Theory CFG_wf

Up to index of Isabelle/HOL/Jinja/HRB-Slicing

theory CFG_wf
imports CFG
header {* \isaheader{CFG well-formedness} *}

theory CFG_wf imports CFG begin

locale CFG_wf = CFG sourcenode targetnode kind valid_edge Entry
get_proc get_return_edges procs Main
for sourcenode :: "'edge => 'node" and targetnode :: "'edge => 'node"
and kind :: "'edge => ('var,'val,'ret,'pname) edge_kind"
and valid_edge :: "'edge => bool"
and Entry :: "'node" ("'('_Entry'_')") and get_proc :: "'node => 'pname"
and get_return_edges :: "'edge => 'edge set"
and procs :: "('pname × 'var list × 'var list) list" and Main :: "'pname" +
fixes Def::"'node => 'var set"
fixes Use::"'node => 'var set"
fixes ParamDefs::"'node => 'var list"
fixes ParamUses::"'node => 'var set list"
assumes Entry_empty:"Def (_Entry_) = {} ∧ Use (_Entry_) = {}"
and ParamUses_call_source_length:
"[|valid_edge a; kind a = Q:r\<hookrightarrow>pfs; (p,ins,outs) ∈ set procs|]
==> length(ParamUses (sourcenode a)) = length ins"

and distinct_ParamDefs:"valid_edge a ==> distinct (ParamDefs (targetnode a))"
and ParamDefs_return_target_length:
"[|valid_edge a; kind a = Q'\<hookleftarrow>pf'; (p,ins,outs) ∈ set procs|]
==> length(ParamDefs (targetnode a)) = length outs"

and ParamDefs_in_Def:
"[|valid_node n; V ∈ set (ParamDefs n)|] ==> V ∈ Def n"
and ins_in_Def:
"[|valid_edge a; kind a = Q:r\<hookrightarrow>pfs; (p,ins,outs) ∈ set procs; V ∈ set ins|]
==> V ∈ Def (targetnode a)"

and call_source_Def_empty:
"[|valid_edge a; kind a = Q:r\<hookrightarrow>pfs|] ==> Def (sourcenode a) = {}"
and ParamUses_in_Use:
"[|valid_node n; V ∈ Union (set (ParamUses n))|] ==> V ∈ Use n"
and outs_in_Use:
"[|valid_edge a; kind a = Q\<hookleftarrow>pf; (p,ins,outs) ∈ set procs; V ∈ set outs|]
==> V ∈ Use (sourcenode a)"

and CFG_intra_edge_no_Def_equal:
"[|valid_edge a; V ∉ Def (sourcenode a); intra_kind (kind a); pred (kind a) s|]
==> state_val (transfer (kind a) s) V = state_val s V"

and CFG_intra_edge_transfer_uses_only_Use:
"[|valid_edge a; ∀V ∈ Use (sourcenode a). state_val s V = state_val s' V;
intra_kind (kind a); pred (kind a) s; pred (kind a) s'|]
==> ∀V ∈ Def (sourcenode a). state_val (transfer (kind a) s) V =
state_val (transfer (kind a) s') V"

and CFG_edge_Uses_pred_equal:
"[|valid_edge a; pred (kind a) s; snd (hd s) = snd (hd s');
∀V ∈ Use (sourcenode a). state_val s V = state_val s' V; length s = length s'|]
==> pred (kind a) s'"

and CFG_call_edge_length:
"[|valid_edge a; kind a = Q:r\<hookrightarrow>pfs; (p,ins,outs) ∈ set procs|]
==> length fs = length ins"

and CFG_call_determ:
"[|valid_edge a; kind a = Q:r\<hookrightarrow>pfs; valid_edge a'; kind a' = Q':r'\<hookrightarrow>p'fs';
sourcenode a = sourcenode a'; pred (kind a) s; pred (kind a') s|]
==> a = a'"

and CFG_call_edge_params:
"[|valid_edge a; kind a = Q:r\<hookrightarrow>pfs; i < length ins;
(p,ins,outs) ∈ set procs; pred (kind a) s; pred (kind a) s';
∀V ∈ (ParamUses (sourcenode a))!i. state_val s V = state_val s' V|]
==> (params fs (fst (hd s)))!i = (params fs (fst (hd s')))!i"

and CFG_return_edge_fun:
"[|valid_edge a; kind a = Q'\<hookleftarrow>pf'; (p,ins,outs) ∈ set procs|]
==> f' vmap vmap' = vmap'(ParamDefs (targetnode a) [:=] map vmap outs)"

and deterministic:"[|valid_edge a; valid_edge a'; sourcenode a = sourcenode a';
targetnode a ≠ targetnode a'; intra_kind (kind a); intra_kind (kind a')|]
==> ∃Q Q'. kind a = (Q)\<surd> ∧ kind a' = (Q')\<surd>
(∀s. (Q s --> ¬ Q' s) ∧ (Q' s --> ¬ Q s))"


begin


lemma CFG_equal_Use_equal_call:
assumes "valid_edge a" and "kind a = Q:r\<hookrightarrow>pfs" and "valid_edge a'"
and "kind a' = Q':r'\<hookrightarrow>p'fs'" and "sourcenode a = sourcenode a'"
and "pred (kind a) s" and "pred (kind a') s'"
and "snd (hd s) = snd (hd s')" and "length s = length s'"
and "∀V ∈ Use (sourcenode a). state_val s V = state_val s' V"
shows "a = a'"
proof -
from `valid_edge a` `pred (kind a) s` `snd (hd s) = snd (hd s')`
`∀V ∈ Use (sourcenode a). state_val s V = state_val s' V` `length s = length s'`
have "pred (kind a) s'" by(rule CFG_edge_Uses_pred_equal)
with `valid_edge a` `kind a = Q:r\<hookrightarrow>pfs` `valid_edge a'` `kind a' = Q':r'\<hookrightarrow>p'fs'`
`sourcenode a = sourcenode a'` `pred (kind a') s'`
show ?thesis by -(rule CFG_call_determ)
qed


lemma CFG_call_edge_param_in:
assumes "valid_edge a" and "kind a = Q:r\<hookrightarrow>pfs" and "i < length ins"
and "(p,ins,outs) ∈ set procs" and "pred (kind a) s" and "pred (kind a) s'"
and "∀V ∈ (ParamUses (sourcenode a))!i. state_val s V = state_val s' V"
shows "state_val (transfer (kind a) s) (ins!i) =
state_val (transfer (kind a) s') (ins!i)"

proof -
from assms have params:"(params fs (fst (hd s)))!i = (params fs (fst (hd s')))!i"
by(rule CFG_call_edge_params)
from `valid_edge a` `kind a = Q:r\<hookrightarrow>pfs` `(p,ins,outs) ∈ set procs`
have [simp]:"(THE ins. ∃outs. (p,ins,outs) ∈ set procs) = ins"
by(rule formal_in_THE)
from `pred (kind a) s` obtain cf cfs where [simp]:"s = cf#cfs" by(cases s) auto
from `pred (kind a) s'` obtain cf' cfs' where [simp]:"s' = cf'#cfs'"
by(cases s') auto
from `kind a = Q:r\<hookrightarrow>pfs`
have eqs:"fst (hd (transfer (kind a) s)) = (empty(ins [:=] params fs (fst cf)))"
"fst (hd (transfer (kind a) s')) = (empty(ins [:=] params fs (fst cf')))"
by simp_all
from `valid_edge a` `kind a = Q:r\<hookrightarrow>pfs` `(p,ins,outs) ∈ set procs`
have "length fs = length ins" by(rule CFG_call_edge_length)
from `(p,ins,outs) ∈ set procs` have "distinct ins" by(rule distinct_formal_ins)
with `i < length ins` `length fs = length ins`
have "(empty(ins [:=] params fs (fst cf))) (ins!i) = (params fs (fst cf))!i"
"(empty(ins [:=] params fs (fst cf'))) (ins!i) = (params fs (fst cf'))!i"
by(fastforce intro:fun_upds_nth)+
with eqs `kind a = Q:r\<hookrightarrow>pfs` params
show ?thesis by simp
qed


lemma CFG_call_edge_no_param:
assumes "valid_edge a" and "kind a = Q:r\<hookrightarrow>pfs" and "V ∉ set ins"
and "(p,ins,outs) ∈ set procs" and "pred (kind a) s"
shows "state_val (transfer (kind a) s) V = None"
proof -
from `valid_edge a` `kind a = Q:r\<hookrightarrow>pfs` `(p,ins,outs) ∈ set procs`
have [simp]:"(THE ins. ∃outs. (p,ins,outs) ∈ set procs) = ins"
by(rule formal_in_THE)
from `pred (kind a) s` obtain cf cfs where [simp]:"s = cf#cfs" by(cases s) auto
from `V ∉ set ins` have "(empty(ins [:=] params fs (fst cf))) V = None"
by(auto dest:fun_upds_notin)
with `kind a = Q:r\<hookrightarrow>pfs` show ?thesis by simp
qed



lemma CFG_return_edge_param_out:
assumes "valid_edge a" and "kind a = Q\<hookleftarrow>pf" and "i < length outs"
and "(p,ins,outs) ∈ set procs" and "state_val s (outs!i) = state_val s' (outs!i)"
and "s = cf#cfx#cfs" and "s' = cf'#cfx'#cfs'"
shows "state_val (transfer (kind a) s) ((ParamDefs (targetnode a))!i) =
state_val (transfer (kind a) s') ((ParamDefs (targetnode a))!i)"

proof -
from `valid_edge a` `kind a = Q\<hookleftarrow>pf` `(p,ins,outs) ∈ set procs`
have [simp]:"(THE outs. ∃ins. (p,ins,outs) ∈ set procs) = outs"
by(rule formal_out_THE)
from `valid_edge a` `kind a = Q\<hookleftarrow>pf` `(p,ins,outs) ∈ set procs` `s = cf#cfx#cfs`
have transfer:"fst (hd (transfer (kind a) s)) =
(fst cfx)(ParamDefs (targetnode a) [:=] map (fst cf) outs)"

by(fastforce intro:CFG_return_edge_fun)
from `valid_edge a` `kind a = Q\<hookleftarrow>pf` `(p,ins,outs) ∈ set procs` `s' = cf'#cfx'#cfs'`
have transfer':"fst (hd (transfer (kind a) s')) =
(fst cfx')(ParamDefs (targetnode a) [:=] map (fst cf') outs)"

by(fastforce intro:CFG_return_edge_fun)
from `state_val s (outs!i) = state_val s' (outs!i)` `i < length outs`
`s = cf#cfx#cfs` `s' = cf'#cfx'#cfs'`
have "(fst cf) (outs!i) = (fst cf') (outs!i)" by simp
from `valid_edge a` have "distinct (ParamDefs (targetnode a))"
by(fastforce intro:distinct_ParamDefs)
from `valid_edge a` `kind a = Q\<hookleftarrow>pf` `(p,ins,outs) ∈ set procs`
have "length(ParamDefs (targetnode a)) = length outs"
by(fastforce intro:ParamDefs_return_target_length)
with `i < length outs` `distinct (ParamDefs (targetnode a))`
have "(fst cfx)(ParamDefs (targetnode a) [:=] map (fst cf) outs)
((ParamDefs (targetnode a))!i) = (map (fst cf) outs)!i"

and "(fst cfx')(ParamDefs (targetnode a) [:=] map (fst cf') outs)
((ParamDefs (targetnode a))!i) = (map (fst cf') outs)!i"

by(fastforce intro:fun_upds_nth)+
with transfer transfer' `(fst cf) (outs!i) = (fst cf') (outs!i)` `i < length outs`
show ?thesis by simp
qed


lemma CFG_slp_no_Def_equal:
assumes "n -as->sl* n'" and "valid_edge a" and "a' ∈ get_return_edges a"
and "V ∉ set (ParamDefs (targetnode a'))" and "preds (kinds (a#as@[a'])) s"
shows "state_val (transfers (kinds (a#as@[a'])) s) V = state_val s V"
proof -
from `valid_edge a` `a' ∈ get_return_edges a`
obtain Q r p fs where "kind a = Q:r\<hookrightarrow>pfs"
by(fastforce dest!:only_call_get_return_edges)
with `valid_edge a` `a' ∈ get_return_edges a` obtain Q' f' where "kind a' = Q'\<hookleftarrow>pf'"
by(fastforce dest!:call_return_edges)
from `valid_edge a` `a' ∈ get_return_edges a` have "valid_edge a'"
by(rule get_return_edges_valid)
from `preds (kinds (a#as@[a'])) s` obtain cf cfs where [simp]:"s = cf#cfs"
by(cases s,auto simp:kinds_def)
from `valid_edge a` `kind a = Q:r\<hookrightarrow>pfs` obtain ins outs
where "(p,ins,outs) ∈ set procs" by(fastforce dest!:callee_in_procs)
from `kind a = Q:r\<hookrightarrow>pfs` obtain cfx where "transfer (kind a) s = cfx#cf#cfs"
by simp
moreover
from `n -as->sl* n'` obtain cfx'
where "transfers (kinds as) (cfx#cf#cfs) = cfx'#cf#cfs"
by(fastforce elim:slp_callstack_length_equal)
moreover
from `kind a' = Q'\<hookleftarrow>pf'` `valid_edge a'` `(p,ins,outs) ∈ set procs`
have "fst (hd (transfer (kind a') (cfx'#cf#cfs))) =
(fst cf)(ParamDefs (targetnode a') [:=] map (fst cfx') outs)"

by(simp,simp only:formal_out_THE,fastforce intro:CFG_return_edge_fun)
ultimately have "fst (hd (transfers (kinds (a#as@[a'])) s)) =
(fst cf)(ParamDefs (targetnode a') [:=] map (fst cfx') outs)"

by(simp add:kinds_def transfers_split)
with `V ∉ set (ParamDefs (targetnode a'))` show ?thesis
by(simp add:fun_upds_notin)
qed



lemma [dest!]: "V ∈ Use (_Entry_) ==> False"
by(simp add:Entry_empty)

lemma [dest!]: "V ∈ Def (_Entry_) ==> False"
by(simp add:Entry_empty)


lemma CFG_intra_path_no_Def_equal:
assumes "n -as->ι* n'" and "∀n ∈ set (sourcenodes as). V ∉ Def n"
and "preds (kinds as) s"
shows "state_val (transfers (kinds as) s) V = state_val s V"
proof -
from `n -as->ι* n'` have "n -as->* n'" and "∀a ∈ set as. intra_kind (kind a)"
by(simp_all add:intra_path_def)
from this `∀n ∈ set (sourcenodes as). V ∉ Def n` `preds (kinds as) s`
have "state_val (transfers (kinds as) s) V = state_val s V"
proof(induct arbitrary:s rule:path.induct)
case (empty_path n)
thus ?case by(simp add:sourcenodes_def kinds_def)
next
case (Cons_path n'' as n' a n)
note IH = `!!s. [|∀a∈set as. intra_kind (kind a);
∀n∈set (sourcenodes as). V ∉ Def n; preds (kinds as) s|]
==> state_val (transfers (kinds as) s) V = state_val s V`

from `preds (kinds (a#as)) s` have "pred (kind a) s"
and "preds (kinds as) (transfer (kind a) s)" by(simp_all add:kinds_def)
from `∀n∈set (sourcenodes (a#as)). V ∉ Def n`
have noDef:"V ∉ Def (sourcenode a)"
and all:"∀n∈set (sourcenodes as). V ∉ Def n"
by(auto simp:sourcenodes_def)
from `∀a∈set (a#as). intra_kind (kind a)`
have "intra_kind (kind a)" and all':"∀a∈set as. intra_kind (kind a)"
by auto
from `valid_edge a` noDef `intra_kind (kind a)` `pred (kind a) s`
have "state_val (transfer (kind a) s) V = state_val s V"
by -(rule CFG_intra_edge_no_Def_equal)
with IH[OF all' all `preds (kinds as) (transfer (kind a) s)`] show ?case
by(simp add:kinds_def)
qed
thus ?thesis by blast
qed


lemma slpa_preds:
"[|same_level_path_aux cs as; s = cfsx@cf#cfs; s' = cfsx@cf#cfs';
length cfs = length cfs'; ∀a ∈ set as. valid_edge a; length cs = length cfsx;
preds (kinds as) s|]
==> preds (kinds as) s'"

proof(induct arbitrary:s s' cf cfsx rule:slpa_induct)
case (slpa_empty cs) thus ?case by(simp add:kinds_def)
next
case (slpa_intra cs a as)
note IH = `!!s s' cf cfsx. [|s = cfsx@cf#cfs; s' = cfsx@cf#cfs';
length cfs = length cfs'; ∀a ∈ set as. valid_edge a; length cs = length cfsx;
preds (kinds as) s|] ==> preds (kinds as) s'`

from `∀a∈set (a#as). valid_edge a` have "valid_edge a"
and "∀a ∈ set as. valid_edge a" by simp_all
from `preds (kinds (a#as)) s` have "pred (kind a) s"
and "preds (kinds as) (transfer (kind a) s)" by(simp_all add:kinds_def)
show ?case
proof(cases cfsx)
case Nil
with `length cs = length cfsx` have "length cs = length []" by simp
from Nil `s = cfsx@cf#cfs` `s' = cfsx@cf#cfs'` `intra_kind (kind a)`
obtain cfx where "transfer (kind a) s = []@cfx#cfs"
and "transfer (kind a) s' = []@cfx#cfs'"
by(cases "kind a",auto simp:kinds_def intra_kind_def)
from IH[OF this `length cfs = length cfs'` `∀a ∈ set as. valid_edge a`
`length cs = length []` `preds (kinds as) (transfer (kind a) s)`]
have "preds (kinds as) (transfer (kind a) s')" .
moreover
from Nil `valid_edge a` `pred (kind a) s` `s = cfsx@cf#cfs` `s' = cfsx@cf#cfs'`
`length cfs = length cfs'`
have "pred (kind a) s'" by(fastforce intro:CFG_edge_Uses_pred_equal)
ultimately show ?thesis by(simp add:kinds_def)
next
case (Cons x xs)
with `s = cfsx@cf#cfs` `s' = cfsx@cf#cfs'` `intra_kind (kind a)`
obtain cfx where "transfer (kind a) s = (cfx#xs)@cf#cfs"
and "transfer (kind a) s' = (cfx#xs)@cf#cfs'"
by(cases "kind a",auto simp:kinds_def intra_kind_def)
from IH[OF this `length cfs = length cfs'` `∀a ∈ set as. valid_edge a` _
`preds (kinds as) (transfer (kind a) s)`] `length cs = length cfsx` Cons
have "preds (kinds as) (transfer (kind a) s')" by simp
moreover
from Cons `valid_edge a` `pred (kind a) s` `s = cfsx@cf#cfs` `s' = cfsx@cf#cfs'`
`length cfs = length cfs'`
have "pred (kind a) s'" by(fastforce intro:CFG_edge_Uses_pred_equal)
ultimately show ?thesis by(simp add:kinds_def)
qed
next
case (slpa_Call cs a as Q r p fs)
note IH = `!!s s' cf cfsx. [|s = cfsx@cf#cfs; s' = cfsx@cf#cfs';
length cfs = length cfs'; ∀a ∈ set as. valid_edge a; length (a#cs) = length cfsx;
preds (kinds as) s|] ==> preds (kinds as) s'`

from `∀a∈set (a#as). valid_edge a` have "valid_edge a"
and "∀a ∈ set as. valid_edge a" by simp_all
from `preds (kinds (a#as)) s` have "pred (kind a) s"
and "preds (kinds as) (transfer (kind a) s)" by(simp_all add:kinds_def)
from `kind a = Q:r\<hookrightarrow>pfs` `s = cfsx@cf#cfs` `s' = cfsx@cf#cfs'` obtain cfx
where "transfer (kind a) s = (cfx#cfsx)@cf#cfs"
and "transfer (kind a) s' = (cfx#cfsx)@cf#cfs'" by(cases cfsx) auto
from IH[OF this `length cfs = length cfs'` `∀a ∈ set as. valid_edge a` _
`preds (kinds as) (transfer (kind a) s)`] `length cs = length cfsx`
have "preds (kinds as) (transfer (kind a) s')" by simp
moreover
from `valid_edge a` `pred (kind a) s` `s = cfsx@cf#cfs` `s' = cfsx@cf#cfs'`
`length cfs = length cfs'` have "pred (kind a) s'"
by(cases cfsx)(auto intro:CFG_edge_Uses_pred_equal)
ultimately show ?case by(simp add:kinds_def)
next
case (slpa_Return cs a as Q p f c' cs')
note IH = `!!s s' cf cfsx. [|s = cfsx@cf#cfs; s' = cfsx@cf#cfs';
length cfs = length cfs'; ∀a ∈ set as. valid_edge a; length cs' = length cfsx;
preds (kinds as) s|] ==> preds (kinds as) s'`

from `∀a∈set (a#as). valid_edge a` have "valid_edge a"
and "∀a ∈ set as. valid_edge a" by simp_all
from `preds (kinds (a#as)) s` have "pred (kind a) s"
and "preds (kinds as) (transfer (kind a) s)" by(simp_all add:kinds_def)
show ?case
proof(cases cs')
case Nil
with `cs = c'#cs'` `s = cfsx@cf#cfs` `s' = cfsx@cf#cfs'`
`length cs = length cfsx`
obtain cf' where "s = cf'#cf#cfs" and "s' = cf'#cf#cfs'" by(cases cfsx) auto
with `kind a = Q\<hookleftarrow>pf` obtain cf'' where "transfer (kind a) s = []@cf''#cfs"
and "transfer (kind a) s' = []@cf''#cfs'" by auto
from IH[OF this `length cfs = length cfs'` `∀a ∈ set as. valid_edge a` _
`preds (kinds as) (transfer (kind a) s)`] Nil
have "preds (kinds as) (transfer (kind a) s')" by simp
moreover
from `valid_edge a` `pred (kind a) s` `s = cfsx@cf#cfs` `s' = cfsx@cf#cfs'`
`length cfs = length cfs'` have "pred (kind a) s'"
by(cases cfsx)(auto intro:CFG_edge_Uses_pred_equal)
ultimately show ?thesis by(simp add:kinds_def)
next
case (Cons cx csx)
with `cs = c'#cs'` `length cs = length cfsx` `s = cfsx@cf#cfs` `s' = cfsx@cf#cfs'`
obtain x x' xs where "s = (x#x'#xs)@cf#cfs" and "s' = (x#x'#xs)@cf#cfs'"
and "length xs = length csx"
by(cases cfsx,auto,case_tac list,fastforce+)
with `kind a = Q\<hookleftarrow>pf` obtain cf' where "transfer (kind a) s = (cf'#xs)@cf#cfs"
and "transfer (kind a) s' = (cf'#xs)@cf#cfs'"
by fastforce
from IH[OF this `length cfs = length cfs'` `∀a ∈ set as. valid_edge a` _
`preds (kinds as) (transfer (kind a) s)`] Cons `length xs = length csx`
have "preds (kinds as) (transfer (kind a) s')" by simp
moreover
from `valid_edge a` `pred (kind a) s` `s = cfsx@cf#cfs` `s' = cfsx@cf#cfs'`
`length cfs = length cfs'` have "pred (kind a) s'"
by(cases cfsx)(auto intro:CFG_edge_Uses_pred_equal)
ultimately show ?thesis by(simp add:kinds_def)
qed
qed


lemma slp_preds:
assumes "n -as->sl* n'" and "preds (kinds as) (cf#cfs)"
and "length cfs = length cfs'"
shows "preds (kinds as) (cf#cfs')"
proof -
from `n -as->sl* n'` have "n -as->* n'" and "same_level_path_aux [] as"
by(simp_all add:slp_def same_level_path_def)
from `n -as->* n'` have "∀a ∈ set as. valid_edge a" by(rule path_valid_edges)
with `same_level_path_aux [] as` `preds (kinds as) (cf#cfs)`
`length cfs = length cfs'`
show ?thesis by(fastforce elim!:slpa_preds)
qed
end


end