
Free Groups

Joachim Breitner

March 12, 2013

Abstract

Free Groups are, in a sense, the most generic kind of group. They
are defined over a set of generators with no additional relations in
between them. They play an important role in the definition of group
presentations and in other fields.

This theory provides the definition of Free Group as the set of fully
canceled words in the generators. The universal property is proven, as
well as some isomorphisms results about Free Groups.

Contents

1 Cancelation of words of generators and their inverses 2
1.1 Auxillary results . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Auxillary results about relations . . . . . . . . . . . . 2
1.2 Definition of the canceling relation . . . . . . . . . . . . . . . 3

1.2.1 Simple results about canceling . . . . . . . . . . . . . 3
1.3 Definition of the cancels-to relation . . . . . . . . . . . . . . . 3

1.3.1 Existence of the normal form . . . . . . . . . . . . . . 4
1.3.2 Some properties of cancelation . . . . . . . . . . . . . 5

1.4 Definition of normalization . . . . . . . . . . . . . . . . . . . 6
1.5 Normalization preserves generators . . . . . . . . . . . . . . . 7
1.6 Normalization and renaming generators . . . . . . . . . . . . 7

2 Generators 8
2.1 The subgroup generated by a set . . . . . . . . . . . . . . . . 8
2.2 Generators and homomorphisms . . . . . . . . . . . . . . . . 9
2.3 Sets of generators . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 Product of a list of group elements . . . . . . . . . . . . . . . 9
2.5 Isomorphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 The Free Group 11
3.1 Inversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 The definition . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.3 The universal property . . . . . . . . . . . . . . . . . . . . . . 12

1



4 The Unit Group 14

5 The group C2 14

6 Isomorphisms of Free Groups 15
6.1 The Free Group over the empty set . . . . . . . . . . . . . . . 15
6.2 The Free Group over one generator . . . . . . . . . . . . . . . 15
6.3 Free Groups over isomorphic sets of generators . . . . . . . . 16
6.4 Bases of isomorphic free groups . . . . . . . . . . . . . . . . . 16

7 The Ping Pong lemma 17

1 Cancelation of words of generators and their in-
verses

theory Cancelation
imports
∼∼/src/HOL/Proofs/Lambda/Commutation

begin

This theory defines cancelation via relations. The one-step relation
cancels-to-1 a b describes that b is obtained from a by removing exactly
one pair of generators, while cancels-to is the reflexive transitive hull of that
relation. Due to confluence, this relation has a normal form, allowing for
the definition of normalize.

1.1 Auxillary results

Some lemmas that would be useful in a more general setting are collected
beforehand.

1.1.1 Auxillary results about relations

These were helpfully provided by Andreas Lochbihler.

theorem lconfluent-confluent :
[[ wfP (Rˆ−−1 );

∧
a b c. R a b =⇒ R a c =⇒ ∃ d . Rˆ∗∗ b d ∧ Rˆ∗∗ c d ]] =⇒

confluent R
〈proof 〉

lemma confluentD :
[[ confluent R; Rˆ∗∗ a b; Rˆ∗∗ a c ]] =⇒ ∃ d . Rˆ∗∗ b d ∧ Rˆ∗∗ c d
〈proof 〉

lemma tranclp-DomainP : Rˆ++ a b =⇒ DomainP R a
〈proof 〉

2



lemma confluent-unique-normal-form:
[[ confluent R; Rˆ∗∗ a b; Rˆ∗∗ a c; ¬ DomainP R b; ¬ DomainP R c ]] =⇒ b =

c
〈proof 〉

1.2 Definition of the canceling relation

type-synonym ′a g-i = (bool × ′a)
type-synonym ′a word-g-i = ′a g-i list

These type aliases encode the notion of a “generator or its inverse” ( ′a
g-i) and the notion of a “word in generators and their inverses” ( ′a word-g-i),
which form the building blocks of Free Groups.

definition canceling :: ′a g-i ⇒ ′a g-i ⇒ bool
where canceling a b = ((snd a = snd b) ∧ (fst a 6= fst b))

1.2.1 Simple results about canceling

A generators cancels with its inverse, either way. The relation is symmetic.

lemma cancel-cancel : [[ canceling a b; canceling b c ]] =⇒ a = c
〈proof 〉

lemma cancel-sym: canceling a b =⇒ canceling b a
〈proof 〉

lemma cancel-sym-neg : ¬canceling a b =⇒ ¬canceling b a
〈proof 〉

1.3 Definition of the cancels-to relation

First, we define the function that removes the ith and (i+1 )st element from
a word of generators, together with basic properties.

definition cancel-at :: nat ⇒ ′a word-g-i ⇒ ′a word-g-i
where cancel-at i l = take i l @ drop (2 +i) l

lemma cancel-at-length[simp]:
1 +i < length l =⇒ length (cancel-at i l) = length l − 2
〈proof 〉

lemma cancel-at-nth1 [simp]:
[[ n < i ; 1 +i < length l ]] =⇒ (cancel-at i l) ! n = l ! n
〈proof 〉

lemma cancel-at-nth2 [simp]:
assumes n ≥ i and n < length l − 2
shows (cancel-at i l) ! n = l ! (n + 2 )
〈proof 〉

3



Then we can define the relation cancels-to-1-at i a b which specifies that
b can be obtained by a by canceling the ith and (i+1 )st position.

Based on that, we existentially quantify over the position i to obtain
the relation cancels-to-1, of which cancels-to is the reflexive and transitive
closure.

A word is canceled if it can not be canceled any futher.

definition cancels-to-1-at :: nat ⇒ ′a word-g-i ⇒ ′a word-g-i ⇒ bool
where cancels-to-1-at i l1 l2 = (0≤i ∧ (1 +i) < length l1

∧ canceling (l1 ! i) (l1 ! (1 +i))
∧ (l2 = cancel-at i l1 ))

definition cancels-to-1 :: ′a word-g-i ⇒ ′a word-g-i ⇒ bool
where cancels-to-1 l1 l2 = (∃ i . cancels-to-1-at i l1 l2 )

definition cancels-to :: ′a word-g-i ⇒ ′a word-g-i ⇒ bool
where cancels-to = cancels-to-1ˆ∗∗

lemma cancels-to-trans [trans]:
[[ cancels-to a b; cancels-to b c ]] =⇒ cancels-to a c
〈proof 〉

definition canceled :: ′a word-g-i ⇒ bool
where canceled l = (¬ DomainP cancels-to-1 l)

lemma cancels-to-1-unfold :
assumes cancels-to-1 x y
obtains xs1 x1 x2 xs2
where x = xs1 @ x1 # x2 # xs2

and y = xs1 @ xs2
and canceling x1 x2

〈proof 〉

lemma cancels-to-1-fold :
canceling x1 x2 =⇒ cancels-to-1 (xs1 @ x1 # x2 # xs2 ) (xs1 @ xs2 )
〈proof 〉

1.3.1 Existence of the normal form

One of two steps to show that we have a normal form is the following lemma,
guaranteeing that by canceling, we always end up at a fully canceled word.

lemma canceling-terminates: wfP (cancels-to-1ˆ−−1 )
〈proof 〉

The next two lemmas prepare for the proof of confluence. It does not
matter in which order we cancel, we can obtain the same result.

lemma canceling-neighbor :

4



assumes cancels-to-1-at i l a and cancels-to-1-at (Suc i) l b
shows a = b
〈proof 〉

lemma canceling-indep:
assumes cancels-to-1-at i l a and cancels-to-1-at j l b and j > Suc i
obtains c where cancels-to-1-at (j − 2 ) a c and cancels-to-1-at i b c
〈proof 〉

This is the confluence lemma

lemma confluent-cancels-to-1 : confluent cancels-to-1
〈proof 〉

And finally, we show that there exists a unique normal form for each
word.

lemma norm-form-uniq :
assumes cancels-to a b

and cancels-to a c
and canceled b
and canceled c

shows b = c
〈proof 〉

1.3.2 Some properties of cancelation

Distributivity rules of cancelation and append.

lemma cancel-to-1-append :
assumes cancels-to-1 a b
shows cancels-to-1 (l@a@l ′) (l@b@l ′)
〈proof 〉

lemma cancel-to-append :
assumes cancels-to a b
shows cancels-to (l@a@l ′) (l@b@l ′)
〈proof 〉

lemma cancels-to-append2 :
assumes cancels-to a a ′

and cancels-to b b ′

shows cancels-to (a@b) (a ′@b ′)
〈proof 〉

The empty list is canceled, a one letter word is canceled and a word is
trivially cancled from itself.

lemma empty-canceled [simp]: canceled []
〈proof 〉

lemma singleton-canceled [simp]: canceled [a]
〈proof 〉

5



lemma cons-canceled :
assumes canceled (a#x )
shows canceled x
〈proof 〉

lemma cancels-to-self [simp]: cancels-to l l
〈proof 〉

1.4 Definition of normalization

Using the THE construct, we can define the normalization function normal-
ize as the unique fully cancled word that the argument cancels to.

definition normalize :: ′a word-g-i ⇒ ′a word-g-i
where normalize l = (THE l ′. cancels-to l l ′ ∧ canceled l ′)

Some obvious properties of the normalize function, and other useful lem-
mas.

lemma
shows normalized-canceled [simp]: canceled (normalize l)
and normalized-cancels-to[simp]: cancels-to l (normalize l)
〈proof 〉

lemma normalize-discover :
assumes canceled l ′

and cancels-to l l ′

shows normalize l = l ′

〈proof 〉

Words, related by cancelation, have the same normal form.

lemma normalize-canceled [simp]:
assumes cancels-to l l ′

shows normalize l = normalize l ′

〈proof 〉

Normalization is idempotent.

lemma normalize-idemp[simp]:
assumes canceled l
shows normalize l = l
〈proof 〉

This lemma lifts the distributivity results from above to the normalize
function.

lemma normalize-append-cancel-to:
assumes cancels-to l1 l1 ′

and cancels-to l2 l2 ′

shows normalize (l1 @ l2 ) = normalize (l1 ′ @ l2 ′)
〈proof 〉

6



1.5 Normalization preserves generators

Somewhat obvious, but still required to formalize Free Groups, is the fact
that canceling a word of generators of a specific set (and their inverses)
results in a word in generators from that set.

lemma cancels-to-1-preserves-generators:
assumes cancels-to-1 l l ′

and l ∈ lists (UNIV × gens)
shows l ′ ∈ lists (UNIV × gens)
〈proof 〉

lemma cancels-to-preserves-generators:
assumes cancels-to l l ′

and l ∈ lists (UNIV × gens)
shows l ′ ∈ lists (UNIV × gens)
〈proof 〉

lemma normalize-preserves-generators:
assumes l ∈ lists (UNIV × gens)

shows normalize l ∈ lists (UNIV × gens)
〈proof 〉

Two simplification lemmas about lists.

lemma empty-in-lists[simp]:
[] ∈ lists A 〈proof 〉

lemma lists-empty [simp]: lists {} = {[]}
〈proof 〉

1.6 Normalization and renaming generators

Renaming the generators, i.e. mapping them through an injective function,
commutes with normalization. Similarly, replacing generators by their in-
verses and vica-versa commutes with normalization. Both operations are
similar enough to be handled at once here.

lemma rename-gens-cancel-at : cancel-at i (map f l) = map f (cancel-at i l)
〈proof 〉

lemma rename-gens-cancels-to-1 :
assumes inj f

and cancels-to-1 l l ′

shows cancels-to-1 (map (map-pair f g) l) (map (map-pair f g) l ′)
〈proof 〉

lemma rename-gens-cancels-to:
assumes inj f

and cancels-to l l ′

shows cancels-to (map (map-pair f g) l) (map (map-pair f g) l ′)

7



〈proof 〉

lemma rename-gens-canceled :
assumes inj-on g (snd‘set l)

and canceled l
shows canceled (map (map-pair f g) l)
〈proof 〉

lemma rename-gens-normalize:
assumes inj f
and inj-on g (snd ‘ set l)
shows normalize (map (map-pair f g) l) = map (map-pair f g) (normalize l)
〈proof 〉

end

2 Generators

theory Generators
imports
∼∼/src/HOL/Algebra/Group
∼∼/src/HOL/Algebra/Lattice

begin

This theory is not specific to Free Groups and could be moved to a more
general place. It defines the subgroup generated by a set of generators and
that homomorphisms agree on the generated subgroup if they agree on the
generators.

notation subgroup (infix ≤ 80 )

2.1 The subgroup generated by a set

The span of a set of subgroup generators, i.e. the generated subgroup, can
be defined inductively or as the intersection of all subgroups containing the
generators. Here, we define it inductively and proof the equivalence

inductive-set gen-span :: ( ′a, ′b) monoid-scheme ⇒ ′a set ⇒ ′a set (〈-〉ı)
for G and gens

where gen-one [intro!, simp]: 1G ∈ 〈gens〉G
| gen-gens: x ∈ gens =⇒ x ∈ 〈gens〉G
| gen-inv : x ∈ 〈gens〉G =⇒ invG x ∈ 〈gens〉G
| gen-mult : [[ x ∈ 〈gens〉G; y ∈ 〈gens〉G ]] =⇒ x ⊗G y ∈ 〈gens〉G

lemma (in group) gen-span-closed :
assumes gens ⊆ carrier G
shows 〈gens〉G ⊆ carrier G
〈proof 〉

8



lemma (in group) gen-subgroup-is-subgroup:
gens ⊆ carrier G =⇒ 〈gens〉G ≤ G

〈proof 〉

lemma (in group) gen-subgroup-is-smallest-containing :
assumes gens ⊆ carrier G

shows
⋂
{H . H ≤ G ∧ gens ⊆ H } = 〈gens〉G

〈proof 〉

2.2 Generators and homomorphisms

Two homorphisms agreeing on some elements agree on the span of those
elements.

lemma hom-unique-on-span:
assumes group G

and group H
and gens ⊆ carrier G
and h ∈ hom G H
and h ′ ∈ hom G H
and ∀ g ∈ gens. h g = h ′ g

shows ∀ x ∈ 〈gens〉G. h x = h ′ x
〈proof 〉

2.3 Sets of generators

There is no definition for “gens is a generating set of G”. This is easily
expressed by 〈gens〉 = carrier G.

The following is an application of hom-unique-on-span on a generating
set of the whole group.

lemma (in group) hom-unique-by-gens:
assumes group H

and gens: 〈gens〉G = carrier G
and h ∈ hom G H
and h ′ ∈ hom G H
and ∀ g ∈ gens. h g = h ′ g

shows ∀ x ∈ carrier G . h x = h ′ x
〈proof 〉

lemma (in group-hom) hom-span:
assumes gens ⊆ carrier G
shows h ‘ (〈gens〉G) = 〈h ‘ gens〉H
〈proof 〉

2.4 Product of a list of group elements

Not strictly related to generators of groups, this is still a general group
concept and not related to Free Groups.

9



abbreviation (in monoid) m-concat
where m-concat l ≡ foldr (op ⊗) l 1

lemma (in monoid) m-concat-closed [simp]:
set l ⊆ carrier G =⇒ m-concat l ∈ carrier G
〈proof 〉

lemma (in monoid) m-concat-append [simp]:
assumes set a ⊆ carrier G

and set b ⊆ carrier G
shows m-concat (a@b) = m-concat a ⊗ m-concat b
〈proof 〉

lemma (in monoid) m-concat-cons[simp]:
[[ x ∈ carrier G ; set xs ⊆ carrier G ]] =⇒ m-concat (x#xs) = x ⊗ m-concat xs
〈proof 〉

lemma (in monoid) nat-pow-mult1l :
assumes x : x ∈ carrier G
shows x ⊗ x (ˆ) n = x (ˆ) Suc n
〈proof 〉

lemma (in monoid) m-concat-power [simp]: x ∈ carrier G =⇒ m-concat (replicate
n x ) = x (ˆ) n
〈proof 〉

2.5 Isomorphisms

A nicer way of proving that something is a group homomorphism or isomor-
phism.

lemma group-homI [intro]:
assumes range: h ‘ (carrier g1 ) ⊆ carrier g2

and hom: ∀ x∈carrier g1 . ∀ y∈carrier g1 . h (x ⊗g1 y) = h x ⊗g2 h y
shows h ∈ hom g1 g2
〈proof 〉

lemma (in group-hom) hom-injI :
assumes ∀ x∈carrier G . h x = 1H −→ x = 1G
shows inj-on h (carrier G)
〈proof 〉

lemma (in group-hom) group-hom-isoI :
assumes inj1 : ∀ x∈carrier G . h x = 1H −→ x = 1G

and surj : h ‘ (carrier G) = carrier H
shows h ∈ G ∼= H
〈proof 〉

lemma group-isoI [intro]:

10



assumes G : group G
and H : group H
and inj1 : ∀ x∈carrier G . h x = 1H −→ x = 1G
and surj : h ‘ (carrier G) = carrier H
and hom: ∀ x∈carrier G . ∀ y∈carrier G . h (x ⊗G y) = h x ⊗H h y

shows h ∈ G ∼= H
〈proof 〉
end

3 The Free Group

theory FreeGroups
imports
∼∼/src/HOL/Algebra/Group
Cancelation
Generators

begin

Based on the work in Cancelation, the free group is now easily defined
over the set of fully canceled words with the corresponding operations.

3.1 Inversion

To define the inverse of a word, we first create a helper function that inverts
a single generator, and show that it is self-inverse.

definition inv1 :: ′a g-i ⇒ ′a g-i
where inv1 = apfst Not

lemma inv1-inv1 : inv1 ◦ inv1 = id
〈proof 〉

lemmas inv1-inv1-simp [simp] = inv1-inv1 [unfolded id-def ]

lemma snd-inv1 : snd ◦ inv1 = snd
〈proof 〉

The inverse of a word is obtained by reversing the order of the generators
and inverting each generator using inv1. Some properties of inv-fg are noted.

definition inv-fg :: ′a word-g-i ⇒ ′a word-g-i
where inv-fg l = rev (map inv1 l)

lemma cancelling-inf [simp]: canceling (inv1 a) (inv1 b) = canceling a b
〈proof 〉

lemma inv-idemp: inv-fg (inv-fg l) = l
〈proof 〉

lemma inv-fg-cancel : normalize (l @ inv-fg l) = []

11



〈proof 〉

lemma inv-fg-cancel2 : normalize (inv-fg l @ l) = []
〈proof 〉

lemma canceled-rev :
assumes canceled l
shows canceled (rev l)
〈proof 〉

lemma inv-fg-closure1 :
assumes canceled l
shows canceled (inv-fg l)
〈proof 〉

lemma inv-fg-closure2 :
l ∈ lists (UNIV × gens) =⇒ inv-fg l ∈ lists (UNIV × gens)
〈proof 〉

3.2 The definition

Finally, we can define the Free Group over a set of generators, and show
that it is indeed a group.

definition free-group :: ′a set => ((bool ∗ ′a) list) monoid (F ı)
where
Fgens ≡ (|

carrier = {l∈lists (UNIV × gens). canceled l },
mult = λ x y . normalize (x @ y),
one = []

|)

lemma occuring-gens-in-element :
x ∈ carrier Fgens =⇒ x ∈ lists (UNIV × gens)
〈proof 〉

theorem free-group-is-group: group Fgens
〈proof 〉

lemma inv-is-inv-fg [simp]:
x ∈ carrier Fgens =⇒ invFgens x = inv-fg x

〈proof 〉

3.3 The universal property

Free Groups are important due to their universal property: Every map of
the set of generators to another group can be extended uniquely to an ho-
momorphism from the Free Group.

12



definition insert (ι)
where ι g = [(False, g)]

lemma insert-closed :
g ∈ gens =⇒ ι g ∈ carrier Fgens
〈proof 〉

definition (in group) lift-gi
where lift-gi f gi = (if fst gi then inv (f (snd gi)) else f (snd gi))

lemma (in group) lift-gi-closed :
assumes cl : f ∈ gens → carrier G

and snd gi ∈ gens
shows lift-gi f gi ∈ carrier G
〈proof 〉

definition (in group) lift
where lift f w = m-concat (map (lift-gi f ) w)

lemma (in group) lift-nil [simp]: lift f [] = 1
〈proof 〉

lemma (in group) lift-closed [simp]:
assumes cl : f ∈ gens → carrier G

and x ∈ lists (UNIV × gens)
shows lift f x ∈ carrier G
〈proof 〉

lemma (in group) lift-append [simp]:
assumes cl : f ∈ gens → carrier G

and x ∈ lists (UNIV × gens)
and y ∈ lists (UNIV × gens)

shows lift f (x @ y) = lift f x ⊗ lift f y
〈proof 〉

lemma (in group) lift-cancels-to:
assumes cancels-to x y

and x ∈ lists (UNIV × gens)
and cl : f ∈ gens → carrier G

shows lift f x = lift f y
〈proof 〉

lemma (in group) lift-is-hom:
assumes cl : f ∈ gens → carrier G
shows lift f ∈ hom Fgens G
〈proof 〉

lemma gens-span-free-group:
shows 〈ι ‘ gens〉Fgens = carrier Fgens

13



〈proof 〉

lemma (in group) lift-is-unique:
assumes group G
and cl : f ∈ gens → carrier G
and h ∈ hom Fgens G
and ∀ g ∈ gens. h (ι g) = f g
shows ∀ x ∈ carrier Fgens. h x = lift f x
〈proof 〉

end

4 The Unit Group

theory UnitGroup
imports
∼∼/src/HOL/Algebra/Group
Generators

begin

There is, up to isomorphisms, only one group with one element.

definition unit-group :: unit monoid
where

unit-group ≡ (|
carrier = UNIV ,
mult = λ x y . (),
one = ()

|)

theorem unit-group-is-group: group unit-group
〈proof 〉

theorem (in group) unit-group-unique:
assumes card (carrier G) = 1
shows ∃ h. h ∈ G ∼= unit-group
〈proof 〉

end
theory C2
imports ∼∼/src/HOL/Algebra/Group
begin

5 The group C2

The two-element group is defined over the set of boolean values. This allows
to use the equality of boolean values as the group operation.

definition C2

14



where C2 = (| carrier = UNIV , mult = op =, one = True |)

lemma [simp]: op ⊗C2 = op =
〈proof 〉

lemma [simp]: 1C2 = True
〈proof 〉

lemma [simp]: carrier C2 = UNIV
〈proof 〉

lemma C2-is-group: group C2
〈proof 〉

end

6 Isomorphisms of Free Groups

theory Isomorphisms
imports

UnitGroup
∼∼/src/HOL/Algebra/IntRing
FreeGroups
C2
∼∼/src/HOL/Cardinals/Cardinal-Order-Relation

begin

6.1 The Free Group over the empty set

The Free Group over an empty set of generators is isomorphic to the trivial
group.

lemma free-group-over-empty-set : ∃ h. h ∈ F{} ∼= unit-group

〈proof 〉

6.2 The Free Group over one generator

The Free Group over one generator is isomorphic to the free abelian group
over one element, also known as the integers.

abbreviation int-group
where int-group ≡ (| carrier = carrier Z, mult = op +, one = 0 ::int |)

lemma replicate-set-eq [simp]: ∀ x ∈ set xs. x = y =⇒ xs = replicate (length xs) y
〈proof 〉

lemma int-group-gen-by-one: 〈{1}〉int-group = carrier int-group
〈proof 〉

15



lemma free-group-over-one-gen: ∃ h. h ∈ F{()} ∼= int-group

〈proof 〉

6.3 Free Groups over isomorphic sets of generators

Free Groups are isomorphic if their set of generators are isomorphic.

definition lift-generator-function :: ( ′a ⇒ ′b) ⇒ (bool × ′a) list ⇒ (bool × ′b)
list
where lift-generator-function f = map (map-pair id f )

theorem isomorphic-free-groups:
assumes bij-betw f gens1 gens2
shows lift-generator-function f ∈ Fgens1

∼= Fgens2
〈proof 〉

6.4 Bases of isomorphic free groups

Isomorphic free groups have bases of same cardinality. The proof is very
different for infinite bases and for finite bases.

The proof for the finite case uses the set of of homomorphisms from the
free group to the group with two elements, as suggested by Christian Sievers.
The definition of hom is not suitable for proofs about the cardinality of that
set, as its definition does not require extensionality. This is amended by the
following definition:

definition homr
where homr G H = {h. h ∈ hom G H ∧ h ∈ extensional (carrier G)}

lemma (in group-hom) restrict-hom[intro!]:
shows restrict h (carrier G) ∈ homr G H
〈proof 〉

lemma hom-F-C2-Powerset :
∃ f . bij-betw f (Pow X ) (homr (FX) C2 )
〈proof 〉

lemma group-iso-betw-hom:
assumes group G1 and group G2

and iso: i ∈ G1 ∼= G2
shows ∃ f . bij-betw f (homr G2 H ) (homr G1 H )
〈proof 〉

lemma isomorphic-free-groups-bases-finite:
assumes iso: i ∈ FX

∼= FY
and finite: finite X

shows ∃ f . bij-betw f X Y
〈proof 〉

16



The proof for the infinite case is trivial once the fact that the free group
over an infinite set has the same cardinality is established.

lemma free-group-card-infinite:
assumes infinite X
shows |X | =o |carrier FX|
〈proof 〉

theorem isomorphic-free-groups-bases:
assumes iso: i ∈ FX

∼= FY
shows ∃ f . bij-betw f X Y
〈proof 〉

end

7 The Ping Pong lemma

theory PingPongLemma
imports
∼∼/src/HOL/Algebra/Bij
FreeGroups

begin

The Ping Pong Lemma is a way to recognice a Free Group by its action
on a set (often a topological space or a graph). The name stems from the
way that elements of the set are passed forth and back between the subsets
given there.

We start with two auxillary lemmas, one about the identity of the group
of bijections, and one about sets of cardinality larger than one.

lemma Bij-one[simp]:
assumes x ∈ X
shows 1BijGroup X x = x
〈proof 〉

lemma other-member :
assumes I 6= {} and i ∈ I and card I 6= 1
obtains j where j∈I and j 6=i

〈proof 〉

And now we can attempt the lemma. The gencount condition is a weaker
variant of “x has to lie outside all subsets” that is only required if the set
of generators is one. Otherwise, we will be able to find a suitable x to start
with in the proof.

lemma ping-pong-lemma:
assumes group G
and act ∈ hom G (BijGroup X )
and g ∈ (I → carrier G)

17



and 〈g ‘ I 〉G = carrier G
and sub1 : ∀ i∈I . Xout i ⊆ X
and sub2 : ∀ i∈I . Xin i ⊆ X
and disj1 : ∀ i∈I . ∀ j∈I . i 6= j −→ Xout i ∩ Xout j = {}
and disj2 : ∀ i∈I . ∀ j∈I . i 6= j −→ Xin i ∩ Xin j = {}
and disj3 : ∀ i∈I . ∀ j∈I . Xin i ∩ Xout j = {}
and x ∈ X
and gencount : ∀ i . I = {i} −→ (x /∈ Xout i ∧ x /∈ Xin i)
and ping : ∀ i∈I . act (g i) ‘ (X − Xout i) ⊆ Xin i
and pong : ∀ i∈I . act (invG (g i)) ‘ (X − Xin i) ⊆ Xout i
shows group.lift G g ∈ iso (FI) G
〈proof 〉

end

18


	Cancelation of words of generators and their inverses
	Auxillary results
	Auxillary results about relations

	Definition of the 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 canceling relation
	Simple results about canceling

	Definition of the 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 cancels-to relation
	Existence of the normal form
	Some properties of cancelation

	Definition of normalization
	Normalization preserves generators
	Normalization and renaming generators

	Generators
	The subgroup generated by a set
	Generators and homomorphisms
	Sets of generators
	Product of a list of group elements
	Isomorphisms

	The Free Group
	Inversion
	The definition
	The universal property

	The Unit Group
	The group C2
	Isomorphisms of Free Groups
	The Free Group over the empty set
	The Free Group over one generator
	Free Groups over isomorphic sets of generators
	Bases of isomorphic free groups

	The Ping Pong lemma

