theory Bij
imports Group
begin
section {* Bijections of a Set, Permutation and Automorphism Groups *}
definition
Bij :: "'a set => ('a => 'a) set"
--{*Only extensional functions, since otherwise we get too many.*}
where "Bij S = extensional S ∩ {f. bij_betw f S S}"
definition
BijGroup :: "'a set => ('a => 'a) monoid"
where "BijGroup S =
(|carrier = Bij S,
mult = λg ∈ Bij S. λf ∈ Bij S. compose S g f,
one = λx ∈ S. x|)),"
declare Id_compose [simp] compose_Id [simp]
lemma Bij_imp_extensional: "f ∈ Bij S ==> f ∈ extensional S"
by (simp add: Bij_def)
lemma Bij_imp_funcset: "f ∈ Bij S ==> f ∈ S -> S"
by (auto simp add: Bij_def bij_betw_imp_funcset)
subsection {*Bijections Form a Group *}
lemma restrict_inv_into_Bij: "f ∈ Bij S ==> (λx ∈ S. (inv_into S f) x) ∈ Bij S"
by (simp add: Bij_def bij_betw_inv_into)
lemma id_Bij: "(λx∈S. x) ∈ Bij S "
by (auto simp add: Bij_def bij_betw_def inj_on_def)
lemma compose_Bij: "[|x ∈ Bij S; y ∈ Bij S|] ==> compose S x y ∈ Bij S"
by (auto simp add: Bij_def bij_betw_compose)
lemma Bij_compose_restrict_eq:
"f ∈ Bij S ==> compose S (restrict (inv_into S f) S) f = (λx∈S. x)"
by (simp add: Bij_def compose_inv_into_id)
theorem group_BijGroup: "group (BijGroup S)"
apply (simp add: BijGroup_def)
apply (rule groupI)
apply (simp add: compose_Bij)
apply (simp add: id_Bij)
apply (simp add: compose_Bij)
apply (blast intro: compose_assoc [symmetric] dest: Bij_imp_funcset)
apply (simp add: id_Bij Bij_imp_funcset Bij_imp_extensional, simp)
apply (blast intro: Bij_compose_restrict_eq restrict_inv_into_Bij)
done
subsection{*Automorphisms Form a Group*}
lemma Bij_inv_into_mem: "[| f ∈ Bij S; x ∈ S|] ==> inv_into S f x ∈ S"
by (simp add: Bij_def bij_betw_def inv_into_into)
lemma Bij_inv_into_lemma:
assumes eq: "!!x y. [|x ∈ S; y ∈ S|] ==> h(g x y) = g (h x) (h y)"
shows "[|h ∈ Bij S; g ∈ S -> S -> S; x ∈ S; y ∈ S|]
==> inv_into S h (g x y) = g (inv_into S h x) (inv_into S h y)"
apply (simp add: Bij_def bij_betw_def)
apply (subgoal_tac "∃x'∈S. ∃y'∈S. x = h x' & y = h y'", clarify)
apply (simp add: eq [symmetric] inv_f_f funcset_mem [THEN funcset_mem], blast)
done
definition
auto :: "('a, 'b) monoid_scheme => ('a => 'a) set"
where "auto G = hom G G ∩ Bij (carrier G)"
definition
AutoGroup :: "('a, 'c) monoid_scheme => ('a => 'a) monoid"
where "AutoGroup G = BijGroup (carrier G) (|carrier := auto G|)),"
lemma (in group) id_in_auto: "(λx ∈ carrier G. x) ∈ auto G"
by (simp add: auto_def hom_def restrictI group.axioms id_Bij)
lemma (in group) mult_funcset: "mult G ∈ carrier G -> carrier G -> carrier G"
by (simp add: Pi_I group.axioms)
lemma (in group) restrict_inv_into_hom:
"[|h ∈ hom G G; h ∈ Bij (carrier G)|]
==> restrict (inv_into (carrier G) h) (carrier G) ∈ hom G G"
by (simp add: hom_def Bij_inv_into_mem restrictI mult_funcset
group.axioms Bij_inv_into_lemma)
lemma inv_BijGroup:
"f ∈ Bij S ==> m_inv (BijGroup S) f = (λx ∈ S. (inv_into S f) x)"
apply (rule group.inv_equality)
apply (rule group_BijGroup)
apply (simp_all add:BijGroup_def restrict_inv_into_Bij Bij_compose_restrict_eq)
done
lemma (in group) subgroup_auto:
"subgroup (auto G) (BijGroup (carrier G))"
proof (rule subgroup.intro)
show "auto G ⊆ carrier (BijGroup (carrier G))"
by (force simp add: auto_def BijGroup_def)
next
fix x y
assume "x ∈ auto G" "y ∈ auto G"
thus "x ⊗⇘BijGroup (carrier G)⇙ y ∈ auto G"
by (force simp add: BijGroup_def is_group auto_def Bij_imp_funcset
group.hom_compose compose_Bij)
next
show "\<one>⇘BijGroup (carrier G)⇙ ∈ auto G" by (simp add: BijGroup_def id_in_auto)
next
fix x
assume "x ∈ auto G"
thus "inv⇘BijGroup (carrier G)⇙ x ∈ auto G"
by (simp del: restrict_apply
add: inv_BijGroup auto_def restrict_inv_into_Bij restrict_inv_into_hom)
qed
theorem (in group) AutoGroup: "group (AutoGroup G)"
by (simp add: AutoGroup_def subgroup.subgroup_is_group subgroup_auto
group_BijGroup)
end