Theory AbelCoset

Up to index of Isabelle/HOL/Free-Groups

theory AbelCoset
imports Coset Ring
(*  Title:      HOL/Algebra/AbelCoset.thy
Author: Stephan Hohe, TU Muenchen
*)


theory AbelCoset
imports Coset Ring
begin

subsection {* More Lifting from Groups to Abelian Groups *}

subsubsection {* Definitions *}

text {* Hiding @{text "<+>"} from @{theory Sum_Type} until I come
up with better syntax here *}


no_notation Sum_Type.Plus (infixr "<+>" 65)

definition
a_r_coset :: "[_, 'a set, 'a] => 'a set" (infixl "+>\<index>" 60)
where "a_r_coset G = r_coset (|carrier = carrier G, mult = add G, one = zero G|)),"

definition
a_l_coset :: "[_, 'a, 'a set] => 'a set" (infixl "<+\<index>" 60)
where "a_l_coset G = l_coset (|carrier = carrier G, mult = add G, one = zero G|)),"

definition
A_RCOSETS :: "[_, 'a set] => ('a set)set" ("a'_rcosets\<index> _" [81] 80)
where "A_RCOSETS G H = RCOSETS (|carrier = carrier G, mult = add G, one = zero G|)), H"

definition
set_add :: "[_, 'a set ,'a set] => 'a set" (infixl "<+>\<index>" 60)
where "set_add G = set_mult (|carrier = carrier G, mult = add G, one = zero G|)),"

definition
A_SET_INV :: "[_,'a set] => 'a set" ("a'_set'_inv\<index> _" [81] 80)
where "A_SET_INV G H = SET_INV (|carrier = carrier G, mult = add G, one = zero G|)), H"

definition
a_r_congruent :: "[('a,'b)ring_scheme, 'a set] => ('a*'a)set" ("racong\<index>")
where "a_r_congruent G = r_congruent (|carrier = carrier G, mult = add G, one = zero G|)),"

definition
A_FactGroup :: "[('a,'b) ring_scheme, 'a set] => ('a set) monoid" (infixl "A'_Mod" 65)
--{*Actually defined for groups rather than monoids*}
where "A_FactGroup G H = FactGroup (|carrier = carrier G, mult = add G, one = zero G|)), H"

definition
a_kernel :: "('a, 'm) ring_scheme => ('b, 'n) ring_scheme => ('a => 'b) => 'a set"
--{*the kernel of a homomorphism (additive)*}
where "a_kernel G H h =
kernel (|carrier = carrier G, mult = add G, one = zero G|)),
(|carrier = carrier H, mult = add H, one = zero H|)), h"


locale abelian_group_hom = G: abelian_group G + H: abelian_group H
for G (structure) and H (structure) +
fixes h
assumes a_group_hom: "group_hom (| carrier = carrier G, mult = add G, one = zero G |)
(| carrier = carrier H, mult = add H, one = zero H |) h"


lemmas a_r_coset_defs =
a_r_coset_def r_coset_def

lemma a_r_coset_def':
fixes G (structure)
shows "H +> a ≡ \<Union>h∈H. {h ⊕ a}"
unfolding a_r_coset_defs
by simp

lemmas a_l_coset_defs =
a_l_coset_def l_coset_def

lemma a_l_coset_def':
fixes G (structure)
shows "a <+ H ≡ \<Union>h∈H. {a ⊕ h}"
unfolding a_l_coset_defs
by simp

lemmas A_RCOSETS_defs =
A_RCOSETS_def RCOSETS_def

lemma A_RCOSETS_def':
fixes G (structure)
shows "a_rcosets H ≡ \<Union>a∈carrier G. {H +> a}"
unfolding A_RCOSETS_defs
by (fold a_r_coset_def, simp)

lemmas set_add_defs =
set_add_def set_mult_def

lemma set_add_def':
fixes G (structure)
shows "H <+> K ≡ \<Union>h∈H. \<Union>k∈K. {h ⊕ k}"
unfolding set_add_defs
by simp

lemmas A_SET_INV_defs =
A_SET_INV_def SET_INV_def

lemma A_SET_INV_def':
fixes G (structure)
shows "a_set_inv H ≡ \<Union>h∈H. {\<ominus> h}"
unfolding A_SET_INV_defs
by (fold a_inv_def)


subsubsection {* Cosets *}

lemma (in abelian_group) a_coset_add_assoc:
"[| M ⊆ carrier G; g ∈ carrier G; h ∈ carrier G |]
==> (M +> g) +> h = M +> (g ⊕ h)"

by (rule group.coset_mult_assoc [OF a_group,
folded a_r_coset_def, simplified monoid_record_simps])

lemma (in abelian_group) a_coset_add_zero [simp]:
"M ⊆ carrier G ==> M +> \<zero> = M"
by (rule group.coset_mult_one [OF a_group,
folded a_r_coset_def, simplified monoid_record_simps])

lemma (in abelian_group) a_coset_add_inv1:
"[| M +> (x ⊕ (\<ominus> y)) = M; x ∈ carrier G ; y ∈ carrier G;
M ⊆ carrier G |] ==> M +> x = M +> y"

by (rule group.coset_mult_inv1 [OF a_group,
folded a_r_coset_def a_inv_def, simplified monoid_record_simps])

lemma (in abelian_group) a_coset_add_inv2:
"[| M +> x = M +> y; x ∈ carrier G; y ∈ carrier G; M ⊆ carrier G |]
==> M +> (x ⊕ (\<ominus> y)) = M"

by (rule group.coset_mult_inv2 [OF a_group,
folded a_r_coset_def a_inv_def, simplified monoid_record_simps])

lemma (in abelian_group) a_coset_join1:
"[| H +> x = H; x ∈ carrier G; subgroup H (|carrier = carrier G, mult = add G, one = zero G|) |] ==> x ∈ H"
by (rule group.coset_join1 [OF a_group,
folded a_r_coset_def, simplified monoid_record_simps])

lemma (in abelian_group) a_solve_equation:
"[|subgroup H (|carrier = carrier G, mult = add G, one = zero G|); x ∈ H; y ∈ H|] ==> ∃h∈H. y = h ⊕ x"
by (rule group.solve_equation [OF a_group,
folded a_r_coset_def, simplified monoid_record_simps])

lemma (in abelian_group) a_repr_independence:
"[|y ∈ H +> x; x ∈ carrier G; subgroup H (|carrier = carrier G, mult = add G, one = zero G|)), |] ==> H +> x = H +> y"
by (rule group.repr_independence [OF a_group,
folded a_r_coset_def, simplified monoid_record_simps])

lemma (in abelian_group) a_coset_join2:
"[|x ∈ carrier G; subgroup H (|carrier = carrier G, mult = add G, one = zero G|)),; x∈H|] ==> H +> x = H"
by (rule group.coset_join2 [OF a_group,
folded a_r_coset_def, simplified monoid_record_simps])

lemma (in abelian_monoid) a_r_coset_subset_G:
"[| H ⊆ carrier G; x ∈ carrier G |] ==> H +> x ⊆ carrier G"
by (rule monoid.r_coset_subset_G [OF a_monoid,
folded a_r_coset_def, simplified monoid_record_simps])

lemma (in abelian_group) a_rcosI:
"[| h ∈ H; H ⊆ carrier G; x ∈ carrier G|] ==> h ⊕ x ∈ H +> x"
by (rule group.rcosI [OF a_group,
folded a_r_coset_def, simplified monoid_record_simps])

lemma (in abelian_group) a_rcosetsI:
"[|H ⊆ carrier G; x ∈ carrier G|] ==> H +> x ∈ a_rcosets H"
by (rule group.rcosetsI [OF a_group,
folded a_r_coset_def A_RCOSETS_def, simplified monoid_record_simps])

text{*Really needed?*}
lemma (in abelian_group) a_transpose_inv:
"[| x ⊕ y = z; x ∈ carrier G; y ∈ carrier G; z ∈ carrier G |]
==> (\<ominus> x) ⊕ z = y"

by (rule group.transpose_inv [OF a_group,
folded a_r_coset_def a_inv_def, simplified monoid_record_simps])

(*
--"duplicate"
lemma (in abelian_group) a_rcos_self:
"[| x ∈ carrier G; subgroup H (|carrier = carrier G, mult = add G, one = zero G|)), |] ==> x ∈ H +> x"
by (rule group.rcos_self [OF a_group,
folded a_r_coset_def, simplified monoid_record_simps])
*)



subsubsection {* Subgroups *}

locale additive_subgroup =
fixes H and G (structure)
assumes a_subgroup: "subgroup H (|carrier = carrier G, mult = add G, one = zero G|)),"

lemma (in additive_subgroup) is_additive_subgroup:
shows "additive_subgroup H G"
by (rule additive_subgroup_axioms)

lemma additive_subgroupI:
fixes G (structure)
assumes a_subgroup: "subgroup H (|carrier = carrier G, mult = add G, one = zero G|)),"
shows "additive_subgroup H G"
by (rule additive_subgroup.intro) (rule a_subgroup)

lemma (in additive_subgroup) a_subset:
"H ⊆ carrier G"
by (rule subgroup.subset[OF a_subgroup,
simplified monoid_record_simps])

lemma (in additive_subgroup) a_closed [intro, simp]:
"[|x ∈ H; y ∈ H|] ==> x ⊕ y ∈ H"
by (rule subgroup.m_closed[OF a_subgroup,
simplified monoid_record_simps])

lemma (in additive_subgroup) zero_closed [simp]:
"\<zero> ∈ H"
by (rule subgroup.one_closed[OF a_subgroup,
simplified monoid_record_simps])

lemma (in additive_subgroup) a_inv_closed [intro,simp]:
"x ∈ H ==> \<ominus> x ∈ H"
by (rule subgroup.m_inv_closed[OF a_subgroup,
folded a_inv_def, simplified monoid_record_simps])


subsubsection {* Additive subgroups are normal *}

text {* Every subgroup of an @{text "abelian_group"} is normal *}

locale abelian_subgroup = additive_subgroup + abelian_group G +
assumes a_normal: "normal H (|carrier = carrier G, mult = add G, one = zero G|)),"

lemma (in abelian_subgroup) is_abelian_subgroup:
shows "abelian_subgroup H G"
by (rule abelian_subgroup_axioms)

lemma abelian_subgroupI:
assumes a_normal: "normal H (|carrier = carrier G, mult = add G, one = zero G|)),"
and a_comm: "!!x y. [| x ∈ carrier G; y ∈ carrier G |] ==> x ⊕G y = y ⊕G x"
shows "abelian_subgroup H G"
proof -
interpret normal "H" "(|carrier = carrier G, mult = add G, one = zero G|)),"
by (rule a_normal)

show "abelian_subgroup H G"
by default (simp add: a_comm)
qed

lemma abelian_subgroupI2:
fixes G (structure)
assumes a_comm_group: "comm_group (|carrier = carrier G, mult = add G, one = zero G|)),"
and a_subgroup: "subgroup H (|carrier = carrier G, mult = add G, one = zero G|)),"
shows "abelian_subgroup H G"
proof -
interpret comm_group "(|carrier = carrier G, mult = add G, one = zero G|)),"
by (rule a_comm_group)
interpret subgroup "H" "(|carrier = carrier G, mult = add G, one = zero G|)),"
by (rule a_subgroup)

show "abelian_subgroup H G"
apply unfold_locales
proof (simp add: r_coset_def l_coset_def, clarsimp)
fix x
assume xcarr: "x ∈ carrier G"
from a_subgroup have Hcarr: "H ⊆ carrier G"
unfolding subgroup_def by simp
from xcarr Hcarr show "(\<Union>h∈H. {h ⊕G x}) = (\<Union>h∈H. {x ⊕G h})"
using m_comm [simplified] by fast
qed
qed

lemma abelian_subgroupI3:
fixes G (structure)
assumes asg: "additive_subgroup H G"
and ag: "abelian_group G"
shows "abelian_subgroup H G"
apply (rule abelian_subgroupI2)
apply (rule abelian_group.a_comm_group[OF ag])
apply (rule additive_subgroup.a_subgroup[OF asg])
done

lemma (in abelian_subgroup) a_coset_eq:
"(∀x ∈ carrier G. H +> x = x <+ H)"
by (rule normal.coset_eq[OF a_normal,
folded a_r_coset_def a_l_coset_def, simplified monoid_record_simps])

lemma (in abelian_subgroup) a_inv_op_closed1:
shows "[|x ∈ carrier G; h ∈ H|] ==> (\<ominus> x) ⊕ h ⊕ x ∈ H"
by (rule normal.inv_op_closed1 [OF a_normal,
folded a_inv_def, simplified monoid_record_simps])

lemma (in abelian_subgroup) a_inv_op_closed2:
shows "[|x ∈ carrier G; h ∈ H|] ==> x ⊕ h ⊕ (\<ominus> x) ∈ H"
by (rule normal.inv_op_closed2 [OF a_normal,
folded a_inv_def, simplified monoid_record_simps])

text{*Alternative characterization of normal subgroups*}
lemma (in abelian_group) a_normal_inv_iff:
"(N \<lhd> (|carrier = carrier G, mult = add G, one = zero G|)),) =
(subgroup N (|carrier = carrier G, mult = add G, one = zero G|)), & (∀x ∈ carrier G. ∀h ∈ N. x ⊕ h ⊕ (\<ominus> x) ∈ N))"

(is "_ = ?rhs")
by (rule group.normal_inv_iff [OF a_group,
folded a_inv_def, simplified monoid_record_simps])

lemma (in abelian_group) a_lcos_m_assoc:
"[| M ⊆ carrier G; g ∈ carrier G; h ∈ carrier G |]
==> g <+ (h <+ M) = (g ⊕ h) <+ M"

by (rule group.lcos_m_assoc [OF a_group,
folded a_l_coset_def, simplified monoid_record_simps])

lemma (in abelian_group) a_lcos_mult_one:
"M ⊆ carrier G ==> \<zero> <+ M = M"
by (rule group.lcos_mult_one [OF a_group,
folded a_l_coset_def, simplified monoid_record_simps])


lemma (in abelian_group) a_l_coset_subset_G:
"[| H ⊆ carrier G; x ∈ carrier G |] ==> x <+ H ⊆ carrier G"
by (rule group.l_coset_subset_G [OF a_group,
folded a_l_coset_def, simplified monoid_record_simps])


lemma (in abelian_group) a_l_coset_swap:
"[|y ∈ x <+ H; x ∈ carrier G; subgroup H (|carrier = carrier G, mult = add G, one = zero G|)),|] ==> x ∈ y <+ H"
by (rule group.l_coset_swap [OF a_group,
folded a_l_coset_def, simplified monoid_record_simps])

lemma (in abelian_group) a_l_coset_carrier:
"[| y ∈ x <+ H; x ∈ carrier G; subgroup H (|carrier = carrier G, mult = add G, one = zero G|)), |] ==> y ∈ carrier G"
by (rule group.l_coset_carrier [OF a_group,
folded a_l_coset_def, simplified monoid_record_simps])

lemma (in abelian_group) a_l_repr_imp_subset:
assumes y: "y ∈ x <+ H" and x: "x ∈ carrier G" and sb: "subgroup H (|carrier = carrier G, mult = add G, one = zero G|)),"
shows "y <+ H ⊆ x <+ H"
apply (rule group.l_repr_imp_subset [OF a_group,
folded a_l_coset_def, simplified monoid_record_simps])
apply (rule y)
apply (rule x)
apply (rule sb)
done

lemma (in abelian_group) a_l_repr_independence:
assumes y: "y ∈ x <+ H" and x: "x ∈ carrier G" and sb: "subgroup H (|carrier = carrier G, mult = add G, one = zero G|)),"
shows "x <+ H = y <+ H"
apply (rule group.l_repr_independence [OF a_group,
folded a_l_coset_def, simplified monoid_record_simps])
apply (rule y)
apply (rule x)
apply (rule sb)
done

lemma (in abelian_group) setadd_subset_G:
"[|H ⊆ carrier G; K ⊆ carrier G|] ==> H <+> K ⊆ carrier G"
by (rule group.setmult_subset_G [OF a_group,
folded set_add_def, simplified monoid_record_simps])

lemma (in abelian_group) subgroup_add_id: "subgroup H (|carrier = carrier G, mult = add G, one = zero G|)), ==> H <+> H = H"
by (rule group.subgroup_mult_id [OF a_group,
folded set_add_def, simplified monoid_record_simps])

lemma (in abelian_subgroup) a_rcos_inv:
assumes x: "x ∈ carrier G"
shows "a_set_inv (H +> x) = H +> (\<ominus> x)"
by (rule normal.rcos_inv [OF a_normal,
folded a_r_coset_def a_inv_def A_SET_INV_def, simplified monoid_record_simps]) (rule x)

lemma (in abelian_group) a_setmult_rcos_assoc:
"[|H ⊆ carrier G; K ⊆ carrier G; x ∈ carrier G|]
==> H <+> (K +> x) = (H <+> K) +> x"

by (rule group.setmult_rcos_assoc [OF a_group,
folded set_add_def a_r_coset_def, simplified monoid_record_simps])

lemma (in abelian_group) a_rcos_assoc_lcos:
"[|H ⊆ carrier G; K ⊆ carrier G; x ∈ carrier G|]
==> (H +> x) <+> K = H <+> (x <+ K)"

by (rule group.rcos_assoc_lcos [OF a_group,
folded set_add_def a_r_coset_def a_l_coset_def, simplified monoid_record_simps])

lemma (in abelian_subgroup) a_rcos_sum:
"[|x ∈ carrier G; y ∈ carrier G|]
==> (H +> x) <+> (H +> y) = H +> (x ⊕ y)"

by (rule normal.rcos_sum [OF a_normal,
folded set_add_def a_r_coset_def, simplified monoid_record_simps])

lemma (in abelian_subgroup) rcosets_add_eq:
"M ∈ a_rcosets H ==> H <+> M = M"
-- {* generalizes @{text subgroup_mult_id} *}
by (rule normal.rcosets_mult_eq [OF a_normal,
folded set_add_def A_RCOSETS_def, simplified monoid_record_simps])


subsubsection {* Congruence Relation *}

lemma (in abelian_subgroup) a_equiv_rcong:
shows "equiv (carrier G) (racong H)"
by (rule subgroup.equiv_rcong [OF a_subgroup a_group,
folded a_r_congruent_def, simplified monoid_record_simps])

lemma (in abelian_subgroup) a_l_coset_eq_rcong:
assumes a: "a ∈ carrier G"
shows "a <+ H = racong H `` {a}"
by (rule subgroup.l_coset_eq_rcong [OF a_subgroup a_group,
folded a_r_congruent_def a_l_coset_def, simplified monoid_record_simps]) (rule a)

lemma (in abelian_subgroup) a_rcos_equation:
shows
"[|ha ⊕ a = h ⊕ b; a ∈ carrier G; b ∈ carrier G;
h ∈ H; ha ∈ H; hb ∈ H|]
==> hb ⊕ a ∈ (\<Union>h∈H. {h ⊕ b})"

by (rule group.rcos_equation [OF a_group a_subgroup,
folded a_r_congruent_def a_l_coset_def, simplified monoid_record_simps])

lemma (in abelian_subgroup) a_rcos_disjoint:
shows "[|a ∈ a_rcosets H; b ∈ a_rcosets H; a≠b|] ==> a ∩ b = {}"
by (rule group.rcos_disjoint [OF a_group a_subgroup,
folded A_RCOSETS_def, simplified monoid_record_simps])

lemma (in abelian_subgroup) a_rcos_self:
shows "x ∈ carrier G ==> x ∈ H +> x"
by (rule group.rcos_self [OF a_group _ a_subgroup,
folded a_r_coset_def, simplified monoid_record_simps])

lemma (in abelian_subgroup) a_rcosets_part_G:
shows "\<Union>(a_rcosets H) = carrier G"
by (rule group.rcosets_part_G [OF a_group a_subgroup,
folded A_RCOSETS_def, simplified monoid_record_simps])

lemma (in abelian_subgroup) a_cosets_finite:
"[|c ∈ a_rcosets H; H ⊆ carrier G; finite (carrier G)|] ==> finite c"
by (rule group.cosets_finite [OF a_group,
folded A_RCOSETS_def, simplified monoid_record_simps])

lemma (in abelian_group) a_card_cosets_equal:
"[|c ∈ a_rcosets H; H ⊆ carrier G; finite(carrier G)|]
==> card c = card H"

by (rule group.card_cosets_equal [OF a_group,
folded A_RCOSETS_def, simplified monoid_record_simps])

lemma (in abelian_group) rcosets_subset_PowG:
"additive_subgroup H G ==> a_rcosets H ⊆ Pow(carrier G)"
by (rule group.rcosets_subset_PowG [OF a_group,
folded A_RCOSETS_def, simplified monoid_record_simps],
rule additive_subgroup.a_subgroup)

theorem (in abelian_group) a_lagrange:
"[|finite(carrier G); additive_subgroup H G|]
==> card(a_rcosets H) * card(H) = order(G)"

by (rule group.lagrange [OF a_group,
folded A_RCOSETS_def, simplified monoid_record_simps order_def, folded order_def])
(fast intro!: additive_subgroup.a_subgroup)+


subsubsection {* Factorization *}

lemmas A_FactGroup_defs = A_FactGroup_def FactGroup_def

lemma A_FactGroup_def':
fixes G (structure)
shows "G A_Mod H ≡ (|carrier = a_rcosetsG H, mult = set_add G, one = H|)),"
unfolding A_FactGroup_defs
by (fold A_RCOSETS_def set_add_def)


lemma (in abelian_subgroup) a_setmult_closed:
"[|K1 ∈ a_rcosets H; K2 ∈ a_rcosets H|] ==> K1 <+> K2 ∈ a_rcosets H"
by (rule normal.setmult_closed [OF a_normal,
folded A_RCOSETS_def set_add_def, simplified monoid_record_simps])

lemma (in abelian_subgroup) a_setinv_closed:
"K ∈ a_rcosets H ==> a_set_inv K ∈ a_rcosets H"
by (rule normal.setinv_closed [OF a_normal,
folded A_RCOSETS_def A_SET_INV_def, simplified monoid_record_simps])

lemma (in abelian_subgroup) a_rcosets_assoc:
"[|M1 ∈ a_rcosets H; M2 ∈ a_rcosets H; M3 ∈ a_rcosets H|]
==> M1 <+> M2 <+> M3 = M1 <+> (M2 <+> M3)"

by (rule normal.rcosets_assoc [OF a_normal,
folded A_RCOSETS_def set_add_def, simplified monoid_record_simps])

lemma (in abelian_subgroup) a_subgroup_in_rcosets:
"H ∈ a_rcosets H"
by (rule subgroup.subgroup_in_rcosets [OF a_subgroup a_group,
folded A_RCOSETS_def, simplified monoid_record_simps])

lemma (in abelian_subgroup) a_rcosets_inv_mult_group_eq:
"M ∈ a_rcosets H ==> a_set_inv M <+> M = H"
by (rule normal.rcosets_inv_mult_group_eq [OF a_normal,
folded A_RCOSETS_def A_SET_INV_def set_add_def, simplified monoid_record_simps])

theorem (in abelian_subgroup) a_factorgroup_is_group:
"group (G A_Mod H)"
by (rule normal.factorgroup_is_group [OF a_normal,
folded A_FactGroup_def, simplified monoid_record_simps])

text {* Since the Factorization is based on an \emph{abelian} subgroup, is results in
a commutative group *}

theorem (in abelian_subgroup) a_factorgroup_is_comm_group:
"comm_group (G A_Mod H)"
apply (intro comm_group.intro comm_monoid.intro) prefer 3
apply (rule a_factorgroup_is_group)
apply (rule group.axioms[OF a_factorgroup_is_group])
apply (rule comm_monoid_axioms.intro)
apply (unfold A_FactGroup_def FactGroup_def RCOSETS_def, fold set_add_def a_r_coset_def, clarsimp)
apply (simp add: a_rcos_sum a_comm)
done

lemma add_A_FactGroup [simp]: "X ⊗(G A_Mod H) X' = X <+>G X'"
by (simp add: A_FactGroup_def set_add_def)

lemma (in abelian_subgroup) a_inv_FactGroup:
"X ∈ carrier (G A_Mod H) ==> invG A_Mod H X = a_set_inv X"
by (rule normal.inv_FactGroup [OF a_normal,
folded A_FactGroup_def A_SET_INV_def, simplified monoid_record_simps])

text{*The coset map is a homomorphism from @{term G} to the quotient group
@{term "G Mod H"}*}

lemma (in abelian_subgroup) a_r_coset_hom_A_Mod:
"(λa. H +> a) ∈ hom (|carrier = carrier G, mult = add G, one = zero G|)), (G A_Mod H)"
by (rule normal.r_coset_hom_Mod [OF a_normal,
folded A_FactGroup_def a_r_coset_def, simplified monoid_record_simps])

text {* The isomorphism theorems have been omitted from lifting, at
least for now *}



subsubsection{*The First Isomorphism Theorem*}

text{*The quotient by the kernel of a homomorphism is isomorphic to the
range of that homomorphism.*}


lemmas a_kernel_defs =
a_kernel_def kernel_def

lemma a_kernel_def':
"a_kernel R S h = {x ∈ carrier R. h x = \<zero>S}"
by (rule a_kernel_def[unfolded kernel_def, simplified ring_record_simps])


subsubsection {* Homomorphisms *}

lemma abelian_group_homI:
assumes "abelian_group G"
assumes "abelian_group H"
assumes a_group_hom: "group_hom (| carrier = carrier G, mult = add G, one = zero G |)
(| carrier = carrier H, mult = add H, one = zero H |) h"

shows "abelian_group_hom G H h"
proof -
interpret G: abelian_group G by fact
interpret H: abelian_group H by fact
show ?thesis
apply (intro abelian_group_hom.intro abelian_group_hom_axioms.intro)
apply fact
apply fact
apply (rule a_group_hom)
done
qed

lemma (in abelian_group_hom) is_abelian_group_hom:
"abelian_group_hom G H h"
..

lemma (in abelian_group_hom) hom_add [simp]:
"[| x : carrier G; y : carrier G |]
==> h (x ⊕G y) = h x ⊕H h y"

by (rule group_hom.hom_mult[OF a_group_hom,
simplified ring_record_simps])

lemma (in abelian_group_hom) hom_closed [simp]:
"x ∈ carrier G ==> h x ∈ carrier H"
by (rule group_hom.hom_closed[OF a_group_hom,
simplified ring_record_simps])

lemma (in abelian_group_hom) zero_closed [simp]:
"h \<zero> ∈ carrier H"
by (rule group_hom.one_closed[OF a_group_hom,
simplified ring_record_simps])

lemma (in abelian_group_hom) hom_zero [simp]:
"h \<zero> = \<zero>H"
by (rule group_hom.hom_one[OF a_group_hom,
simplified ring_record_simps])

lemma (in abelian_group_hom) a_inv_closed [simp]:
"x ∈ carrier G ==> h (\<ominus>x) ∈ carrier H"
by (rule group_hom.inv_closed[OF a_group_hom,
folded a_inv_def, simplified ring_record_simps])

lemma (in abelian_group_hom) hom_a_inv [simp]:
"x ∈ carrier G ==> h (\<ominus>x) = \<ominus>H (h x)"
by (rule group_hom.hom_inv[OF a_group_hom,
folded a_inv_def, simplified ring_record_simps])

lemma (in abelian_group_hom) additive_subgroup_a_kernel:
"additive_subgroup (a_kernel G H h) G"
apply (rule additive_subgroup.intro)
apply (rule group_hom.subgroup_kernel[OF a_group_hom,
folded a_kernel_def, simplified ring_record_simps])
done

text{*The kernel of a homomorphism is an abelian subgroup*}
lemma (in abelian_group_hom) abelian_subgroup_a_kernel:
"abelian_subgroup (a_kernel G H h) G"
apply (rule abelian_subgroupI)
apply (rule group_hom.normal_kernel[OF a_group_hom,
folded a_kernel_def, simplified ring_record_simps])
apply (simp add: G.a_comm)
done

lemma (in abelian_group_hom) A_FactGroup_nonempty:
assumes X: "X ∈ carrier (G A_Mod a_kernel G H h)"
shows "X ≠ {}"
by (rule group_hom.FactGroup_nonempty[OF a_group_hom,
folded a_kernel_def A_FactGroup_def, simplified ring_record_simps]) (rule X)

lemma (in abelian_group_hom) FactGroup_the_elem_mem:
assumes X: "X ∈ carrier (G A_Mod (a_kernel G H h))"
shows "the_elem (h`X) ∈ carrier H"
by (rule group_hom.FactGroup_the_elem_mem[OF a_group_hom,
folded a_kernel_def A_FactGroup_def, simplified ring_record_simps]) (rule X)

lemma (in abelian_group_hom) A_FactGroup_hom:
"(λX. the_elem (h`X)) ∈ hom (G A_Mod (a_kernel G H h))
(|carrier = carrier H, mult = add H, one = zero H|)),"

by (rule group_hom.FactGroup_hom[OF a_group_hom,
folded a_kernel_def A_FactGroup_def, simplified ring_record_simps])

lemma (in abelian_group_hom) A_FactGroup_inj_on:
"inj_on (λX. the_elem (h ` X)) (carrier (G A_Mod a_kernel G H h))"
by (rule group_hom.FactGroup_inj_on[OF a_group_hom,
folded a_kernel_def A_FactGroup_def, simplified ring_record_simps])

text{*If the homomorphism @{term h} is onto @{term H}, then so is the
homomorphism from the quotient group*}

lemma (in abelian_group_hom) A_FactGroup_onto:
assumes h: "h ` carrier G = carrier H"
shows "(λX. the_elem (h ` X)) ` carrier (G A_Mod a_kernel G H h) = carrier H"
by (rule group_hom.FactGroup_onto[OF a_group_hom,
folded a_kernel_def A_FactGroup_def, simplified ring_record_simps]) (rule h)

text{*If @{term h} is a homomorphism from @{term G} onto @{term H}, then the
quotient group @{term "G Mod (kernel G H h)"} is isomorphic to @{term H}.*}

theorem (in abelian_group_hom) A_FactGroup_iso:
"h ` carrier G = carrier H
==> (λX. the_elem (h`X)) ∈ (G A_Mod (a_kernel G H h)) ≅
(| carrier = carrier H, mult = add H, one = zero H |)"

by (rule group_hom.FactGroup_iso[OF a_group_hom,
folded a_kernel_def A_FactGroup_def, simplified ring_record_simps])


subsubsection {* Cosets *}

text {* Not eveything from \texttt{CosetExt.thy} is lifted here. *}

lemma (in additive_subgroup) a_Hcarr [simp]:
assumes hH: "h ∈ H"
shows "h ∈ carrier G"
by (rule subgroup.mem_carrier [OF a_subgroup,
simplified monoid_record_simps]) (rule hH)


lemma (in abelian_subgroup) a_elemrcos_carrier:
assumes acarr: "a ∈ carrier G"
and a': "a' ∈ H +> a"
shows "a' ∈ carrier G"
by (rule subgroup.elemrcos_carrier [OF a_subgroup a_group,
folded a_r_coset_def, simplified monoid_record_simps]) (rule acarr, rule a')

lemma (in abelian_subgroup) a_rcos_const:
assumes hH: "h ∈ H"
shows "H +> h = H"
by (rule subgroup.rcos_const [OF a_subgroup a_group,
folded a_r_coset_def, simplified monoid_record_simps]) (rule hH)

lemma (in abelian_subgroup) a_rcos_module_imp:
assumes xcarr: "x ∈ carrier G"
and x'cos: "x' ∈ H +> x"
shows "(x' ⊕ \<ominus>x) ∈ H"
by (rule subgroup.rcos_module_imp [OF a_subgroup a_group,
folded a_r_coset_def a_inv_def, simplified monoid_record_simps]) (rule xcarr, rule x'cos)

lemma (in abelian_subgroup) a_rcos_module_rev:
assumes "x ∈ carrier G" "x' ∈ carrier G"
and "(x' ⊕ \<ominus>x) ∈ H"
shows "x' ∈ H +> x"
using assms
by (rule subgroup.rcos_module_rev [OF a_subgroup a_group,
folded a_r_coset_def a_inv_def, simplified monoid_record_simps])

lemma (in abelian_subgroup) a_rcos_module:
assumes "x ∈ carrier G" "x' ∈ carrier G"
shows "(x' ∈ H +> x) = (x' ⊕ \<ominus>x ∈ H)"
using assms
by (rule subgroup.rcos_module [OF a_subgroup a_group,
folded a_r_coset_def a_inv_def, simplified monoid_record_simps])

--"variant"
lemma (in abelian_subgroup) a_rcos_module_minus:
assumes "ring G"
assumes carr: "x ∈ carrier G" "x' ∈ carrier G"
shows "(x' ∈ H +> x) = (x' \<ominus> x ∈ H)"
proof -
interpret G: ring G by fact
from carr
have "(x' ∈ H +> x) = (x' ⊕ \<ominus>x ∈ H)" by (rule a_rcos_module)
with carr
show "(x' ∈ H +> x) = (x' \<ominus> x ∈ H)"
by (simp add: minus_eq)
qed

lemma (in abelian_subgroup) a_repr_independence':
assumes y: "y ∈ H +> x"
and xcarr: "x ∈ carrier G"
shows "H +> x = H +> y"
apply (rule a_repr_independence)
apply (rule y)
apply (rule xcarr)
apply (rule a_subgroup)
done

lemma (in abelian_subgroup) a_repr_independenceD:
assumes ycarr: "y ∈ carrier G"
and repr: "H +> x = H +> y"
shows "y ∈ H +> x"
by (rule group.repr_independenceD [OF a_group a_subgroup,
folded a_r_coset_def, simplified monoid_record_simps]) (rule ycarr, rule repr)


lemma (in abelian_subgroup) a_rcosets_carrier:
"X ∈ a_rcosets H ==> X ⊆ carrier G"
by (rule subgroup.rcosets_carrier [OF a_subgroup a_group,
folded A_RCOSETS_def, simplified monoid_record_simps])


subsubsection {* Addition of Subgroups *}

lemma (in abelian_monoid) set_add_closed:
assumes Acarr: "A ⊆ carrier G"
and Bcarr: "B ⊆ carrier G"
shows "A <+> B ⊆ carrier G"
by (rule monoid.set_mult_closed [OF a_monoid,
folded set_add_def, simplified monoid_record_simps]) (rule Acarr, rule Bcarr)

lemma (in abelian_group) add_additive_subgroups:
assumes subH: "additive_subgroup H G"
and subK: "additive_subgroup K G"
shows "additive_subgroup (H <+> K) G"
apply (rule additive_subgroup.intro)
apply (unfold set_add_def)
apply (intro comm_group.mult_subgroups)
apply (rule a_comm_group)
apply (rule additive_subgroup.a_subgroup[OF subH])
apply (rule additive_subgroup.a_subgroup[OF subK])
done

end