header {* \isaheader{The Error Type} *}
theory Err
imports Semilat
begin
datatype 'a err = Err | OK 'a
type_synonym 'a ebinop = "'a => 'a => 'a err"
type_synonym 'a esl = "'a set × 'a ord × 'a ebinop"
primrec ok_val :: "'a err => 'a"
where
  "ok_val (OK x) = x"
definition lift :: "('a => 'b err) => ('a err => 'b err)"
where
  "lift f e = (case e of Err => Err | OK x => f x)"
definition lift2 :: "('a => 'b => 'c err) => 'a err => 'b err => 'c err"
where
  "lift2 f e⇣1 e⇣2 =
  (case e⇣1 of Err  => Err | OK x => (case e⇣2 of Err => Err | OK y => f x y))"
definition le :: "'a ord => 'a err ord"
where
  "le r e⇣1 e⇣2 =
  (case e⇣2 of Err => True | OK y => (case e⇣1 of Err => False | OK x => x \<sqsubseteq>⇩r y))"
definition sup :: "('a => 'b => 'c) => ('a err => 'b err => 'c err)"
where
  "sup f = lift2 (λx y. OK (x \<squnion>⇩f y))"
definition err :: "'a set => 'a err set"
where
  "err A = insert Err {OK x|x. x∈A}"
definition esl :: "'a sl => 'a esl"
where
  "esl = (λ(A,r,f). (A, r, λx y. OK(f x y)))"
definition sl :: "'a esl => 'a err sl"
where
  "sl = (λ(A,r,f). (err A, le r, lift2 f))"
abbreviation
  err_semilat :: "'a esl => bool" where
  "err_semilat L == semilat(sl L)"
primrec strict  :: "('a => 'b err) => ('a err => 'b err)"
where
  "strict f Err    = Err"
| "strict f (OK x) = f x"
lemma err_def':
  "err A = insert Err {x. ∃y∈A. x = OK y}"
proof -
  have eq: "err A = insert Err {x. ∃y∈A. x = OK y}"
    by (unfold err_def) blast
  show "err A = insert Err {x. ∃y∈A. x = OK y}" by (simp add: eq)
qed
lemma strict_Some [simp]: 
  "(strict f x = OK y) = (∃z. x = OK z ∧ f z = OK y)"
 by (cases x, auto) 
lemma not_Err_eq: "(x ≠ Err) = (∃a. x = OK a)" 
 by (cases x) auto 
lemma not_OK_eq: "(∀y. x ≠ OK y) = (x = Err)"
 by (cases x) auto   
lemma unfold_lesub_err: "e1 \<sqsubseteq>⇘le r⇙ e2 = le r e1 e2"
 by (simp add: lesub_def) 
lemma le_err_refl: "∀x. x \<sqsubseteq>⇩r x ==> e \<sqsubseteq>⇘le r⇙ e"
apply (unfold lesub_def le_def)
apply (simp split: err.split)
done 
lemma le_err_trans [rule_format]:
  "order r ==> e1 \<sqsubseteq>⇘le r⇙ e2 --> e2 \<sqsubseteq>⇘le r⇙ e3 --> e1 \<sqsubseteq>⇘le r⇙ e3"
apply (unfold unfold_lesub_err le_def)
apply (simp split: err.split)
apply (blast intro: order_trans)
done
lemma le_err_antisym [rule_format]:
  "order r ==> e1 \<sqsubseteq>⇘le r⇙ e2 --> e2 \<sqsubseteq>⇘le r⇙ e1 --> e1=e2"
apply (unfold unfold_lesub_err le_def)
apply (simp split: err.split)
apply (blast intro: order_antisym)
done 
lemma OK_le_err_OK: "(OK x \<sqsubseteq>⇘le r⇙ OK y) = (x \<sqsubseteq>⇩r y)"
 by (simp add: unfold_lesub_err le_def) 
lemma order_le_err [iff]: "order(le r) = order r"
apply (rule iffI)
 apply (subst order_def)
 apply (blast dest: order_antisym OK_le_err_OK [THEN iffD2]
              intro: order_trans OK_le_err_OK [THEN iffD1])
apply (subst order_def)
apply (blast intro: le_err_refl le_err_trans le_err_antisym
             dest: order_refl)
done 
lemma le_Err [iff]: "e \<sqsubseteq>⇘le r⇙ Err"
 by (simp add: unfold_lesub_err le_def) 
lemma Err_le_conv [iff]: "Err \<sqsubseteq>⇘le r⇙ e  = (e = Err)"
 by (simp add: unfold_lesub_err le_def  split: err.split) 
lemma le_OK_conv [iff]: "e \<sqsubseteq>⇘le r⇙ OK x  =  (∃y. e = OK y ∧ y \<sqsubseteq>⇩r x)"
 by (simp add: unfold_lesub_err le_def split: err.split) 
lemma OK_le_conv: "OK x \<sqsubseteq>⇘le r⇙ e = (e = Err ∨ (∃y. e = OK y ∧ x \<sqsubseteq>⇩r y))"
 by (simp add: unfold_lesub_err le_def split: err.split) 
lemma top_Err [iff]: "top (le r) Err"
 by (simp add: top_def) 
lemma OK_less_conv [rule_format, iff]:
  "OK x \<sqsubset>⇘le r⇙ e = (e=Err ∨ (∃y. e = OK y ∧ x \<sqsubset>⇩r y))"
 by (simp add: lesssub_def lesub_def le_def split: err.split) 
lemma not_Err_less [rule_format, iff]: "¬(Err \<sqsubset>⇘le r⇙ x)"
 by (simp add: lesssub_def lesub_def le_def split: err.split) 
lemma semilat_errI [intro]: assumes "Semilat A r f"
shows "semilat(err A, le r, lift2(λx y. OK(f x y)))"
proof -
  interpret Semilat A r f by fact
  show ?thesis
    apply(insert semilat)
    apply (unfold semilat_Def closed_def plussub_def lesub_def 
              lift2_def le_def)
    apply (simp add: err_def' split: err.split)
    done
qed
lemma err_semilat_eslI_aux:
assumes "Semilat A r f" shows "err_semilat(esl(A,r,f))"
proof -
  interpret Semilat A r f by fact
  show ?thesis
    apply (unfold sl_def esl_def)
    apply (simp add: semilat_errI [OF `Semilat A r f`])
    done
qed
lemma err_semilat_eslI [intro, simp]:
  "semilat L ==> err_semilat (esl L)"
 apply (cases L) apply simp
apply (drule Semilat.intro)
apply (simp add: err_semilat_eslI_aux split_tupled_all)
done 
lemma acc_err [simp, intro!]:  "acc r ==> acc(le r)"
apply (unfold acc_def lesub_def le_def lesssub_def)
apply (simp add: wf_eq_minimal split: err.split)
apply clarify
apply (case_tac "Err : Q")
 apply blast
apply (erule_tac x = "{a . OK a : Q}" in allE)
apply (case_tac "x")
 apply fast
apply blast
done 
lemma Err_in_err [iff]: "Err : err A"
 by (simp add: err_def') 
lemma Ok_in_err [iff]: "(OK x ∈ err A) = (x∈A)"
 by (auto simp add: err_def') 
section {* lift *}
lemma lift_in_errI:
  "[| e ∈ err S; ∀x∈S. e = OK x --> f x ∈ err S |] ==> lift f e ∈ err S"
apply (unfold lift_def)
apply (simp split: err.split)
apply blast
done 
lemma Err_lift2 [simp]: "Err \<squnion>⇘lift2 f⇙ x = Err"
 by (simp add: lift2_def plussub_def) 
lemma lift2_Err [simp]: "x \<squnion>⇘lift2 f⇙ Err = Err"
 by (simp add: lift2_def plussub_def split: err.split) 
lemma OK_lift2_OK [simp]: "OK x \<squnion>⇘lift2 f⇙ OK y = x \<squnion>⇩f y"
 by (simp add: lift2_def plussub_def split: err.split) 
section {* sup *}
lemma Err_sup_Err [simp]: "Err \<squnion>⇘sup f⇙ x = Err"
 by (simp add: plussub_def sup_def lift2_def) 
lemma Err_sup_Err2 [simp]: "x \<squnion>⇘sup f⇙ Err = Err"
 by (simp add: plussub_def sup_def lift2_def split: err.split) 
lemma Err_sup_OK [simp]: "OK x \<squnion>⇘sup f⇙ OK y = OK (x \<squnion>⇩f y)"
 by (simp add: plussub_def sup_def lift2_def) 
lemma Err_sup_eq_OK_conv [iff]:
  "(sup f ex ey = OK z) = (∃x y. ex = OK x ∧ ey = OK y ∧ f x y = z)"
apply (unfold sup_def lift2_def plussub_def)
apply (rule iffI)
 apply (simp split: err.split_asm)
apply clarify
apply simp
done
lemma Err_sup_eq_Err [iff]: "(sup f ex ey = Err) = (ex=Err ∨ ey=Err)"
apply (unfold sup_def lift2_def plussub_def)
apply (simp split: err.split)
done 
section {* semilat (err A) (le r) f *}
lemma semilat_le_err_Err_plus [simp]:
  "[| x∈ err A; semilat(err A, le r, f) |] ==> Err \<squnion>⇩f x = Err"
 by (blast intro: Semilat.le_iff_plus_unchanged [THEN iffD1, OF Semilat.intro] 
                   Semilat.le_iff_plus_unchanged2 [THEN iffD1, OF Semilat.intro]) 
lemma semilat_le_err_plus_Err [simp]:
  "[| x∈ err A; semilat(err A, le r, f) |] ==> x \<squnion>⇩f Err = Err"
 by (blast intro: Semilat.le_iff_plus_unchanged [THEN iffD1, OF Semilat.intro]
                   Semilat.le_iff_plus_unchanged2 [THEN iffD1, OF Semilat.intro]) 
lemma semilat_le_err_OK1:
  "[| x∈A; y∈A; semilat(err A, le r, f); OK x \<squnion>⇩f OK y = OK z |] 
  ==> x \<sqsubseteq>⇩r z"
apply (rule OK_le_err_OK [THEN iffD1])
apply (erule subst)
apply (simp add: Semilat.ub1 [OF Semilat.intro])
done
lemma semilat_le_err_OK2:
  "[| x∈A; y∈A; semilat(err A, le r, f); OK x \<squnion>⇩f OK y = OK z |] 
  ==> y \<sqsubseteq>⇩r z"
apply (rule OK_le_err_OK [THEN iffD1])
apply (erule subst)
apply (simp add: Semilat.ub2 [OF Semilat.intro])
done
lemma eq_order_le:
  "[| x=y; order r |] ==> x \<sqsubseteq>⇩r y"
apply (unfold order_def)
apply blast
done
lemma OK_plus_OK_eq_Err_conv [simp]:
  assumes "x∈A"  "y∈A"  "semilat(err A, le r, fe)"
  shows "(OK x \<squnion>⇘fe⇙ OK y = Err) = (¬(∃z∈A. x \<sqsubseteq>⇩r z ∧ y \<sqsubseteq>⇩r z))"
proof -
  have plus_le_conv3: "!!A x y z f r. 
    [| semilat (A,r,f); x \<squnion>⇩f y \<sqsubseteq>⇩r z; x∈A; y∈A; z∈A |] 
    ==> x \<sqsubseteq>⇩r z ∧ y \<sqsubseteq>⇩r z"
 by (rule Semilat.plus_le_conv [OF Semilat.intro, THEN iffD1]) 
  from assms show ?thesis
  apply (rule_tac iffI)
   apply clarify
   apply (drule OK_le_err_OK [THEN iffD2])
   apply (drule OK_le_err_OK [THEN iffD2])
   apply (drule Semilat.lub[OF Semilat.intro, of _ _ _ "OK x" _ "OK y"])
        apply assumption
       apply assumption
      apply simp
     apply simp
    apply simp
   apply simp
  apply (case_tac "OK x \<squnion>⇘fe⇙ OK y")
   apply assumption
  apply (rename_tac z)
  apply (subgoal_tac "OK z∈ err A")
  apply (drule eq_order_le)
    apply (erule Semilat.orderI [OF Semilat.intro])
   apply (blast dest: plus_le_conv3) 
  apply (erule subst)
  apply (blast intro: Semilat.closedI [OF Semilat.intro] closedD)
  done 
qed
section {* semilat (err(Union AS)) *}
lemma all_bex_swap_lemma [iff]:
  "(∀x. (∃y∈A. x = f y) --> P x) = (∀y∈A. P(f y))"
 by blast 
lemma closed_err_Union_lift2I: 
  "[| ∀A∈AS. closed (err A) (lift2 f); AS ≠ {}; 
      ∀A∈AS.∀B∈AS. A≠B --> (∀a∈A.∀b∈B. a \<squnion>⇩f b = Err) |] 
  ==> closed (err(Union AS)) (lift2 f)"
apply (unfold closed_def err_def')
apply simp
apply clarify
apply simp
apply fast
done 
text {* 
  If @{term "AS = {}"} the thm collapses to
  @{prop "order r ∧ closed {Err} f ∧ Err \<squnion>⇩f Err = Err"}
  which may not hold 
*}
lemma err_semilat_UnionI:
  "[| ∀A∈AS. err_semilat(A, r, f); AS ≠ {}; 
      ∀A∈AS.∀B∈AS. A≠B --> (∀a∈A.∀b∈B. ¬a \<sqsubseteq>⇩r b ∧ a \<squnion>⇩f b = Err) |] 
  ==> err_semilat(Union AS, r, f)"
apply (unfold semilat_def sl_def)
apply (simp add: closed_err_Union_lift2I)
apply (rule conjI)
 apply blast
apply (simp add: err_def')
apply (rule conjI)
 apply clarify
 apply (rename_tac A a u B b)
 apply (case_tac "A = B")
  apply simp
 apply simp
apply (rule conjI)
 apply clarify
 apply (rename_tac A a u B b)
 apply (case_tac "A = B")
  apply simp
 apply simp
apply clarify
apply (rename_tac A ya yb B yd z C c a b)
apply (case_tac "A = B")
 apply (case_tac "A = C")
  apply simp
 apply simp
apply (case_tac "B = C")
 apply simp
apply simp
done 
end