Theory Effect

Up to index of Isabelle/HOL/Jinja

theory Effect
imports JVM_SemiType JVMExceptions
(*  Title:      HOL/MicroJava/BV/Effect.thy
Author: Gerwin Klein
Copyright 2000 Technische Universitaet Muenchen
*)


header {* \isaheader{Effect of Instructions on the State Type} *}

theory Effect
imports JVM_SemiType "../JVM/JVMExceptions"
begin

-- FIXME
locale prog =
fixes P :: "'a prog"

locale jvm_method = prog +
fixes mxs :: nat
fixes mxl0 :: nat
fixes Ts :: "ty list"
fixes Tr :: ty
fixes "is" :: "instr list"
fixes xt :: ex_table

fixes mxl :: nat
defines mxl_def: "mxl ≡ 1+size Ts+mxl0"

text {* Program counter of successor instructions: *}
primrec succs :: "instr => tyi => pc => pc list" where
"succs (Load idx) τ pc = [pc+1]"
| "succs (Store idx) τ pc = [pc+1]"
| "succs (Push v) τ pc = [pc+1]"
| "succs (Getfield F C) τ pc = [pc+1]"
| "succs (Putfield F C) τ pc = [pc+1]"
| "succs (New C) τ pc = [pc+1]"
| "succs (Checkcast C) τ pc = [pc+1]"
| "succs Pop τ pc = [pc+1]"
| "succs IAdd τ pc = [pc+1]"
| "succs CmpEq τ pc = [pc+1]"
| succs_IfFalse:
"succs (IfFalse b) τ pc = [pc+1, nat (int pc + b)]"
| succs_Goto:
"succs (Goto b) τ pc = [nat (int pc + b)]"
| succs_Return:
"succs Return τ pc = []"
| succs_Invoke:
"succs (Invoke M n) τ pc = (if (fst τ)!n = NT then [] else [pc+1])"
| succs_Throw:
"succs Throw τ pc = []"

text "Effect of instruction on the state type:"

fun the_class:: "ty => cname" where
"the_class (Class C) = C"

fun effi :: "instr × 'm prog × tyi => tyi" where
effi_Load:
"effi (Load n, P, (ST, LT)) = (ok_val (LT ! n) # ST, LT)"
| effi_Store:
"effi (Store n, P, (T#ST, LT)) = (ST, LT[n:= OK T])"
| effi_Push:
"effi (Push v, P, (ST, LT)) = (the (typeof v) # ST, LT)"
| effi_Getfield:
"effi (Getfield F C, P, (T#ST, LT)) = (snd (field P C F) # ST, LT)"
| effi_Putfield:
"effi (Putfield F C, P, (T1#T2#ST, LT)) = (ST,LT)"
| effi_New:
"effi (New C, P, (ST,LT)) = (Class C # ST, LT)"
| effi_Checkcast:
"effi (Checkcast C, P, (T#ST,LT)) = (Class C # ST,LT)"
| effi_Pop:
"effi (Pop, P, (T#ST,LT)) = (ST,LT)"
| effi_IAdd:
"effi (IAdd, P,(T1#T2#ST,LT)) = (Integer#ST,LT)"
| effi_CmpEq:
"effi (CmpEq, P, (T1#T2#ST,LT)) = (Boolean#ST,LT)"
| effi_IfFalse:
"effi (IfFalse b, P, (T1#ST,LT)) = (ST,LT)"
| effi_Invoke:
"effi (Invoke M n, P, (ST,LT)) =
(let C = the_class (ST!n); (D,Ts,Tr,b) = method P C M
in (Tr # drop (n+1) ST, LT))"

| effi_Goto:
"effi (Goto n, P, s) = s"

fun is_relevant_class :: "instr => 'm prog => cname => bool" where
rel_Getfield:
"is_relevant_class (Getfield F D) = (λP C. P \<turnstile> NullPointer \<preceq>* C)"
| rel_Putfield:
"is_relevant_class (Putfield F D) = (λP C. P \<turnstile> NullPointer \<preceq>* C)"
| rel_Checcast:
"is_relevant_class (Checkcast D) = (λP C. P \<turnstile> ClassCast \<preceq>* C)"
| rel_New:
"is_relevant_class (New D) = (λP C. P \<turnstile> OutOfMemory \<preceq>* C)"
| rel_Throw:
"is_relevant_class Throw = (λP C. True)"
| rel_Invoke:
"is_relevant_class (Invoke M n) = (λP C. True)"
| rel_default:
"is_relevant_class i = (λP C. False)"

definition is_relevant_entry :: "'m prog => instr => pc => ex_entry => bool" where
"is_relevant_entry P i pc e <-> (let (f,t,C,h,d) = e in is_relevant_class i P C ∧ pc ∈ {f..<t})"

definition relevant_entries :: "'m prog => instr => pc => ex_table => ex_table" where
"relevant_entries P i pc = filter (is_relevant_entry P i pc)"

definition xcpt_eff :: "instr => 'm prog => pc => tyi
=> ex_table => (pc × tyi') list"
where
"xcpt_eff i P pc τ et = (let (ST,LT) = τ in
map (λ(f,t,C,h,d). (h, Some (Class C#drop (size ST - d) ST, LT))) (relevant_entries P i pc et))"


definition norm_eff :: "instr => 'm prog => nat => tyi => (pc × tyi') list" where
"norm_eff i P pc τ = map (λpc'. (pc',Some (effi (i,P,τ)))) (succs i τ pc)"

definition eff :: "instr => 'm prog => pc => ex_table => tyi' => (pc × tyi') list" where
"eff i P pc et t = (case t of
None => []
| Some τ => (norm_eff i P pc τ) @ (xcpt_eff i P pc τ et))"



lemma eff_None:
"eff i P pc xt None = []"
by (simp add: eff_def)

lemma eff_Some:
"eff i P pc xt (Some τ) = norm_eff i P pc τ @ xcpt_eff i P pc τ xt"
by (simp add: eff_def)

(* FIXME: getfield, ∃T D. P \<turnstile> C sees F:T in D ∧ .. *)

text "Conditions under which eff is applicable:"

fun appi :: "instr × 'm prog × pc × nat × ty × tyi => bool" where
appi_Load:
"appi (Load n, P, pc, mxs, Tr, (ST,LT)) =
(n < length LT ∧ LT ! n ≠ Err ∧ length ST < mxs)"

| appi_Store:
"appi (Store n, P, pc, mxs, Tr, (T#ST, LT)) =
(n < length LT)"

| appi_Push:
"appi (Push v, P, pc, mxs, Tr, (ST,LT)) =
(length ST < mxs ∧ typeof v ≠ None)"

| appi_Getfield:
"appi (Getfield F C, P, pc, mxs, Tr, (T#ST, LT)) =
(∃Tf. P \<turnstile> C sees F:Tf in C ∧ P \<turnstile> T ≤ Class C)"

| appi_Putfield:
"appi (Putfield F C, P, pc, mxs, Tr, (T1#T2#ST, LT)) =
(∃Tf. P \<turnstile> C sees F:Tf in C ∧ P \<turnstile> T2 ≤ (Class C) ∧ P \<turnstile> T1 ≤ Tf)"

| appi_New:
"appi (New C, P, pc, mxs, Tr, (ST,LT)) =
(is_class P C ∧ length ST < mxs)"

| appi_Checkcast:
"appi (Checkcast C, P, pc, mxs, Tr, (T#ST,LT)) =
(is_class P C ∧ is_refT T)"

| appi_Pop:
"appi (Pop, P, pc, mxs, Tr, (T#ST,LT)) =
True"

| appi_IAdd:
"appi (IAdd, P, pc, mxs, Tr, (T1#T2#ST,LT)) = (T1 = T2 ∧ T1 = Integer)"
| appi_CmpEq:
"appi (CmpEq, P, pc, mxs, Tr, (T1#T2#ST,LT)) =
(T1 = T2 ∨ is_refT T1 ∧ is_refT T2)"

| appi_IfFalse:
"appi (IfFalse b, P, pc, mxs, Tr, (Boolean#ST,LT)) =
(0 ≤ int pc + b)"

| appi_Goto:
"appi (Goto b, P, pc, mxs, Tr, s) =
(0 ≤ int pc + b)"

| appi_Return:
"appi (Return, P, pc, mxs, Tr, (T#ST,LT)) =
(P \<turnstile> T ≤ Tr)"

| appi_Throw:
"appi (Throw, P, pc, mxs, Tr, (T#ST,LT)) =
is_refT T"

| appi_Invoke:
"appi (Invoke M n, P, pc, mxs, Tr, (ST,LT)) =
(n < length ST ∧
(ST!n ≠ NT -->
(∃C D Ts T m. ST!n = Class C ∧ P \<turnstile> C sees M:Ts -> T = m in D ∧
P \<turnstile> rev (take n ST) [≤] Ts)))"


| appi_default:
"appi (i,P, pc,mxs,Tr,s) = False"


definition xcpt_app :: "instr => 'm prog => pc => nat => ex_table => tyi => bool" where
"xcpt_app i P pc mxs xt τ <-> (∀(f,t,C,h,d) ∈ set (relevant_entries P i pc xt). is_class P C ∧ d ≤ size (fst τ) ∧ d < mxs)"

definition app :: "instr => 'm prog => nat => ty => nat => nat => ex_table => tyi' => bool" where
"app i P mxs Tr pc mpc xt t = (case t of None => True | Some τ =>
appi (i,P,pc,mxs,Tr,τ) ∧ xcpt_app i P pc mxs xt τ ∧
(∀(pc',τ') ∈ set (eff i P pc xt t). pc' < mpc))"



lemma app_Some:
"app i P mxs Tr pc mpc xt (Some τ) =
(appi (i,P,pc,mxs,Tr,τ) ∧ xcpt_app i P pc mxs xt τ ∧
(∀(pc',s') ∈ set (eff i P pc xt (Some τ)). pc' < mpc))"

by (simp add: app_def)

locale eff = jvm_method +
fixes effi and appi and eff and app
fixes norm_eff and xcpt_app and xcpt_eff

fixes mpc
defines "mpc ≡ size is"

defines "effi i τ ≡ Effect.effi (i,P,τ)"
notes effi_simps [simp] = Effect.effi.simps [where P = P, folded effi_def]

defines "appi i pc τ ≡ Effect.appi (i, P, pc, mxs, Tr, τ)"
notes appi_simps [simp] = Effect.appi.simps [where P=P and mxs=mxs and Tr=Tr, folded appi_def]

defines "xcpt_eff i pc τ ≡ Effect.xcpt_eff i P pc τ xt"
notes xcpt_eff = Effect.xcpt_eff_def [of _ P _ _ xt, folded xcpt_eff_def]

defines "norm_eff i pc τ ≡ Effect.norm_eff i P pc τ"
notes norm_eff = Effect.norm_eff_def [of _ P, folded norm_eff_def effi_def]

defines "eff i pc ≡ Effect.eff i P pc xt"
notes eff = Effect.eff_def [of _ P _ xt, folded eff_def norm_eff_def xcpt_eff_def]

defines "xcpt_app i pc τ ≡ Effect.xcpt_app i P pc mxs xt τ"
notes xcpt_app = Effect.xcpt_app_def [of _ P _ mxs xt, folded xcpt_app_def]

defines "app i pc ≡ Effect.app i P mxs Tr pc mpc xt"
notes app = Effect.app_def [of _ P mxs Tr _ mpc xt, folded app_def xcpt_app_def appi_def eff_def]


lemma length_cases2:
assumes "!!LT. P ([],LT)"
assumes "!!l ST LT. P (l#ST,LT)"
shows "P s"
by (cases s, cases "fst s") (auto intro!: assms)


lemma length_cases3:
assumes "!!LT. P ([],LT)"
assumes "!!l LT. P ([l],LT)"
assumes "!!l ST LT. P (l#ST,LT)"
shows "P s"
(*<*)
proof -
obtain xs LT where s: "s = (xs,LT)" by (cases s)
show ?thesis
proof (cases xs)
case Nil with assms s show ?thesis by simp
next
fix l xs' assume "xs = l#xs'"
with assms s show ?thesis by simp
qed
qed
(*>*)

lemma length_cases4:
assumes "!!LT. P ([],LT)"
assumes "!!l LT. P ([l],LT)"
assumes "!!l l' LT. P ([l,l'],LT)"
assumes "!!l l' ST LT. P (l#l'#ST,LT)"
shows "P s"
(*<*)
proof -
obtain xs LT where s: "s = (xs,LT)" by (cases s)
show ?thesis
proof (cases xs)
case Nil with assms s show ?thesis by simp
next
fix l xs' assume xs: "xs = l#xs'"
thus ?thesis
proof (cases xs')
case Nil with assms s xs show ?thesis by simp
next
fix l' ST assume "xs' = l'#ST"
with assms s xs show ?thesis by simp
qed
qed
qed
(*>*)

text {*
\medskip
simp rules for @{term app}
*}

lemma appNone[simp]: "app i P mxs Tr pc mpc et None = True"
by (simp add: app_def)


lemma appLoad[simp]:
"appi (Load idx, P, Tr, mxs, pc, s) = (∃ST LT. s = (ST,LT) ∧ idx < length LT ∧ LT!idx ≠ Err ∧ length ST < mxs)"
by (cases s, simp)

lemma appStore[simp]:
"appi (Store idx,P,pc,mxs,Tr,s) = (∃ts ST LT. s = (ts#ST,LT) ∧ idx < length LT)"
by (rule length_cases2, auto)

lemma appPush[simp]:
"appi (Push v,P,pc,mxs,Tr,s) =
(∃ST LT. s = (ST,LT) ∧ length ST < mxs ∧ typeof v ≠ None)"

by (cases s, simp)

lemma appGetField[simp]:
"appi (Getfield F C,P,pc,mxs,Tr,s) =
(∃ oT vT ST LT. s = (oT#ST, LT) ∧
P \<turnstile> C sees F:vT in C ∧ P \<turnstile> oT ≤ (Class C))"

by (rule length_cases2 [of _ s]) auto

lemma appPutField[simp]:
"appi (Putfield F C,P,pc,mxs,Tr,s) =
(∃ vT vT' oT ST LT. s = (vT#oT#ST, LT) ∧
P \<turnstile> C sees F:vT' in C ∧ P \<turnstile> oT ≤ (Class C) ∧ P \<turnstile> vT ≤ vT')"

by (rule length_cases4 [of _ s], auto)

lemma appNew[simp]:
"appi (New C,P,pc,mxs,Tr,s) =
(∃ST LT. s=(ST,LT) ∧ is_class P C ∧ length ST < mxs)"

by (cases s, simp)

lemma appCheckcast[simp]:
"appi (Checkcast C,P,pc,mxs,Tr,s) =
(∃T ST LT. s = (T#ST,LT) ∧ is_class P C ∧ is_refT T)"

by (cases s, cases "fst s", simp add: app_def) (cases "hd (fst s)", auto)

lemma appiPop[simp]:
"appi (Pop,P,pc,mxs,Tr,s) = (∃ts ST LT. s = (ts#ST,LT))"
by (rule length_cases2, auto)

lemma appIAdd[simp]:
"appi (IAdd,P,pc,mxs,Tr,s) = (∃ST LT. s = (Integer#Integer#ST,LT))"
(*<*)
proof -
obtain ST LT where [simp]: "s = (ST,LT)" by (cases s)
have "ST = [] ∨ (∃T. ST = [T]) ∨ (∃T1 T2 ST'. ST = T1#T2#ST')"
by (cases ST, auto, case_tac list, auto)
moreover
{ assume "ST = []" hence ?thesis by simp }
moreover
{ fix T assume "ST = [T]" hence ?thesis by (cases T, auto) }
moreover
{ fix T1 T2 ST' assume "ST = T1#T2#ST'"
hence ?thesis by (cases T1, auto)
}
ultimately show ?thesis by blast
qed
(*>*)


lemma appIfFalse [simp]:
"appi (IfFalse b,P,pc,mxs,Tr,s) =
(∃ST LT. s = (Boolean#ST,LT) ∧ 0 ≤ int pc + b)"

(*<*)
apply (rule length_cases2)
apply simp
apply (case_tac l)
apply auto
done
(*>*)

lemma appCmpEq[simp]:
"appi (CmpEq,P,pc,mxs,Tr,s) =
(∃T1 T2 ST LT. s = (T1#T2#ST,LT) ∧ (¬is_refT T1 ∧ T2 = T1 ∨ is_refT T1 ∧ is_refT T2))"

by (rule length_cases4, auto)

lemma appReturn[simp]:
"appi (Return,P,pc,mxs,Tr,s) = (∃T ST LT. s = (T#ST,LT) ∧ P \<turnstile> T ≤ Tr)"
by (rule length_cases2, auto)

lemma appThrow[simp]:
"appi (Throw,P,pc,mxs,Tr,s) = (∃T ST LT. s=(T#ST,LT) ∧ is_refT T)"
by (rule length_cases2, auto)

lemma effNone:
"(pc', s') ∈ set (eff i P pc et None) ==> s' = None"
by (auto simp add: eff_def xcpt_eff_def norm_eff_def)


text {* some helpers to make the specification directly executable: *}
lemma relevant_entries_append [simp]:
"relevant_entries P i pc (xt @ xt') = relevant_entries P i pc xt @ relevant_entries P i pc xt'"
by (unfold relevant_entries_def) simp

lemma xcpt_app_append [iff]:
"xcpt_app i P pc mxs (xt@xt') τ = (xcpt_app i P pc mxs xt τ ∧ xcpt_app i P pc mxs xt' τ)"
by (unfold xcpt_app_def) fastforce

lemma xcpt_eff_append [simp]:
"xcpt_eff i P pc τ (xt@xt') = xcpt_eff i P pc τ xt @ xcpt_eff i P pc τ xt'"
by (unfold xcpt_eff_def, cases τ) simp

lemma app_append [simp]:
"app i P pc T mxs mpc (xt@xt') τ = (app i P pc T mxs mpc xt τ ∧ app i P pc T mxs mpc xt' τ)"
by (unfold app_def eff_def) auto

end