Theory RefineG_Assert

Up to index of Isabelle/HOL/Collections/Refine_Monadic

theory RefineG_Assert
imports RefineG_Transfer
header {* \isaheader {Assert and Assume} *}
theory RefineG_Assert
imports RefineG_Transfer
begin

definition "iASSERT return Φ ≡ if Φ then return () else top"
definition "iASSUME return Φ ≡ if Φ then return () else bot"

locale generic_Assert =
fixes bind ::
"('mu::complete_lattice) => (unit => ('ma::complete_lattice)) => 'ma"
fixes return :: "unit => 'mu"
fixes ASSERT
fixes ASSUME
assumes ibind_strict:
"bind bot f = bot"
"bind top f = top"
assumes imonad1: "bind (return u) f = f u"
assumes ASSERT_eq: "ASSERT ≡ iASSERT return"
assumes ASSUME_eq: "ASSUME ≡ iASSUME return"
begin
lemma ASSERT_simps[simp,code]:
"ASSERT True = return ()"
"ASSERT False = top"
unfolding ASSERT_eq iASSERT_def by auto

lemma ASSUME_simps[simp,code]:
"ASSUME True = return ()"
"ASSUME False = bot"
unfolding ASSUME_eq iASSUME_def by auto

lemma le_ASSERTI: "[| Φ ==> M≤M' |] ==> M ≤ bind (ASSERT Φ) (λ_. M')"
apply (cases Φ) by (auto simp: ibind_strict imonad1)

lemma le_ASSERTI_pres: "[| Φ ==> M≤bind (ASSERT Φ) (λ_. M') |]
==> M ≤ bind (ASSERT Φ) (λ_. M')"

apply (cases Φ) by (auto simp: ibind_strict imonad1)

lemma ASSERT_leI: "[| Φ; Φ ==> M≤M' |] ==> bind (ASSERT Φ) (λ_. M) ≤ M'"
apply (cases Φ) by (auto simp: ibind_strict imonad1)


lemma ASSUME_leI: "[| Φ ==> M≤M' |] ==> bind (ASSUME Φ) (λ_. M) ≤ M'"
apply (cases Φ) by (auto simp: ibind_strict imonad1)
lemma ASSUME_leI_pres: "[| Φ ==> bind (ASSUME Φ) (λ_. M)≤M' |]
==> bind (ASSUME Φ) (λ_. M) ≤ M'"

apply (cases Φ) by (auto simp: ibind_strict imonad1)
lemma le_ASSUMEI: "[| Φ; Φ ==> M≤M' |] ==> M ≤ bind (ASSUME Φ) (λ_. M')"
apply (cases Φ) by (auto simp: ibind_strict imonad1)

text {* The order of these declarations does matter! *}
lemmas [intro?] = ASSERT_leI le_ASSUMEI
lemmas [intro?] = le_ASSERTI ASSUME_leI

lemma ASSERT_le_iff:
"bind (ASSERT Φ) (λ_. S) ≤ S' <-> (S'≠top --> Φ) ∧ S≤S'"
by (cases Φ) (auto simp: ibind_strict imonad1 simp: top_unique)

lemma ASSUME_le_iff:
"bind (ASSUME Φ) (λ_. S) ≤ S' <-> (Φ --> S≤S')"
by (cases Φ) (auto simp: ibind_strict imonad1)

lemma le_ASSERT_iff:
"S ≤ bind (ASSERT Φ) (λ_. S') <-> (Φ --> S≤S')"
by (cases Φ) (auto simp: ibind_strict imonad1)

lemma le_ASSUME_iff:
"S ≤ bind (ASSUME Φ) (λ_. S') <-> (S≠bot --> Φ) ∧ S≤S'"
by (cases Φ) (auto simp: ibind_strict imonad1 simp: bot_unique)
end

text {*
This locale transfer's asserts and assumes.
To remove them, use the next locale.
*}

locale transfer_generic_Assert =
c!: generic_Assert cbind creturn cASSERT cASSUME +
a!: generic_Assert abind areturn aASSERT aASSUME +
ordered_transfer α
for cbind :: "('muc::complete_lattice)
=> (unit=>'mac) => ('mac::complete_lattice)"

and creturn :: "unit => 'muc" and cASSERT and cASSUME
and abind :: "('mua::complete_lattice)
=> (unit=>'maa) => ('maa::complete_lattice)"

and areturn :: "unit => 'mua" and aASSERT and aASSUME
and α :: "'mac => 'maa"
begin
lemma transfer_ASSERT[refine_transfer]:
"[|Φ ==> α M ≤ M'|]
==> α (cbind (cASSERT Φ) (λ_. M)) ≤ (abind (aASSERT Φ) (λ_. M'))"

apply (cases Φ)
apply (auto simp: c.ibind_strict a.ibind_strict c.imonad1 a.imonad1)
done

lemma transfer_ASSUME[refine_transfer]:
"[|Φ; Φ ==> α M ≤ M'|]
==> α (cbind (cASSUME Φ) (λ_. M)) ≤ (abind (aASSUME Φ) (λ_. M'))"

apply (auto simp: c.ibind_strict a.ibind_strict c.imonad1 a.imonad1)
done

end


locale transfer_generic_Assert_remove =
a!: generic_Assert abind areturn aASSERT aASSUME +
transfer α
for abind :: "('mua::complete_lattice)
=> (unit=>'maa) => ('maa::complete_lattice)"

and areturn :: "unit => 'mua" and aASSERT and aASSUME
and α :: "'mac => 'maa"
begin
lemma transfer_ASSERT_remove[refine_transfer]:
"[| Φ ==> α M ≤ M' |] ==> α M ≤ abind (aASSERT Φ) (λ_. M')"
by (rule a.le_ASSERTI)

lemma transfer_ASSUME_remove[refine_transfer]:
"[| Φ; Φ ==> α M ≤ M' |] ==> α M ≤ abind (aASSUME Φ) (λ_. M')"
by (rule a.le_ASSUMEI)
end

end