var, val,'ret,'pname) LDCFG-edge =
'node LDCFG-node x (("var,'val,’ret,’pname) edge-kind) x 'mode LDCFG-node
3.1.2 Lifting basic definitions using ’edge and 'node

inductive lift-valid-edge :: ('edge = bool) = ('edge = 'node) = (‘edge = 'node)
=
("edge = ('var,’val,’ret,’pname) edge-kind) = 'node = 'node =

32

("edge,’'node, var, val,'ret,'pname) LDCFG-edge =
bool
for valid-edge::'edge = bool and src::’edge = 'node and trg::’edge = 'node
and knd::'edge = (‘var,’val,’'ret,’pname) edge-kind and E::'node and X::'node

where [ve-edge:
[valid-edge a; src a = E V trg a # X
e = (Node (src a),knd a,Node (trg a))]
= lift-valid-edge valid-edge src trg knd E X e

| lve-Entry-edge:
e = (NewEntry,(As. True),/,Node E)
= lift-valid-edge valid-edge src trg knd E X e

| le-Exit-edge:
e = (Node X ,(As. True),/,NewEuit)
= lift-valid-edge valid-edge src trqg knd E X e

| lve-Entry-Exit-edge:
e = (NewEntry,(As. False),/,NewErit)
= lift-valid-edge valid-edge src trg knd E X e

lemma [simp]:— lift-valid-edge valid-edge src trg knd E X (Node E,et,Node X)
by (auto elim:lift-valid-edge.cases)

fun lift-get-proc :: ('node = 'pname) = 'pname = 'node LDCFG-node = 'pname
where lift-get-proc get-proc Main (Node n) = get-proc n
| lift-get-proc get-proc Main NewEntry = Main
| lift-get-proc get-proc Main NewExit = Main

inductive-set lift-get-return-edges :: (‘edge = ’edge set) = ('edge = bool) =
("edge = 'node) = ('edge = 'node) = ('edge = ("var,’val,’ret,'pname) edge-kind)

= (‘edge,'node,’var,'val,'ret,'pname) LDCFG-edge
= (‘edge,'node,’var, val,'ret,'pname) LDCFG-edge set
for get-return-edges :: 'edge = 'edge set and wvalid-edge :: 'edge = bool
and src::'edge = 'node and trg::'edge = 'node
and knd::'edge = ('var,'val,’'ret,’pname) edge-kind
and e::(‘edge,'node, var, val,'ret,'pname) LDCFG-edge
where [lift-get-return-edgesI:
[e = (Node (src a),knd a,Node (trg a)); valid-edge a; o’ € get-return-edges a;
e’ = (Node (src a’),knd a’,Node (trg a’))]
= ¢’ € lift-get-return-edges get-return-edges valid-edge src trg knd e

33

3.1.3 Lifting the Def and Use sets

inductive-set lift-Def-set :: ('node = "var set) = 'node = 'node =
"var set = 'var set = ('node LDCFG-node x 'var) set
for Def::('node = 'var set) and E::'node and X::'node
and H::'var set and L::'var set

where [ift-Def-node:
V € Def n = (Node n,V) € lift-Def-set Def E X H L

| lift-Def-High:
V € H = (Node E,V) € lift-Def-set Def E X H L

abbreviation lift-Def :: (‘node = "var set) = 'node = 'node =
"var set = 'var set = 'node LDCFG-node = 'var set
where lift-Def Def EX HL n ={V. (n,V) € lift-Def-set Def E X H L}

inductive-set lift-Use-set :: ('node = "var set) = 'node = 'node =
"var set = 'var set = ('node LDCFG-node x 'var) set
for Use::'node = 'var set and E::'node and X::'node
and H::'var set and L:'var set

where
lift-Use-node:
V € Use n = (Node n,V) € lift-Use-set Use E X H L

| lift-Use-High:
V € H = (Node E,V) € lift-Use-set Use E X H L

| lift- Use-Low:
V € L = (Node X,V) € lift-Use-set Use E X H L

abbreviation lift-Use :: ('node = "var set) = 'node = 'node =
"var set = 'var set = 'node LDCFG-node = 'var set
where lift-Use Use EX HLn ={V. (n,V) € lift-Use-set Use E X H L}

fun lift-ParamUses :: ('node = "var set list) = 'node LDCFG-node = "var set list
where lift-ParamUses ParamUses (Node n) = ParamUses n
| lift- ParamUses ParamUses NewEntry = |]
| lift- ParamUses ParamUses NewEzxit = []

fun lift-ParamDefs :: (‘node = "var list) = 'node LDCFG-node = "var list
where lift-ParamDefs ParamDefs (Node n) = ParamDefs n
| lift- ParamDefs ParamDefs NewEntry = [|
| lift-ParamDefs ParamDefs NewEzit = [|

34

3.2 The lifting lemmas
3.2.1 Lifting the CFG locales

abbreviation src :: (‘edge,'node, var,val,'ret,'pname) LDCFG-edge = 'node LDCFG-node
where src a = fst a

abbreviation trg :: (‘edge,’node, var,"val,'ret,’'pname) LDCFG-edge = 'node LDCFG-node
where trg a = snd(snd a)

abbreviation knd :: (‘edge,’node,’var,’val,'ret,’'pname) LDCFG-edge =
("var,val,'ret,'pname) edge-kind
where knd a = fst(snd a)

lemma lift-CFG:
assumes wf: CFGExit-wf sourcenode targetnode kind valid-edge Entry get-proc
get-return-edges procs Main Exit Def Use ParamDefs ParamUses
and pd: Postdomination sourcenode targetnode kind valid-edge Entry get-proc
get-return-edges procs Main Exit
shows CFG src trg knd
(lift-valid-edge valid-edge sourcenode targetnode kind Entry Exit) NewEntry
(lift-get-proc get-proc Main)
(lift-get-return-edges get-return-edges valid-edge sourcenode targetnode kind)
procs Main
proof —
interpret CFGEzit-wf sourcenode targetnode kind valid-edge Entry get-proc
get-return-edges procs Main Exit Def Use ParamDefs ParamUses
by (rule wf)
interpret Postdomination sourcenode targetnode kind valid-edge Entry get-proc
get-return-edges procs Main Exit
by (rule pd)
show ?thesis
proof
fix a assume lift-valid-edge valid-edge sourcenode targetnode kind Entry Ezit o
and trg a = NewFEntry
thus False by(fastforce elim:lift-valid-edge.cases)
next
show lift-get-proc get-proc Main NewEntry = Main by simp
next
fixaQropfs
assume lift-valid-edge valid-edge sourcenode targetnode kind Entry Exit a
and knd a = Q:r—pfs and src a = NewEntry
thus False by(fastforce elim:lift-valid-edge.cases)
next
fix a a’
assume lift-valid-edge valid-edge sourcenode targetnode kind Entry Exit o
and lift-valid-edge valid-edge sourcenode targetnode kind Entry Exit o’
and src a = src o’ and trg a = trg o’
thus ¢ = o’

35

proof (induct rule:lift-valid-edge.induct)
case lve-edge thus ?case by —(erule lift-valid-edge.cases,auto dest:edge-det)
qed(auto elim:lift-valid-edge.cases)
next
fixaQrf
assume lift-valid-edge valid-edge sourcenode targetnode kind Entry Exit
and knd a = Q:r— prginf
thus False by(fastforce elim:lift-valid-edge.cases dest: Main-no-call-target)
next
fix a Q' f'
assume lift-valid-edge valid-edge sourcenode targetnode kind Entry Exit
and knd a = Q" prpinf’
thus False by(fastforce elim:lift-valid-edge.cases dest: Main-no-return-source)
next
fixaQropfs
assume lift-valid-edge valid-edge sourcenode targetnode kind Entry Exit
and knd a = Q:r—pfs
thus Jins outs. (p, ins, outs) € set procs
by (fastforce elim:lift-valid-edge.cases intro:callee-in-procs)
next
fix a assume lift-valid-edge valid-edge sourcenode targetnode kind Entry Ezit a
and intra-kind (knd a)
thus lift-get-proc get-proc Main (src a) = lift-get-proc get-proc Main (trg a)
by (fastforce elim:lift-valid-edge.cases intro:get-proc-intra
simp:get-proc-Entry get-proc-Ezit)
next
fixaQropfs
assume lift-valid-edge valid-edge sourcenode targetnode kind Entry Exit a
and knd a = Q:r—pfs
thus lift-get-proc get-proc Main (trg a) = p
by (fastforce elim:lift-valid-edge.cases intro:get-proc-call)
next
fix a Q' p f’
assume lift-valid-edge valid-edge sourcenode targetnode kind Entry Exit a
and knd a = Q"pf’
thus lift-get-proc get-proc Main (src a) = p
by (fastforce elim:lift-valid-edge.cases intro:get-proc-return)
next
fixa Qropfs
assume [ift-valid-edge valid-edge sourcenode targetnode kind Entry Exit o
and knd a = Q:r—pfs
then obtain az where valid-edge ax and kind az = Q:r—pfs
and sourcenode ax # Entry V targetnode ax # Exit
and src a = Node (sourcenode az) and trg a = Node (targetnode ax)
by (fastforce elim:lift-valid-edge.cases)
from (valid-edge ax) (kind ax = Q:r—pfs
have all:V a’. valid-edge a’ A targetnode a’ = targetnode axr —
(3 Qz 1z fsz. kind o’ = Qu:rr—rpfsz)
by (auto dest:call-edges-only)

36

{ fix a’
assume lift-valid-edge valid-edge sourcenode targetnode kind Entry Ezit o’
and trg a’ = trg a
hence 3 Qz 1z fsz. knd o’ = Qr:rz—pfsz
proof (induct rule:lift-valid-edge.induct)
case (lve-edge ax’' e)
note [simp] = (¢ = (Node (sourcenode azx’), kind ax’, Node (targetnode
az’))
from <trg e = trg a) <trg a = Node (targetnode ax))
have targetnode ax’ = targetnode ax by simp
with (walid-edge az” all have 3 Qu rx fsz. kind ax' = Qu:rz—pfsr by blast
thus “case by simp
next
case (lve-Entry-edge e)
from e = (NewEntry, (As. True),/, Node Entry)) (trg e = trg a)
(trg a = Node (targetnode az))
have targetnode ax = Entry by simp
with (valid-edge ax) have False by (rule Entry-target)
thus “case by simp
next
case (lve-Exit-edge e)
from <e = (Node Exit, (\s. True),/, NewExit)) rg e = trg @
(trg a = Node (targetnode az)) have False by simp
thus “case by simp
next
case (lve-Entry-Fit-edge e)
from <e = (NewEntry,(\s. False),/,NewExit)) trg e = trg a)
(trg a = Node (targetnode az)) have False by simp
thus “case by simp
qed }
thus V a'. lift-valid-edge valid-edge sourcenode targetnode kind Entry Exit a’ A
trg o’ = trg a — (3 Qz rz fsz. knd o’ = Qu:rr—pfsz) by simp
next
fixaQ'pf’
assume [ift-valid-edge valid-edge sourcenode targetnode kind Entry Exit o
and knd a = Q"«pf’
then obtain az where valid-edge ax and kind ax = Q'<pf’
and sourcenode ax # Entry V targetnode ax # Exit
and src a = Node (sourcenode az) and trg a = Node (targetnode ax)
by (fastforce elim:lift-valid-edge.cases)
from (valid-edge ax) kind ax = Q'<pf"
have all:V a’. valid-edge a’ A sourcenode a’ = sourcenode axr —
(3 Qz fr. kind o' = Qu<—=pfr)
by (auto dest:return-edges-only)
{ fix o’
assume lift-valid-edge valid-edge sourcenode targetnode kind Entry Ezit o’
and src o’ = src a
hence 3 Qz fr. knd o' = Qu<=pfr
proof (induct rule:lift-valid-edge.induct)

37

case (lve-edge az’ e)
note [simp] = (e = (Node (sourcenode az’), kind az', Node (targetnode
az’))
from (src e = src a) (src a = Node (sourcenode az))
have sourcenode ax’' = sourcenode ax by simp
with (valid-edge axz’) all have 3 Qz fr. kind ax’ = Qu<>pfx by blast
thus ?case by simp
next
case (lve-Entry-edge €)
from e = (NewEntry, (As. True),/, Node Entry)) (src e = src @
(src a = Node (sourcenode ax)) have False by simp
thus “case by simp
next
case (lve-Ezxit-edge e)
from e = (Node Exit, (As. True),/, NewExit)) src e = src a)
(src a = Node (sourcenode azx)) have sourcenode ax = Exit by simp
with (walid-edge az) have False by (rule Exit-source)
thus “case by simp
next
case (lve-Entry-FEzit-edge e)
from e = (NewEntry,(\s. False), /,NewExit)) src e = src a
(src a = Node (sourcenode ax)) have False by simp
thus “case by simp
qed }
thus V a'. lift-valid-edge valid-edge sourcenode targetnode kind Entry Exit a’ A
src a’ = src a — (3 Qx fr. knd o’ = Qu<—=pfr) by simp
next
fixa Qropfs
assume [ift-valid-edge valid-edge sourcenode targetnode kind Entry Exit o
and knd a = Q:r—pfs
thus lift-get-return-edges get-return-edges valid-edge
sourcenode targetnode kind a # {}
proof (induct rule:lift-valid-edge.induct)
case (lve-edge az e)
from (e = (Node (sourcenode ax), kind ax, Node (targetnode ax))
tknd e = Q:r—pfs
have kind ax = Q:r—pfs by simp
with walid-edge ax) have get-return-edges ax # {}
by (rule get-return-edge-call)
then obtain ax’ where az’ € get-return-edges az by blast
with (e = (Node (sourcenode ax), kind az, Node (targetnode azx))) (valid-edge
az)
have (Node (sourcenode az’),kind ax’,Node (targetnode az’)) €
lift-get-return-edges get-return-edges valid-edge
sourcenode targetnode kind e
by (fastforce intro:lift-get-return-edgesI)
thus “case by fastforce
qed simp-all
next

38

fix a a’
assume a’ € lift-get-return-edges get-return-edges valid-edge
sourcenode targetnode kind a
and lift-valid-edge valid-edge sourcenode targetnode kind Entry Ezit a
thus lift-valid-edge valid-edge sourcenode targetnode kind Entry Exit o'
proof (induct rule:lift-get-return-edges.induct)
case (lift-get-return-edgesl ax a’ e’)
from (valid-edge ax) <a’ € get-return-edges ax) have valid-edge a’
by (rule get-return-edges-valid)
from (walid-edge axr) <a’ € get-return-edges ax) obtain Q r p fs
where kind ax = Q:r—pfs by(fastforce dest!:only-call-get-return-edges)
with (valid-edge azx) <a’ € get-return-edges az) obtain Q' f’
where kind o’ = Q'<=pf' by(fastforce dest!:call-return-edges)
from (valid-edge o' kind o’ = Q'<=pf" have get-proc(sourcenode a’) = p
by (rule get-proc-return)
have sourcenode a’ # Entry
proof
assume sourcenode a’ = Entry
with get-proc-Entry (get-proc(sourcenode a’) = p)> have p = Main by simp
with (kind o' = Q"=pf" have kind o’ = Q" prqinf’ by simp
with walid-edge o’y show Fulse by (rule Main-no-return-source)
qed
with (e’ = (Node (sourcenode a’), kind a’, Node (targetnode a’))
walid-edge a”
show ?case by (fastforce intro:lve-edge)
qed
next
fix a a’
assume a’ € lift-get-return-edges get-return-edges valid-edge sourcenode
targetnode kind a
and lift-valid-edge valid-edge sourcenode targetnode kind Entry Ezit a
thus 3Q rp fs. knd a = Q:r—pfs
proof (induct rule:lift-get-return-edges.induct)
case (lift-get-return-edgesl az a’ e’)
from (valid-edge axr) <a’ € get-return-edges ax)
have 3 Q r p fs. kind az = Q:r—pfs
by (rule only-call-get-return-edges)
with (a = (Node (sourcenode ax), kind azx, Node (targetnode ar)))
show ?case by simp
qed
next
fixaQropfsa
assume a’ € lift-get-return-edges get-return-edges
valid-edge sourcenode targetnode kind a and knd a = Q:r—pfs
and lift-valid-edge valid-edge sourcenode targetnode kind Entry Ezit a
thus 3Q' f'. knd o' = Q"pf’
proof (induct rule:lift-get-return-edges.induct)
case (lift-get-return-edgesl ax a’ e’)
from <a = (Node (sourcenode ax), kind az, Node (targetnode ax)))

39

(knd a = Q:r—pfs
have kind ax = Q:r—pfs by simp
with walid-edge ax) <a’ € get-return-edges ax) have 3 Q' f'. kind o' = Q' pf’
by —(rule call-return-edges)
with (e’ = (Node (sourcenode a'), kind a’, Node (targetnode a'))
show ?case by simp
qed
next
fixaQ'pf’
assume lift-valid-edge valid-edge sourcenode targetnode kind Entry Exit o
and knd a = Q"pf’
thus 3!a’. lift-valid-edge valid-edge sourcenode targetnode kind Entry Exit a’ A
(3Q rfs. knd o' = Q:r—pfs) N a € lift-get-return-edges get-return-edges
valid-edge sourcenode targetnode kind a’
proof (induct rule:lift-valid-edge.induct)
case (lve-edge a e)
from (e = (Node (sourcenode a), kind a, Node (targetnode a)))
tknd e = Q"—pf" have kind a = Q'<pf’ by simp
with (valid-edge a
have 3!a’. valid-edge a’ N (3 Q v fs. kind o’ = Q:r—pfs) A
a € get-return-edges a’
by (rule return-needs-call)
then obtain o’ Q r fs where valid-edge o’ and kind o’ = Q:r—pfs
and a € get-return-edges a’
and imp:V z. valid-edge x A (3 Q 7 fs. kind z = Q:r—pfs) A
a € get-return-edges x — T = a’
by (fastforce elim:ex1E)
let %¢’ = (Node (sourcenode a'),kind a’,Node (targetnode a’))
have sourcenode a’ # Entry
proof
assume sourcenode a’' = Entry
with (walid-edge o’ kind o’ = Q:r—pfs
show Fualse by (rule Entry-no-call-source)
qed
with (valid-edge a”
have lift-valid-edge valid-edge sourcenode targetnode kind Entry Exit ?e’
by (fastforce intro:lift-valid-edge.lve-edge)
moreover
from kind o’ = Q:r—pfs) have knd ?e’ = Q:r—pfs by simp
moreover
from <e = (Node (sourcenode a), kind a, Node (targetnode a))»
(walid-edge a’y <a € get-return-edges a”
have e € lift-get-return-edges get-return-edges valid-edge
sourcenode targetnode kind e’ by (fastforce intro:lift-get-return-edgesI)
moreover
{ fix =
assume lift-valid-edge valid-edge sourcenode targetnode kind Entry Exit x
and 3Q r fs. knd z = Q:r—pfs
and e € lift-get-return-edges get-return-edges valid-edge

40

sourcenode targetnode kind x
from ift-valid-edge valid-edge sourcenode targetnode kind Entry Exit x
3JQ rfs. knd x = Q:r—pfs) obtain y where valid-edge y
and z = (Node (sourcenode y), kind y, Node (targetnode y))
by (fastforce elim:lift-valid-edge.cases)
with (e € lift-get-return-edges get-return-edges valid-edge
sourcenode targetnode kind x) <valid-edge a)
(e = (Node (sourcenode a), kind a, Node (targetnode a))
have © = ?¢’
proof (induct rule:lift-get-return-edges.induct)
case (lift-get-return-edgesl ax az’ e)
from (valid-edge ax) (ax’ € get-return-edges ax) have valid-edge ax’
by (rule get-return-edges-valid)
from <e = (Node (sourcenode az’), kind az’, Node (targetnode ax’))
(e = (Node (sourcenode a), kind a, Node (targetnode a))
have sourcenode a = sourcenode az’ and targetnode a = targetnode azx’
by simp-all
with (valid-edge a) (valid-edge az’y have [simp]:a = az’ by(rule edge-det)
from z = (Node (sourcenode az), kind ax, Node (targetnode az)))
3Qrfs. kndz = Q:r—pfs) have 3Q r fs. kind ax = Q:r—pfs by simp
with (valid-edge azx) (ax’ € get-return-edges ax) imp
have ar = a’ by fastforce
with z = (Node (sourcenode az), kind ax, Node (targetnode ax)))
show ?thesis by simp
qed }
ultimately show ?case by (blast intro:ex1I)
qed simp-all
next
fix a a’
assume a’ € lift-get-return-edges get-return-edges valid-edge sourcenode
targetnode kind a
and lift-valid-edge valid-edge sourcenode targetnode kind Entry Ezit a
thus 3 a”. lift-valid-edge valid-edge sourcenode targetnode kind Entry Exit a'' A
src a'' = trg a A trg o’ = src a’ A knd o'" = (Acf. False),,
proof (induct rule:lift-get-return-edges.induct)
case (lift-get-return-edgesI az a’ e’)
from (walid-edge ax) <a’ € get-return-edges ax)
obtain az’ where valid-edge ax’ and sourcenode ax’ = targetnode ax
and targetnode ax’ = sourcenode o’ and kind ax’ = (Acf. False),,
by (fastforce dest:intra-proc-additional-edge)
let ?ex = (Node (sourcenode az’), kind azx’, Node (targetnode az’))
have targetnode ax # Entry
proof
assume targetnode ax = Entry
with (valid-edge az) show False by(rule Entry-target)
qed
with (sourcenode az’ = targetnode ax> have sourcenode ax’ # Entry by simp
with (valid-edge az”
have lift-valid-edge valid-edge sourcenode targetnode kind Entry Ezit ?ex

41

by (fastforce intro:lve-edge)
with (e’ = (Node (sourcenode a’), kind a’, Node (targetnode a'))
(a = (Node (sourcenode az), kind azx, Node (targetnode ax))
e’ = (Node (sourcenode a'), kind o', Node (targetnode a’))
(sourcenode azx’' = targetnode ax> (targetnode axr’ = sourcenode a”
tkind ax" = (Xcf. False),p
show ?case by simp
qed
next
fix a a’
assume a’ € lift-get-return-edges get-return-edges valid-edge sourcenode
targetnode kind a
and lift-valid-edge valid-edge sourcenode targetnode kind Entry Exit a
thus 3 a”. lift-valid-edge valid-edge sourcenode targetnode kind Entry Ezit a’’ A
src a' = srca A trg a” = trg o’ A knd o’ = (\cf. False),,
proof (induct rule:lift-get-return-edges.induct)
case (lift-get-return-edgesl ax a’ e’)
from (walid-edge ax) <a’ € get-return-edges ax
obtain az’ where valid-edge ax’ and sourcenode ax’ = sourcenode ax
and targetnode ax’ = targetnode o’ and kind ax’ = (Acf. False),,
by (fastforce dest:call-return-node-edge)
let ?ex = (Node (sourcenode azx’), kind azx’, Node (targetnode az'))
from (walid-edge ax) <a’ € get-return-edges ax)
obtain @ r p fs where kind axz = Q:r—pfs
by (fastforce dest!:only-call-get-return-edges)
have sourcenode ax # Entry
proof
assume sourcenode ax = Entry
with (valid-edge ax) (kind ax = Q:r—pfs) show Fulse
by (rule Entry-no-call-source)
qed
with (sourcenode ax’ = sourcenode ax> have sourcenode ax’ # Entry by simp
with (walid-edge az’
have lift-valid-edge valid-edge sourcenode targetnode kind Entry Exit ?ex
by (fastforce intro:lve-edge)
with (¢’ = (Node (sourcenode a’), kind a’, Node (targetnode a'))
(@ = (Node (sourcenode ax), kind ax, Node (targetnode azx))
e’ = (Node (sourcenode a’), kind o', Node (targetnode a’)))
(sourcenode ax’ = sourcenode ax) (targetnode ax’ = targetnode a’
tkind ax” = (Acf. False),p
show ?case by simp
qged
next
fixa Qropfs
assume [ift-valid-edge valid-edge sourcenode targetnode kind Entry Exit o
and knd a = Q:r—pfs
thus 3!a’. lift-valid-edge valid-edge sourcenode targetnode kind Entry Exit a’ A
src a’ = src a A intra-kind (knd a’)
proof (induct rule:lift-valid-edge.induct)

42

case (lve-edge a e)
from (e = (Node (sourcenode a), kind a, Node (targetnode a))) knd e =
Q:r—pfs
have kind a = Q:r—pfs by simp
with (walid-edge @) have 3la’. valid-edge a’ A sourcenode a' = sourcenode a

intra-kind(kind a’) by (rule call-only-one-intra-edge)

then obtain a’ where valid-edge a’ and sourcenode a’ = sourcenode a
and intra-kind(kind o)
and imp:V . valid-edge © N\ sourcenode © = sourcenode a N intra-kind(kind

— x = a’ by(fastforce elim:ex1E)
let ?e’ = (Node (sourcenode a'), kind a’, Node (targetnode a'))
have sourcenode a # Entry
proof
assume sourcenode a = Entry
with (valid-edge a> (kind a = Q:r—pfs) show False
by (rule Entry-no-call-source)
qed
with (sourcenode a’ = sourcenode a) have sourcenode a’ # Entry by simp
with (valid-edge a”
have lift-valid-edge valid-edge sourcenode targetnode kind Entry Exit ?e’
by (fastforce intro:lift-valid-edge.lve-edge)
moreover
from (e = (Node (sourcenode a), kind a, Node (targetnode a))»
(sourcenode a’ = sourcenode a)
have src ?e’ = src e by simp
moreover
from <ntra-kind(kind a')) have intra-kind (knd ?e’) by simp
moreover
{ fix z
assume lift-valid-edge valid-edge sourcenode targetnode kind Entry Exit x
and src z = src e and intra-kind (knd)
from (lift-valid-edge valid-edge sourcenode targetnode kind Entry Exit)
have z = %¢’
proof (induct rule:lift-valid-edge.cases)
case (lve-edge ax ex)
from cntra-kind (knd x)) «x = ex) src x = src e
(ex = (Node (sourcenode azx), kind ax, Node (targetnode ax))
(e = (Node (sourcenode a), kind a, Node (targetnode a)))
have intra-kind (kind axz) and sourcenode ax = sourcenode a by simp-all
with (valid-edge azx) imp have az = a’ by fastforce
with x = ex) cex = (Node (sourcenode az), kind ax, Node (targetnode
az)))
show ?case by simp
next
case (lve-Entry-edge ex)
with (src x = src e
(e = (Node (sourcenode a), kind a, Node (targetnode a)))

43

have Fulse by simp
thus ?case by simp
next
case (lve-Exit-edge ex)
with (src x = src e
(e = (Node (sourcenode a), kind a, Node (targetnode a)))
have sourcenode a = FExit by simp
with (walid-edge a) have False by(rule Ezit-source)
thus ?case by simp
next
case (lve-Entry-Ezit-edge ex)
with (src x = src e
(e = (Node (sourcenode a), kind a, Node (targetnode a)))
have Fulse by simp
thus ?case by simp
qed }
ultimately show ?case by (blast intro:ex1I)
qed simp-all

next

fixaQ'pf’
assume lift-valid-edge valid-edge sourcenode targetnode kind Entry Exit o
and knd a = Q"pf’
thus 3!a’. lift-valid-edge valid-edge sourcenode targetnode kind Entry Exit a’ A
trg a’ = trg a A intra-kind (knd a”)
proof (induct rule:lift-valid-edge.induct)
case (lve-edge a e)
from (e = (Node (sourcenode a), kind a, Node (targetnode a))) tknd e =

Q"—pf"

have kind a = Q< pf’ by simp

with (valid-edge a) have 3!a’. valid-edge a’ A targetnode a’ = targetnode a A
intra-kind (kind o') by (rule return-only-one-intra-edge)

then obtain a’ where valid-edge a’ and targetnode a’ = targetnode a
and intra-kind(kind a’)
and imp:V z. valid-edge © A targetnode z = targetnode a A intra-kind(kind

— z = a’ by(fastforce elim:ex1E)
let ?e’ = (Node (sourcenode a'), kind o', Node (targetnode a'))
have targetnode a # FEwit
proof
assume targetnode a = Fxit
with walid-edge a) kind a = Q"<pf" show False
by (rule Exit-no-return-target)
qed
with <(targetnode a’ = targetnode a> have targetnode o’ # Exit by simp
with (valid-edge a”
have lift-valid-edge valid-edge sourcenode targetnode kind Entry Exit ?e’
by (fastforce intro:lift-valid-edge.lve-edge)
moreover
from (e = (Node (sourcenode a), kind a, Node (targetnode a)))

44

(targetnode a’ = targetnode @
have trg ?e’ = trg e by simp
moreover
from <ntra-kind(kind a')) have intra-kind (knd ?e’) by simp
moreover
{ fix z
assume lift-valid-edge valid-edge sourcenode targetnode kind Entry Exit x
and trg z = trg e and intra-kind (knd z)
from dift-valid-edge valid-edge sourcenode targetnode kind Entry Exit x
have © = %¢’
proof (induct rule:lift-valid-edge. cases)
case (lve-edge ax ex)
from cntra-kind (knd x)) @ = ex) trg z = trg e
(ex = (Node (sourcenode azx), kind axz, Node (targetnode ax)))
(e = (Node (sourcenode a), kind a, Node (targetnode a))
have intra-kind (kind az) and targetnode ax = targetnode a by simp-all
with (valid-edge az) imp have ax = a’ by fastforce
with x = ex) <ex = (Node (sourcenode az), kind ax, Node (targetnode
az))
show ?case by simp
next
case (lve-Entry-edge ex)
with (trg z = trg e
(e = (Node (sourcenode a), kind a, Node (targetnode a)))
have targetnode a = Entry by simp
with (valid-edge a) have False by (rule Entry-target)
thus ?case by simp
next
case (lve-Exit-edge ex)
with (trg z = trg e
(e = (Node (sourcenode a), kind a, Node (targetnode a))
have Fulse by simp
thus ?case by simp
next
case (lve-Entry-Ezit-edge ex)
with (trg z = trg e
(e = (Node (sourcenode a), kind a, Node (targetnode a))
have Fulse by simp
thus ?case by simp
qed }
ultimately show ?case by (blast intro:ex1l)
qged simp-all
next
fix aa’ Q171 pfs1 Q2 72 fs2
assume [ift-valid-edge valid-edge sourcenode targetnode kind Entry Exit o
and lift-valid-edge valid-edge sourcenode targetnode kind Entry Ezit o’
and knd a = Qi:r1—=pfs1 and knd o’ = Qa:ro—pfse
then obtain z z’ where valid-edge
and a:a = (Node (sourcenode x),kind x,Node (targetnode x)) and valid-edge

45

and a”:a’ = (Node (sourcenode x”),kind x',Node (targetnode z"))
by (auto elim!:lift-valid-edge. cases)
with (knd a = Qi:r1—=pfsy knd a’ = Qa:ro—pfsy
have kind x = Q:r1—=pfs; and kind — Q2:m2—pfsa by simp-all
with (valid-edge =) valid-edge =y have targetnode x = targetnode '
by (rule same-proc-call-unique-target)
with a a’ show trg a = trg o’ by simp
next
from unique-callers show distinct-fst procs .
next
fix p ins outs
assume (p, ins, outs) € set procs
from distinct-formal-ins|OF this] show distinct ins .
next
fix p ins outs
assume (p, ins, outs) € set procs
from distinct-formal-outs|OF this] show distinct outs .
qed
qed

lemma lift-CFG-wf:
assumes wf: CFGExit-wf sourcenode targetnode kind valid-edge Entry get-proc
get-return-edges procs Main Exit Def Use ParamDefs ParamUses
and pd: Postdomination sourcenode targetnode kind valid-edge Entry get-proc
get-return-edges procs Main Ezit
shows CFG-wf src trg knd
(lift-valid-edge valid-edge sourcenode targetnode kind Entry Exit) NewEntry
(lift-get-proc get-proc Main)
(lift-get-return-edges get-return-edges valid-edge sourcenode targetnode kind)
procs Main (lift-Def Def Entry Exit H L) (lift-Use Use Entry Fxit H L)
(lift-ParamDefs ParamDefs) (lift-ParamUses ParamUses)
proof —
interpret CFGEzit-wf sourcenode targetnode kind valid-edge Entry get-proc
get-return-edges procs Main Exit Def Use ParamDefs ParamUses
by (rule wf)
interpret Postdomination sourcenode targetnode kind valid-edge Entry get-proc
get-return-edges procs Main Exit
by (rule pd)
interpret CFG:CFG src trg knd
lift-valid-edge valid-edge sourcenode targetnode kind Entry Exit NewEntry
lift-get-proc get-proc Main
lift-get-return-edges get-return-edges valid-edge sourcenode targetnode kind
procs Main
by (fastforce intro:lift-CFG wf pd)
show ?thesis
proof
show lift-Def Def Entry Exit H L NewEntry = {} A

46

lift-Use Use Entry Fxit H L NewEntry = {}
by (fastforce elim:lift-Use-set.cases lift-Def-set.cases)
next
fix a Q r p fs ins outs
assume lift-valid-edge valid-edge sourcenode targetnode kind Entry Exit o
and knd a = Q:r—pfs and (p, ins, outs) € set procs
thus length (lift-ParamUses ParamUses (src a)) = length ins
proof (induct rule:lift-valid-edge.induct)
case (lve-edge a e)
from <e = (Node (sourcenode a), kind a, Node (targetnode a))) <knd e =
Q:r—pfs
have kind a = Q:r—pfs and src e = Node (sourcenode a) by simp-all
with (walid-edge a) «(p,ins,outs) € set procs)
have length(ParamUses (sourcenode a)) = length ins
by —(rule ParamUses-call-source-length)
with (src e = Node (sourcenode a)) show ?case by simp
qed simp-all
next
fix a assume lift-valid-edge valid-edge sourcenode targetnode kind Entry Exit o
thus distinct (lift-ParamDefs ParamDefs (trg a))
proof (induct rule:lift-valid-edge.induct)
case (lve-edge a e)
from (valid-edge a) have distinct (ParamDefs (targetnode a))
by (rule distinct-ParamDefs)
with (e = (Node (sourcenode a), kind a, Node (targetnode a))»
show ?case by simp
next
case (lve-Entry-edge e)
have ParamDefs Entry = ||
proof (rule ccontr)
assume ParamDefs Entry # ||
then obtain V Vs where ParamDefs Entry = V# Vs
by (cases ParamDefs Entry) auto
hence V € set (ParamDefs Entry) by fastforce
hence V € Def Entry by(fastforce intro: ParamDefs-in-Def)
with Entry-empty show Fualse by simp
qed
with (e = (NewEntry, (As. True),/, Node Entry)> show ?case by simp
qed simp-all
next
fix a Q' p f' ins outs
assume lift-valid-edge valid-edge sourcenode targetnode kind Entry Exit o
and knd a = Q"<=pf’" and (p, ins, outs) € set procs
thus length (lift-ParamDefs ParamDefs (trg a)) = length outs
proof (induct rule:lift-valid-edge.induct)
case (lve-edge a e)
from <e = (Node (sourcenode a), kind a, Node (targetnode a)))
tknd e = Q"=pf"
have kind a = Q'<=pf’ and trg e = Node (targetnode a) by simp-all

47

with (walid-edge a) «(p,ins,outs) € set procs)
have length(ParamDefs (targetnode a)) = length outs
by —(rule ParamDefs-return-target-length)
with «trg e = Node (targetnode a) show Zcase by simp
qed simp-all
next
fixnV
assume CFG.CFG.valid-node src trg
(lift-valid-edge valid-edge sourcenode targetnode kind Entry Exit) n
and V € set (lift-ParamDefs ParamDefs n)
hence ((n = NewEntry) V n = NewEzit) V (3m. n = Node m A valid-node
m
)
by (auto elim:lift-valid-edge.cases simp: CFG.valid-node-def)
thus V € lift-Def Def Entry Exit H L n apply —
proof (erule disjE)+
assume n = NewFEntry
with «(V € set (lift-ParamDefs ParamDefs n)) show %thesis by simp
next
assume n = NewFEwit
with (V' € set (lift-ParamDefs ParamDefs n)) show ?thesis by simp
next
assume 3m. n = Node m A wvalid-node m
then obtain m where n = Node m and valid-node m by blast
from (n = Node m) <V € set (lift-ParamDefs ParamDefs n))
have V € set (ParamDefs m) by simp
with walid-node m» have V € Def m by(rule ParamDefs-in-Def)
with (n = Node m) show ?thesis by (fastforce intro:lift-Def-node)
qed
next
fix a Q rpfsinsouts V
assume lift-valid-edge valid-edge sourcenode targetnode kind Entry Exit o
and knd a = Q:r—pfs and (p, ins, outs) € set procs and V € set ins
thus V € lift-Def Def Entry Exit H L (trg a)
proof (induct rule:lift-valid-edge.induct)
case (lve-edge a e)
from <e = (Node (sourcenode a), kind a, Node (targetnode a))) <knd e =
Q:r—=pfs
have kind a = Q:r—pfs by simp
from «walid-edge a) (kind a = Q:r—pfs) (p, ins, outs) € set procs) (V € set
ns
have V € Def (targetnode a) by(rule ins-in-Def)
from (e = (Node (sourcenode a), kind a, Node (targetnode a)))
have trg e = Node (targetnode a) by simp
with (V' € Def (targetnode a)) show ?case by (fastforce intro:lift-Def-node)
qed simp-all
next
fixaQropfs
assume lift-valid-edge valid-edge sourcenode targetnode kind Entry Exit
and knd a = Q:r—pfs

48

thus lift-Def Def Entry Exit H L (src a) = {}
proof (induct rule:lift-valid-edge.induct)
case (lve-edge a e)
show ?case
proof (rule ccontr)
assume lift-Def Def Entry Exit H L (src e) # {}
then obtain = where z € lift-Def Def Entry Exit H L (src e) by blast
from (e = (Node (sourcenode a), kind a, Node (targetnode a))) (knd e =
Q:r—pfs
have kind a = Q:r—pfs by simp
with walid-edge @) have Def (sourcenode a) = {}
by (rule call-source-Def-empty)
have sourcenode a # Entry
proof
assume sourcenode a = Entry
with walid-edge a) kind a = Q:r—pfs
show Fualse by (rule Entry-no-call-source)
qged
from (e = (Node (sourcenode a), kind a, Node (targetnode a)))
have src e = Node (sourcenode a) by simp
with (Def (sourcenode a) = {} <@ € lift-Def Def Entry Exit H L (src e)
(sourcenode a # Entry
show False by (fastforce elim:lift-Def-set.cases)
qed
qed simp-all
next
fixnV
assume CFG.CFG.valid-node src trg
(lift-valid-edge valid-edge sourcenode targetnode kind Entry Exit) n
and V € (Jset (lift-ParamUses ParamUses n)
hence ((n = NewEntry) V n = NewEzit) V (3m. n = Node m A valid-node
m)
by (auto elim:lift-valid-edge.cases simp: CFG.valid-node-def)
thus V € lift-Use Use Entry Ezit H L n apply —
proof (erule disjE)+
assume n = NewFEntry
with (V' € |Jset (lift-ParamUses ParamUses n)) show ?thesis by simp
next
assume n = NewFxit
with (V' € (Jset (lift-ParamUses ParamUses n)) show ?thesis by simp
next
assume 3m. n = Node m A wvalid-node m
then obtain m where n = Node m and valid-node m by blast
from «V € (Jset (lift-ParamUses ParamUses n)) (n = Node m)
have V € |Jset (ParamUses m) by simp
with walid-node m) have V € Use m by(rule ParamUses-in-Use)
with (n = Node m) show ?thesis by (fastforce intro:lift-Use-node)
qed
next

49

fix a Q p fins outs V
assume lift-valid-edge valid-edge sourcenode targetnode kind Entry Exit a
and knd a = Q<=pf and (p, ins, outs) € set procs and V € set outs
thus V € lift-Use Use Entry Exit H L (src a)
proof (induct rule:lift-valid-edge.induct)
case (lve-edge a e)
from (e = (Node (sourcenode a), kind a, Node (targetnode a))) knd e =
QphH
have kind a = Q< pf by simp
from walid-edge a> (kind a = Q<«=pf> (p, ins, outs) € set procs) (V € set
outs)
have V € Use (sourcenode a) by(rule outs-in-Use)
from (e = (Node (sourcenode a), kind a, Node (targetnode a)))
have src e = Node (sourcenode a) by simp
with (V' € Use (sourcenode a)) show ?case by(fastforce intro:lift-Use-node)
qed simp-all
next
fixa Vs
assume [ift-valid-edge valid-edge sourcenode targetnode kind Entry Exit o
and V ¢ lift-Def Def Entry Exit H L (src o) and intra-kind (knd a)
and pred (knd a) s
thus state-val (transfer (knd a) s) V = state-val s V
proof (induct rule:lift-valid-edge.induct)
case (lve-edge a e)
from (e = (Node (sourcenode a), kind a, Node (targetnode a)))
untra-kind (knd e)) <pred (knd e) s
have intra-kind (kind o) and pred (kind a) s
and knd e = kind a and src e = Node (sourcenode a) by simp-all
from (V' ¢ lift-Def Def Entry Exit H L (src e)) (src e = Node (sourcenode a))
have V ¢ Def (sourcenode a) by (auto dest: lift-Def-node)
from «walid-edge a)> <V ¢ Def (sourcenode a)) tintra-kind (kind a)
(pred (kind a) $
have state-val (transfer (kind a) s) V = state-val s V
by (rule CFG-intra-edge-no-Def-equal)
with (knd e = kind o> show ?case by simp
next
case (lve-Entry-edge e)
from (e = (NewEntry, (As. True),/, Node Entry)) (pred (knd e) s
show ?case by(cases s) auto
next
case (lve-Exit-edge ¢)
from (e = (Node Ezit, (As. True),/, NewEzit)) (pred (knd e) s)
show ?case by(cases s) auto
next
case (lve-Entry-Ezit-edge ¢)
from (e = (NewEntry, (Xs. False),/, NewEzit)) <pred (knd e) s
have False by(cases s) auto
thus ?case by simp
qed

50

next
fix ass’
assume assms:lift-valid-edge valid-edge sourcenode targetnode kind Entry Ewit

V Velift-Use Use Entry Fxit H L (src a). state-val s V = state-val s' V
intra-kind (knd a) pred (knd a) s pred (knd a) s’
show V Velift-Def Def Entry Exit H L (src a).
state-val (transfer (knd a) s) V = state-val (transfer (knd a) s') V
proof
fix V assume V € lift-Def Def Entry Exit H L (src a)
with assms
show state-val (transfer (knd a) s) V = state-val (transfer (knd a) s’) V
proof (induct rule:lift-valid-edge.induct)
case (lve-edge a e)
from <e = (Node (sourcenode a), kind a, Node (targetnode a))
tntra-kind (knd e)) have intra-kind (kind o) by simp
show ?Zcase
proof (cases Node (sourcenode a) = Node Entry)
case True
hence sourcenode a = Entry by simp
from FEntry-Exit-edge obtain a’ where valid-edge a’
and sourcenode a’ = Entry and targetnode a' = Ewrit
and kind o’ = (Xs. False),, by blast
have 3 Q. kind a = (Q),/
proof(cases targetnode a = Exit)
case True
with (valid-edge a) <valid-edge a”y (sourcenode a = Entry)
(sourcenode a' = Entry) (targetnode o’ = Exit)
have a = o’ by(fastforce dest:edge-det)
with kind o’ = (As. False) ,» show ?thesis by simp
next
case Fulse
with (valid-edge a) (valid-edge a’y (sourcenode a = Entry)
(sourcenode a’ = Entry) (targetnode a’ = Exit)
antra-kind (kind a)) kind o’ = (Xs. False) p
show %thesis by(auto dest:deterministic simp:intra-kind-def)
qged
from True V € lift-Def Def Entry Exit H L (src e)y Entry-empty
(e = (Node (sourcenode a), kind a, Node (targetnode a)))
have V € H by(fastforce elim:lift-Def-set.cases)
from True <e = (Node (sourcenode a), kind a, Node (targetnode a)))
(sourcenode a # Entry V targetnode a # FExit)
have VVeH. V € lift-Use Use Entry Exit H L (src e)
by (fastforce intro:lift-Use-High)
with v/ Velift-Use Use Entry Exit H L (src e).
state-val s V = state-val s V) «(V € H)
have state-val s V = state-val s’ V by simp
with (e = (Node (sourcenode a), kind a, Node (targetnode a))
3Q. kind a = (Q),p pred (knd e) s) pred (knd e) s"

o1

show ?thesis by(cases s,auto,cases s’ ;auto)
next
case Fulse
{ fix V' assume V' € Use (sourcenode a)
with (e = (Node (sourcenode a), kind a, Node (targetnode a))
have V' € lift-Use Use Entry Exit H L (src e)
by (fastforce intro:lift-Use-node)

with «/ Velift-Use Use Entry Exit H L (src e).
state-val s V = state-val s’ V)
have V Ve Use (sourcenode a). state-val s V = state-val s V
by fastforce
from <(wvalid-edge a) this pred (knd e) s «pred (knd e) s’
(e = (Node (sourcenode a), kind a, Node (targetnode a))
tntra-kind (knd e)»
have V V € Def (sourcenode a). state-val (transfer (kind a) s) V =
state-val (transfer (kind a) s’) V
by —(erule CFG-intra-edge-transfer-uses-only-Use,auto)
from «V € lift-Def Def Entry Exit H L (src e)) False
(e = (Node (sourcenode a), kind a, Node (targetnode a))
have V € Def (sourcenode a) by (fastforce elim:lift-Def-set.cases)
with v V € Def (sourcenode a). state-val (transfer (kind a) s) V =
state-val (transfer (kind a) s’) V>
(e = (Node (sourcenode a), kind a, Node (targetnode a)))
show ?thesis by simp
qged
next
case (lve-Entry-edge e)
from «V € lift-Def Def Entry Exit H L (src e)
e = (NewEntry, (Xs. True) ,, Node Entry)
have False by (fastforce elim:lift-Def-set.cases)
thus ?case by simp
next
case (lve-Exit-edge e)
from «V € lift-Def Def Entry Exit H L (src e)
e = (Node Ezit, (As. True),/, NewEzit)
have Fulse
by (fastforce elim:lift-Def-set.cases introl: Entry-noteq-Exit simp: Exit-empty)
thus ?case by simp
next
case (lve-Entry-Fzit-edge e)
thus ?case by(cases s) auto
qed
qed

next

fix a s s’

assume lift-valid-edge valid-edge sourcenode targetnode kind Entry Exit o
and pred (knd a) s and snd (hd s) = snd (hd s”)
and V Velift-Use Use Entry Exit H L (src a). state-val s V = state-val 8" V

52

and length s = length s’
thus pred (knd a) s’
proof (induct rule:lift-valid-edge.induct)
case (lve-edge a e)
from (e = (Node (sourcenode a), kind a, Node (targetnode a))) <pred (knd e)
$
have pred (kind a) s and src e = Node (sourcenode a) by simp-all
from (src e = Node (sourcenode a))
~ Velift-Use Use Entry Exit H L (src e). state-val s V = state-val s’ V)
have VV € Use (sourcenode a). state-val s V = state-val s’ V
by (auto dest:lift-Use-node)
from (walid-edge a) <pred (kind a) s> «snd (hd s) = snd (hd s')
this (length s = length s”
have pred (kind a) s’ by(rule CFG-edge-Uses-pred-equal)
with (e = (Node (sourcenode a), kind a, Node (targetnode a))
show ?case by simp
next
case (lve-Entry-edge ¢)
thus ?case by(cases s’) auto
next
case (lve-Exit-edge ¢)
thus ?case by(cases s') auto
next
case (lve-Entry-Ezit-edge ¢)
thus ?case by(cases s) auto
qged
next
fix a Q r p fs ins outs
assume [ift-valid-edge valid-edge sourcenode targetnode kind Entry Exit o
and knd a = Q:r—pfs and (p, ins, outs) € set procs
thus length fs = length ins
proof (induct rule:lift-valid-edge.induct)
case (lve-edge a e)
from (e = (Node (sourcenode a), kind a, Node (targetnode a))) tknd e =
Q:r—pfs
have kind a = Q:r—pfs by simp
from (valid-edge a> kind a = Q:r—pfs) (p, ins, outs) € set procs
show ?case by (rule CFG-call-edge-length)
qed simp-all
next
fixaQrpfsa Q' r'p' fs'ss’
assume lift-valid-edge valid-edge sourcenode targetnode kind Entry Exit o
and knd a = Q:r—pfs and knd o’ = Q’:r’<—>p/fs’
and lift-valid-edge valid-edge sourcenode targetnode kind Entry Ezit a’
and src a = src o’ and pred (knd a) s and pred (knd a') s
from ift-valid-edge valid-edge sourcenode targetnode kind Entry Exit a)
tknd a = Q:r—pfs) pred (knd a) s
obtain z where a:a = (Node (sourcenode z),kind x,Node (targetnode x))
and valid-edge x and src a = Node (sourcenode)

93

and kind x = Q:r—pfs and pred (kind z) s
by (fastforce elim:lift-valid-edge.cases)
from ift-valid-edge valid-edge sourcenode targetnode kind Entry Ezit a”
(knd o’ = Q’:r"—>p/fs’> (pred (knd a’) s
obtain 2z’ where a’:a’ = (Node (sourcenode x'),kind x’,Node (targetnode x'))
and valid-edge z’ and src o’ = Node (sourcenode z")
and kind z’ = Q’:r’<—>p/fs’ and pred (kind z’) s
by (fastforce elim:lift-valid-edge.cases)
from (src a = Node (sourcenode x)) (src a’ = Node (sourcenode z'))
(src a = src ah
have sourcenode x = sourcenode ' by simp
from (wvalid-edge x) (kind x = Q:r—pfs> walid-edge z" kind " = Q’:r’<—>p/fs’>
(sourcenode x = sourcenode x'y pred (kind x) $) pred (kind ') $
have z = z’ by (rule CFG-call-determ)
with a ¢’ show a = a’ by simp
next
fix a Qropfsiins outs s s’
assume lift-valid-edge valid-edge sourcenode targetnode kind Entry Exit o
and knd a = Q:r—pfs and i < length ins and (p, ins, outs) € set procs
and pred (knd a) s and pred (knd a) s’
and Y Velift-ParamUses ParamUses (src a) ! 4. state-val s V = state-val s’
Vv
thus params fs (state-val s) | i = local. CFG.params fs (state-val s’) | 4
proof (induct rule:lift-valid-edge.induct)
case (lve-edge a e)
from (e = (Node (sourcenode a), kind a, Node (targetnode a))) tknd e =
Q:r—pfs
(pred (knd e) $) «pred (knd e) s’
have kind a = Q:r—pfs and pred (kind a) s and pred (kind a) s’
and src e = Node (sourcenode a)
by simp-all
from «/ Velift-ParamUses ParamUses (src €) | i. state-val s V = state-val
sV
(src e = Node (sourcenode a)»
have VV € (ParamUses (sourcenode a))li. state-val s V = state-val s’ V by
s1mp
with (valid-edge @) kind a = Q:r—pfs) i < length ins
(p, ins, outs) € set procs) (pred (kind a) s> (pred (kind a) s"
show ?case by(rule CFG-call-edge-params)
qed simp-all
next
fix a Q' pf' ins outs cf cf’
assume [ift-valid-edge valid-edge sourcenode targetnode kind Entry Exit o
and knd a = Q"«—pf’ and (p, ins, outs) € set procs
thus [/ ¢f ¢f ' = ¢f '(lift-ParamDefs ParamDefs (trg a) [:=] map cf outs)
proof (induct rule:lift-valid-edge.induct)
case (lve-edge a e)
from (e = (Node (sourcenode a), kind a, Node (targetnode a))) knd e =

Q'—pfh

54

have kind a = Q'<=pf’ and trg e = Node (targetnode a) by simp-all
from (wvalid-edge a) kind a = Q"«<=pf" «(p, ins, outs) € set procs
have [’ ¢f ¢f ' = ¢f (ParamDefs (targetnode a) [:=] map cf outs)
by (rule CFG-return-edge-fun)
with (trg e = Node (targetnode a)> show Zcase by simp
qed simp-all
next
fix a a’
assume lift-valid-edge valid-edge sourcenode targetnode kind Entry Exit o
and lift-valid-edge valid-edge sourcenode targetnode kind Entry Ezit a’
and src a = src o’ and trg a # trg a’
and intra-kind (knd a) and intra-kind (knd a’)
thus 3Q Q' knd a = (Q)y A knd o’ = (Q')y A
Vs. (s — Q" s) N (Q's — —
proof (induct rule:lift-valid-edge.induct)
case (lve-edge a e)
from <lift-valid-edge valid-edge sourcenode targetnode kind Entry Exit a”
walid-edge a) <e = (Node (sourcenode a), kind a, Node (targetnode a))»
(src e = src a’y (drg e # trg o’y untra-kind (knd e)) <ntra-kind (knd a’))
show ?case
proof (induct rule:lift-valid-edge.induct)
case [ve-edge thus ?case by (auto dest:deterministic)
next
case (lve-Exit-edge e')
from <e = (Node (sourcenode a), kind a, Node (targetnode a))
e’ = (Node Ezit, (Xs. True) ,, NewErit)) (src e = src e
have sourcenode a = Exit by simp
with (valid-edge a) have False by (rule Exit-source)
thus “case by simp
qed auto
qed (fastforce elim:lift-valid-edge.cases)+
qed
qed

Q s))

lemma lift-CFGEzit:
assumes wf:CFGExit-wf sourcenode targetnode kind valid-edge Entry get-proc
get-return-edges procs Main Ezit Def Use ParamDefs ParamUses
and pd:Postdomination sourcenode targetnode kind valid-edge Entry get-proc
get-return-edges procs Main Exit
shows CFGExit src trg knd
(lift-valid-edge valid-edge sourcenode targetnode kind Entry Exit) NewEntry
(lift-get-proc get-proc Main)
(lift-get-return-edges get-return-edges valid-edge sourcenode targetnode kind)
procs Main NewExit
proof —
interpret CFGFEzit-wf sourcenode targetnode kind valid-edge Entry get-proc
get-return-edges procs Main Exit Def Use ParamDefs ParamUses
by (rule wf)

95

interpret Postdomination sourcenode targetnode kind valid-edge Entry get-proc
get-return-edges procs Main Exit
by (rule pd)
interpret CFG:CFG src trg knd
lift-valid-edge valid-edge sourcenode targetnode kind Entry Exit NewEntry
lift-get-proc get-proc Main
lift-get-return-edges get-return-edges valid-edge sourcenode targetnode kind
procs Main
by (fastforce intro:lift-CFG wf pd)
show ?thesis
proof
fix a assume lift-valid-edge valid-edge sourcenode targetnode kind Entry Ezxit a
and src a = NewFEzit
thus False by(fastforce elim:lift-valid-edge.cases)
next
show lift-get-proc get-proc Main NewFEzit = Main by simp
next
fixaQpf
assume [ift-valid-edge valid-edge sourcenode targetnode kind Entry Exit o
and knd a = Q<«pf and trg a = NewFEuxit
thus False by (fastforce elim:lift-valid-edge. cases)
next
show Fa. lift-valid-edge valid-edge sourcenode targetnode kind Entry Ezit a A
src a = NewEntry A trg a = NewEzit A\ knd a = (Xs. False)/
by (fastforce intro:lve- Entry-Exit-edge)
qged
qged

lemma lift-CFGEzit-wf:
assumes wf:CFGExit-wf sourcenode targetnode kind valid-edge Entry get-proc
get-return-edges procs Main Ezit Def Use ParamDefs ParamUses
and pd:Postdomination sourcenode targetnode kind valid-edge Entry get-proc
get-return-edges procs Main Exit
shows CFGEzit-wf src trg knd
(lift-valid-edge valid-edge sourcenode targetnode kind Entry Exit) NewEntry
(lift-get-proc get-proc Main)
(lift-get-return-edges get-return-edges valid-edge sourcenode targetnode kind)
procs Main NewExit (lift-Def Def Entry Exit H L) (lift-Use Use Entry Exit H L)
(lift-ParamDefs ParamDefs) (lift-ParamUses ParamUses)
proof —
interpret CFGFEzit-wf sourcenode targetnode kind valid-edge Entry get-proc
get-return-edges procs Main Exit Def Use ParamDefs ParamUses
by (rule wf)
interpret Postdomination sourcenode targetnode kind valid-edge Entry get-proc
get-return-edges procs Main Exit
by (rule pd)
interpret CFG-wf:CFG-wf src trg knd
lift-valid-edge valid-edge sourcenode targetnode kind Entry Exit NewEntry

o6

lift-get-proc get-proc Main
lift-get-return-edges get-return-edges valid-edge sourcenode targetnode kind
procs Main lift-Def Def Entry Exit H L lift-Use Use Entry Ezit H L
lift-ParamDefs ParamDefs lift-ParamUses ParamUses
by (fastforce intro:lift- CFG-wf wf pd)
interpret CFGFEzit: CFGFExit src trg knd
lift-valid-edge valid-edge sourcenode targetnode kind Entry Exit NewEntry
lift-get-proc get-proc Main
lift-get-return-edges get-return-edges valid-edge sourcenode targetnode kind
procs Main NewEzit
by (fastforce intro:lift-CFGEzit wf pd)
show ?thesis
proof
show lift-Def Def Entry Fxit H L NewExit = {} A
lift-Use Use Entry Exit H L NewEzxit = {}
by (fastforce elim:lift-Def-set.cases lift-Use-set.cases)
qed
qed

3.2.2 Lifting the SDG

lemma lift- Postdomination:
assumes wf: CFGExit-wf sourcenode targetnode kind valid-edge Entry get-proc
get-return-edges procs Main Exit Def Use ParamDefs ParamUses
and pd: Postdomination sourcenode targetnode kind valid-edge Entry get-proc
get-return-edges procs Main Exit
and inner: CFGEzit.inner-node sourcenode targetnode valid-edge Entry Ezit nx
shows Postdomination src trg knd
(lift-valid-edge valid-edge sourcenode targetnode kind Entry Exit) NewEntry
(lift-get-proc get-proc Main)
(lift-get-return-edges get-return-edges valid-edge sourcenode targetnode kind)
procs Main NewFEzit
proof —
interpret CFGEzit-wf sourcenode targetnode kind valid-edge Entry get-proc
get-return-edges procs Main Exit Def Use ParamDefs ParamUses
by (rule wf)
interpret Postdomination sourcenode targetnode kind valid-edge Entry get-proc
get-return-edges procs Main Exit
by (rule pd)
interpret CFGEzit: CFGFExit src trg knd
lift-valid-edge valid-edge sourcenode targetnode kind Entry Exit NewEntry
lift-get-proc get-proc Main
lift-get-return-edges get-return-edges valid-edge sourcenode targetnode kind
procs Main NewEzit
by (fastforce intro:lift- CFGEzit wf pd)
{ fix m assume valid-node m
then obtain a where valid-edge a and m = sourcenode a V m = targetnode

by (auto simp:valid-node-def)

o7

from (m = sourcenode a V m = targetnode a)
have CFG.CFG.valid-node src trg
(lift-valid-edge valid-edge sourcenode targetnode kind Entry Ezit) (Node m)
proof
assume m = sourcenode a
show ?thesis
proof(cases m = Entry)
case True
have lift-valid-edge valid-edge sourcenode targetnode kind Entry Exit
(NewEntry,(As. True) ,,Node Entry) by(fastforce intro:lve-Entry-edge)
with (m = Entry show ?thesis by (fastforce simp: CFGExit.valid-node-def)
next
case Fulse
with (m = sourcenode a) (valid-edge a
have lift-valid-edge valid-edge sourcenode targetnode kind Entry FExit
(Node (sourcenode a),kind a,Node(targetnode a))
by (fastforce intro:lve-edge)
with (m = sourcenode a> show ?thesis by (fastforce simp: CFGExit.valid-node-def)
qed
next
assume m = targetnode a
show ?thesis
proof(cases m = Exit)
case True
have lift-valid-edge valid-edge sourcenode targetnode kind Entry FExit
(Node Ezit,(As. True) /,NewEzit) by (fastforce intro:lve-Exit-edge)
with (m = Ezity show ?thesis by(fastforce simp: CFGExit.valid-node-def)
next
case Fulse
with (m = targetnode a) (valid-edge a)
have lift-valid-edge valid-edge sourcenode targetnode kind Entry Exit
(Node (sourcenode a),kind a,Node(targetnode a))
by (fastforce intro:lve-edge)
with (m = targetnode a) show ?thesis by (fastforce simp: CFGExit.valid-node-def)
qed
qed }
note lift-valid-node = this
{fixnasn' csmm’
assume valid-path-auz cs as and m —as—* m’ and V¢ € set cs. valid-edge ¢
and m # Entry V m' # Exit
hence Jc¢s’ es. CFG.CFG .valid-path-auzx knd
(lift-get-return-edges get-return-edges valid-edge sourcenode targetnode kind)
cs’ es A
list-all2 (Ac ¢'. ¢/ = (Node (sourcenode c),kind c¢,Node (targetnode c))) cs cs’
A CFG.CFG.path src trg
(lift-valid-edge valid-edge sourcenode targetnode kind Entry Exit)
(Node m) es (Node m”)
proof (induct arbitrary:m rule:vpa-induct)
case (vpa-empty cs)

o8

from (m —[]—x m" have [simp]:m = m' by fastforce
from (m —[]—* m" have valid-node m by (rule path-valid-node)
obtain cs’ where cs’ =
map (Ac. (Node (sourcenode c),kind c¢,Node (targetnode c))) cs by simp
hence list-all2
(e ¢’ ¢/ = (Node (sourcenode c),kind c,Node (targetnode ¢))) cs cs’
by (simp add:list-all2-conv-all-nth)
with (valid-node m) show ?case
apply (rule-tac z=cs’ in exl)
apply (rule-tac z=[] in exl)
by (fastforce intro: CFGExit.empty-path lift-valid-node)
next
case (vpa-intra cs a as)
note IH = (Am. [m —as—* m'; V c€set cs. valid-edge ¢; m # Entry V m’
Erit] =
des’ es. CFG.valid-path-auz knd
(lift-get-return-edges get-return-edges valid-edge sourcenode
targetnode kind) cs' es A
list-all2 (Ac ¢’. ¢/ = (Node (sourcenode c), kind ¢, Node (targetnode c))) cs
cs’' N CFG.path src trg
(lift-valid-edge valid-edge sourcenode targetnode kind Entry Exit)
(Node m) es (Node m')
from (m —a # as—* m” have m = sourcenode a and valid-edge a
and targetnode a —as—+ m’ by(auto elim:path-split-Cons)
show ?case
proof(cases sourcenode a = Entry A targetnode a = Euxit)
case True
with <m = sourcenode a) ¢<m # Entry V m' # Exit
have m’ # Exit by simp
from True have targetnode a = Ezit by simp
with <targetnode a —as—* m’ have m’ = Exit
by —(drule path-Exit-source,auto)
with <m’ # Exit) have Fualse by simp
thus ?thesis by simp
next
case Fulse
let ?e = (Node (sourcenode a),kind a,Node (targetnode a))
from Fulse (valid-edge a)
have lift-valid-edge valid-edge sourcenode targetnode kind Entry Exit %e
by (fastforce intro:lve-edge)
have targetnode a # Entry
proof
assume targetnode a = Entry
with (walid-edge a) show False by(rule Entry-target)
qged
hence targetnode a # Entry V m' # Exit by simp
from IH[OF (targetnode a —as—+ m” V c€set cs. valid-edge ¢ this]
obtain cs’ es
where valid-path: CFG .valid-path-aux knd

99

(lift-get-return-edges get-return-edges valid-edge sourcenode
targetnode kind) cs’ es
and list:list-all2
(Ac ¢’. ¢/ = (Node (sourcenode c), kind ¢, Node (targetnode c))) cs cs’
and path: CFG .path src trg
(lift-valid-edge valid-edge sourcenode targetnode kind Entry Exit)
(Node (targetnode a)) es (Node m') by blast
from cntra-kind (kind a)) valid-path have CFG .valid-path-aux knd
(lift-get-return-edges get-return-edges valid-edge sourcenode
targetnode kind) cs’ (?e#tes) by(fastforce simp:intra-kind-def)
moreover
from path (m = sourcenode a)
ift-valid-edge valid-edge sourcenode targetnode kind Entry Exit ?e)
have CFG.path src trg
(lift-valid-edge valid-edge sourcenode targetnode kind Entry Exit)
(Node m) (?eftes) (Node m’) by(fastforce intro: CFGExit. Cons-path)
ultimately show ¢thesis using list by blast
qed
next
case (vpa-Call cs a as Q r p fs)
note IH = (\m. [m —as—* m'; V c€set (a # cs). valid-edge c;
m # Entry V. m’' # Exit] =
Jes’ es. CFG.valid-path-auz knd
(lift-get-return-edges get-return-edges valid-edge sourcenode
targetnode kind) cs’ es A
list-all2 (Ac ¢’. ¢/ = (Node (sourcenode c), kind ¢, Node (targetnode c)))
(aftcs) es’ A CFG.path src trg
(lift-valid-edge valid-edge sourcenode targetnode kind Entry Exit)
(Node m) es (Node m')
from (m —a # as—* m’ have m = sourcenode a and valid-edge a
and targetnode a —as—+ m’ by(auto elim:path-split-Cons)
from (V c€set cs. valid-edge ¢) valid-edge a)
have V ceset (a # cs). valid-edge ¢ by simp
let e = (Node (sourcenode a),kind a,Node (targetnode a))
have sourcenode a # Entry
proof
assume sourcenode a = Entry
with (valid-edge a> (kind a = Q:r—pfs
show Fualse by (rule Entry-no-call-source)
qed
with (valid-edge a)
have lift-valid-edge valid-edge sourcenode targetnode kind Entry Exit %e
by (fastforce intro:lve-edge)
have targetnode a # Entry
proof
assume targetnode a = FEntry
with (valid-edge a) show False by (rule Entry-target)
qed
hence targetnode a # Entry V m' # Exit by simp

60

from IH[OF <targetnode a —as—x m’ /c€set (a # cs). valid-edge ¢ this]
obtain cs’ es
where valid-path: CFG .valid-path-aux knd
(lift-get-return-edges get-return-edges valid-edge sourcenode
targetnode kind) cs’ es
and list:list-all2
(Ae ¢’ ¢/ = (Node (sourcenode c), kind ¢, Node (targetnode c))) (aftcs) cs’
and path: CFG.path src trg
(lift-valid-edge valid-edge sourcenode targetnode kind Entry Exit)
(Node (targetnode a)) es (Node m’) by blast
from list obtain cx csx where cs’ = cx#csr
and cz:cx = (Node (sourcenode a), kind a, Node (targetnode a))
and list":list-all2
(Ae ¢’. ¢/ = (Node (sourcenode c), kind ¢, Node (targetnode c))) cs csx
by (fastforce simp:list-all2-Cons1)
from valid-path cx (cs' = ca#tcsr) kind a = Q:r—pfs
have CFG .valid-path-auz knd
(lift-get-return-edges get-return-edges valid-edge sourcenode
targetnode kind) csz (Ze#es) by simp
moreover
from path ¢(m = sourcenode a)
dift-valid-edge valid-edge sourcenode targetnode kind Entry Exit ?e)
have CFG.path src trg
(lift-valid-edge valid-edge sourcenode targetnode kind Entry Exit)
(Node m) (?e#tes) (Node m') by(fastforce intro: CFGFEzit. Cons-path)
ultimately show ?case using list’ by blast
next
case (vpa-ReturnEmpty cs a as @ p f)
note IH = (Am. [m —as—x m'; V cE€set [|. valid-edge ¢; m # Entry V m’ #
Ezit] =
Jes’ es. CFG.valid-path-auz knd
(lift-get-return-edges get-return-edges valid-edge sourcenode
targetnode kind) cs’ es A
list-all2 (Ac ¢’. ¢/ = (Node (sourcenode c), kind ¢, Node (targetnode c)))
[| es’ A CFG.path src trg
(lift-valid-edge valid-edge sourcenode targetnode kind Entry Exit)
(Node m) es (Node m”)
from (m —a # as—* m’ have m = sourcenode a and valid-edge a
and targetnode a —as—* m' by (auto elim:path-split-Cons)
let e = (Node (sourcenode a),kind a,Node (targetnode a))
have targetnode a # FEwit
proof
assume targetnode a = Exit
with walid-edge a) kind a = Q<—pf) show False by (rule Exit-no-return-target)
qed
with (valid-edge a)
have lift-valid-edge valid-edge sourcenode targetnode kind Entry Exit %e
by (fastforce intro:lve-edge)
have targetnode a # Entry

61

proof
assume targetnode a = FEntry
with (walid-edge a) show False by (rule Entry-target)
qed
hence targetnode a # Entry V m' # Ezit by simp
from IH[OF <targetnode a —as—x m”’ - this] obtain es
where valid-path: CFG .valid-path-aux knd
(lift-get-return-edges get-return-edges valid-edge sourcenode
targetnode kind) || es
and path: CFG .path src trg
(lift-valid-edge valid-edge sourcenode targetnode kind Entry Exit)
(Node (targetnode a)) es (Node m’) by auto
from valid-path kind a = Q<«pf>
have CFG .valid-path-auz knd
(lift-get-return-edges get-return-edges valid-edge sourcenode
targetnode kind) [] (?e#es) by simp
moreover
from path ¢(m = sourcenode a)
dift-valid-edge valid-edge sourcenode targetnode kind Entry Exit ?e)
have CFG.path src trg
(lift-valid-edge valid-edge sourcenode targetnode kind Entry Exit)
(Node m) (?eftes) (Node m’) by(fastforce intro: CFGExit. Cons-path)
ultimately show ?case using <cs = [)) by blast
next
case (vpa-ReturnCons ¢s a as Q p f ¢’ ¢s”)
note IH = (Am. [m —as—x m’; ¥V c€set cs’. valid-edge ¢; m # Entry V m’
Erit] =
desz es. CFG.valid-path-auz knd
(lift-get-return-edges get-return-edges valid-edge sourcenode
targetnode kind) csz es A
list-all2 (Ac ¢’. ¢/ = (Node (sourcenode c), kind ¢, Node (targetnode c)))
cs' cst N CFG.path src trg
(lift-valid-edge valid-edge sourcenode targetnode kind Entry Exit)
(Node m) es (Node m')
from (m —a # as—* m’ have m = sourcenode a and valid-edge a
and targetnode a —as—+ m’ by(auto elim:path-split-Cons)
from (Y ceset cs. valid-edge ¢ (¢cs = ¢’ # cs)
have valid-edge ¢’ and V c€set cs’. valid-edge ¢ by simp-all
let e = (Node (sourcenode a),kind a,Node (targetnode a))
have targetnode o # Exit
proof
assume targetnode a = Fxit
with (walid-edge) kind a = Q<=pf) show Fulse by (rule Exit-no-return-target)
qed
with (valid-edge a
have lift-valid-edge valid-edge sourcenode targetnode kind Entry Exit e
by (fastforce intro:lve-edge)
have targetnode a # Entry
proof

62

assume targetnode a = Entry
with (valid-edge a) show False by (rule Entry-target)
qed
hence targetnode a # Entry V m' # Ezit by simp
from IH[OF (targetnode a —as— m” ¥V ce€set cs'. valid-edge ¢ this]
obtain csz es
where valid-path: CFG .valid-path-aux knd
(lift-get-return-edges get-return-edges valid-edge sourcenode
targetnode kind) csz es
and list:list-all2
(Ae ¢’ ¢/ = (Node (sourcenode c¢), kind ¢, Node (targetnode c))) cs’ csx
and path: CFG .path src trg
(lift-valid-edge valid-edge sourcenode targetnode kind Entry Exit)
(Node (targetnode a)) es (Node m') by blast
from (walid-edge ¢’y <a € get-return-edges c”
have ?e € lift-get-return-edges get-return-edges valid-edge sourcenode
targetnode kind (Node (sourcenode c¢’),kind ¢’ ,Node (targetnode c'))
by (fastforce intro:lift-get-return-edgesI)
with valid-path kind a = Q< pf>
have CFG .valid-path-auz knd
(lift-get-return-edges get-return-edges valid-edge sourcenode targetnode kind)
((Node (sourcenode ¢'),kind ¢’,Node (targetnode c’))#csx) (Ze#tes)
by simp
moreover
from list (cs = ¢’ # cs”
have list-all2
(Ae ¢’ ¢/ = (Node (sourcenode c¢), kind ¢, Node (targetnode c))) cs
((Node (sourcenode c'),kind ¢’,Node (targetnode c’))#csx)
by simp
moreover
from path (m = sourcenode a)
dift-valid-edge valid-edge sourcenode targetnode kind Entry Fxit ?e)
have CFG.path src trg
(lift-valid-edge valid-edge sourcenode targetnode kind Entry Exit)
(Node m) (?e#es) (Node m') by(fastforce intro: CFGEuwit. Cons-path)
ultimately show ?case using (kind a = Q<>pf) by blast
qed }
hence lift-valid-path:\m as m'. [m —as— s m'; m # Entry V m’ # Exit]
= des. CFG.CFG.valid-path’ src trg knd
(lift-valid-edge valid-edge sourcenode targetnode kind Entry Exit)
(lift-get-return-edges get-return-edges valid-edge sourcenode targetnode kind)
(Node m) es (Node m)
by (fastforce simp:vp-def valid-path-def CFGExit.vp-def CFGEzit.valid-path-def)
show ?thesis
proof
fix n assume CFG.CFG.valid-node src trg
(lift-valid-edge valid-edge sourcenode targetnode kind Entry Exit) n
hence ((n = NewEntry) V n = NewEzit) V (3m. n = Node m A valid-node
m
)

63

by (auto elim:lift-valid-edge.cases simp: CFGExit.valid-node-def)
thus Jas. CFG.CFG .valid-path’ src trg knd
(lift-valid-edge valid-edge sourcenode targetnode kind Entry Exit)
(lift-get-return-edges get-return-edges valid-edge sourcenode targetnode kind)
NewEntry as n apply —
proof(erule disjE)+
assume n = NewFEnitry
hence CFG.CFG .valid-path’ src trg knd
(lift-valid-edge valid-edge sourcenode targetnode kind Entry Exit)
(lift-get-return-edges get-return-edges valid-edge sourcenode targetnode kind)
NewEntry [| n
by (fastforce intro: CFGExit.empty-path
simp: CFGEzit.vp-def CFGEzit.valid-path-def)
thus ?thesis by blast
next
assume n = NewFxit
have lift-valid-edge valid-edge sourcenode targetnode kind Entry Fxit
(NewEntry,(Xs. False) ,,NewEzit) by (fastforce intro:lve-Entry-Exit-edge)
hence CFG.CFG.path src trg
(lift-valid-edge valid-edge sourcenode targetnode kind Entry Exit)
NewEntry [(NewEntry,(Xs. False) s,NewEzit)] NewEzit
by (fastforce dest: CFGEwxit.path-edge)
with (n = NewFEzit) have CFG.CFG.valid-path’ src trg knd
(lift-valid-edge valid-edge sourcenode targetnode kind Entry Exit)
(lift-get-return-edges get-return-edges valid-edge sourcenode targetnode kind)
NewEntry [(NewEntry,(Xs. False) s,NewEzit)] n
by (fastforce simp: CFGEwzit.vp-def CFGFEzit.valid-path-def)
thus ?thesis by blast
next
assume Im. n = Node m A valid-node m
then obtain m where n = Node m and valid-node m by blast
from <wvalid-node m)
show ?thesis
proof (cases m rule:valid-node-cases)
case Entry
have lift-valid-edge valid-edge sourcenode targetnode kind Entry Exit
(NewEntry,(As. True) ,,Node Entry) by(fastforce intro:lve-Entry-edge)
with (m = Entry) (n = Node m) have CFG.CFG.path src trg
(lift-valid-edge valid-edge sourcenode targetnode kind Entry Exit)
NewEntry [(NewEntry,(Xs. True) ,,Node Entry)] n
by (fastforce intro: CFGExit. Cons-path CFGFEzit.empty-path
simp: CFGFEzit.valid-node-def)
thus ?thesis by (fastforce simp: CFGEzit.vp-def CFGExit.valid-path-def)
next
case FEuit
from inner obtain ax where valid-edge ax and intra-kind (kind az)
and inner-node (sourcenode ax)
and targetnode ax = Exit by (erule inner-node-Ezit-edge)
hence lift-valid-edge valid-edge sourcenode targetnode kind Entry Exit

64

(Node (sourcenode ax),kind az,Node Exit)
by (auto intro:lift-valid-edge.lve-edge simp:inner-node-def)

hence CFG.path src trg
(lift-valid-edge valid-edge sourcenode targetnode kind Entry Exit)
(Node (sourcenode ax)) [(Node (sourcenode ax),kind ax,Node Eit))
(Node Ezxit)
by (fastforce intro: CFGExit. Cons-path CFGFExit.empty-path

simp: CFGEzit.valid-node-def)

with «ntra-kind (kind ax)

have slp-edge: CFG.CFG .same-level-path’ src trg knd
(lift-valid-edge valid-edge sourcenode targetnode kind Entry Exit)
(lift-get-return-edges get-return-edges valid-edge sourcenode
targetnode kind)
(Node (sourcenode az)) [(Node (sourcenode az),kind ax,Node Ezit))
(Node Exit)
by (fastforce simp: CFGEzit.slp-def CFGEzxit.same-level-path-def

intra-kind-def)

have sourcenode ax # Fuxit

proof
assume sourcenode axr = Exit
with (valid-edge ax) show Fualse by(rule Exit-source)

qed

have lift-valid-edge valid-edge sourcenode targetnode kind Entry Fxit
(NewEntry,(As. True) ,,Node Entry) by (fastforce intro:lve-Entry-edge)

hence CFG.path src trg
(lift-valid-edge valid-edge sourcenode targetnode kind Entry Exit)
(NewEntry) [(NewEntry,(As. True) ,,Node Entry)] (Node Entry)
by (fastforce intro: CFGExit. Cons-path CFGFExit.empty-path

simp: CFGEzit.valid-node-def)

hence slp-edge’: CFG.CFG.same-level-path’ src trg knd
(lift-valid-edge valid-edge sourcenode targetnode kind Entry Exit)
(lift-get-return-edges get-return-edges valid-edge sourcenode
targetnode kind)
(NewEntry) [(NewEntry,(Xs. True) ,,Node Entry)] (Node Entry)
by (fastforce simp: CFGEzit.slp-def CFGEzxit.same-level-path-def)
from ¢inner-node (sourcenode ax)» have valid-node (sourcenode ax)
by (rule inner-is-valid)

then obtain asz where Entry —asz— /x sourcenode ax
by (fastforce dest: Entry-path)

with (sourcenode ax # Exit)

have Jes. CFG.CFG.valid-path’ src trg knd
(lift-valid-edge valid-edge sourcenode targetnode kind Entry Exit)
(lift-get-return-edges get-return-edges valid-edge sourcenode
targetnode kind) (Node Entry) es (Node (sourcenode ax))
by (fastforce intro:lift-valid-path)

then obtain es where CFG.CFG.valid-path’ src trg knd
(lift-valid-edge valid-edge sourcenode targetnode kind Entry Exit)
(lift-get-return-edges get-return-edges valid-edge sourcenode
targetnode kind) (Node Entry) es (Node (sourcenode az)) by blast

65

with slp-edge have CFG.CFG.valid-path’ src trg knd
(lift-valid-edge valid-edge sourcenode targetnode kind Entry Exit)
(lift-get-return-edges get-return-edges valid-edge sourcenode
targetnode kind)
(Node Entry) (esQ[(Node (sourcenode ax),kind ax,Node FEzit)]) (Node Exit)
by —(rule CFGExit.vp-slp-Append)
with slp-edge’ have CFG.CFG .valid-path’ src trg knd
(lift-valid-edge valid-edge sourcenode targetnode kind Entry Exit)
(lift-get-return-edges get-return-edges valid-edge sourcenode
targetnode kind) NewEntry
([((NewEntry,(Xs. True),/,Node Entry)]@
(es@[(Node (sourcenode az),kind ax,Node FEzit)])) (Node Exit)
by (rule CFGEzit.slp-vp-Append)
with (m = FExity (n = Node m) show ?thesis by simp blast
next
case inner
have lift-valid-edge valid-edge sourcenode targetnode kind Entry Exit
(NewEntry,(As. True) ,,Node Entry) by(fastforce intro:lve-Entry-edge)
hence CFG.path src trg
(lift-valid-edge valid-edge sourcenode targetnode kind Entry Exit)
(NewEntry) [(NewEntry,(As. True) ,,Node Entry)] (Node Entry)
by (fastforce intro: CFGExit. Cons-path CFGFExit.empty-path
simp: CFGFEzit.valid-node-def)
hence slp-edge: CFG.CFG.same-level-path’ src trg knd
(lift-valid-edge valid-edge sourcenode targetnode kind Entry Exit)
(lift-get-return-edges get-return-edges valid-edge sourcenode
targetnode kind)
(NewEntry) [(NewEntry,(As. True) ,,Node Entry)] (Node Entry)
by (fastforce simp: CFGEzit.slp-def CFGEzxit.same-level-path-def)
from (valid-node m> obtain as where Entry —as— m
by (fastforce dest: Entry-path)
with <nner-node m)
have Jes. CFG.CFG.valid-path’ src trg knd
(lift-valid-edge valid-edge sourcenode targetnode kind Entry Exit)
(lift-get-return-edges get-return-edges valid-edge sourcenode
targetnode kind) (Node Entry) es (Node m)
by (fastforce intro:lift-valid-path simp:inner-node-def)
then obtain es where CFG.CFG.valid-path’ src trg knd
(lift-valid-edge valid-edge sourcenode targetnode kind Entry Exit)
(lift-get-return-edges get-return-edges valid-edge sourcenode
targetnode kind) (Node Entry) es (Node m) by blast
with slp-edge have CFG.CFG .valid-path’ src trg knd
(lift-valid-edge valid-edge sourcenode targetnode kind Entry Exit)
(lift-get-return-edges get-return-edges valid-edge sourcenode
targetnode kind) NewEntry ([(NewEntry,(As. True) ,,Node Entry)|Qes)
(Node m)
by (rule CFGEzit.slp-vp-Append)
with (n = Node m)» show ?thesis by simp blast
qed

66

qed
next
fix n assume CFG.CFG.valid-node src trg
(lift-valid-edge valid-edge sourcenode targetnode kind Entry Exit) n
hence ((n = NewEntry) V n = NewEzit) V (3m. n = Node m A valid-node
m)
by (auto elim:lift-valid-edge.cases simp: CFGExit.valid-node-def)
thus Jas. CFG.CFG .valid-path’ src trg knd
(lift-valid-edge valid-edge sourcenode targetnode kind Entry Exit)
(lift-get-return-edges get-return-edges valid-edge sourcenode targetnode kind)
n as NewExit apply —
proof (erule disjE)+
assume n = NewFEnitry
have lift-valid-edge valid-edge sourcenode targetnode kind Entry Fxit
(NewEntry,(\s. False),,,NewEzit) by (fastforce intro:lve-Entry-Ezit-edge)
hence CFG.CFG.path src trg
(lift-valid-edge valid-edge sourcenode targetnode kind Entry Exit)
NewEntry [(NewEntry,(\s. False) /,NewEzit)] NewEzit
by (fastforce dest: CFGEwxit.path-edge)
with (n = NewEntry) have CFG.CFG .valid-path’ src trg knd
(lift-valid-edge valid-edge sourcenode targetnode kind Entry Exit)
(lift-get-return-edges get-return-edges valid-edge sourcenode targetnode kind)
n [(NewEntry,(Xs. False),,,NewEzit)| NewEzit
by (fastforce simp: CFGEzit.vp-def CFGEzit.valid-path-def)
thus ?thesis by blast
next
assume n = NewFExit
hence CFG.CFG.valid-path’ src trg knd
(lift-valid-edge valid-edge sourcenode targetnode kind Entry Exit)
(lift-get-return-edges get-return-edges valid-edge sourcenode targetnode kind)
n [| NewExit
by (fastforce intro: CFGExit.empty-path
simp: CFGEzit.vp-def CFGEzit.valid-path-def)
thus ?thesis by blast
next
assume I3m. n = Node m A valid-node m
then obtain m where n = Node m and wvalid-node m by blast
from <wvalid-node m)
show ?thesis
proof (cases m rule:valid-node-cases)
case Entry
from inner obtain ax where valid-edge ax and intra-kind (kind ax)
and inner-node (targetnode ax) and sourcenode ax = Entry
by (erule inner-node-Entry-edge)
hence lift-valid-edge valid-edge sourcenode targetnode kind Entry FExit
(Node Entry,kind az,Node (targetnode ax))
by (auto intro:lift-valid-edge.lve-edge simp:inner-node-def)
hence CFG.path src trg
(lift-valid-edge valid-edge sourcenode targetnode kind Entry Exit)

67

(Node Entry) [(Node Entry,kind ax,Node (targetnode ax))]
(Node (targetnode ax))
by (fastforce intro: CFGExit. Cons-path CFGFExit.empty-path
simp: CFGEzit.valid-node-def)

with «ntra-kind (kind ax)

have slp-edge: CFG.CFG .same-level-path’ src trg knd
(lift-valid-edge valid-edge sourcenode targetnode kind Entry Exit)
(lift-get-return-edges get-return-edges valid-edge sourcenode
targetnode kind)
(Node Entry) [(Node Entry,kind az,Node (targetnode ax))]
(Node (targetnode ax))
by (fastforce simp: CFGEzit.slp-def CFGEzxit.same-level-path-def

intra-kind-def)

have targetnode ax # Entry

proof
assume targetnode ax = Entry
with (walid-edge ax) show False by(rule Entry-target)

qged

have lift-valid-edge valid-edge sourcenode targetnode kind Entry Exit
(Node Exit,(As. True) /,NewEzit) by (fastforce intro:lve-Exit-edge)

hence CFG.path src trg
(lift-valid-edge valid-edge sourcenode targetnode kind Entry Exit)
(Node Ezit) [(Node Exit,(\s. True),/,NewErit)] NewErit
by (fastforce intro: CFGExit. Cons-path CFGFEzxit.empty-path

simp: CFGEzit.valid-node-def)

hence slp-edge’: CFG.CFG .same-level-path’ src trg knd
(lift-valid-edge valid-edge sourcenode targetnode kind Entry Exit)
(lift-get-return-edges get-return-edges valid-edge sourcenode
targetnode kind)
(Node Ezit) [(Node Exit,(As. True),,,NewEzit)] NewEwit
by (fastforce simp: CFGEit.slp-def CFGExit.same-level-path-def)

from nner-node (targetnode ax)) have valid-node (targetnode ax)
by (rule inner-is-valid)

then obtain asz where targetnode ar —asx— /x Erit
by (fastforce dest: Exit-path)

with (targetnode ax # Entry

have Jes. CFG.CFG.valid-path’ src trg knd
(lift-valid-edge valid-edge sourcenode targetnode kind Entry Exit)
(lift-get-return-edges get-return-edges valid-edge sourcenode
targetnode kind) (Node (targetnode az)) es (Node Exit)
by (fastforce intro:lift-valid-path)

then obtain es where CFG.CFG.valid-path’ src trg knd
(lift-valid-edge valid-edge sourcenode targetnode kind Entry Exit)
(lift-get-return-edges get-return-edges valid-edge sourcenode
targetnode kind) (Node (targetnode ax)) es (Node Exit) by blast

with slp-edge have CFG.CFG.valid-path’ src trg knd
(lift-valid-edge valid-edge sourcenode targetnode kind Entry Exit)
(lift-get-return-edges get-return-edges valid-edge sourcenode
targetnode kind)

68

(Node Entry) ([(Node Entry,kind ax,Node (targetnode az))]@es) (Node

Ezit)

by (rule CFGEzit.slp-vp-Append)

with slp-edge’ have CFG.CFG .valid-path’ src trg knd
(lift-valid-edge valid-edge sourcenode targetnode kind Entry Exit)
(lift-get-return-edges get-return-edges valid-edge sourcenode
targetnode kind) (Node Entry)
(([(Node Entry,kind az,Node (targetnode ax))]Qes)Q
[(Node Exit,(As. True),,,NewEzit)]) NewExit
by —(rule CFGExit.vp-slp-Append)

with (m = Entry) (n = Node m) show Zthesis by simp blast

next

case FEuit

have lift-valid-edge valid-edge sourcenode targetnode kind Entry Exit
(Node Ezit,(As. True) /,NewEzit) by (fastforce intro:lve-Exil-edge)

with (m = FEzit) <n = Node m) have CFG.CFG.path src trg
(lift-valid-edge valid-edge sourcenode targetnode kind Entry Exit)
n [(Node Exit,(As. True), ,,NewErit)] NewExit
by (fastforce intro: CFGExit. Cons-path CFGFExit.empty-path

simp: CFGEzit.valid-node-def)
thus ?thesis by (fastforce simp: CFGExit.vp-def CFGExit.valid-path-def)
next

case nner

have lift-valid-edge valid-edge sourcenode targetnode kind Entry Exit
(Node Ezit,(As. True) /,NewEzit) by (fastforce intro:lve-Ezit-edge)

hence CFG.path src trg
(lift-valid-edge valid-edge sourcenode targetnode kind Entry Exit)
(Node Ezit) [(Node Exit,(As. True),,,NewEwit)] NewEwit
by (fastforce intro: CFGExit. Cons-path CFGFExit.empty-path

simp: CFGEzit.valid-node-def)

hence slp-edge: CFG.CFG .same-level-path’ src trg knd
(lift-valid-edge valid-edge sourcenode targetnode kind Entry Exit)
(lift-get-return-edges get-return-edges valid-edge sourcenode
targetnode kind)
(Node Ezit) [(Node Exit,(\s. True),,,NewEzit)] NewExit
by (fastforce simp: CFGEit.slp-def CFGExit.same-level-path-def)

from (wvalid-node m> obtain as where m —as— ,x Exit
by (fastforce dest: Exit-path)

with nner-node m)

have Jes. CFG.CFG.valid-path’ src trg knd
(lift-valid-edge valid-edge sourcenode targetnode kind Entry Exit)
(lift-get-return-edges get-return-edges valid-edge sourcenode
targetnode kind) (Node m) es (Node Exit)
by (fastforce intro:lift-valid-path simp:inner-node-def)

then obtain es where CFG.CFG.valid-path’ src trg knd
(lift-valid-edge valid-edge sourcenode targetnode kind Entry Exit)
(lift-get-return-edges get-return-edges valid-edge sourcenode
targetnode kind) (Node m) es (Node Exit) by blast

with slp-edge have CFG.CFG .valid-path’ src trg knd

69

(lift-valid-edge valid-edge sourcenode targetnode kind Entry Exit)
(lift-get-return-edges get-return-edges valid-edge sourcenode
targetnode kind) (Node m) (esQ[(Node Ezit,(Xs. True),,,NewEzit)]) NewEzit
by —(rule CFGEzit.vp-slp-Append)
with (n = Node m)» show ?thesis by simp blast
qed
qed
next
fix nn'
assume method-ezit! : CFGFEzit. CFGExit.method-exit src knd
(lift-valid-edge valid-edge sourcenode targetnode kind Entry Exit) NewExit n
and method-ezit2: CFGFExit. CFGExit.method-exit src knd
(lift-valid-edge valid-edge sourcenode targetnode kind Entry Erxit) NewFEzit n'
and lift-eq:lift-get-proc get-proc Main n = lift-get-proc get-proc Main n'
from method-ezxitl show n = n’
proof (rule CFGExit.method-exit-cases)
assume n = NewFExit
from method-ezit2 show ?thesis
proof(rule CFGEzxit.method-exit-cases)
assume n’' = NewExit
with (n = NewFEzit) show ?thesis by simp
next
fixa@Qfp
assume n’' = src a
and lift-valid-edge valid-edge sourcenode targetnode kind Entry Exit a
and knd a = Q+pf
hence lift-get-proc get-proc Main (src a) = p
by —(rule CFGEzit.get-proc-return)
with CFGEzit.get-proc-Exit lift-eq (n’ = src a) <n = NewExit)
have p = Main by simp
with (knd o = Q<«>pf) have knd a = Q< psq;nf by simp
with (ift-valid-edge valid-edge sourcenode targetnode kind Entry Exit a
have False by (rule CFGEzit. Main-no-return-source)
thus ?thesis by simp
qed
next
fix a Qfp
assume n = src a
and lift-valid-edge valid-edge sourcenode targetnode kind Entry Ezxit a
and knd a = Q< pf
then obtain z where valid-edge x and src a = Node (sourcenode x)
and kind x = Q<pf
by (fastforce elim:lift-valid-edge.cases)
hence method-ezit (sourcenode) by (fastforce simp:method-exit-def)
from method-ezit2 show ?thesis
proof(rule CFGEzxit.method-exit-cases)
assume n’' = NewEzit
from dift-valid-edge valid-edge sourcenode targetnode kind Entry Exit a)
(knd a = Q<pf)

70

have lift-get-proc get-proc Main (src a) = p
by —(rule CFGEzit.get-proc-return)

with CFGEzit.get-proc-Exit lift-eq (n = src a) (n’ = NewExit)

have p = Main by simp

with (knd o = Q<pf) have knd a = Q< psq;nf by simp

with (ift-valid-edge valid-edge sourcenode targetnode kind Entry Exit a

have False by (rule CFGEzit. Main-no-return-source)

thus ?thesis by simp

next

fixa’ Q' f'p’

assume n' = src a’
and lift-valid-edge valid-edge sourcenode targetnode kind Entry Ezit o’
and knd o’ = Q’<—’p/f’

then obtain z’ where valid-edge =’ and src a’ = Node (sourcenode z”)
and kind z’ = Q’<—>p/f’
by (fastforce elim:lift-valid-edge.cases)

hence method-exit (sourcenode ©") by (fastforce simp:method-exit-def)

with (method-ezit (sourcenode z)) lift-eq (n = src @) (n’ = src a’
(src a = Node (sourcenode z)) <src a’ = Node (sourcenode x'))

have sourcenode x = sourcenode ¢’ by(fastforce intro:method-exit-unique)

with «src a = Node (sourcenode x)) <src a’ = Node (sourcenode z'))
(n = src a) <n’ = src ah

show ?thesis by simp

qed
qed
qed
qed

lemma [lift-SDG:
assumes SDG:SDG sourcenode targetnode kind valid-edge Entry get-proc
get-return-edges procs Main Exit Def Use ParamDefs ParamUses
and inner: CEFGFEzit.inner-node sourcenode targetnode valid-edge Entry Ezit nx
shows SDG src trg knd
(lift-valid-edge valid-edge sourcenode targetnode kind Entry Exit) NewEntry
(lift-get-proc get-proc Main)
(lift-get-return-edges get-return-edges valid-edge sourcenode targetnode kind)
procs Main NewExit (lift-Def Def Entry Exit H L) (lift-Use Use Entry Exit H L)
(lift-ParamDefs ParamDefs) (lift-ParamUses ParamUses)
proof —
interpret SDG sourcenode targetnode kind valid-edge Entry get-proc
get-return-edges procs Main Exit Def Use ParamDefs ParamUses
by (rule SDG)
have wf: CFGFExit-wf sourcenode targetnode kind valid-edge Entry get-proc
get-return-edges procs Main Exit Def Use ParamDefs ParamUses
by (unfold-locales)
have pd:Postdomination sourcenode targetnode kind valid-edge Entry get-proc
get-return-edges procs Main Exit
by (unfold-locales)

71

interpret wf " CFGExit-wf src trg knd
lift-valid-edge valid-edge sourcenode targetnode kind Entry Exit NewEntry
lift-get-proc get-proc Main
lift-get-return-edges get-return-edges valid-edge sourcenode targetnode kind
procs Main NewEzit lift-Def Def Entry Fxit H L lift-Use Use Entry FExit H L
lift-ParamDefs ParamDefs lift-ParamUses ParamUses
by (fastforce intro:lift- CFGEzit-wf wf pd)

interpret pd’:Postdomination src trg knd
lift-valid-edge valid-edge sourcenode targetnode kind Entry Exit NewEntry
lift-get-proc get-proc Main
lift-get-return-edges get-return-edges valid-edge sourcenode targetnode kind
procs Main NewEzit
by (fastforce intro:lift-Postdomination wf pd inner)

show ?thesis by (unfold-locales)

qed

3.2.3 Low-deterministic security via the lifted graph

lemma Lift-NonInterferenceGraph:
fixes valid-edge and sourcenode and targetnode and kind and Entry and Exit
and get-proc and get-return-edges and procs and Main
and Def and Use and ParamDefs and ParamUses and H and L
defines lve:lve = lift-valid-edge valid-edge sourcenode targetnode kind Entry Exit
and lget-proc:lget-proc = lift-get-proc get-proc Main
and lget-return-edges:lget-return-edges =
lift-get-return-edges get-return-edges valid-edge sourcenode targetnode kind
and [Def:lDef = lift-Def Def Entry Exit H L
and [Use:lUse = lift-Use Use Entry Exit H L
and [ParamDefs:IParamDefs = lift-ParamDefs ParamDefs
and [ParamUses:IParamUses = lift-ParamUses ParamUses
assumes SDG:SDG sourcenode targetnode kind valid-edge Entry get-proc
get-return-edges procs Main Ezit Def Use ParamDefs ParamUses
and inner: CFGEzit.inner-node sourcenode targetnode valid-edge Entry Ezit nx
and HNL={}and HU L = UNIV
shows NonlInterferencelnterGraph src trg knd lve NewEntry lget-proc
lget-return-edges procs Main NewFxit [Def [Use [ParamDefs [ParamUses H L
(Node Entry) (Node Ezit)
proof —
interpret SDG sourcenode targetnode kind valid-edge Entry get-proc
get-return-edges procs Main Exit Def Use ParamDefs ParamUses
by (rule SDG)
interpret SDG":SDG src trg knd lve NewEntry lget-proc lget-return-edges
procs Main NewEzit [Def [Use [ParamDefs [ParamUses
by (fastforce intro:lift-SDG SDG inner simp:lve lget-proc lget-return-edges [Def
[Use [ParamDefs [ParamUses)
show ?thesis
proof
fix a assume lve ¢ and src a = NewEntry
thus trg a = NewFExit V trg a = Node Entry

72

by (fastforce elim:lift-valid-edge.cases simp:lve)

next
show Ja. lve a A src a = NewEntry A trg a = Node Entry A knd a = (As.
True) .,
by (fastforce intro:lve-Entry-edge simp:lve)
next

fix a assume lve a and trg a = Node Entry
from dve @
have lift-valid-edge valid-edge sourcenode targetnode kind Entry Exit a
by (simp add:lve)
from this (trg a = Node Entry)
show src a = NewEntry
proof (induct rule:lift-valid-edge.induct)
case (lve-edge a e)
from (e = (Node (sourcenode a), kind a, Node (targetnode a)))
(trg e = Node Entry)
have targetnode a = Entry by simp
with (valid-edge a) have False by (rule Entry-target)
thus “case by simp
qed simp-all
next
fix a assume lve a and trg a = NewFuxit
thus src a = NewFEntry V src a = Node Exit
by (fastforce elim:lift-valid-edge.cases simp:lve)
next
show Ja. lve a A src a = Node Exit A trg a = NewEzit A knd a = (As. True),,
by (fastforce intro:lve-Exit-edge simp:lve)
next
fix a assume lve a and src a = Node FExit
from <lve @)
have lift-valid-edge valid-edge sourcenode targetnode kind Entry Exit a
by (simp add:lve)
from this (src a = Node Exit)
show trg a = NewFuxit
proof (induct rule:lift-valid-edge.induct)
case (lve-edge a e)
from <e = (Node (sourcenode a), kind a, Node (targetnode a)))
(src e = Node Exit)
have sourcenode a = Exit by simp
with (valid-edge a) have False by (rule Ezit-source)
thus “case by simp
qged simp-all
next
from [Def show [Def (Node Entry) = H
by (fastforce elim:lift-Def-set.cases intro:lift-Def-High)
next
from Entry-noteq-Fxit (Use show [Use (Node Entry) = H
by (fastforce elim:lift-Use-set.cases intro:lift-Use-High)
next

73

from Entry-noteq-Fzit [Use show [Use (Node Exit) = L

by (fastforce elim:lift-Use-set.cases intro:lift-Use-Low)

next
from <HNL={}p show HNL={}.
next
from (H U L = UNIV) show H U L = UNIV .
qed
qed
end
References
[1] G. Barthe and L. P. Nieto. Secure information flow for a concurrent

language with scheduling. Journal of Computer Security, 15(6):647—
689, 2007.

G. Barthe, D. Pichardie, and T. Rezk. A certified lightweight non-
interference Java bytecode verifier. In ESOP 2007, volume 4421 of
LNCS, pages 125-140. Springer, 2007.

L. Beringer and M. Hofmann. Secure information flow and program
logics. In Archive of Formal Proofs. http://afp.sf.net/entries/SIFPL.
shtml, November 2008. Formal proof development.

C. Hammer and G. Snelting. Flow-sensitive, context-sensitive, and
object-sensitive information flow control based on program dependence
graphs. International Journal of Information Security, 8(6):399-422,
2009.

F. Kammiiller. Formalizing non-interference for a simple bytecode lan-
guage in Coq. Formal Aspects of Computing, 20(3):259-275, 2008.

A. Sabelfeld and D. Sands. A per model of secure information flow in
sequential programs. Higher Order Symbolic Computation, 14(1):59-91,
2001.

G. Snelting and D. Wasserrab. A correctness proof for the Vol-
pano/Smith security typing system. In G. Klein, T. Nipkow, and
L. Paulson, editors, Archive of Formal Proofs. http://afp.sf.net/entries/
VolpanoSmith.shtml, September 2008. Formal proof development.

74

http://afp.sf.net/entries/SIFPL.shtml
http://afp.sf.net/entries/SIFPL.shtml
http://afp.sf.net/entries/VolpanoSmith.shtml
http://afp.sf.net/entries/VolpanoSmith.shtml

[8] D. Wasserrab. Towards certified slicing. In G. Klein, T. Nipkow, and
L. Paulson, editors, Archive of Formal Proofs. http://afp.sf.net/entries/
Slicing.shtml, September 2008. Formal proof development.

[9] D. Wasserrab. Backing up slicing: Verifying the interprocedural two-
phase Horwitz-Reps-Binkley slicer. In Archive of Formal Proofs. http:
//afp.sf.net/entries/HRB-Slicing.shtml, September 2009. Formal proof
development.

[10] D. Wasserrab, D. Lohner, and G. Snelting. On PDG-based noninterfer-
ence and its modular proof. In Proc. of PLAS ’09, pages 31-44. ACM,
June 2009.

75

http://afp.sf.net/entries/Slicing.shtml
http://afp.sf.net/entries/Slicing.shtml
http://afp.sf.net/entries/HRB-Slicing.shtml
http://afp.sf.net/entries/HRB-Slicing.shtml

	Introduction
	HRB Slicing guarantees IFC Noninterference
	Assumptions of this Approach
	Low Equivalence
	The Correctness Proofs

	Framework Graph Lifting for Noninterference
	Liftings
	The datatypes
	Lifting basic definitions using 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 2mu'-2muedge and 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 2mu'-2munode
	Lifting the Def and Use sets

	The lifting lemmas
	Lifting the CFG locales
	Lifting the SDG
	Low-deterministic security via the lifted graph

