Theory Code_Abstract_Nat

Up to index of Isabelle/HOL/Jinja

theory Code_Abstract_Nat
imports Main
(*  Title:      HOL/Library/Code_Abstract_Nat.thy
Author: Stefan Berghofer, Florian Haftmann, TU Muenchen
*)


header {* Avoidance of pattern matching on natural numbers *}

theory Code_Abstract_Nat
imports Main
begin

text {*
When natural numbers are implemented in another than the
conventional inductive @{term "0::nat"}/@{term Suc} representation,
it is necessary to avoid all pattern matching on natural numbers
altogether. This is accomplished by this theory (up to a certain
extent).
*}


subsection {* Case analysis *}

text {*
Case analysis on natural numbers is rephrased using a conditional
expression:
*}


lemma [code, code_unfold]:
"nat_case = (λf g n. if n = 0 then f else g (n - 1))"
by (auto simp add: fun_eq_iff dest!: gr0_implies_Suc)


subsection {* Preprocessors *}

text {*
The term @{term "Suc n"} is no longer a valid pattern. Therefore,
all occurrences of this term in a position where a pattern is
expected (i.e.~on the left-hand side of a code equation) must be
eliminated. This can be accomplished – as far as possible – by
applying the following transformation rule:
*}


lemma Suc_if_eq: "(!!n. f (Suc n) ≡ h n) ==> f 0 ≡ g ==>
f n ≡ if n = 0 then g else h (n - 1)"

by (rule eq_reflection) (cases n, simp_all)

text {*
The rule above is built into a preprocessor that is plugged into
the code generator.
*}


setup {*
let

fun remove_suc thy thms =
let
val vname = singleton (Name.variant_list (map fst
(fold (Term.add_var_names o Thm.full_prop_of) thms []))) "n";
val cv = cterm_of thy (Var ((vname, 0), HOLogic.natT));
fun lhs_of th = snd (Thm.dest_comb
(fst (Thm.dest_comb (cprop_of th))));
fun rhs_of th = snd (Thm.dest_comb (cprop_of th));
fun find_vars ct = (case term_of ct of
(Const (@{const_name Suc}, _) $ Var _) => [(cv, snd (Thm.dest_comb ct))]
| _ $ _ =>
let val (ct1, ct2) = Thm.dest_comb ct
in
map (apfst (fn ct => Thm.apply ct ct2)) (find_vars ct1) @
map (apfst (Thm.apply ct1)) (find_vars ct2)
end
| _ => []);
val eqs = maps
(fn th => map (pair th) (find_vars (lhs_of th))) thms;
fun mk_thms (th, (ct, cv')) =
let
val th' =
Thm.implies_elim
(Conv.fconv_rule (Thm.beta_conversion true)
(Drule.instantiate'
[SOME (ctyp_of_term ct)] [SOME (Thm.lambda cv ct),
SOME (Thm.lambda cv' (rhs_of th)), NONE, SOME cv']
@{thm Suc_if_eq})) (Thm.forall_intr cv' th)
in
case map_filter (fn th'' =>
SOME (th'', singleton
(Variable.trade (K (fn [th'''] => [th''' RS th']))
(Variable.global_thm_context th'')) th'')
handle THM _ => NONE) thms of
[] => NONE
| thps =>
let val (ths1, ths2) = split_list thps
in SOME (subtract Thm.eq_thm (th :: ths1) thms @ ths2) end
end
in get_first mk_thms eqs end;

fun eqn_suc_base_preproc thy thms =
let
val dest = fst o Logic.dest_equals o prop_of;
val contains_suc = exists_Const (fn (c, _) => c = @{const_name Suc});
in
if forall (can dest) thms andalso exists (contains_suc o dest) thms
then thms |> perhaps_loop (remove_suc thy) |> (Option.map o map) Drule.zero_var_indexes
else NONE
end;

val eqn_suc_preproc = Code_Preproc.simple_functrans eqn_suc_base_preproc;

in

Code_Preproc.add_functrans ("eqn_Suc", eqn_suc_preproc)

end;
*}


end