Theory SkewBinomialHeap

Up to index of Isabelle/HOL/Collections

theory SkewBinomialHeap
imports Multiset
header "Skew Binomial Heaps"

theory SkewBinomialHeap
imports Main "~~/src/HOL/Library/Multiset"
begin

text {* Skew Binomial Queues as specified by Brodal and Okasaki \cite{BrOk96}
are a data structure for priority queues with worst case O(1) {\em findMin},
{\em insert}, and {\em meld} operations, and worst-case logarithmic
{\em deleteMin} operation.
They are derived from priority queues in three steps:
\begin{enumerate}
\item Skew binomial trees are used to eliminate the possibility of
cascading links during insert operations. This reduces the complexity
of an insert operation to $O(1)$.
\item The current minimal element is cached. This approach, known as
{\em global root}, reduces the cost of a {\em findMin}-operation to
O(1).
\item By allowing skew binomial queues to contain skew binomial queues,
the cost for meld-operations is reduced to $O(1)$. This approach
is known as {\em data-structural bootstrapping}.
\end{enumerate}

In this theory, we combine Steps~2 and 3, i.e. we first implement skew binomial
queues, and then bootstrap them. The bootstrapping implicitely introduces a
global root, such that we also get a constant time findMin operation.
*}


subsection "Datatype"

datatype ('e, 'a) SkewBinomialTree =
Node 'e "'a::linorder" nat "('e , 'a) SkewBinomialTree list"

type_synonym ('e, 'a) SkewBinomialQueue = "('e, 'a::linorder) SkewBinomialTree list"

locale SkewBinomialHeapStruc_loc
begin

text {* Projections *}
primrec val :: "('e, 'a::linorder) SkewBinomialTree => 'e" where
"val (Node e a r ts) = e"
primrec prio :: "('e, 'a::linorder) SkewBinomialTree => 'a" where
"prio (Node e a r ts) = a"
primrec rank :: "('e, 'a::linorder) SkewBinomialTree => nat" where
"rank (Node e a r ts) = r"
primrec children :: "('e, 'a::linorder) SkewBinomialTree =>
('e, 'a) SkewBinomialQueue"
where
"children (Node e a r ts) = ts"

subsubsection "Abstraction to Multisets"
text {* Returns a multiset with all (element, priority) pairs from a queue *}
fun tree_to_multiset
:: "('e, 'a::linorder) SkewBinomialTree => ('e × 'a) multiset"
and queue_to_multiset
:: "('e, 'a::linorder) SkewBinomialQueue => ('e × 'a) multiset" where
"tree_to_multiset (Node e a r ts) = {#(e,a)#} + queue_to_multiset ts" |
"queue_to_multiset [] = {#}" |
"queue_to_multiset (t#q) = tree_to_multiset t + queue_to_multiset q"

lemma ttm_children: "tree_to_multiset t =
{#(val t,prio t)#} + queue_to_multiset (children t)"

by (cases t) auto

(*lemma qtm_cons[simp]: "queue_to_multiset (t#q)
= queue_to_multiset q + tree_to_multiset t"
apply(induct q arbitrary: t)
apply simp
apply(auto simp add: union_ac)
done*)


lemma qtm_conc[simp]: "queue_to_multiset (q@q')
= queue_to_multiset q + queue_to_multiset q'"

by (induct q) (auto simp add: union_ac)

subsubsection "Invariant"

text {* Link two trees of rank $r$ to a new tree of rank $r+1$ *}
fun link :: "('e, 'a::linorder) SkewBinomialTree => ('e, 'a) SkewBinomialTree =>
('e, 'a) SkewBinomialTree"
where
"link (Node e1 a1 r1 ts1) (Node e2 a2 r2 ts2) =
(if a1≤a2
then (Node e1 a1 (Suc r1) ((Node e2 a2 r2 ts2)#ts1))
else (Node e2 a2 (Suc r2) ((Node e1 a1 r1 ts1)#ts2)))"


text {* Link two trees of rank $r$ and a new element to a new tree of
rank $r+1$ *}

fun skewlink :: "'e => 'a::linorder => ('e, 'a) SkewBinomialTree =>
('e, 'a) SkewBinomialTree => ('e, 'a) SkewBinomialTree"
where
"skewlink e a t t' = (if a ≤ (prio t) ∧ a ≤ (prio t')
then (Node e a (Suc (rank t)) [t,t'])
else (if (prio t) ≤ (prio t')
then
Node (val t) (prio t) (Suc (rank t)) (Node e a 0 [] # t' # children t)
else
Node (val t') (prio t') (Suc (rank t')) (Node e a 0 [] # t # children t')))"


text {*
The invariant for trees claims that a tree labeled rank $0$ has no children,
and a tree labeled rank $r + 1$ is the result of an ordinary link or
a skew link of two trees with rank $r$. *}

function tree_invar :: "('e, 'a::linorder) SkewBinomialTree => bool" where
"tree_invar (Node e a 0 ts) = (ts = [])" |
"tree_invar (Node e a (Suc r) ts) = (∃ e1 a1 ts1 e2 a2 ts2 e' a'.
tree_invar (Node e1 a1 r ts1) ∧ tree_invar (Node e2 a2 r ts2) ∧
((Node e a (Suc r) ts) = link (Node e1 a1 r ts1) (Node e2 a2 r ts2) ∨
(Node e a (Suc r) ts) = skewlink e' a' (Node e1 a1 r ts1) (Node e2 a2 r ts2)))"

by pat_completeness auto
termination
apply(relation "measure rank")
apply auto
done

text {* A heap satisfies the invariant, if all contained trees satisfy the
invariant, the ranks of the trees in the heap are distinct, except that the
first two trees may have same rank, and the ranks are ordered in ascending
order.*}


text {* First part: All trees inside the queue satisfy the invariant. *}
definition queue_invar :: "('e, 'a::linorder) SkewBinomialQueue => bool" where
"queue_invar q ≡ (∀t ∈ set q. tree_invar t)"

lemma queue_invar_simps[simp]:
"queue_invar []"
"queue_invar (t#q) <-> tree_invar t ∧ queue_invar q"
"queue_invar (q@q') <-> queue_invar q ∧ queue_invar q'"
"queue_invar q ==> t∈set q ==> tree_invar t"
unfolding queue_invar_def by auto


text {* Second part: The ranks of the trees in the heap are distinct,
except that the first two trees may have same rank, and the ranks are
ordered in ascending order.*}


text {* For tail of queue *}
fun rank_invar :: "('e, 'a::linorder) SkewBinomialQueue => bool" where
"rank_invar [] = True" |
"rank_invar [t] = True" |
"rank_invar (t # t' # bq) = (rank t < rank t' ∧ rank_invar (t' # bq))"

text {* For whole queue: First two elements may have same rank *}
fun rank_skew_invar :: "('e, 'a::linorder) SkewBinomialQueue => bool" where
"rank_skew_invar [] = True" |
"rank_skew_invar [t] = True" |
"rank_skew_invar (t # t' # bq) = ((rank t ≤ rank t') ∧ rank_invar (t' # bq))"

definition tail_invar :: "('e, 'a::linorder) SkewBinomialQueue => bool" where
"tail_invar bq = (queue_invar bq ∧ rank_invar bq)"

definition invar :: "('e, 'a::linorder) SkewBinomialQueue => bool" where
"invar bq = (queue_invar bq ∧ rank_skew_invar bq)"

lemma invar_empty[simp]:
"invar []"
"tail_invar []"
unfolding invar_def tail_invar_def by auto

lemma invar_tail_invar:
"invar (t # bq) ==> tail_invar bq"
unfolding invar_def tail_invar_def
by (cases bq) simp_all

lemma link_mset[simp]: "tree_to_multiset (link t1 t2)
= tree_to_multiset t1 +tree_to_multiset t2"

by (cases t1, cases t2, auto simp add:union_ac)

lemma link_tree_invar: "[|tree_invar t1; tree_invar t2; rank t1 = rank t2|] ==>
tree_invar (link t1 t2)"

by (cases t1, cases t2, simp, blast)

lemma skewlink_mset[simp]: "tree_to_multiset (skewlink e a t1 t2)
= {# (e,a) #} + tree_to_multiset t1 + tree_to_multiset t2"

by (cases t1, cases t2, auto simp add:union_ac)

lemma skewlink_tree_invar: "[|tree_invar t1; tree_invar t2; rank t1 = rank t2|] ==>
tree_invar (skewlink e a t1 t2)"

by (cases t1, cases t2, simp, blast)


lemma rank_link: "rank t = rank t' ==> rank (link t t') = rank t + 1"
apply (cases t)
apply (cases t')
apply(auto)
done

lemma rank_skew_rank_invar: "rank_skew_invar (t # bq) ==> rank_invar bq"
by (cases bq) simp_all

lemma rank_invar_rank_skew: "rank_invar q ==> rank_skew_invar q"
proof (cases q, simp)
case goal1 thus ?case
by (cases "list") simp_all
qed

lemma rank_invar_cons_up:
"[|rank_invar (t # bq); rank t' < rank t|] ==> rank_invar (t' # t # bq)"
by simp

lemma rank_skew_cons_up:
"[|rank_invar (t # bq); rank t' ≤ rank t|] ==> rank_skew_invar (t' # t # bq)"
by simp

lemma rank_invar_cons_down: "rank_invar (t # bq) ==> rank_invar bq"
by (cases bq) simp_all

lemma rank_invar_hd_cons:
"[|rank_invar bq; rank t < rank (hd bq)|] ==> rank_invar (t # bq)"
apply(cases bq)
apply(auto)
done


lemma tail_invar_cons_up:
"[|tail_invar (t # bq); rank t' < rank t; tree_invar t'|]
==> tail_invar (t' # t # bq)"

unfolding tail_invar_def
apply (cases bq)
apply simp_all
done

lemma tail_invar_cons_up_invar:
"[|tail_invar (t # bq); rank t' ≤ rank t; tree_invar t'|] ==> invar (t' # t # bq)"
by (cases bq) (simp_all add: invar_def tail_invar_def)

lemma tail_invar_cons_down:
"tail_invar (t # bq) ==> tail_invar bq"
unfolding tail_invar_def
by (cases bq) simp_all

lemma tail_invar_app_single:
"[|tail_invar bq; ∀t ∈ set bq. rank t < rank t'; tree_invar t'|]
==> tail_invar (bq @ [t'])"

proof (induct bq, simp add: tail_invar_def)
case goal1
from `tail_invar (a # bq)` have "tail_invar bq"
by (rule tail_invar_cons_down)
with goal1 have "tail_invar (bq @ [t'])" by simp
with goal1 show ?case
by(cases bq) (simp_all add: tail_invar_cons_up tail_invar_def)
qed

lemma invar_app_single:
"[|invar bq; ∀t ∈ set bq. rank t < rank t'; tree_invar t'|]
==> invar (bq @ [t'])"

proof (induct bq, (simp add: invar_def))
case goal1 thus ?case
proof(cases bq, (simp add: invar_def))
fix ta qa
assume ass:
"[|invar bq; ∀t∈set bq. rank t < rank t'; tree_invar t'|]
==> invar (bq @ [t'])"

"invar (a # bq)" "∀t∈set (a # bq). rank t < rank t'"
"tree_invar t'" "bq = ta # qa"
from ass(2) have a1: "tail_invar bq" by (rule invar_tail_invar)
from ass(3) have a2: "∀t∈set bq. rank t < rank t'" by simp
from a1 a2 ass(4) tail_invar_app_single[of "bq" "t'"]
have "tail_invar (bq @ [t'])" by simp
with ass show "invar ((a # bq) @ [t'])"
by (simp_all add: tail_invar_cons_up_invar invar_def tail_invar_def)
qed
qed

lemma invar_children:
assumes "tree_invar ((Node e a r ts)::(('e, 'a::linorder) SkewBinomialTree))"
shows "queue_invar ts" using assms
proof(induct r arbitrary: e a ts, simp)
case goal1
from goal1(2)obtain e1 a1 ts1 e2 a2 ts2 e' a' where
inv_t1: "tree_invar (Node e1 a1 r ts1)" and
inv_t2: "tree_invar (Node e2 a2 r ts2)" and
link_or_skew:
"((Node e a (Suc r) ts) = link (Node e1 a1 r ts1) (Node e2 a2 r ts2)
∨ (Node e a (Suc r) ts)
= skewlink e' a' (Node e1 a1 r ts1) (Node e2 a2 r ts2))"

by (simp only: tree_invar.simps) blast
from goal1(1)[OF inv_t1] inv_t2
have case1: "queue_invar ((Node e2 a2 r ts2) # ts1)" by simp
from goal1(1)[OF inv_t2] inv_t1
have case2: "queue_invar ((Node e1 a1 r ts1) # ts2)" by simp
show ?case
proof (cases
"(Node e a (Suc r) ts) = link (Node e1 a1 r ts1) (Node e2 a2 r ts2)")
case goal1
hence "ts = (if a1≤a2
then (Node e2 a2 r ts2) # ts1
else (Node e1 a1 r ts1) # ts2)"
by auto
with case1 case2 show ?case by simp
next
case goal2
with link_or_skew
have "Node e a (Suc r) ts =
skewlink e' a' (Node e1 a1 r ts1) (Node e2 a2 r ts2)"
by simp
hence "ts = (if a' ≤ a1 ∧ a' ≤ a2
then [(Node e1 a1 r ts1),(Node e2 a2 r ts2)]
else (if a1 ≤ a2
then (Node e' a' 0 []) # (Node e2 a2 r ts2) # ts1
else (Node e' a' 0 []) # (Node e1 a1 r ts1) # ts2))"
by auto
with case1 case2 show ?case by simp
qed
qed

subsubsection "Heap Order"

fun heap_ordered :: "('e, 'a::linorder) SkewBinomialTree => bool" where
"heap_ordered (Node e a r ts)
= (∀x ∈ set_of (queue_to_multiset ts). a ≤ snd x)"



text {* The invariant for trees implies heap order. *}
lemma tree_invar_heap_ordered:
"tree_invar (t ::('e, 'a::linorder) SkewBinomialTree) ==> heap_ordered t"
proof(cases t)
case goal1 thus ?case
proof(induct nat arbitrary: t e a list, simp)
case goal1
from goal1(2,3) obtain t1 e1 a1 ts1 t2 e2 a2 ts2 e' a' where
inv_t1: "tree_invar t1" and
inv_t2: "tree_invar t2" and
link_or_skew: "t = link t1 t2 ∨ t = skewlink e' a' t1 t2" and
eq_t1[simp]: "t1 = (Node e1 a1 nat ts1)" and
eq_t2[simp]: "t2 = (Node e2 a2 nat ts2)"
by (simp only: tree_invar.simps) blast
note heap_t1 = goal1(1)[OF inv_t1 eq_t1]
note heap_t2 = goal1(1)[OF inv_t2 eq_t2]
from link_or_skew heap_t1 heap_t2
show ?case
by (cases "t = link t1 t2") auto
qed
qed

(***********************************************************)



(***********************************************************)


subsubsection "Height and Length"
text {*
Although complexity of HOL-functions cannot be expressed within
HOL, we can express the height and length of a binomial heap.
By showing that both, height and length, are logarithmic in the number
of contained elements, we give strong evidence that our functions have
logarithmic complexity in the number of elements.
*}


text {* Height of a tree and queue *}
fun height_tree :: "('e, ('a::linorder)) SkewBinomialTree => nat" and
height_queue :: "('e, ('a::linorder)) SkewBinomialQueue => nat"
where
"height_tree (Node e a r ts) = height_queue ts" |
"height_queue [] = 0" |
"height_queue (t # ts) = max (Suc (height_tree t)) (height_queue ts)"

lemma link_length: "size (tree_to_multiset (link t1 t2)) =
size (tree_to_multiset t1) + size (tree_to_multiset t2)"

apply(cases t1)
apply(cases t2)
apply simp
done

lemma tree_rank_estimate_upper:
"tree_invar (Node e a r ts) ==>
size (tree_to_multiset (Node e a r ts)) ≤ (2::nat)^(Suc r) - 1"

apply(induct r arbitrary: e a ts, simp)
proof -
case goal1
from goal1(2) obtain e1 a1 ts1 e2 a2 ts2 e' a' where link:
"(Node e a (Suc r) ts) = link (Node e1 a1 r ts1) (Node e2 a2 r ts2) ∨
(Node e a (Suc r) ts) = skewlink e' a' (Node e1 a1 r ts1) (Node e2 a2 r ts2)"

and inv1: "tree_invar (Node e1 a1 r ts1)"
and inv2: "tree_invar (Node e2 a2 r ts2)"
by simp blast
note iv1 = goal1(1)[OF inv1]
note iv2 = goal1(1)[OF inv2]
have "(2::nat)^r - 1 + (2::nat)^r - 1 ≤ (2::nat)^(Suc r) - 1" by simp
with link goal1 show ?case
apply (cases
"Node e a (Suc r) ts = link (Node e1 a1 r ts1) (Node e2 a2 r ts2)")
using iv1 iv2 apply (simp del: link.simps)
using iv1 iv2 by (simp del: skewlink.simps)
qed

lemma tree_rank_estimate_lower:
"tree_invar (Node e a r ts) ==>
size (tree_to_multiset (Node e a r ts)) ≥ (2::nat)^r"

apply(induct r arbitrary: e a ts, simp)
proof -
case goal1
from goal1(2) obtain e1 a1 ts1 e2 a2 ts2 e' a' where link:
"(Node e a (Suc r) ts) = link (Node e1 a1 r ts1) (Node e2 a2 r ts2) ∨
(Node e a (Suc r) ts) = skewlink e' a' (Node e1 a1 r ts1) (Node e2 a2 r ts2)"

and inv1: "tree_invar (Node e1 a1 r ts1)"
and inv2: "tree_invar (Node e2 a2 r ts2)"
by simp blast
note iv1 = goal1(1)[OF inv1]
note iv2 = goal1(1)[OF inv2]
have "(2::nat)^r - 1 + (2::nat)^r - 1 ≤ (2::nat)^(Suc r) - 1" by simp
with link goal1 show ?case
apply (cases
"Node e a (Suc r) ts = link (Node e1 a1 r ts1) (Node e2 a2 r ts2)")
using iv1 iv2 apply (simp del: link.simps)
using iv1 iv2 by (simp del: skewlink.simps)
qed



lemma tree_rank_height:
"tree_invar (Node e a r ts) ==> height_tree (Node e a r ts) = r"
apply(induct r arbitrary: e a ts, simp)
proof -
case goal1
from goal1(2) obtain e1 a1 ts1 e2 a2 ts2 e' a' where link:
"(Node e a (Suc r) ts) = link (Node e1 a1 r ts1) (Node e2 a2 r ts2) ∨
(Node e a (Suc r) ts) = skewlink e' a' (Node e1 a1 r ts1) (Node e2 a2 r ts2)"

and inv1: "tree_invar (Node e1 a1 r ts1)"
and inv2: "tree_invar (Node e2 a2 r ts2)"
by simp blast
note iv1 = goal1(1)[OF inv1]
note iv2 = goal1(1)[OF inv2]
from goal1(2) link show ?case
apply (cases
"Node e a (Suc r) ts = link (Node e1 a1 r ts1) (Node e2 a2 r ts2)")
apply (cases "a1 ≤ a2")
using iv1 iv2 apply simp
using iv1 iv2 apply simp
apply(cases "a' ≤ a1 ∧ a' ≤ a2")
apply(unfold height_tree.simps)
using iv1 iv2 apply simp
apply(cases "a1 ≤ a2")
using iv1 iv2
apply (simp del: tree_invar.simps link.simps)
using iv1 iv2
apply (simp del: tree_invar.simps link.simps)
done
qed

text {* A skew binomial tree of height $h$ contains at most $2^{h+1} - 1$
elements *}

theorem tree_height_estimate_upper:
"tree_invar t ==>
size (tree_to_multiset t) ≤ (2::nat)^(Suc (height_tree t)) - 1"

apply (cases t, simp only:)
apply (frule tree_rank_estimate_upper)
apply (frule tree_rank_height)
apply (simp only: )
done

text {* A skew binomial tree of height $h$ contains at least $2^{h}$ elements *}
theorem tree_height_estimate_lower:
"tree_invar t ==> size (tree_to_multiset t) ≥ (2::nat)^(height_tree t)"
apply (cases t, simp only:)
apply (frule tree_rank_estimate_lower)
apply (frule tree_rank_height)
apply (simp only: )
done


lemma size_mset_tree_upper: "tree_invar t ==>
size (tree_to_multiset t) ≤ (2::nat)^(Suc (rank t)) - (1::nat)"

apply (cases t)
by (simp only: tree_rank_estimate_upper rank.simps)

lemma size_mset_tree_lower: "tree_invar t ==>
size (tree_to_multiset t) ≥ (2::nat)^(rank t)"

apply (cases t)
by (simp only: tree_rank_estimate_lower rank.simps)


lemma invar_butlast: "invar (bq @ [t]) ==> invar bq"
unfolding invar_def
apply (induct bq)
apply simp
apply (case_tac bq)
apply simp
apply (case_tac list)
by simp_all

lemma invar_last_max:
"invar ((b#b'#bq) @ [m]) ==> ∀ t ∈ set (b'#bq). rank t < rank m"
unfolding invar_def
apply (induct bq) apply simp apply (case_tac bq) apply simp by simp

lemma invar_last_max': "invar ((b#b'#bq) @ [m]) ==> rank b ≤ rank b'"
unfolding invar_def by simp

lemma invar_length: "invar bq ==> length bq ≤ Suc (Suc (rank (last bq)))"
proof (induct bq rule: rev_induct)
case Nil thus ?case by simp
next
case (snoc x xs)
show ?case proof (cases xs)
case Nil thus ?thesis by simp
next
case (Cons xxs xx)[simp]
note Cons' = Cons
thus ?thesis
proof (cases xx)
case Nil with snoc.prems Cons show ?thesis by simp
next
case (Cons xxxs xxx)
from snoc.hyps[OF invar_butlast[OF snoc.prems]] have
IH: "length xs ≤ Suc (Suc (rank (last xs)))" .
also from invar_last_max[OF snoc.prems[unfolded Cons' Cons]]
invar_last_max'[OF snoc.prems[unfolded Cons' Cons]]
last_in_set[of xs] Cons have
"Suc (rank (last xs)) ≤ rank (last (xs @ [x]))" by auto
finally show ?thesis by simp
qed
qed
qed

lemma size_queue_listsum:
"size (queue_to_multiset bq) = listsum (map (size o tree_to_multiset) bq)"
by (induct bq) simp_all

text {*
A skew binomial heap of length $l$ contains at least $2^{l-1} - 1$ elements.
*}

theorem queue_length_estimate_lower:
"invar bq ==> (size (queue_to_multiset bq)) ≥ 2^(length bq - 1) - 1"
proof (induct bq rule: rev_induct)
case Nil thus ?case by simp
next
case (snoc x xs) thus ?case
proof (cases xs)
case Nil thus ?thesis by simp
next
case (Cons xx xxs)[simp]
from snoc.hyps[OF invar_butlast[OF snoc.prems]]
have IH: "2 ^ (length xs - 1) ≤ Suc (size (queue_to_multiset xs))" by simp
have size_q:
"size (queue_to_multiset (xs @ [x])) =
size (queue_to_multiset xs) + size (tree_to_multiset x)"

by (simp add: size_queue_listsum)
moreover
from snoc.prems have inv_x: "tree_invar x" by (simp add: invar_def)
from size_mset_tree_lower[OF this]
have "2 ^ (rank x) ≤ size (tree_to_multiset x)" .
ultimately have
eq: "size (queue_to_multiset xs) + (2::nat)^(rank x) ≤
size (queue_to_multiset (xs @ [x]))"
by simp
from invar_length[OF snoc.prems] have "length xs ≤ (rank x + 1)" by simp
hence snd: "(2::nat) ^ (length xs - 1) ≤ (2::nat) ^ ((rank x))"
by (simp del: power.simps)
have
"(2::nat) ^ (length (xs @ [x]) - 1) =
(2::nat) ^ (length xs - 1) + (2::nat) ^ (length xs - 1)"

by auto
with IH have
"2 ^ (length (xs @ [x]) - 1) ≤
Suc (size (queue_to_multiset xs)) + 2 ^ (length xs - 1)"

by simp
with snd have "2 ^ (length (xs @ [x]) - 1) ≤
Suc (size (queue_to_multiset xs)) + 2 ^ rank x"

by arith
with eq show ?thesis by simp
qed
qed


subsection "Operations"
subsubsection "Empty Tree"
lemma empty_correct: "q=Nil <-> queue_to_multiset q = {#}"
apply (cases q)
apply simp
apply (case_tac a)
apply auto
done

subsubsection "Insert"
text {* Inserts a tree into the queue, such that two trees of same rank get
linked and are recursively inserted. This is the same definition as for
binomial queues and is used for melding. *}

fun ins :: "('e, 'a::linorder) SkewBinomialTree => ('e, 'a) SkewBinomialQueue =>
('e, 'a) SkewBinomialQueue"
where
"ins t [] = [t]" |
"ins t' (t # bq) =
(if (rank t') < (rank t)
then t' # t # bq
else (if (rank t) < (rank t')
then t # (ins t' bq)
else ins (link t' t) bq))"


text {* Insert an element with priority into a queue using skewlinks. *}
fun insert :: "'e => 'a::linorder => ('e, 'a) SkewBinomialQueue =>
('e, 'a) SkewBinomialQueue"
where
"insert e a [] = [Node e a 0 []]" |
"insert e a [t] = [Node e a 0 [],t]" |
"insert e a (t # t' # bq) =
(if rank t ≠ rank t'
then (Node e a 0 []) # t # t' # bq
else (skewlink e a t t') # bq)"


lemma ins_mset:
"[|tree_invar t; queue_invar q|] ==> queue_to_multiset (ins t q)
= tree_to_multiset t + queue_to_multiset q"

proof(induct q arbitrary: t, simp)
case goal1 thus ?case
apply(cases "rank t < rank a")
apply(simp add: union_ac)
apply(cases "rank t = rank a") defer
apply(simp add: union_ac)
proof -
case goal1
from goal1(3) have inv_a: "tree_invar a" by simp
from goal1(3) have inv_q: "queue_invar q" by simp
note inv_link = link_tree_invar[OF goal1(2) inv_a goal1(5)]
note iv = goal1(1)[OF inv_link inv_q]
with link_mset[of t a] goal1(5) show ?case by (simp add: union_ac)
qed
qed

lemma insert_mset: "queue_invar q ==>
queue_to_multiset (insert e a q) =
queue_to_multiset q + {# (e,a) #}"

apply(induct q rule: insert.induct)
apply (auto simp add: union_ac ttm_children)
done

lemma ins_queue_invar: "[|tree_invar t; queue_invar q|] ==> queue_invar (ins t q)"
proof (induct q arbitrary: t, simp)
case goal1
note iv = goal1(1)
from goal1(2,3) show ?case
apply(cases "rank t < rank a") apply simp
apply(cases "rank t = rank a") defer using iv[of "t"] apply simp
proof -
case goal1
from goal1(2) have inv_a: "tree_invar a" by simp
from goal1(2) have inv_q: "queue_invar q" by simp
note inv_link = link_tree_invar[OF goal1(1) inv_a goal1(4)]
from iv[OF inv_link inv_q] goal1(4) show ?case by simp
qed
qed

lemma insert_queue_invar:
assumes "queue_invar q"
shows "queue_invar (insert e a q)" using assms
apply(induct q rule: insert.induct)
apply simp
apply simp
proof -
case goal1 thus ?case
apply(cases "rank t = rank t'") defer
apply simp
proof -
case goal1
from goal1(1) have inv_t: "tree_invar t" by simp
from goal1(1) have inv_t': "tree_invar t'" by simp
from skewlink_tree_invar[OF inv_t inv_t' goal1(2), of e a] goal1(1)
show ?case by simp
qed
qed

lemma rank_ins2:
"rank_invar bq ==>
rank t ≤ rank (hd (ins t bq))
∨ (rank (hd (ins t bq)) = rank (hd bq) ∧ bq ≠ [])"

apply(induct bq arbitrary: t)
apply(auto)
proof -
case goal1
hence r: "rank (link t a) = rank a + 1" by (simp add: rank_link)

from goal1 r and goal1(1)[of "(link t a)"] show ?case
apply(cases bq)
apply(auto)
done
qed

lemma insert_rank_invar: "rank_skew_invar q ==> rank_skew_invar (insert e a q)"
proof (cases q, simp)
fix t q'
assume "rank_skew_invar q" "q = t # q'"
thus "rank_skew_invar (insert e a q)"
proof (cases "q'", (auto intro: gr0I)[1])
fix t' q''
assume "rank_skew_invar q" "q = t # q'" "q' = t' # q''"
thus "rank_skew_invar (insert e a q)"
apply(cases "rank t = rank t'") defer
apply (auto intro: gr0I)[1]
proof (simp del: skewlink.simps)
case goal1
from rank_invar_cons_down[of "t'" "q'"] goal1 have "rank_invar q'" by simp
with goal1 show ?case
proof (cases "q''", simp)
fix t'' q'''
assume ass: "rank_invar (t' # q'')" "q = t # t' # q''" "q' = t' # q''"
"rank t = rank t'" "rank_invar q'" "q'' = t'' # q'''"
hence "rank t' < rank t''" by simp
with ass have "rank (skewlink e a t t') ≤ rank t''" by simp
with ass rank_skew_cons_up[of "t''" "q'''" "skewlink e a t t'"]
show ?case by simp
qed
qed
qed
qed

lemma insert_invar: "invar q ==> invar (insert e a q)"
unfolding invar_def
using insert_queue_invar[of q] insert_rank_invar[of q]
by simp

theorem insert_correct:
assumes I: "invar q"
shows
"invar (insert e a q)"
"queue_to_multiset (insert e a q) = queue_to_multiset q + {# (e,a) #}"
using insert_mset[of q] insert_invar[of q] I
unfolding invar_def by simp_all

subsubsection "meld"
text {* Remove duplicate tree ranks by inserting the first tree of the
queue into the rest of the queue. *}

fun uniqify
:: "('e, 'a::linorder) SkewBinomialQueue => ('e, 'a) SkewBinomialQueue"
where
"uniqify [] = []" |
"uniqify (t#bq) = ins t bq"

text {* Meld two uniquified queues using the same definition as for
binomial queues. *}

fun meldUniq
:: "('e, 'a::linorder) SkewBinomialQueue => ('e,'a) SkewBinomialQueue =>
('e, 'a) SkewBinomialQueue"
where
"meldUniq [] bq = bq" |
"meldUniq bq [] = bq" |
"meldUniq (t1#bq1) (t2#bq2) = (if rank t1 < rank t2
then t1 # (meldUniq bq1 (t2#bq2))
else (if rank t2 < rank t1
then t2 # (meldUniq (t1#bq1) bq2)
else ins (link t1 t2) (meldUniq bq1 bq2)))"


text {* Meld two queues using above functions. *}
definition meld
:: "('e, 'a::linorder) SkewBinomialQueue => ('e, 'a) SkewBinomialQueue =>
('e, 'a) SkewBinomialQueue"
where
"meld bq1 bq2 = meldUniq (uniqify bq1) (uniqify bq2)"

lemma invar_uniqify: "queue_invar q ==> queue_invar (uniqify q)"
apply(cases q, simp)
apply(auto simp add: ins_queue_invar)
done

lemma invar_meldUniq:
"[|queue_invar q; queue_invar q'|] ==> queue_invar (meldUniq q q')"
proof (induct q q' rule: meldUniq.induct, simp, simp)
case goal1 thus ?case
proof (cases "rank t1 < rank t2")
case goal1
from goal1(4) have inv_bq1: "queue_invar bq1" by simp
from goal1(4) have inv_t1: "tree_invar t1" by simp
from goal1(1)[OF goal1(6) inv_bq1 goal1(5)] inv_t1 goal1(6)
show ?case by simp
next
case goal2 thus ?case
proof(cases "rank t2 < rank t1")
case goal1
from goal1(5) have inv_bq2: "queue_invar bq2" by simp
from goal1(5) have inv_t2: "tree_invar t2" by simp
from goal1(2)[OF goal1(6) goal1(7) goal1(4) inv_bq2] inv_t2 goal1(6,7)
show ?case by simp
next
case goal2
from goal2(6,7) have eq: "rank t1 = rank t2" by simp
from goal2(4) have inv_bq1: "queue_invar bq1" by simp
from goal2(4) have inv_t1: "tree_invar t1" by simp
from goal2(5) have inv_bq2: "queue_invar bq2" by simp
from goal2(5) have inv_t2: "tree_invar t2" by simp
note inv_link = link_tree_invar[OF inv_t1 inv_t2 eq]
note inv_meld = goal2(3)[OF goal2(6,7) inv_bq1 inv_bq2]
from ins_queue_invar[OF inv_link inv_meld] goal2(6,7)
show ?case by simp
qed
qed
qed


lemma meld_queue_invar:
"[|queue_invar q; queue_invar q'|] ==> queue_invar (meld q q')"
proof -
case goal1
note inv_uniq_q = invar_uniqify[OF goal1(1)]
note inv_uniq_q' = invar_uniqify[OF goal1(2)]
note inv_meldUniq = invar_meldUniq[OF inv_uniq_q inv_uniq_q']
thus ?case by (simp add: meld_def)
qed

lemma uniqify_mset: "queue_invar q ==>
queue_to_multiset q = queue_to_multiset (uniqify q)"

apply (cases q)
apply simp
apply (simp add: ins_mset)
done

lemma meldUniq_mset: "[|queue_invar q; queue_invar q'|] ==>
queue_to_multiset (meldUniq q q') =
queue_to_multiset q + queue_to_multiset q'"

proof (induct q q' rule: meldUniq.induct, simp, simp)
case goal1 thus ?case
proof (cases "rank t1 < rank t2")
case goal1
from goal1(4) have inv_bq1: "queue_invar bq1" by simp
from goal1(1)[OF goal1(6) inv_bq1 goal1(5)] goal1(6)
show ?case by (simp add: union_ac)
next
case goal2 thus ?case
proof (cases "rank t2 < rank t1")
case goal1
from goal1(5) have inv_bq2: "queue_invar bq2" by simp
from goal1(2)[OF goal1(6,7) goal1(4) inv_bq2] goal1(6,7)
show ?case by (simp add: union_ac)
next
case goal2
from goal2(6,7) have eq: "rank t1 = rank t2" by simp
from goal2(4) have inv_bq1: "queue_invar bq1" by simp
from goal2(4) have inv_t1: "tree_invar t1" by simp
from goal2(5) have inv_bq2: "queue_invar bq2" by simp
from goal2(5) have inv_t2: "tree_invar t2" by simp
note inv_link = link_tree_invar[OF inv_t1 inv_t2 eq]
note inv_meldUniq = invar_meldUniq[OF inv_bq1 inv_bq2]
note mset_meldUniq = goal2(3)[OF goal2(6,7) inv_bq1 inv_bq2]
note mset_link = link_mset[of t1 t2]
from ins_mset[OF inv_link inv_meldUniq] mset_meldUniq mset_link goal2(6,7)
show ?case by (simp add: union_ac)
qed
qed
qed

lemma meld_mset: "[|queue_invar q; queue_invar q'|] ==>
queue_to_multiset (meld q q') =
queue_to_multiset q + queue_to_multiset q'"

proof -
case goal1
note inv_uniq_q = invar_uniqify[OF goal1(1)]
note inv_uniq_q' = invar_uniqify[OF goal1(2)]
note mset_uniq_q = uniqify_mset[OF goal1(1)]
note mset_uniq_q' = uniqify_mset[OF goal1(2)]
note meldUniq_mset[OF inv_uniq_q inv_uniq_q']
with mset_uniq_q mset_uniq_q' show ?case by (simp add: meld_def)
qed

(* Ins operation satisfies rank invariant, see binomial queues*)
lemma rank_ins: "rank_invar bq ==> rank_invar (ins t bq)"
apply(induct bq arbitrary: t)
apply(simp)
apply(auto)
proof -
case goal1
hence inv: "rank_invar (ins t bq)" by (cases bq, simp_all)
from goal1 have hd: "bq ≠ [] ==> rank a < rank (hd bq)" by (cases bq, auto)
from goal1 have "rank t ≤ rank (hd (ins t bq))
∨ (rank (hd (ins t bq)) = rank (hd bq) ∧ bq ≠ [])"

by (metis rank_ins2 rank_invar_cons_down)
with goal1 have "rank a < rank (hd (ins t bq))
∨ (rank (hd (ins t bq)) = rank (hd bq) ∧ bq ≠ [])"
by auto
with goal1 and inv and hd show ?case
apply(auto simp add: rank_invar_hd_cons)
done
next
case goal2
hence inv: "rank_invar bq" by (cases bq, simp_all)
with goal2 and goal2(1)[of "(link t a)"] show ?case by simp
qed

lemma rank_uniqify: "rank_skew_invar q ==> rank_invar (uniqify q)"
apply (cases q) apply simp
proof -
case goal1
with rank_skew_rank_invar[of "a" "list"] rank_ins[of "list" "a"]
show ?case by simp
qed

lemma rank_ins_min:
"rank_invar bq ==> rank (hd (ins t bq)) ≥ min (rank t) (rank (hd bq))"
apply(induct bq arbitrary: t)
apply(auto)
proof -
case goal1
hence inv: "rank_invar bq" by (cases bq, simp_all)
from goal1 have r: "rank (link t a) = rank a + 1" by (simp add: rank_link)
with goal1 and inv and goal1(1)[of "(link t a)"] show ?case
apply(cases bq)
apply(auto)
done
qed

lemma rank_invar_not_empty_hd:
"[|rank_invar (t # bq); bq ≠ []|] ==> rank t < rank (hd bq)"
apply(induct bq arbitrary: t)
apply(auto)
done

lemma rank_invar_meldUniq_strong:
"[|rank_invar bq1; rank_invar bq2|] ==>
rank_invar (meldUniq bq1 bq2)
∧ rank (hd (meldUniq bq1 bq2)) ≥ min (rank (hd bq1)) (rank (hd bq2))"

apply(induct bq1 bq2 rule: meldUniq.induct)
apply(simp, simp)
proof -
case goal1
from goal1 have inv1: "rank_invar bq1" by (cases bq1, simp_all)
from goal1 have inv2: "rank_invar bq2" by (cases bq2, simp_all)

from inv1 and inv2 and goal1 show ?case
apply(auto)
proof -
let ?t = "t2"
let ?bq = "bq2"
let ?meldUniq = "rank t2 < rank (hd (meldUniq (t1 # bq1) bq2))"
case goal1
hence "?bq ≠ [] ==> rank ?t < rank (hd ?bq)"
by (simp add: rank_invar_not_empty_hd)
with goal1 have ne: "?bq ≠ [] ==> ?meldUniq" by simp
from goal1 have "?bq = [] ==> ?meldUniq" by simp
with ne have "?meldUniq" by (cases "?bq = []")
with goal1 show ?case by (simp add: rank_invar_hd_cons)
next -- analog
let ?t = "t1"
let ?bq = "bq1"
let ?meldUniq = "rank t1 < rank (hd (meldUniq bq1 (t2 # bq2)))"
case goal2
hence "?bq ≠ [] ==> rank ?t < rank (hd ?bq)"
by (simp add: rank_invar_not_empty_hd)
with goal2 have ne: "?bq ≠ [] ==> ?meldUniq" by simp
from goal2 have "?bq = [] ==> ?meldUniq" by simp
with ne have "?meldUniq" by (cases "?bq = []")
with goal2 show ?case by (simp add: rank_invar_hd_cons)
next
case goal3
thus ?case by (simp add: rank_ins)
next
case goal4 (* Ab hier wirds hässlich *)
from goal4 have r: "rank (link t1 t2) = rank t2 + 1" by (simp add: rank_link)
have m: "meldUniq bq1 [] = bq1" by (cases bq1, auto)

from inv1 and inv2 and goal4 have
mm: "min (rank (hd bq1)) (rank (hd bq2)) ≤ rank (hd (meldUniq bq1 bq2))"
by simp
from `rank_invar (t1 # bq1)` have "bq1 ≠ [] ==> rank t1 < rank (hd bq1)"
by (simp add: rank_invar_not_empty_hd)
with goal4 have r1: "bq1 ≠ [] ==> rank t2 < rank (hd bq1)" by simp
from `rank_invar (t2 # bq2)` have r2: "bq2 ≠ [] ==> rank t2 < rank (hd bq2)"
by (simp add: rank_invar_not_empty_hd)

from inv1 r r1 rank_ins_min[of bq1 "(link t1 t2)"] have
abc1: "bq1 ≠ [] ==> rank t2 ≤ rank (hd (ins (link t1 t2) bq1))" by simp
from inv2 r r2 rank_ins_min[of bq2 "(link t1 t2)"] have
abc2: "bq2 ≠ [] ==> rank t2 ≤ rank (hd (ins (link t1 t2) bq2))" by simp

from r1 r2 mm have
"[|bq1 ≠ []; bq2 ≠ []|] ==> rank t2 < rank (hd (meldUniq bq1 bq2))"
by (simp)
with `rank_invar (meldUniq bq1 bq2)` r
rank_ins_min[of "meldUniq bq1 bq2" "link t1 t2"]
have "[|bq1 ≠ []; bq2 ≠ []|] ==>
rank t2 < rank (hd (ins (link t1 t2) (meldUniq bq1 bq2)))"

by simp
with inv1 and inv2 and r m r1 show ?case
apply(cases "bq2 = []")
apply(cases "bq1 = []")
apply(simp)
apply(auto simp add: abc1)
apply(cases "bq1 = []")
apply(simp)
apply(auto simp add: abc2)
done
qed
qed

lemma rank_meldUniq:
"[|rank_invar bq1; rank_invar bq2|] ==> rank_invar (meldUniq bq1 bq2)"
by (simp only: rank_invar_meldUniq_strong)


lemma rank_meld:
"[|rank_skew_invar q1; rank_skew_invar q2|] ==> rank_skew_invar (meld q1 q2)"
by (simp only: meld_def rank_meldUniq rank_uniqify rank_invar_rank_skew)

theorem meld_invar:
"[|invar bq1; invar bq2|]
==> invar (meld bq1 bq2)"

by (metis meld_queue_invar rank_meld invar_def)


theorem meld_correct:
assumes I: "invar q" "invar q'"
shows
"invar (meld q q')"
"queue_to_multiset (meld q q') = queue_to_multiset q + queue_to_multiset q'"
using meld_invar[of q q'] meld_mset[of q q'] I
unfolding invar_def by simp_all


subsubsection "Find Minimal Element"
text {* Find the tree containing the minimal element. *}
fun getMinTree :: "('e, 'a::linorder) SkewBinomialQueue =>
('e, 'a) SkewBinomialTree"
where
"getMinTree [t] = t" |
"getMinTree (t#bq) =
(if prio t ≤ prio (getMinTree bq)
then t
else (getMinTree bq))"


text {* Find the minimal Element in the queue. *}
definition findMin :: "('e, 'a::linorder) SkewBinomialQueue => ('e × 'a)" where
"findMin bq = (let min = getMinTree bq in (val min, prio min))"

lemma mintree_exists: "(bq ≠ []) = (getMinTree bq ∈ set bq)"
proof (induct bq, simp)
case goal1 thus ?case by (cases bq, simp_all)
qed

lemma treehead_in_multiset:
"t ∈ set bq ==> (val t, prio t) ∈# (queue_to_multiset bq)"
by (induct bq, simp, cases t, auto)

lemma heap_ordered_single:
"heap_ordered t = (∀x ∈ set_of (tree_to_multiset t). prio t ≤ snd x)"
by (cases t) auto

lemma getMinTree_cons:
"prio (getMinTree (y # x # xs)) ≤ prio (getMinTree (x # xs))"
by (induct xs rule: getMinTree.induct) simp_all

lemma getMinTree_min_tree:
"t ∈ set bq ==> prio (getMinTree bq) ≤ prio t"
apply(induct bq arbitrary: t rule: getMinTree.induct)
apply simp
defer
apply simp
proof -
case goal1 thus ?case
apply (cases "ta = t")
apply auto[1]
apply (metis getMinTree_cons goal1(1) goal1(3) set_ConsD xt1(6))
done
qed

lemma getMinTree_min_prio:
"[|queue_invar bq; y ∈ set_of (queue_to_multiset bq)|]
==> prio (getMinTree bq) ≤ snd y"

proof -
case goal1
hence "bq ≠ []" by (cases bq) simp_all
with goal1 have "∃ t ∈ set bq. (y ∈ set_of (tree_to_multiset t))"
apply(induct bq)
apply simp
proof -
case goal1 thus ?case
apply(cases "y ∈ set_of (tree_to_multiset a)")
apply simp
apply(cases bq)
apply simp_all
done
qed
from this obtain t where O:
"t ∈ set bq"
"y ∈ set_of ((tree_to_multiset t))" by blast
obtain e a r ts where [simp]: "t = (Node e a r ts)" by (cases t) blast
from O goal1(1) have inv: "tree_invar t" by simp
from tree_invar_heap_ordered[OF inv] heap_ordered.simps[of e a r ts] O
have "prio t ≤ snd y" by auto
with getMinTree_min_tree[OF O(1)] show ?case by simp
qed

lemma findMin_mset:
assumes I: "queue_invar q"
assumes NE: "q≠Nil"
shows "findMin q ∈# queue_to_multiset q"
"∀y∈set_of (queue_to_multiset q). snd (findMin q) ≤ snd y"
proof -
from NE have "getMinTree q ∈ set q" by (simp only: mintree_exists)
thus "findMin q ∈# queue_to_multiset q"
by (simp add: treehead_in_multiset findMin_def Let_def)
show "∀y∈set_of (queue_to_multiset q). snd (findMin q) ≤ snd y"
by (simp add: getMinTree_min_prio findMin_def Let_def NE I)
qed

theorem findMin_correct:
assumes I: "invar q"
assumes NE: "q≠Nil"
shows "findMin q ∈# queue_to_multiset q"
"∀y∈set_of (queue_to_multiset q). snd (findMin q) ≤ snd y"
using I NE findMin_mset
unfolding invar_def by auto

subsubsection "Delete Minimal Element"

text {* Insert the roots of a given queue into an other queue. *}
fun insertList ::
"('e, 'a::linorder) SkewBinomialQueue => ('e, 'a) SkewBinomialQueue =>
('e, 'a) SkewBinomialQueue"
where
"insertList [] tbq = tbq" |
"insertList (t#bq) tbq = insertList bq (insert (val t) (prio t) tbq)"

text {* Remove the first tree, which has the priority $a$ within his root. *}
fun remove1Prio :: "'a => ('e, 'a::linorder) SkewBinomialQueue =>
('e, 'a) SkewBinomialQueue"
where
"remove1Prio a [] = []" |
"remove1Prio a (t#bq) =
(if (prio t) = a then bq else t # (remove1Prio a bq))"


lemma remove1Prio_remove1[simp]:
"remove1Prio (prio (getMinTree bq)) bq = remove1 (getMinTree bq) bq"
proof (induct bq)
case Nil thus ?case by simp
next
case (Cons t bq)
note iv = Cons
thus ?case
proof (cases "t = getMinTree (t # bq)")
case True
with iv show ?thesis by simp
next
case False
hence ne: "bq ≠ []" by auto
with False have down: "getMinTree (t # bq) = getMinTree bq"
by (induct bq rule: getMinTree.induct) auto
from ne False have "prio t ≠ prio (getMinTree bq)"
by (induct bq rule: getMinTree.induct) auto
with down iv False ne show ?thesis by simp
qed
qed

text {* Return the queue without the minimal element found by findMin *}
definition deleteMin :: "('e, 'a::linorder) SkewBinomialQueue =>
('e, 'a) SkewBinomialQueue"
where
"deleteMin bq = (let min = getMinTree bq in insertList
(filter (λ t. rank t = 0) (children min))
(meld (rev (filter (λ t. rank t > 0) (children min)))
(remove1Prio (prio min) bq)))"


lemma invar_rev[simp]: "queue_invar (rev q) <-> queue_invar q"
by (unfold queue_invar_def) simp

lemma invar_remove1: "queue_invar q ==> queue_invar (remove1 t q)"
by (unfold queue_invar_def) (auto)

lemma mset_rev:
"queue_to_multiset (rev q) = queue_to_multiset q"
by (induct q, auto simp add: union_ac)

lemma in_set_subset: "t ∈ set q ==>
tree_to_multiset t ≤ queue_to_multiset q"

proof(induct q, simp)
case goal1 thus ?case
proof(cases "t = a", simp)
case goal1
hence t_in_q: "t ∈ set q" by simp
have "queue_to_multiset q ≤ queue_to_multiset (a # q)"
by simp
from order_trans[OF goal1(1)[OF t_in_q] this] show ?case .
qed
qed

lemma mset_remove1: "t ∈ set q ==>
queue_to_multiset (remove1 t q) =
queue_to_multiset q - tree_to_multiset t"

proof (induct q, simp)
case goal1 thus ?case
proof (cases "t = a", simp add: union_ac)
case goal1
from goal1(2,3) have t_in_q: "t ∈ set q" by simp
note iv = goal1(1)[OF t_in_q]
note t_subset_q = in_set_subset[OF t_in_q]
note assoc =
multiset_diff_union_assoc[OF t_subset_q, of "tree_to_multiset a"]
from iv goal1(3) assoc show ?case by (simp add: union_ac)
qed
qed

lemma invar_children': "tree_invar t ==> queue_invar (children t)"
proof(cases t)
case goal1
hence inv: "tree_invar (Node e a nat list)" by simp
from goal1 invar_children[OF inv] show ?case by simp
qed

lemma invar_filter: "queue_invar q ==> queue_invar (filter f q)"
by (unfold queue_invar_def) simp

lemma insertList_queue_invar:
"queue_invar q ==> queue_invar (insertList ts q)"
apply(induct ts arbitrary: q, simp)
proof -
case goal1
note inv_insert = insert_queue_invar[OF goal1(2), of "val a" "prio a"]
from goal1(1)[OF inv_insert] show ?case by simp
qed

lemma deleteMin_queue_invar:
"[|queue_invar q; queue_to_multiset q ≠ {#}|] ==>
queue_invar (deleteMin q)"

apply(unfold deleteMin_def)
apply(unfold Let_def)
proof -
case goal1
from goal1(2) have q_ne: "q ≠ []" by auto
with goal1(1) mintree_exists[of q]
have inv_min: "tree_invar (getMinTree q)" by simp
note inv_rem = invar_remove1[OF goal1(1), of "getMinTree q"]
note inv_children = invar_children'[OF inv_min]
note inv_filter = invar_filter[OF inv_children, of "λt. 0 < rank t"]
note inv_rev = iffD2[OF invar_rev inv_filter]
note inv_meld = meld_queue_invar[OF inv_rev inv_rem]
note inv_ins =
insertList_queue_invar[OF inv_meld,
of "[t\<leftarrow>children (getMinTree q). rank t = 0]"]
thus ?case by simp
qed

lemma mset_children: "queue_to_multiset (children t) =
tree_to_multiset t - {# (val t, prio t) #}"

by(cases t, auto simp add: diff_cancel)

lemma mset_insertList:
"[|∀t ∈ set ts. rank t = 0 ∧ children t = [] ; queue_invar q|] ==>
queue_to_multiset (insertList ts q) =
queue_to_multiset ts + queue_to_multiset q"

apply(induct ts arbitrary: q)
apply(simp)
proof -
case goal1
from goal1(2) have ball_ts: "∀t∈set ts. rank t = 0 ∧ children t = []" by simp
note inv_insert = insert_queue_invar[OF goal1(3), of "val a" "prio a"]
note iv = goal1(1)[OF ball_ts inv_insert]
from goal1(2)
have mset_a: "tree_to_multiset a = {# (val a, prio a)#}"
by (cases a) simp
note insert_mset[OF goal1(3), of "val a" "prio a"]
with mset_a iv show ?case by (simp add: union_ac)
qed

lemma mset_filter: "(queue_to_multiset [t\<leftarrow>q . rank t = 0]) +
queue_to_multiset [t\<leftarrow>q . 0 < rank t] =
queue_to_multiset q"

by (induct q) (auto simp add: union_ac)

lemma deleteMin_mset: "[|queue_invar q; queue_to_multiset q ≠ {#}|] ==>
queue_to_multiset (deleteMin q) =
queue_to_multiset q - {# (findMin q) #}"

proof -
case goal1
from goal1(2) have q_ne: "q ≠ []" by auto
with mintree_exists[of q]
have min_in_q: "getMinTree q ∈ set q" by simp
with goal1(1) have inv_min: "tree_invar (getMinTree q)" by simp
note inv_rem = invar_remove1[OF goal1(1), of "getMinTree q"]
note inv_children = invar_children'[OF inv_min]
note inv_filter = invar_filter[OF inv_children, of "λt. 0 < rank t"]
note inv_rev = iffD2[OF invar_rev inv_filter]
note inv_meld = meld_queue_invar[OF inv_rev inv_rem]
note mset_rem = mset_remove1[OF min_in_q]
note mset_rev = mset_rev[of "[t\<leftarrow>children (getMinTree q). 0 < rank t]"]
note mset_meld = meld_mset[OF inv_rev inv_rem]
note mset_children = mset_children[of "getMinTree q"]
thm mset_insertList[of "[t\<leftarrow>children (getMinTree q) .
rank t = 0]"
]
have "!!t. [|tree_invar t; rank t = 0|] ==> children t = []"
proof -
case goal1 thus ?case by (cases t) simp
qed
with inv_children
have ball_min: "∀t∈set [t\<leftarrow>children (getMinTree q). rank t = 0].
rank t = 0 ∧ children t = []"
by (unfold queue_invar_def) auto
note mset_insertList = mset_insertList[OF ball_min inv_meld]
note mset_filter = mset_filter[of "children (getMinTree q)"]
let ?Q = "queue_to_multiset q"
let ?MT = "tree_to_multiset (getMinTree q)"
from q_ne have head_subset_min:
"{# (val (getMinTree q), prio (getMinTree q)) #} ≤ ?MT"
by(cases "getMinTree q") simp
note min_subset_q = in_set_subset[OF min_in_q]
from mset_insertList mset_meld mset_rev mset_rem mset_filter mset_children
multiset_diff_union_assoc[OF head_subset_min, of "?Q - ?MT"]
mset_le_multiset_union_diff_commute[OF min_subset_q, of "?MT"]
show ?case
by (auto simp add: deleteMin_def Let_def union_ac findMin_def)
qed

lemma rank_insertList: "rank_skew_invar q ==> rank_skew_invar (insertList ts q)"
by (induct ts arbitrary: q) (simp_all add: insert_rank_invar)

lemma insertList_invar: "invar q ==> invar (insertList ts q)"
apply (induct ts arbitrary: q)
apply simp
apply(unfold insertList.simps)
proof -
case goal1
from goal1(2) insert_rank_invar[of "q" "val a" "prio a"] have
a1: "rank_skew_invar (insert (val a) (prio a) q)"
by (simp add: invar_def)
from goal1(2) insert_queue_invar[of "q" "val a" "prio a"] have
a2: "queue_invar (insert (val a) (prio a) q)" by (simp add: invar_def)
from a1 a2 have
"invar (insert (val a) (prio a) q)" by (simp add: invar_def)
with goal1(1)[of "(insert (val a) (prio a) q)"] show ?case .
qed

lemma children_rank_less:
"tree_invar t ==> ∀t' ∈ set (children t). rank t' < rank t"
proof (cases t)
case goal1 thus ?case
proof (induct nat arbitrary: t e a list, simp)
case goal1
from goal1 obtain e1 a1 ts1 e2 a2 ts2 e' a' where
O: "tree_invar (Node e1 a1 nat ts1)" "tree_invar (Node e2 a2 nat ts2)"
"t = link (Node e1 a1 nat ts1) (Node e2 a2 nat ts2)
∨ t = skewlink e' a' (Node e1 a1 nat ts1) (Node e2 a2 nat ts2)"

by (simp only: tree_invar.simps) blast
hence ch_id:
"children t = (if a1 ≤ a2 then (Node e2 a2 nat ts2)#ts1
else (Node e1 a1 nat ts1)#ts2) ∨
children t =
(if a' ≤ a1 ∧ a' ≤ a2 then [(Node e1 a1 nat ts1), (Node e2 a2 nat ts2)]
else (if a1 ≤ a2 then (Node e' a' 0 []) # (Node e2 a2 nat ts2) # ts1
else (Node e' a' 0 []) # (Node e1 a1 nat ts1) # ts2))"

by auto
from O goal1(1)[of "Node e1 a1 nat ts1" "e1" "a1" "ts1"]
have p1: "∀t'∈set ((Node e2 a2 nat ts2) # ts1). rank t' < Suc nat" by auto
from O goal1(1)[of "Node e2 a2 nat ts2" "e2" "a2" "ts2"]
have p2: "∀t'∈set ((Node e1 a1 nat ts1) # ts2). rank t' < Suc nat" by auto
from O have
p3: "∀t' ∈ set [(Node e1 a1 nat ts1), (Node e2 a2 nat ts2)].
rank t' < Suc nat"
by simp
from O goal1(1)[of "Node e1 a1 nat ts1" "e1" "a1" "ts1"]
have
p4: "∀t' ∈ set ((Node e' a' 0 []) # (Node e2 a2 nat ts2) # ts1).
rank t' < Suc nat"
by auto
from O goal1(1)[of "Node e2 a2 nat ts2" "e2" "a2" "ts2"]
have p5:
"∀t' ∈ set ((Node e' a' 0 []) # (Node e1 a1 nat ts1) # ts2).
rank t' < Suc nat"
by auto
from goal1(3) p1 p2 p3 p4 p5 ch_id show ?case
by(cases "children t = (if a1 ≤ a2 then Node e2 a2 nat ts2 # ts1
else Node e1 a1 nat ts1 # ts2)"
) simp_all
qed
qed

lemma strong_rev_children:
"tree_invar t ==> invar (rev [t \<leftarrow> children t. 0 < rank t])"
proof (cases t)
case goal1 thus ?case
proof (induct "nat" arbitrary: t e a list, simp add: invar_def)
case goal1 thus ?case
proof (cases "nat")
case goal1
from goal1 obtain e1 a1 e2 a2 e' a' where
O: "tree_invar (Node e1 a1 0 [])" "tree_invar (Node e2 a2 0 [])"
"t = link (Node e1 a1 0 []) (Node e2 a2 0 [])
∨ t = skewlink e' a' (Node e1 a1 0 []) (Node e2 a2 0 [])"

by (simp only: tree_invar.simps) blast
hence "[t \<leftarrow> children t. 0 < rank t] = []" by auto
thus ?case by (simp add: invar_def)
next
fix n
assume ass: "!!t e a list. [|tree_invar t; t = Node e a nat list|]
==> invar (rev [t\<leftarrow>children t . 0 < rank t])"

"tree_invar t" "t = Node e a (Suc nat) list" "nat = Suc n"
from goal1 obtain e1 a1 ts1 e2 a2 ts2 e' a' where
O: "tree_invar (Node e1 a1 nat ts1)" "tree_invar (Node e2 a2 nat ts2)"
"t = link (Node e1 a1 nat ts1) (Node e2 a2 nat ts2)
∨ t = skewlink e' a' (Node e1 a1 nat ts1) (Node e2 a2 nat ts2)"

by (simp only: tree_invar.simps) blast
hence ch_id:
"children t = (if a1 ≤ a2 then
(Node e2 a2 nat ts2)#ts1
else (Node e1 a1 nat ts1)#ts2)

children t = (if a' ≤ a1 ∧ a' ≤ a2 then
[(Node e1 a1 nat ts1), (Node e2 a2 nat ts2)]
else (if a1 ≤ a2 then
(Node e' a' 0 []) # (Node e2 a2 nat ts2) # ts1
else (Node e' a' 0 []) # (Node e1 a1 nat ts1) # ts2))"

by auto
from O goal1(1)[of "Node e1 a1 nat ts1" "e1" "a1" "ts1"] have
rev_ts1: "invar (rev [t \<leftarrow> ts1. 0 < rank t])" by simp
from O children_rank_less[of "Node e1 a1 nat ts1"] have
"∀t∈set (rev [t \<leftarrow> ts1. 0 < rank t]). rank t < rank (Node e2 a2 nat ts2)"
by simp
with O rev_ts1
invar_app_single[of "rev [t \<leftarrow> ts1. 0 < rank t]"
"Node e2 a2 nat ts2"]
have
"invar (rev ((Node e2 a2 nat ts2) # [t \<leftarrow> ts1. 0 < rank t]))"
by simp
with ass(4) have
p1: "invar (rev [t \<leftarrow> ((Node e2 a2 nat ts2) # ts1). 0 < rank t])" by simp
from O goal1(1)[of "Node e2 a2 nat ts2" "e2" "a2" "ts2"] have
rev_ts2: "invar (rev [t \<leftarrow> ts2. 0 < rank t])" by simp
from O children_rank_less[of "Node e2 a2 nat ts2"] have
"∀t∈set (rev [t \<leftarrow> ts2. 0 < rank t]).
rank t < rank (Node e1 a1 nat ts1)"
by simp
with O rev_ts2 invar_app_single[of "rev [t \<leftarrow> ts2. 0 < rank t]"
"Node e1 a1 nat ts1"]
have "invar (rev [t \<leftarrow> ts2. 0 < rank t] @ [Node e1 a1 nat ts1])"
by simp
with ass(4) have p2:
"invar (rev [t \<leftarrow> ((Node e1 a1 nat ts1) # ts2). 0 < rank t])"
by simp
from O(1-2) have
p3: "invar (rev (filter (λ t. 0 < rank t)
[(Node e1 a1 nat ts1), (Node e2 a2 nat ts2)]))"

by (simp add: invar_def)
from p1 have
p4: "invar (rev
[t \<leftarrow> ((Node e' a' 0 []) # (Node e2 a2 nat ts2) # ts1). 0 < rank t])"

by simp
from p2 have
p5: "invar (rev
[t \<leftarrow> ((Node e' a' 0 []) # (Node e1 a1 nat ts1) # ts2). 0 < rank t])"

by simp
from p1 p2 p3 p4 p5 ch_id show
"invar (rev [t\<leftarrow>children t . 0 < rank t])"
by(cases "children t = (if a1 ≤ a2 then (Node e2 a2 nat ts2)#ts1
else (Node e1 a1 nat ts1)#ts2)"
, metis+)
qed
qed
qed

lemma first_less: "rank_invar (t # bq) ==> ∀t' ∈ set bq. rank t < rank t'"
apply(induct bq arbitrary: t)
apply (simp)
apply (metis List.set.simps(2) insert_iff not_leE
not_less_iff_gr_or_eq order_less_le_trans rank_invar.simps(3)
rank_invar_cons_down)
done

lemma first_less_eq:
"rank_skew_invar (t # bq) ==> ∀t' ∈ set bq. rank t ≤ rank t'"
apply(induct bq arbitrary: t)
apply (simp)
apply (metis List.set.simps(2) insert_iff le_trans
rank_invar_rank_skew rank_skew_invar.simps(3) rank_skew_rank_invar)
done

lemma remove1_tail_invar: "tail_invar bq ==> tail_invar (remove1 t bq)"
proof (induct bq arbitrary: t, simp)
case goal1
thus ?case
apply(cases "t=a")
proof -
case goal1
from goal1(2) have "tail_invar bq" by (rule tail_invar_cons_down)
with goal1(3) show ?case by simp
next
case goal2
from goal2(2) have "tail_invar bq" by (rule tail_invar_cons_down)
with goal2(1)[of "t"] have si1: "tail_invar (remove1 t bq)" .
from goal2(3) have
"tail_invar (remove1 t (a # bq)) = tail_invar (a # (remove1 t bq))"
by simp
with si1 goal2(2) show ?case
proof (cases "remove1 t bq", simp add: tail_invar_def)
fix aa list
assume ass: "tail_invar (remove1 t bq)" "tail_invar (a # bq)"
"tail_invar (remove1 t (a # bq)) = tail_invar (a # remove1 t bq)"
"remove1 t bq = aa # list"
from ass(2) have "tree_invar a" by (simp add: tail_invar_def)
from ass(2) first_less[of "a" "bq"] have
"∀t ∈ set (remove1 t bq). rank a < rank t"
by (metis notin_set_remove1 tail_invar_def)
with ass(4) have "rank a < rank aa" by simp
with ass tail_invar_cons_up[of "aa" "list" "a"] show ?case
by (simp add: tail_invar_def)
qed
qed
qed

lemma invar_cons_down: "invar (t # bq) ==> invar bq"
by (metis rank_invar_rank_skew tail_invar_def
invar_def invar_tail_invar)

lemma remove1_invar:
"invar bq ==> invar (remove1 t bq)"
proof (induct bq arbitrary: t, simp)
case goal1
thus ?case
apply(cases "t=a")
proof -
case goal1
from goal1(2) have "invar bq" by (rule invar_cons_down)
with goal1(3) show ?case by simp
next
case goal2
from goal2(2) have "invar bq" by (rule invar_cons_down)
with goal2(1)[of "t"] have si1: "invar (remove1 t bq)" .
from goal2(3) have "invar (remove1 t (a # bq)) = invar (a # (remove1 t bq))"
by simp
with si1 goal2(2) show ?case
proof (cases "remove1 t bq", (simp add: invar_def))
fix aa list
assume ass: "invar (remove1 t bq)" "invar (a # bq)"
"invar (remove1 t (a # bq)) = invar (a # remove1 t bq)"
"remove1 t bq = aa # list"
from ass(2) have ti: "tree_invar a" by (simp add: invar_def)
from ass(2) have sbq: "tail_invar bq" by (metis invar_tail_invar)
hence srm: "tail_invar (remove1 t bq)" by (metis remove1_tail_invar)
from ass(2) first_less_eq[of "a" "bq"] have
"∀t ∈ set (remove1 t bq). rank a ≤ rank t"
by (metis notin_set_remove1 invar_def)
with ass(4) have "rank a ≤ rank aa" by simp
with ti ass srm tail_invar_cons_up_invar[of "aa" "list" "a"]
show ?case by simp
qed
qed
qed

lemma deleteMin_invar: "[|invar bq; bq ≠ []|] ==> invar (deleteMin bq)"
proof -
case goal1
have eq: "invar (deleteMin bq) =
invar (insertList
(filter (λ t. rank t = 0) (children (getMinTree bq)))
(meld (rev (filter (λ t. rank t > 0) (children (getMinTree bq))))
(remove1 (getMinTree bq) bq)))"

by (simp add: deleteMin_def Let_def)
from goal1 mintree_exists[of "bq"] have ti: "tree_invar (getMinTree bq)"
by (simp add: invar_def queue_invar_def del: queue_invar_simps)
with strong_rev_children[of "getMinTree bq"] have
m1: "invar (rev [t \<leftarrow> children (getMinTree bq). 0 < rank t])" .
from remove1_invar[of "bq" "getMinTree bq"] goal1(1) have
m2: "invar (remove1 (getMinTree bq) bq)" .
from meld_invar[of "rev [t \<leftarrow> children (getMinTree bq). 0 < rank t]"
"remove1 (getMinTree bq) bq"] m1 m2
have "invar (meld (rev [t \<leftarrow> children (getMinTree bq). 0 < rank t])
(remove1 (getMinTree bq) bq))"
.
with insertList_invar[of
"(meld (rev [t\<leftarrow>children (getMinTree bq) . 0 < rank t])
(remove1 (getMinTree bq) bq))"

"[t\<leftarrow>children (getMinTree bq) . rank t = 0]"]
have "invar
(insertList
[t\<leftarrow>children (getMinTree bq) . rank t = 0]
(meld (rev [t\<leftarrow>children (getMinTree bq) . 0 < rank t])
(remove1 (getMinTree bq) bq)))"
.
with eq show ?case ..
qed

theorem deleteMin_correct:
assumes I: "invar q"
assumes NE: "q≠Nil"
shows
"invar (deleteMin q)"
"queue_to_multiset (deleteMin q) = queue_to_multiset q - {#findMin q#}"
apply (rule deleteMin_invar[OF I NE])
using deleteMin_mset[of q] I NE
unfolding invar_def
by (auto simp add: empty_correct)






(*
fun foldt and foldq where
"foldt f z (Node e a _ q) = f (foldq f z q) e a" |
"foldq f z [] = z" |
"foldq f z (t#q) = foldq f (foldt f z t) q"

lemma fold_plus:
"foldt ((λm e a. m+{#(e,a)#})) zz t + z = foldt ((λm e a. m+{#(e,a)#})) (zz+z) t"
"foldq ((λm e a. m+{#(e,a)#})) zz q + z = foldq ((λm e a. m+{#(e,a)#})) (zz+z) q"
apply (induct t and q arbitrary: zz and zz
rule: tree_to_multiset_queue_to_multiset.induct)
apply (auto simp add: union_ac)
apply (subst union_ac, simp)
done


lemma to_mset_fold:
fixes t::"('e,'a::linorder) SkewBinomialTree" and
q::"('e,'a) SkewBinomialQueue"
shows
"tree_to_multiset t = foldt (λm e a. m+{#(e,a)#}) {#} t"
"queue_to_multiset q = foldq (λm e a. m+{#(e,a)#}) {#} q"
apply (induct t and q rule: tree_to_multiset_queue_to_multiset.induct)
apply (auto simp add: union_ac fold_plus)
done
*)


lemmas [simp del] = insert.simps

end

interpretation SkewBinomialHeapStruc: SkewBinomialHeapStruc_loc .


subsection "Bootstrapping"
text {*
In this section, we implement datastructural bootstrapping, to
reduce the complexity of meld-operations to $O(1)$.
The bootstrapping also contains a {\em global root}, caching the
minimal element of the queue, and thus also reducing the complexity of
findMin-operations to $O(1)$.

Bootstrapping adds one more level of recursion:
An {\em element} is an entry and a priority queues of elements.

In the original paper on skew binomial queues \cite{BrOk96}, higher order
functors and recursive structures are used to elegantly implement bootstrapped
heaps on top of ordinary heaps. However, such concepts are not supported in
Isabelle/HOL, nor in Standard ML. Hence we have to use the
,,much less clean'' \cite{BrOk96} alternative:
We manually specialize the heap datastructure, and re-implement the functions
on the specialized data structure.

The correctness proofs are done by defining a mapping from teh specialized to
the original data structure, and reusing the correctness statements of the
original data structure.
*}


subsubsection "Auxiliary"
text {*
We first have to state some auxiliary lemmas and functions, mainly
about multisets.
*}

(* TODO: Some of these should be moved into the multiset library, they are
marked by *MOVE* *)


text {* Congruence rule for multiset image *}
(*MOVE*)
lemma image_mset_cong[fundef_cong]:
"[| M=N; !!x. x∈#M ==> f x = g x |] ==> image_mset f M = image_mset g N"
apply (auto)
apply (induct N)
apply auto
done

text {* Finding the preimage of an element *}
(*MOVE*)
lemma in_image_msetE:
assumes "x∈#image_mset f M"
obtains y where "y∈#M" "x=f y"
using assms
apply (induct M)
apply simp
apply (force split: split_if_asm)
done

text {* Multiset Union *}
(*MOVE*)
definition mset_Union :: "'a multiset multiset => 'a multiset"
where
"mset_Union M = Multiset.fold op + {#} M"

lemma comp_fun_commute_mset_Union:
"comp_fun_commute (plus :: 'a multiset => 'a multiset => 'a multiset)"
proof qed (auto simp add: union_ac)

lemma mset_Union_empty [simp]:
"mset_Union {#} = {#}"
by (simp add: mset_Union_def)

lemma mset_Union_single [simp]:
"mset_Union {#x#} = x"
proof -
interpret comp_fun_commute "plus :: 'a multiset => 'a multiset => 'a multiset"
by (fact comp_fun_commute_mset_Union)
show ?thesis by (simp add: mset_Union_def)
qed

lemma mset_Union_un [simp]:
"mset_Union (A + B) = mset_Union A + mset_Union B"
proof -
interpret comp_fun_commute "plus :: 'a multiset => 'a multiset => 'a multiset"
by (fact comp_fun_commute_mset_Union)
show ?thesis by (induct B) (auto simp add: mset_Union_def union_ac)
qed

corollary mset_Union_insert:
"mset_Union (A + {#x#}) = mset_Union A + x"
by simp

lemma in_mset_UnionE:
assumes "e∈#mset_Union M"
obtains s where "s∈#M" "e∈#s"
using assms
apply (induct M)
apply simp
apply (force split: split_if_asm)
done


text {* Some very special introduction lemmas for @{const image_mset} *}
lemma image_mset_fstI: "(e,a):#M ==> e ∈# image_mset fst M"
by (induct M) (auto split: split_if_asm)
lemma image_mset_sndI: "(e,a):#M ==> a ∈# image_mset snd M"
by (induct M) (auto split: split_if_asm)

text {* Very special lemma for images multisets of pairs, where the second
component is a function of the first component *}

lemma mset_image_fst_dep_pair_diff_split:
"(∀e a. (e,a)∈#M --> a=f e) ==>
image_mset fst (M - {#(e, f e)#}) = image_mset fst M - {#e#}"

proof (induct M)
case empty thus ?case by auto
next
case (add M x)
then obtain e' where [simp]: "x=(e',f e')"
apply (cases x)
apply (force)
done

from add.prems have "∀e a. (e, a) ∈# M --> a = f e" by simp
with add.hyps have
IH: "image_mset fst (M - {#(e, f e)#}) = image_mset fst M - {#e#}"
by auto

show ?case proof (cases "e=e'")
case True
thus ?thesis by (simp)
next
case False
thus ?thesis
by (simp add: diff_union_swap[symmetric] IH)
qed
qed



subsubsection "Datatype"
text {* We manually specialize the binomial tree to contain elements, that, in,
turn, may contain trees.
Note that we specify nodes without explicit priority,
as the priority is contained in the elements stored in the nodes.
*}



datatype ('e, 'a) BsSkewBinomialTree =
BsNode "('e, 'a::linorder) BsSkewElem"
nat "('e , 'a) BsSkewBinomialTree list"
and
('e,'a) BsSkewElem =
Element 'e 'a "('e,'a) BsSkewBinomialTree list"

type_synonym ('e,'a) BsSkewHeap = "unit + ('e,'a) BsSkewElem"
type_synonym ('e,'a) BsSkewBinomialQueue = "('e,'a) BsSkewBinomialTree list"




locale Bootstrapped
begin

subsubsection "Specialization Boilerplate"
text {*
In this section, we re-define the functions
on the specialized priority queues, and show there correctness.
This is done by defining a mapping to original priority queues,
and re-using the correctness lemmas proven there.
*}


text {* Priority of element *}
primrec eprio where "eprio (Element e a q) = a"

text {* Mapping to original binomial trees and queues*}
fun bsmapt where
"bsmapt (BsNode e r q) = Node e (eprio e) r (map bsmapt q)"

abbreviation bsmap where
"bsmap q == map bsmapt q"

text {* Invariant and mapping to multiset are defined via the mapping *}
abbreviation "invar q == SkewBinomialHeapStruc.invar (bsmap q)"
abbreviation "queue_to_multiset q
== image_mset fst (SkewBinomialHeapStruc.queue_to_multiset (bsmap q))"

abbreviation "tree_to_multiset t
== image_mset fst (SkewBinomialHeapStruc.tree_to_multiset (bsmapt t))"


abbreviation "queue_to_multiset_aux q
== (SkewBinomialHeapStruc.queue_to_multiset (bsmap q))"



text {* Now starts the re-implementation of the functions*}
primrec val :: "('e, 'a::linorder) BsSkewBinomialTree => ('e,'a) BsSkewElem"
where
"val (BsNode e r ts) = e"
primrec prio :: "('e, 'a::linorder) BsSkewBinomialTree => 'a" where
"prio (BsNode e r ts) = eprio e"
primrec rank :: "('e, 'a::linorder) BsSkewBinomialTree => nat" where
"rank (BsNode e r ts) = r"
primrec children :: "('e, 'a::linorder) BsSkewBinomialTree =>
('e, 'a) BsSkewBinomialQueue"
where
"children (BsNode e r ts) = ts"

lemma proj_xlate:
"val t = SkewBinomialHeapStruc.val (bsmapt t)"
"prio t = SkewBinomialHeapStruc.prio (bsmapt t)"
"rank t = SkewBinomialHeapStruc.rank (bsmapt t)"
"bsmap (children t) = SkewBinomialHeapStruc.children (bsmapt t)"
"eprio (SkewBinomialHeapStruc.val (bsmapt t))
= SkewBinomialHeapStruc.prio (bsmapt t)"

apply (case_tac [!] t)
apply auto
done

fun link :: "('e, 'a::linorder) BsSkewBinomialTree
=> ('e, 'a) BsSkewBinomialTree =>
('e, 'a) BsSkewBinomialTree"
where
"link (BsNode e1 r1 ts1) (BsNode e2 r2 ts2) =
(if eprio e1≤eprio e2
then (BsNode e1 (Suc r1) ((BsNode e2 r2 ts2)#ts1))
else (BsNode e2 (Suc r2) ((BsNode e1 r1 ts1)#ts2)))"


text {* Link two trees of rank $r$ and a new element to a new tree of
rank $r+1$ *}

fun skewlink :: "('e,'a::linorder) BsSkewElem => ('e, 'a) BsSkewBinomialTree =>
('e, 'a) BsSkewBinomialTree => ('e, 'a) BsSkewBinomialTree"
where
"skewlink e t t' = (if eprio e ≤ (prio t) ∧ eprio e ≤ (prio t')
then (BsNode e (Suc (rank t)) [t,t'])
else (if (prio t) ≤ (prio t')
then
BsNode (val t) (Suc (rank t)) (BsNode e 0 [] # t' # children t)
else
BsNode (val t') (Suc (rank t')) (BsNode e 0 [] # t # children t')))"


lemma link_xlate:
"bsmapt (link t t') = SkewBinomialHeapStruc.link (bsmapt t) (bsmapt t')"
"bsmapt (skewlink e t t') =
SkewBinomialHeapStruc.skewlink e (eprio e) (bsmapt t) (bsmapt t')"

by (case_tac [!] t, case_tac [!] t') auto


fun ins :: "('e, 'a::linorder) BsSkewBinomialTree =>
('e, 'a) BsSkewBinomialQueue =>
('e, 'a) BsSkewBinomialQueue"
where
"ins t [] = [t]" |
"ins t' (t # bq) =
(if (rank t') < (rank t)
then t' # t # bq
else (if (rank t) < (rank t')
then t # (ins t' bq)
else ins (link t' t) bq))"


lemma ins_xlate:
"bsmap (ins t q) = SkewBinomialHeapStruc.ins (bsmapt t) (bsmap q)"
by (induct q arbitrary: t) (auto simp add: proj_xlate link_xlate)


text {* Insert an element with priority into a queue using skewlinks. *}
fun insert :: "('e,'a::linorder) BsSkewElem =>
('e, 'a) BsSkewBinomialQueue =>
('e, 'a) BsSkewBinomialQueue"
where
"insert e [] = [BsNode e 0 []]" |
"insert e [t] = [BsNode e 0 [],t]" |
"insert e (t # t' # bq) =
(if rank t ≠ rank t'
then (BsNode e 0 []) # t # t' # bq
else (skewlink e t t') # bq)"


lemma insert_xlate:
"bsmap (insert e q) = SkewBinomialHeapStruc.insert e (eprio e) (bsmap q)"
apply (cases "(e,q)" rule: insert.cases)
apply (auto simp add: proj_xlate link_xlate SkewBinomialHeapStruc.insert.simps)
done

lemma insert_correct:
assumes I: "invar q"
shows
"invar (insert e q)"
"queue_to_multiset (insert e q) = queue_to_multiset q + {#(e)#}"
by (simp_all add: I SkewBinomialHeapStruc.insert_correct insert_xlate)

fun uniqify
:: "('e, 'a::linorder) BsSkewBinomialQueue => ('e, 'a) BsSkewBinomialQueue"
where
"uniqify [] = []" |
"uniqify (t#bq) = ins t bq"

fun meldUniq
:: "('e, 'a::linorder) BsSkewBinomialQueue => ('e,'a) BsSkewBinomialQueue =>
('e, 'a) BsSkewBinomialQueue"
where
"meldUniq [] bq = bq" |
"meldUniq bq [] = bq" |
"meldUniq (t1#bq1) (t2#bq2) = (if rank t1 < rank t2
then t1 # (meldUniq bq1 (t2#bq2))
else (if rank t2 < rank t1
then t2 # (meldUniq (t1#bq1) bq2)
else ins (link t1 t2) (meldUniq bq1 bq2)))"


definition meld
:: "('e, 'a::linorder) BsSkewBinomialQueue => ('e, 'a) BsSkewBinomialQueue =>
('e, 'a) BsSkewBinomialQueue"
where
"meld bq1 bq2 = meldUniq (uniqify bq1) (uniqify bq2)"

lemma uniqify_xlate:
"bsmap (uniqify q) = SkewBinomialHeapStruc.uniqify (bsmap q)"
by (cases q) (simp_all add: ins_xlate)

lemma meldUniq_xlate:
"bsmap (meldUniq q q') = SkewBinomialHeapStruc.meldUniq (bsmap q) (bsmap q')"
apply (induct q q' rule: meldUniq.induct)
apply (auto simp add: link_xlate proj_xlate uniqify_xlate ins_xlate)
done

lemma meld_xlate:
"bsmap (meld q q') = SkewBinomialHeapStruc.meld (bsmap q) (bsmap q')"
by (simp add: meld_def meldUniq_xlate uniqify_xlate
SkewBinomialHeapStruc.meld_def)

lemma meld_correct:
assumes I: "invar q" "invar q'"
shows
"invar (meld q q')"
"queue_to_multiset (meld q q') = queue_to_multiset q + queue_to_multiset q'"
by (simp_all add: I SkewBinomialHeapStruc.meld_correct meld_xlate)

fun insertList ::
"('e, 'a::linorder) BsSkewBinomialQueue => ('e, 'a) BsSkewBinomialQueue =>
('e, 'a) BsSkewBinomialQueue"
where
"insertList [] tbq = tbq" |
"insertList (t#bq) tbq = insertList bq (insert (val t) tbq)"

fun remove1Prio :: "'a => ('e, 'a::linorder) BsSkewBinomialQueue =>
('e, 'a) BsSkewBinomialQueue"
where
"remove1Prio a [] = []" |
"remove1Prio a (t#bq) =
(if (prio t) = a then bq else t # (remove1Prio a bq))"


fun getMinTree :: "('e, 'a::linorder) BsSkewBinomialQueue =>
('e, 'a) BsSkewBinomialTree"
where
"getMinTree [t] = t" |
"getMinTree (t#bq) =
(if prio t ≤ prio (getMinTree bq)
then t
else (getMinTree bq))"


definition findMin
:: "('e, 'a::linorder) BsSkewBinomialQueue => ('e,'a) BsSkewElem" where
"findMin bq = val (getMinTree bq)"

definition deleteMin :: "('e, 'a::linorder) BsSkewBinomialQueue =>
('e, 'a) BsSkewBinomialQueue"
where
"deleteMin bq = (let min = getMinTree bq in insertList
(filter (λ t. rank t = 0) (children min))
(meld (rev (filter (λ t. rank t > 0) (children min)))
(remove1Prio (prio min) bq)))"


lemma insertList_xlate:
"bsmap (insertList q q')
= SkewBinomialHeapStruc.insertList (bsmap q) (bsmap q')"

apply (induct q arbitrary: q')
apply (auto simp add: insert_xlate proj_xlate)
done

lemma remove1Prio_xlate:
"bsmap (remove1Prio a q) = SkewBinomialHeapStruc.remove1Prio a (bsmap q)"
by (induct q) (auto simp add: proj_xlate)

lemma getMinTree_xlate:
"q≠[] ==> bsmapt (getMinTree q) = SkewBinomialHeapStruc.getMinTree (bsmap q)"
apply (induct q)
apply simp
apply (case_tac q)
apply (auto simp add: proj_xlate)
done

lemma findMin_xlate:
"q≠[] ==> findMin q = fst (SkewBinomialHeapStruc.findMin (bsmap q))"
apply (unfold findMin_def SkewBinomialHeapStruc.findMin_def)
apply (simp add: proj_xlate Let_def getMinTree_xlate)
done

lemma findMin_xlate_aux:
"q≠[] ==> (findMin q, eprio (findMin q)) =
(SkewBinomialHeapStruc.findMin (bsmap q))"

apply (unfold findMin_def SkewBinomialHeapStruc.findMin_def)
apply (simp add: proj_xlate Let_def getMinTree_xlate)
apply (induct q)
apply simp
apply (case_tac q)
apply (auto simp add: proj_xlate)
done

(* TODO: Also possible in generic formulation. Then a candidate for Misc.thy *)
lemma bsmap_filter_xlate:
"bsmap [ x\<leftarrow>l . P (bsmapt x) ] = [ x \<leftarrow> bsmap l. P x ]"
by (induct l) auto

lemma bsmap_rev_xlate:
"bsmap (rev q) = rev (bsmap q)"
by (induct q) auto

lemma deleteMin_xlate:
"q≠[] ==> bsmap (deleteMin q) = SkewBinomialHeapStruc.deleteMin (bsmap q)"
apply (simp add:
deleteMin_def SkewBinomialHeapStruc.deleteMin_def
proj_xlate getMinTree_xlate insertList_xlate meld_xlate remove1Prio_xlate
Let_def bsmap_rev_xlate, (subst bsmap_filter_xlate)?)+
done


lemma deleteMin_correct_aux:
assumes I: "invar q"
assumes NE: "q≠[]"
shows
"invar (deleteMin q)"
"queue_to_multiset_aux (deleteMin q) = queue_to_multiset_aux q -
{# (findMin q, eprio (findMin q)) #}"

apply (simp_all add:
I NE deleteMin_xlate findMin_xlate_aux
SkewBinomialHeapStruc.deleteMin_correct)
done


lemma bsmap_fs_dep:
"(e,a)∈#SkewBinomialHeapStruc.tree_to_multiset (bsmapt t) ==> a=eprio e"
"(e,a)∈#SkewBinomialHeapStruc.queue_to_multiset (bsmap q) ==> a=eprio e"
thm SkewBinomialHeapStruc.tree_to_multiset_queue_to_multiset.induct
apply (induct "bsmapt t" and "bsmap q" arbitrary: t and q
rule: SkewBinomialHeapStruc.tree_to_multiset_queue_to_multiset.induct)
apply auto
apply (case_tac t)
apply (auto split: split_if_asm)
done


lemma bsmap_fs_depD:
"(e,a)∈#SkewBinomialHeapStruc.tree_to_multiset (bsmapt t)
==> e ∈# tree_to_multiset t ∧ a=eprio e"

"(e,a)∈#SkewBinomialHeapStruc.queue_to_multiset (bsmap q)
==> e ∈# queue_to_multiset q ∧ a=eprio e"

by (auto intro: image_mset_fstI dest: bsmap_fs_dep)


lemma findMin_correct_aux:
assumes I: "invar q"
assumes NE: "q≠[]"
shows "(findMin q, eprio (findMin q)) ∈# queue_to_multiset_aux q"
"∀y∈set_of (queue_to_multiset_aux q). snd (findMin q,eprio (findMin q)) ≤ snd y"
apply (simp_all add:
I NE findMin_xlate_aux
SkewBinomialHeapStruc.findMin_correct)
done

lemma findMin_correct:
assumes I: "invar q"
assumes NE: "q≠[]"
shows "findMin q ∈# queue_to_multiset q"
"∀y∈set_of (queue_to_multiset q). eprio (findMin q) ≤ eprio y"
using findMin_correct_aux[OF I NE]
apply simp_all
apply (force dest: bsmap_fs_depD)
apply auto
proof -
case goal1
from goal1(3) have "(a,eprio a) ∈# queue_to_multiset_aux q"
apply -
apply (frule bsmap_fs_dep)
apply simp
done
with goal1(2)[rule_format, simplified]
show ?case by auto
qed

lemma deleteMin_correct:
assumes I: "invar q"
assumes NE: "q≠[]"
shows
"invar (deleteMin q)"
"queue_to_multiset (deleteMin q) = queue_to_multiset q -
{# findMin q #}"

using deleteMin_correct_aux[OF I NE]
apply simp_all
apply (rule mset_image_fst_dep_pair_diff_split)
apply (auto dest: bsmap_fs_dep)
done


declare insert.simps[simp del]


subsubsection "Bootstrapping: Phase 1"
text {*
In this section, we define the ticked versions
of the functions, as defined in \cite{BrOk96}.
These functions work on elements, i.e. only on
heaps that contain at least one entry.
Additionally, we define an invariant for elements, and
a mapping to multisets of entries, and prove correct
the ticked functions.
*}


primrec findMin' where "findMin' (Element e a q) = (e,a)"
fun meld':: "('e,'a::linorder) BsSkewElem =>
('e,'a) BsSkewElem => ('e,'a) BsSkewElem"

where "meld' (Element e1 a1 q1) (Element e2 a2 q2) =
(if a1≤a2 then
Element e1 a1 (insert (Element e2 a2 q2) q1)
else
Element e2 a2 (insert (Element e1 a1 q1) q2)
)"

fun insert' where
"insert' e a q = meld' (Element e a []) q"
fun deleteMin' where
"deleteMin' (Element e a q) = (
case (findMin q) of
Element ey ay q1 =>
Element ey ay (meld q1 (deleteMin q))
)"


text {*
Size-function for termination proofs
*}

fun tree_level and queue_level where
"tree_level (BsNode (Element _ _ qd) _ q) =
max (Suc (queue_level qd)) (queue_level q)"
|
"queue_level [] = (0::nat)" |
"queue_level (t#q) = max (tree_level t) (queue_level q)"

fun level where
"level (Element _ _ q) = Suc (queue_level q)"

lemma level_m:
"x∈#tree_to_multiset t ==> level x < Suc (tree_level t)"
"x∈#queue_to_multiset q ==> level x < Suc (queue_level q)"
apply (induct t and q rule: tree_level_queue_level.induct)
apply (case_tac [!] x)
apply (auto split: split_if_asm)
done

lemma level_measure:
"x ∈ set_of (queue_to_multiset q) ==> (x,(Element e a q))∈measure level"
"x ∈# (queue_to_multiset q) ==> (x,(Element e a q))∈measure level"
apply (case_tac [!] x)
apply (auto dest: level_m simp del: set_of_image_mset)
done

text {*
Invariant for elements
*}

function elem_invar where
"elem_invar (Element e a q) <->
(∀x. x∈# (queue_to_multiset q) --> a ≤ eprio x ∧ elem_invar x) ∧
invar q"

by pat_completeness auto
termination
proof
show "wf (measure level)" by auto
qed (rule level_measure)


text {*
Abstraction to multisets
*}

function elem_to_mset where
"elem_to_mset (Element e a q) = {# (e,a) #}
+ mset_Union (image_mset elem_to_mset (queue_to_multiset q))"

by pat_completeness auto
termination
proof
show "wf (measure level)" by auto
qed (rule level_measure)

lemma insert_correct':
assumes I: "elem_invar x"
shows
"elem_invar (insert' e a x)"
"elem_to_mset (insert' e a x) = elem_to_mset x + {#(e,a)#}"
using I
apply (case_tac [!] x)
apply (auto simp add: insert_correct union_ac)
done

lemma meld_correct':
assumes I: "elem_invar x" "elem_invar x'"
shows
"elem_invar (meld' x x')"
"elem_to_mset (meld' x x') = elem_to_mset x + elem_to_mset x'"
using I
apply (case_tac [!] x)
apply (case_tac [!] x')
apply (auto simp add: insert_correct union_ac)
done

lemma findMin'_min:
"[|elem_invar x; y∈#elem_to_mset x|] ==> snd (findMin' x) ≤ snd y"
proof (induct n"level x" arbitrary: x rule: full_nat_induct)
case 1
note IH="1.hyps"[rule_format, OF _ refl]
note PREMS="1.prems"
obtain e a q where [simp]: "x=Element e a q" by (cases x) auto

from PREMS(2) have "y=(e,a) ∨
y∈#mset_Union (image_mset elem_to_mset (queue_to_multiset q))"

(is "?C1 ∨ ?C2")
by (auto split: split_if_asm)
moreover {
assume "y=(e,a)"
with PREMS have ?case by simp
} moreover {
assume ?C2
then obtain yx where
A: "yx ∈# queue_to_multiset q" and
B: "y ∈# elem_to_mset yx"
apply (auto elim!: in_mset_UnionE in_image_msetE)
apply (drule bsmap_fs_depD)
apply auto
done

from A PREMS have IYX: "elem_invar yx" by auto

from PREMS(1) A have "a ≤ eprio yx" by auto
hence "snd (findMin' x) ≤ snd (findMin' yx)"
by (cases yx) auto
also
from IH[OF _ IYX B] level_m(2)[OF A]
have "snd (findMin' yx) ≤ snd y" by simp
finally have ?case .
} ultimately show ?case by blast
qed

lemma findMin_correct':
assumes I: "elem_invar x"
shows
"findMin' x ∈# elem_to_mset x"
"∀y∈set_of (elem_to_mset x). snd (findMin' x) ≤ snd y"
using I
apply (cases x)
apply simp
apply (simp add: findMin'_min[OF I])
done

lemma deleteMin_correct':
assumes I: "elem_invar (Element e a q)"
assumes NE[simp]: "q≠[]"
shows
"elem_invar (deleteMin' (Element e a q))"
"elem_to_mset (deleteMin' (Element e a q)) =
elem_to_mset (Element e a q) - {# findMin' (Element e a q) #}"


proof -
from I have IQ[simp]: "invar q" by simp
from findMin_correct[OF IQ NE] have
FMIQ: "findMin q ∈# queue_to_multiset q" and
FMIN: "!!y. y∈#(queue_to_multiset q) ==> eprio (findMin q) ≤ eprio y"
by (auto simp del: set_of_image_mset)
from FMIQ I have FMEI: "elem_invar (findMin q)" by auto
from I have FEI: "!!y. y∈#(queue_to_multiset q) ==> elem_invar y" by auto

obtain ey ay qy where [simp]: "findMin q = Element ey ay qy"
by (cases "findMin q") auto
from FMEI have
IQY[simp]: "invar qy" and
AYMIN: "!!x. x ∈# queue_to_multiset qy ==> ay ≤ eprio x" and
QEI: "!!x. x ∈# queue_to_multiset qy ==> elem_invar x"
by auto

show "elem_invar (deleteMin' (Element e a q))"
using AYMIN QEI FMIN FEI
apply (auto simp add: deleteMin_correct meld_correct)
done

from FMIQ have
S: "(queue_to_multiset q - {#Element ey ay qy#}) + {#Element ey ay qy#}
= queue_to_multiset q"
by simp

show "elem_to_mset (deleteMin' (Element e a q)) =
elem_to_mset (Element e a q) - {# findMin' (Element e a q) #}"

apply (simp add: deleteMin_correct meld_correct)
by (subst S[symmetric], simp add: union_ac)

qed

subsubsection "Bootstrapping: Phase 2"
text {*
In this phase, we extend the ticked versions to also work with
empty priority queues.
*}


definition bs_empty where "bs_empty ≡ Inl ()"

primrec bs_findMin where
"bs_findMin (Inr x) = findMin' x"

fun bs_meld
:: "('e,'a::linorder) BsSkewHeap => ('e,'a) BsSkewHeap => ('e,'a) BsSkewHeap"
where
"bs_meld (Inl _) x = x" |
"bs_meld x (Inl _) = x" |
"bs_meld (Inr x) (Inr x') = Inr (meld' x x')"
lemma [simp]: "bs_meld x (Inl u) = x"
by (cases x) auto

primrec bs_insert
:: "'e => ('a::linorder) => ('e,'a) BsSkewHeap => ('e,'a) BsSkewHeap"
where
"bs_insert e a (Inl _) = Inr (Element e a [])" |
"bs_insert e a (Inr x) = Inr (insert' e a x)"

fun bs_deleteMin
:: "('e,'a::linorder) BsSkewHeap => ('e,'a) BsSkewHeap"
where
"bs_deleteMin (Inr (Element e a [])) = Inl ()" |
"bs_deleteMin (Inr (Element e a q)) = Inr (deleteMin' (Element e a q))"

primrec bs_invar :: "('e,'a::linorder) BsSkewHeap => bool"
where
"bs_invar (Inl _) <-> True" |
"bs_invar (Inr x) <-> elem_invar x"

lemma [simp]: "bs_invar bs_empty" by (simp add: bs_empty_def)

primrec bs_to_mset :: "('e,'a::linorder) BsSkewHeap => ('e×'a) multiset"
where
"bs_to_mset (Inl _) = {#}" |
"bs_to_mset (Inr x) = elem_to_mset x"

theorem bs_empty_correct: "h=bs_empty <-> bs_to_mset h = {#}"
apply (unfold bs_empty_def)
apply (cases h)
apply simp
apply (case_tac b)
apply simp
done

lemma bs_mset_of_empty[simp]:
"bs_to_mset bs_empty = {#}"
by (simp add: bs_empty_def)

theorem bs_findMin_correct:
assumes I: "bs_invar h"
assumes NE: "h≠bs_empty"
shows "bs_findMin h ∈# bs_to_mset h"
"∀y∈set_of (bs_to_mset h). snd (bs_findMin h) ≤ snd y"
using I NE
apply (case_tac [!] h)
apply (auto simp add: bs_empty_def findMin_correct')
done

theorem bs_insert_correct:
assumes I: "bs_invar h"
shows
"bs_invar (bs_insert e a h)"
"bs_to_mset (bs_insert e a h) = {#(e,a)#} + bs_to_mset h"
using I
apply (case_tac [!] h)
apply (simp_all)
apply (auto simp add: meld_correct')
done

theorem bs_meld_correct:
assumes I: "bs_invar h" "bs_invar h'"
shows
"bs_invar (bs_meld h h')"
"bs_to_mset (bs_meld h h') = bs_to_mset h + bs_to_mset h'"
using I
apply (case_tac [!] h, case_tac [!] h')
apply (auto simp add: meld_correct')
done

theorem bs_deleteMin_correct:
assumes I: "bs_invar h"
assumes NE: "h ≠ bs_empty"
shows
"bs_invar (bs_deleteMin h)"
"bs_to_mset (bs_deleteMin h) = bs_to_mset h - {#bs_findMin h#}"
using I NE
apply (case_tac [!] h)
apply (simp_all add: bs_empty_def)
apply (case_tac [!] b)
apply (case_tac [!] list)
apply (simp_all del: elem_invar.simps deleteMin'.simps add: deleteMin_correct')
done

end


interpretation BsSkewBinomialHeapStruc: Bootstrapped .


subsection "Hiding the Invariant"

subsubsection "Datatype"
typedef ('e, 'a) SkewBinomialHeap =
"{q :: ('e,'a::linorder) BsSkewHeap. BsSkewBinomialHeapStruc.bs_invar q }"
apply (rule_tac x="BsSkewBinomialHeapStruc.bs_empty" in exI)
apply (auto)
done

lemma Rep_SkewBinomialHeap_invar[simp]:
"BsSkewBinomialHeapStruc.bs_invar (Rep_SkewBinomialHeap x)"
using Rep_SkewBinomialHeap
by (auto)

lemma [simp]:
"BsSkewBinomialHeapStruc.bs_invar q
==> Rep_SkewBinomialHeap (Abs_SkewBinomialHeap q) = q"

using Abs_SkewBinomialHeap_inverse by auto

lemma [simp, code abstype]: "Abs_SkewBinomialHeap (Rep_SkewBinomialHeap q) = q"
by (rule Rep_SkewBinomialHeap_inverse)

locale SkewBinomialHeap_loc
begin
subsubsection "Operations"

definition [code]:
"to_mset t
== BsSkewBinomialHeapStruc.bs_to_mset (Rep_SkewBinomialHeap t)"


definition empty where
"empty == Abs_SkewBinomialHeap BsSkewBinomialHeapStruc.bs_empty"
lemma [code abstract, simp]:
"Rep_SkewBinomialHeap empty = BsSkewBinomialHeapStruc.bs_empty"
by (unfold empty_def) simp

definition [code]:
"isEmpty q == Rep_SkewBinomialHeap q = BsSkewBinomialHeapStruc.bs_empty"
lemma empty_rep:
"q=empty <-> Rep_SkewBinomialHeap q = BsSkewBinomialHeapStruc.bs_empty"
apply (auto simp add: empty_def)
apply (metis Rep_SkewBinomialHeap_inverse)
done

lemma isEmpty_correct: "isEmpty q <-> q=empty"
by (simp add: empty_rep isEmpty_def)

definition
insert
:: "'e => ('a::linorder) => ('e,'a) SkewBinomialHeap
=> ('e,'a) SkewBinomialHeap"

where "insert e a q ==
Abs_SkewBinomialHeap (
BsSkewBinomialHeapStruc.bs_insert e a (Rep_SkewBinomialHeap q))"

lemma [code abstract]:
"Rep_SkewBinomialHeap (insert e a q)
= BsSkewBinomialHeapStruc.bs_insert e a (Rep_SkewBinomialHeap q)"

by (simp add: insert_def BsSkewBinomialHeapStruc.bs_insert_correct)

definition [code]: "findMin q
== BsSkewBinomialHeapStruc.bs_findMin (Rep_SkewBinomialHeap q)"


definition "deleteMin q ==
if q=empty then empty
else Abs_SkewBinomialHeap (
BsSkewBinomialHeapStruc.bs_deleteMin (Rep_SkewBinomialHeap q))"


text {*
We don't use equality here, to prevent the code-generator
from introducing equality-class parameter for type @{text 'a}.
Instead we use a case-distinction to check for emptiness.
*}

lemma [code abstract]: "Rep_SkewBinomialHeap (deleteMin q) =
(case (Rep_SkewBinomialHeap q) of Inl _ => BsSkewBinomialHeapStruc.bs_empty |
_ => BsSkewBinomialHeapStruc.bs_deleteMin (Rep_SkewBinomialHeap q))"

proof (cases "(Rep_SkewBinomialHeap q)")
case (Inl a)[simp]
hence "(Rep_SkewBinomialHeap q) = BsSkewBinomialHeapStruc.bs_empty"
apply (cases q)
apply (auto simp add: BsSkewBinomialHeapStruc.bs_empty_def)
done
thus ?thesis
apply (auto simp add: deleteMin_def
BsSkewBinomialHeapStruc.bs_deleteMin_correct
BsSkewBinomialHeapStruc.bs_empty_correct empty_rep )
done
next
case (Inr x)
hence "(Rep_SkewBinomialHeap q) ≠ BsSkewBinomialHeapStruc.bs_empty"
apply (cases q)
apply (auto simp add: BsSkewBinomialHeapStruc.bs_empty_def)
done
thus ?thesis
apply (simp add: Inr)
apply (fold Inr)
apply (auto simp add: deleteMin_def
BsSkewBinomialHeapStruc.bs_deleteMin_correct
BsSkewBinomialHeapStruc.bs_empty_correct empty_rep )
done
qed

(*
lemma [code abstract]: "Rep_SkewBinomialHeap (deleteMin q) =
(if (Rep_SkewBinomialHeap q = BsSkewBinomialHeapStruc.bs_empty) then BsSkewBinomialHeapStruc.bs_empty
else BsSkewBinomialHeapStruc.bs_deleteMin (Rep_SkewBinomialHeap q))"
by (auto simp add: deleteMin_def BsSkewBinomialHeapStruc.bs_deleteMin_correct
BsSkewBinomialHeapStruc.bs_empty_correct empty_rep)
*)


definition "meld q1 q2 ==
Abs_SkewBinomialHeap (BsSkewBinomialHeapStruc.bs_meld
(Rep_SkewBinomialHeap q1) (Rep_SkewBinomialHeap q2))"

lemma [code abstract]:
"Rep_SkewBinomialHeap (meld q1 q2)
= BsSkewBinomialHeapStruc.bs_meld (Rep_SkewBinomialHeap q1)
(Rep_SkewBinomialHeap q2)"

by (simp add: meld_def BsSkewBinomialHeapStruc.bs_meld_correct)

subsubsection "Correctness"

lemma empty_correct: "to_mset q = {#} <-> q=empty"
by (simp add: to_mset_def BsSkewBinomialHeapStruc.bs_empty_correct empty_rep)

lemma to_mset_of_empty[simp]: "to_mset empty = {#}"
by (simp add: empty_correct)

lemma insert_correct: "to_mset (insert e a q) = to_mset q + {#(e,a)#}"
apply (unfold insert_def to_mset_def)
apply (simp add: BsSkewBinomialHeapStruc.bs_insert_correct union_ac)
done

lemma findMin_correct:
assumes "q≠empty"
shows
"findMin q ∈# to_mset q"
"∀y∈set_of (to_mset q). snd (findMin q) ≤ snd y"
using assms
apply (unfold findMin_def to_mset_def)
apply (simp_all add: empty_rep BsSkewBinomialHeapStruc.bs_findMin_correct)
done

lemma deleteMin_correct:
assumes "q≠empty"
shows "to_mset (deleteMin q) = to_mset q - {# findMin q #}"
using assms
apply (unfold findMin_def deleteMin_def to_mset_def)
apply (simp_all add: empty_rep BsSkewBinomialHeapStruc.bs_deleteMin_correct)
done

lemma meld_correct:
shows "to_mset (meld q q') = to_mset q + to_mset q'"
apply (unfold to_mset_def meld_def)
apply (simp_all add: BsSkewBinomialHeapStruc.bs_meld_correct)
done

text {* Correctness lemmas to be used with simplifier *}
lemmas correct = empty_correct deleteMin_correct meld_correct

end

interpretation SkewBinomialHeap: SkewBinomialHeap_loc .


subsection "Documentation"

(*#DOC
fun [no_spec] SkewBinomialHeap.to_mset
Abstraction to multiset.

fun SkewBinomialHeap.empty
The empty heap. ($O(1)$)

fun SkewBinomialHeap.isEmpty
Checks whether heap is empty. Mainly used to work around
code-generation issues. ($O(1)$)

fun [long_type] SkewBinomialHeap.insert
Inserts element ($O(1)$)

fun SkewBinomialHeap.findMin
Returns a minimal element ($O(1)$)

fun [long_type] SkewBinomialHeap.deleteMin
Deletes {\em the} element that is returned by {\em find\_min}. $O(\log(n))$

fun [long_type] SkewBinomialHeap.meld
Melds two heaps ($O(1)$)

*)



text {*
\underline{@{term_type "SkewBinomialHeap.to_mset"}}\\
Abstraction to multiset.\\


\underline{@{term_type "SkewBinomialHeap.empty"}}\\
The empty heap. ($O(1)$)\\
{\bf Spec} @{text "SkewBinomialHeap.empty_correct"}:
@{thm [display] SkewBinomialHeap.empty_correct[no_vars]}


\underline{@{term_type "SkewBinomialHeap.isEmpty"}}\\
Checks whether heap is empty. Mainly used to work around
code-generation issues. ($O(1)$)\\
{\bf Spec} @{text "SkewBinomialHeap.isEmpty_correct"}:
@{thm [display] SkewBinomialHeap.isEmpty_correct[no_vars]}


\underline{@{term "SkewBinomialHeap.insert"}}
@{term_type [display] "SkewBinomialHeap.insert"}
Inserts element ($O(1)$)\\
{\bf Spec} @{text "SkewBinomialHeap.insert_correct"}:
@{thm [display] SkewBinomialHeap.insert_correct[no_vars]}


\underline{@{term_type "SkewBinomialHeap.findMin"}}\\
Returns a minimal element ($O(1)$)\\
{\bf Spec} @{text "SkewBinomialHeap.findMin_correct"}:
@{thm [display] SkewBinomialHeap.findMin_correct[no_vars]}


\underline{@{term "SkewBinomialHeap.deleteMin"}}
@{term_type [display] "SkewBinomialHeap.deleteMin"}
Deletes {\em the} element that is returned by {\em find\_min}. $O(\log(n))$\\
{\bf Spec} @{text "SkewBinomialHeap.deleteMin_correct"}:
@{thm [display] SkewBinomialHeap.deleteMin_correct[no_vars]}


\underline{@{term "SkewBinomialHeap.meld"}}
@{term_type [display] "SkewBinomialHeap.meld"}
Melds two heaps ($O(1)$)\\
{\bf Spec} @{text "SkewBinomialHeap.meld_correct"}:
@{thm [display] SkewBinomialHeap.meld_correct[no_vars]}

*}



end