The independence of Tarski's Euclidean axiom

T. J. M. Makarios

April 17, 2016

Abstract

Tarski's axioms of plane geometry are formalized and, using the standard real Cartesian model, shown to be consistent. A substantial theory of the projective plane is developed. Building on this theory, the Klein-Beltrami model of the hyperbolic plane is defined and shown to satisfy all of Tarski's axioms except his Euclidean axiom; thus Tarski's Euclidean axiom is shown to be independent of his other axioms of plane geometry.

An earlier version of this work was the subject of the author's MSc thesis [2], which contains natural-language explanations of some of the more interesting proofs.

Contents

1 Metric and semimetric spaces 2
2 Miscellaneous results 4
3 Tarski's geometry 15
3.1 The axioms 15
3.2 Semimetric spaces satisfy the first three axioms 16
3.3 Some consequences of the first three axioms 16
3.4 Some consequences of the first five axioms 20
3.5 Simple theorems about betweenness 22
3.6 Simple theorems about congruence and betweenness 24
4 Real Euclidean space and Tarski's axioms 24
4.1 Real Euclidean space satisfies the first five axioms 24
4.2 Real Euclidean space also satisfies axioms 6, 7, and 11 28
4.3 Real Euclidean space satisfies the Euclidean axiom 34
4.4 The real Euclidean plane 35
4.5 Special cases of theorems of Tarski's geometry 39
5 Linear algebra 40
5.1 Matrices 45
6 Right group actions 51
7 Projective geometry 52
7.1 Proportionality on non-zero vectors 52
7.2 Points of the real projective plane 54
7.3 Lines of the real projective plane 58
7.4 Collineations of the real projective plane 76
7.4.1 As a group 80
7.4.2 As a group action 83
7.4.3 Parts of some Statements from [1] 90
7.5 Cross ratios 98
7.6 Cartesian subspace of the real projective plane 106
8 Roots of real quadratics 114
9 The hyperbolic plane and Tarski's axioms 118
9.1 Characterizing a specific conic in the projective plane 118
9.2 Some specific points and lines of the projective plane 127
9.3 Definition of the Klein-Beltrami model of the hyperbolic plane1 132
9.4 K-isometries map the interior of the conic to itself 138
9.5 The K-isometries form a group action 153
9.6 The Klein-Beltrami model satisfies Tarski's first three axioms 154
9.7 Some lemmas about betweenness 168
9.8 The Klein-Beltrami model satisfies axiom 4 175
9.9 More betweenness theorems 180
9.10 Perpendicularity 190
9.11 Functions of distance 203
9.11.1 A formula for a cross ratio involving a perpendicular foot 220
9.12 The Klein-Beltrami model satisfies axiom 5 223
9.13 The Klein-Beltrami model satisfies axioms 6, 7, and 11 229
9.14 The Klein-Beltrami model satisfies the dimension-specific ax- ioms 232
9.15 The Klein-Beltrami model violates the Euclidean axiom 235

1 Metric and semimetric spaces

```
theory Metric
imports ~~/src/HOL/Multivariate-Analysis/Euclidean-Space
begin
locale semimetric =
    fixes dist :: 'p > 'p 
    assumes nonneg [simp]: dist x y \geq0
    and eq-0 [simp]: dist x y = 0 \longleftrightarrow
```

and symm: dist $x y=\operatorname{dist} y x$
begin
lemma refl $[$ simp $]$: dist $x x=0$
by simp
end
locale metric $=$
fixes dist $:: ~ ' p \Rightarrow$ ' $p \Rightarrow$ real
assumes [simp]: dist $x y=0 \longleftrightarrow x=y$
and triangle: dist $x z \leq \operatorname{dist} y x+\operatorname{dist} y z$
sublocale metric $<$ semimetric
proof
\{ fix w
have dist $w w=0$ by $\operatorname{simp}\}$
note $[$ simp $]=$ this
fix $x y$
show $0 \leq$ dist $x y$
proof -
from triangle $[$ of $y y x]$ show $0 \leq$ dist x by simp
qed
show dist $x y=0 \longleftrightarrow x=y$ by simp
show dist $x y=$ dist $y x$
proof -
$\{$ fix $w z$
have dist $w z \leq \operatorname{dist} z w$ proof -
from triangle $[$ of $w z z$] show dist $w z \leq$ dist $z w$ by simp qed $\}$
hence dist $x y \leq$ dist $y x$ and dist $y x \leq$ dist $x y$ by simp+ thus dist $x y=$ dist $y x$ by simp
qed
qed
definition norm-dist :: ('a::real-normed-vector) $\Rightarrow^{\prime} a \Rightarrow$ real where [simp]: norm-dist $x y \triangleq \operatorname{norm}(x-y)$
interpretation norm-metric: metric norm-dist
proof
fix $x y$
show norm-dist $x y=0 \longleftrightarrow x=y$ by simp
fix z
from norm-triangle-ineq $[$ of $x-y y-z]$ have
norm $(x-z) \leq \operatorname{norm}(x-y)+\operatorname{norm}(y-z)$ by simp
with norm-minus-commute $[$ of $x y$] show
norm-dist $x z \leq$ norm-dist $y x+$ norm-dist $y z$ by simp
qed
end

2 Miscellaneous results

```
theory Miscellany
imports
    ~~/src/HOL/Multivariate-Analysis/Cartesian-Euclidean-Space
    Metric
begin
lemma unordered-pair-element-equality:
    assumes {p,q}={r,s} and p=r
    shows }q=
proof cases
    assume p=q
    with }\langle{p,q}={r,s}> have {r,s}={q} by sim
    thus q}=s\mathrm{ by simp
next
    assume }p\not=
    with <{p,q} ={r,s}` have {r,s}-{p} ={q} by auto
    moreover
        from }\langlep=r\rangle\mathrm{ have {r,s}-{p}}\subseteq{s} by aut
    ultimately have {q}\subseteq{s} by simp
    thus q}=s\mathrm{ by simp
qed
lemma unordered-pair-equality: {p,q} ={q, p}
    by auto
lemma cosine-rule:
    fixes a b c :: real ^ (' }n::finite
    shows (norm-dist a c)}\mp@subsup{)}{}{2}
    (norm-dist a b )
proof -
    have }(a-b)+(b-c)=a-c by sim
    with dot-norm [of a-b b-c]
        have }(a-b)\cdot(b-c)
            ((norm (a-c)) 2-(norm (a-b))}\mp@subsup{)}{}{2}-(\operatorname{norm}(b-c)\mp@subsup{)}{}{2})/
            by simp
    thus ?thesis by simp
qed
lemma scalar-equiv: r*s x =r**R}
    by vector
lemma norm-dist-dot:(norm-dist x y)}\mp@subsup{)}{}{2}=(x-y)\cdot(x-y
    by (simp add: power2-norm-eq-inner)
definition dep2 :: 'a::real-vector }=>\mp@subsup{}{}{\prime}\a=>\mathrm{ bool where
    dep2 uv\triangleq\existswrs.u=r*R w^v=s*R
```

```
lemma real2-eq:
    fixes }uv:: real^2,
    assumes u$1=v$1 and u$2 = v$2
    shows }u=
    by (simp add: vec-eq-iff [of u v] forall-2 assms)
definition rotate2 :: real^2 }=>\mathrm{ real`2 where
    rotate2 }x\triangleq\mathrm{ vector [-x$2, x$1]
declare vector-2 [simp]
lemma rotate2 [simp]:
    (rotate2 x)$1 = -x$2
    (rotate2 x)$2 = x$1
    by (simp add: rotate2-def)+
lemma rotate2-rotate2 [simp]: rotate2 (rotate2 x) = -x
proof -
    have (rotate2 (rotate2 x))$1 = -x$1 and (rotate2 (rotate2 x))$2 = -x$2
        by simp+
    with real2-eq show rotate2 (rotate2 x) = -x by simp
qed
lemma rotate2-dot [simp]:(rotate2 u)}\cdot(\mathrm{ rotate2 v) =u v
    unfolding inner-vec-def
    by (simp add: setsum-2)
lemma rotate2-scaleR [simp]: rotate2 ( }k\mp@subsup{*}{R}{}x)=k\mp@subsup{*}{R}{}(\mathrm{ rotate2 x)
proof -
    have (rotate2 }(k\mp@subsup{*}{R}{}x))$1=(k\mp@subsup{*}{R}{}(\mathrm{ rotate 2 x)})$1 an
        (rotate2 (k *R x))$2 = (k*R}(\mathrm{ rotate2 x))$2 by simp +
    with real2-eq show ?thesis by simp
qed
lemma rotate2-uminus [simp]: rotate2 ( }-x)=-(\mathrm{ rotate2 }x
proof -
    from scaleR-minus-left [of 1] have
        -1**R}x=-x\mathrm{ and -1 *R (rotate2 }x)=-(\mathrm{ rotate2 }x)\mathrm{ by auto
    with rotate2-scaleR [of -1 x] show ?thesis by simp
qed
lemma rotate2-eq [iff]: rotate2 }x=\mathrm{ rotate2 }y\longleftrightarrowx=
proof
    assume }x=
    thus rotate2 }x=\mathrm{ rotate2 }y\mathrm{ by simp
next
    assume rotate2 }x=\mathrm{ rotate2 y
    hence rotate2 (rotate2 x) = rotate2 (rotate2 y) by simp
    hence -(-x) =-(-y) by simp
```

```
    thus }x=y\mathrm{ by simp
qed
lemma dot2-rearrange-1:
    fixes ux :: real^2
    assumes }u\cdotx=0\mathrm{ and }x$1\not=
    shows u=(u$2 / x$1) * * (rotate2 }x)(\mathrm{ is }u=?\mp@subsup{|}{}{\prime}
proof -
    from }\langleu\cdotx=0\rangle\mathrm{ have }u$1*x$1=-(u$2)*(x$2
        unfolding inner-vec-def
        by (simp add: setsum-2)
    hence u$1*x$1/x$1=-u$2 / x$1*x$2 by simp
    with \langlex$1 =0\rangle have u$1=?u'$1 by simp
    from \langlex$1\not=0\rangle have u$2 = ?u'$2 by simp
    with }\langleu$1=?\mp@subsup{u}{}{\prime$$1\rangle}\mathrm{ and real2-eq show }u=
qed
lemma dot2-rearrange-2:
    fixes ux :: real^2
    assumes }u\cdotx=0\mathrm{ and }x$2\not=
    shows }u=-(u$1/x$2)*R(rotate2 x) (is u=? ' ) 
proof -
    from assms and dot2-rearrange-1 [of rotate2 u rotate2 x] have
        rotate2 }u=\mathrm{ rotate2 ? u' by simp
    thus u=? u' by blast
qed
lemma dot2-rearrange:
    fixes ux :: real^2
    assumes }u\cdotx=0\mathrm{ and }x\not=
    shows \existsk.u=k*R(rotate2 x)
proof cases
    assume x$1 = 0
    with real2-eq [of x 0] and <x \not=0\rangle have x$2 # 0 by auto
    with dot2-rearrange-2 and }\langleu\cdotx=0\rangle\mathrm{ show ?thesis by blast
next
    assume }x$1\not=
    with dot2-rearrange-1 and \langleu \cdot x=0\rangle show ?thesis by blast
qed
lemma real2-orthogonal-dep2:
    fixes uvx :: real^2
    assumes }x\not=0\mathrm{ and u}ux=0\mathrm{ and v}\cdotx=
    shows dep2 u v
proof -
    let ?w = rotate2 }
    from dot2-rearrange and assms have
        \existsrs.u=r*R
    with dep2-def show ?thesis by auto
```


qed

lemma dot-left-diff-distrib:
fixes $u v x$:: real^(' $n::$ finite)
shows $(u-v) \cdot x=(u \cdot x)-(v \cdot x)$
proof -
have $(u \cdot x)-(v \cdot x)=\left(\sum i \in U N I V . u \$ i * x \$ i\right)-\left(\sum i \in U N I V . v \$ i * x \$ i\right)$ unfolding inner-vec-def
by simp
also from setsum-subtractf $[$ of $\lambda i . u \$ i * x \$ i \lambda i . v \$ i * x \$ i]$ have
$\ldots=\left(\sum i \in U N I V . u \$ i * x \$ i-v \$ i * x \$ i\right)$ by simp
also from left-diff-distrib [where ' $a=$ real] have

$$
\ldots=\left(\sum i \in U N I V \cdot(u \$ i-v \$ i) * x \$ i\right) \text { by } \operatorname{simp}
$$

also have

$$
\ldots=(u-v) \cdot x
$$

unfolding inner-vec-def
by simp
finally show ?thesis ..
qed
lemma dot-right-diff-distrib:
fixes u v $x::$ real $^{\wedge}\left({ }^{\prime} n:: f i n i t e\right)$
shows $x \cdot(u-v)=(x \cdot u)-(x \cdot v)$
proof -
from inner-commute have $x \cdot(u-v)=(u-v) \cdot x$ by auto
also from dot-left-diff-distrib [of u v x] have
$\ldots=u \cdot x-v \cdot x$.
also from inner-commute [of x] have
$\ldots=x \cdot u-x \cdot v$ by simp
finally show ?thesis .
qed
lemma am-gm2:
fixes $a b$:: real
assumes $a \geq 0$ and $b \geq 0$
shows sqrt $(a * b) \leq(a+b) / 2$
and sqrt $(a * b)=(a+b) / 2 \longleftrightarrow a=b$
proof -
have $0 \leq(a-b) *(a-b)$ and $0=(a-b) *(a-b) \longleftrightarrow a=b$ by $\operatorname{simp}+$
with right-diff-distrib $[o f a-b a b]$ and left-diff-distrib $[o f ~ a b]$ have
$0 \leq a * a-2 * a * b+b * b$
and $0=a * a-2 * a * b+b * b \longleftrightarrow a=b$ by auto
hence $4 * a * b \leq a * a+2 * a * b+b * b$
and $4 * a * b=a * a+2 * a * b+b * b \longleftrightarrow a=b$ by auto
with distrib-right $[$ of $a+b a b]$ and distrib-left [of $a b]$ have
$4 * a * b \leq(a+b) *(a+b)$
and $4 * a * b=(a+b) *(a+b) \longleftrightarrow a=b$ by (simp add: field-simps $)+$
with real-sqrt-le-mono $[$ of $4 * a * b(a+b) *(a+b)]$
and real-sqrt-eq-iff $[$ of $4 * a * b(a+b) *(a+b)]$ have

```
        sqrt (4*a*b)\leqsqrt ((a+b)*(a+b))
        and sqrt (4*a*b)=sqrt ((a+b)*(a+b))\longleftrightarrowa=b by simp+
    with (a\geq0) and \langleb\geq0\rangle have sqrt (4*a*b)\leqa+b
        and sqrt (4*a*b)=a+b\longleftrightarrowa=b by simp+
    with real-sqrt-abs2 [of 2] and real-sqrt-mult [of 4 a*b] show
        sqrt (a*b)\leq(a+b)/2
        and sqrt (a*b)=(a+b)/2\longleftrightarrowa=b by (simp add:ac-simps)+
qed
lemma refl-on-allrel: ref-on A (A\timesA)
    unfolding refl-on-def
    by simp
lemma refl-on-restrict:
    assumes refl-on A r
    shows refl-on (A\capB)(r\capB\timesB)
proof -
    from 〈refl-on A r` and refl-on-allrel [of B] and refl-on-Int
    show ?thesis by auto
qed
lemma sym-allrel: sym ( }A\timesA\mathrm{ )
    unfolding sym-def
    by simp
lemma sym-restrict:
    assumes symr
    shows sym (r\capA\timesA)
proof -
    from \sym r}>\mathrm{ and sym-allrel and sym-Int
    show ?thesis by auto
qed
lemma trans-allrel: trans ( }A\timesA\mathrm{ )
    unfolding trans-def
    by simp
lemma equiv-Int:
    assumes equiv A r and equiv B s
    shows equiv ( }A\capB)(r\caps
proof -
    from assms and refl-on-Int [of A r B s] and sym-Int and trans-Int
    show ?thesis
        unfolding equiv-def
        by auto
qed
lemma equiv-allrel: equiv A (A 人 A)
    unfolding equiv-def
```

```
    by (simp add: refl-on-allrel sym-allrel trans-allrel)
lemma equiv-restrict:
    assumes equiv A r
    shows equiv ( }A\capB)(r\capB\timesB
proof -
    from \equiv A r> and equiv-allrel [of B] and equiv-Int
    show ?thesis by auto
qed
lemma scalar-vector-matrix-assoc:
    fixes }k:: real and x :: real^(' 'n::finite) and A :: real^('m::finite) ^' n
    shows (k\mp@subsup{*}{R}{}x)v*A=k\mp@subsup{*}{R}{}(xv*A)
proof -
    { fix i
        from setsum-right-distrib [of k \lambdaj. x$j* A$j$i UNIV]
        have (\sumj\inUNIV.k*(x$j*A$j$i))=k*(\sumj\inUNIV.x$j*A$j$i).. }
    thus (k*R
        unfolding vector-matrix-mult-def
        by (simp add: vec-eq-iff algebra-simps)
qed
lemma vector-scalar-matrix-ac:
    fixes }k:: real and x :: real^('n::finite) and A :: real`('m::finite) ^' n
    shows }xv*(k\mp@subsup{*}{R}{}A)=k*R(xv*A
proof -
    have xv* (k\mp@subsup{*}{R}{}A)=(k\mp@subsup{*}{R}{}x)v*A
        unfolding vector-matrix-mult-def
        by (simp add: algebra-simps)
    with scalar-vector-matrix-assoc
    show xv* (k*RA)=k*R
        by auto
qed
lemma vector-matrix-left-distrib:
    fixes x y :: real`(' }n::finite) and A :: real^('m::finite) ^' n
    shows (x+y)v*A=xv*A+yv*A
    unfolding vector-matrix-mult-def
    by (simp add: algebra-simps setsum.distrib vec-eq-iff)
lemma times-zero-vector [simp]: A*v 0=0
    unfolding matrix-vector-mult-def
    by (simp add: vec-eq-iff)
lemma invertible-times-eq-zero:
```



```
    assumes invertible A and A*vx=0
    shows }x=
proof -
```

```
    from <invertible A>
        and someI-ex [of \lambdaA'. A** A' = mat 1 ^ A'** A = mat 1]
    have matrix-inv A ** A = mat 1
        unfolding invertible-def matrix-inv-def
        by simp
    hence }x=(\mathrm{ matrix-inv A** A)*vx by (simp add: matrix-vector-mul-lid)
    also have ... = matrix-inv A*v(A*vx)
    by (simp add: matrix-vector-mul-assoc)
    also from }\langleA*vx=0\rangle\mathrm{ have ... = 0 by simp
    finally show }x=0
qed
lemma vector-transpose-matrix [simp]: x v* transpose A=A*vx
    unfolding transpose-def vector-matrix-mult-def matrix-vector-mult-def
    by simp
lemma transpose-matrix-vector [simp]: transpose A *v x =x v*A
    unfolding transpose-def vector-matrix-mult-def matrix-vector-mult-def
    by simp
lemma transpose-invertible:
    fixes }A::\mp@subsup{real`^('}{\mathrm{ r::finite) ^'}n}{
    assumes invertible A
    shows invertible (transpose A)
proof -
    from <invertible A` obtain }\mp@subsup{A}{}{\prime}\mathrm{ where }A**\mp@subsup{A}{}{\prime}=mat1 and A'** A = mat 1
        unfolding invertible-def
        by auto
    with matrix-transpose-mul [of A A ] and matrix-transpose-mul [of A'A]
    have transpose }\mp@subsup{A}{}{\prime}** transpose A= mat 1 and transpose A ** transpose A'
mat 1
            by (simp add: transpose-mat)+
    thus invertible (transpose A)
            unfolding invertible-def
            by auto
qed
lemma times-invertible-eq-zero:
```



```
    assumes invertible }A\mathrm{ and x v* A=0
    shows }x=
proof -
    from transpose-invertible and <invertible A> have invertible (transpose A) by
auto
    with invertible-times-eq-zero [of transpose A x] and \langlex v* A=0\rangle
    show }x=0\mathrm{ by simp
qed
lemma matrix-id-invertible:
```

```
    invertible (mat 1 :: ('a::semiring-1) ^('n::finite) ^' }n
proof -
    from matrix-mul-lid [of mat 1 :: ' }\mp@subsup{a}{}{\wedge
    show invertible (mat 1 :: 'a a' }\mp@subsup{n}{}{\wedge\prime}n\mathrm{ )
        unfolding invertible-def
        by auto
qed
lemma Image-refl-on-nonempty:
    assumes refl-on Ar and x\inA
    shows }x\in\mp@subsup{r}{}{\prime"}{x
proof
```



```
        unfolding refl-on-def
        by simp
qed
lemma quotient-element-nonempty:
    assumes equiv Ar and X \inA//r
    shows }\existsx.x\in
proof -
    from \langleX\inA//r\rangle obtain x where }x\inA\mathrm{ and }X=\mp@subsup{r}{}{\prime\prime}{x
        unfolding quotient-def
        by auto
    with equiv-class-self [of A r x] and <equiv A r> show \exists x. x \in X by auto
qed
lemma zero-3: (3::3) = 0
    by simp
lemma card-suc-ge-insert:
    fixes }A\mathrm{ and }
    shows card A+1\geq\operatorname{card}(\mathrm{ insert x A)}
proof cases
    assume finite A
    with card-insert-if [of A x] show card A+1\geq card (insert x A) by simp
next
    assume infinite A
    thus card A +1\geq card (insert x A) by simp
qed
lemma card-le-UNIV:
    fixes A :: (' }n::f\mathrm{ inite) set
    shows card A \leqCARD('n)
    by (simp add: card-mono)
lemma partition-Image-element:
    assumes equiv A r and X \in A//r and }x\in
    shows r" }{x}=
```

```
proof -
    from Union-quotient and assms have x\inA by auto
    with quotientI [of x A r] have r" {x}\inA//r by simp
    from equiv-class-self and <equiv A r\rangle and \langlex 位` have }x\in\mp@subsup{r}{}{\prime\prime}{x}\mathrm{ by simp
    from <equiv A r> and \langlex < A> have (x, x) \inr
        unfolding equiv-def and refl-on-def
        by simp
    with quotient-eqI [of A r X r" {x} x x]
        and assms and <Image r {x}\inA//r\rangle and <x \inImage r {x}\rangle
    show r"{x} = X by simp
qed
lemma card-insert-ge: card (insert x A) \geq card A
proof cases
    assume finite A
    with card-insert-le [of A x] show card (insert x A) \geq card A by simp
next
    assume infinite A
    hence card A=0 by simp
    thus card (insert x A) \geq card A by simp
qed
lemma choose-1:
    assumes card S=1
    shows \existsx.S={x}
    using <card S=1) and card-eq-SucD [of S 0]
    by simp
lemma choose-2:
    assumes card S=2
    shows }\existsxy.S={x,y
proof -
    from 〈card S = 2` and card-eq-SucD [of S 1]
    obtain x and T where S = insert x T and card T=1 by auto
    from \card T=1\rangle and choose-1 obtain y where T = {y} by auto
    with }\langleS=\mathrm{ insert x T \ have S={x,y} by simp
    thus }\existsxy.S={x,y}\mathrm{ by auto
qed
lemma choose-3:
    assumes card S=3
    shows }\existsxyz.S={x,y,z
proof -
from <card S = 3> and card-eq-SucD [of S 2]
obtain }x\mathrm{ and T where S= insert x T and card T =2 by auto
from <card T=2` and choose-2 [of T] obtain y and z where T = {y,z} by
```

```
auto
    with }\langleS=\mathrm{ insert x T> have S ={x,y,z} by simp
    thus }\existsxyz.S={x,y,z} by aut
qed
lemma card-gt-0-diff-singleton:
    assumes card S>0 and x\inS
    shows card (S-{x}) = card S-1
proof -
    from <card S>0\rangle have finite S by (rule card-ge-0-finite)
    with <x \inS\rangle
    show card (S-{x}) = card S-1 by (simp add: card-Diff-singleton)
qed
lemma eq-3-or-of-3:
    fixes }j::
    shows j=3\vee (\exists j'::3.j=of-int (Rep-bit1 j'))
proof (induct j)
    fix j-int :: int
    assume 0\leqj-int
    assume j-int < int CARD(4)
    hence j-int \leq 3 by simp
    show of-int j-int =(3::4)\vee(\exists j'::3. of-int j-int =of-int (Rep-bit1 j'))
    proof cases
    assume j-int = 3
    thus
                of-int j-int =(3::4)\vee (\exists j'::3. of-int j-int =of-int (Rep-bit1 j'))
            by simp
    next
        assume j-int \not= 3
        with \langlej-int \leq 3\rangle have j-int < 3 by simp
        with <0 \leqj-int\rangle have j-int \in{0..<3} by simp
        hence Rep-bit1 (Abs-bit1 j-int :: 3) = j-int
            by (simp add: bit1.Abs-inverse)
    hence of-int j-int =of-int (Rep-bit1 (Abs-bit1 j-int :: 3)) by simp
    thus
                of-int j-int =(3::4)}\vee\mp@code{(\exists j'::3. of-int j-int =of-int (Rep-bit1 j'))
        by auto
    qed
qed
lemma sgn-plus:
    fixes }x\mathrm{ y :: ' }a:::linordered-idom
    assumes sgn x = sgn y
    shows sgn (x+y)=\operatorname{sgn}x
proof cases
    assume x =0
    with <sgn x = sgn y> have y=0 by (simp add: sgn-0-0)
```

```
    with \langlex=0\rangle show sgn (x+y) = sgn x by (simp add: sgn-0-0)
next
    assume }x\not=
    show sgn (x+y) = sgn }
    proof cases
        assume x>0
        with <sgn x = sgn y> and sgn-1-pos [where ?' }a=\mp@subsup{=}{}{\prime}a]\mathrm{ have }y>0\mathrm{ by simp
        with }\langlex>0\rangle\mathrm{ and sgn-1-pos [where ?' }a=\mp@subsup{=}{}{\prime}a
        show sgn (x+y)= sgn x by simp
    next
        assume }\negx>
        with \langlex\not=0\rangle have }x<0\mathrm{ by simp
        with }\langle\operatorname{sgn}x=\operatorname{sgn}y\rangle\mathrm{ and sgn-1-neg [where ?' }a='='a] have y<0 by aut
        with <x<0\rangle and sgn-1-neg [where ?' }a=\mp@subsup{}{}{\prime}a\mathrm{ ]
        show sgn (x+y)=\operatorname{sgn x by simp}
    qed
qed
lemma sgn-div:
    fixes x y :: 'a::linordered-field
    assumes }y\not=0\mathrm{ and sgn }x=\operatorname{sgn}
    shows }x/y>
proof cases
    assume y>0
    with }\langle\operatorname{sgn}x=\operatorname{sgn}y\rangle\mathrm{ and sgn-1-pos [where ?' }a='='a] have x>0 by sim
    with }\langley>0\rangle\mathrm{ show }x/y>0\mathrm{ by (simp add: zero-less-divide-iff)
next
    assume }\negy>
    with }\langley\not=0\rangle\mathrm{ have }y<0\mathrm{ by simp
    with }\langle\operatorname{sgn}x=\operatorname{sgn}y\rangle\mathrm{ and sgn-1-neg [where ?' a = 'a] have }x<0\mathrm{ by simp
    with }\langley<0\rangle\mathrm{ show }x/y>0\mathrm{ by (simp add: zero-less-divide-iff)
qed
lemma abs-plus:
    fixes x y :: 'a::linordered-idom
    assumes \operatorname{sgn}x=\operatorname{sgn}y
    shows }|x+y|=|x|+|y
proof -
    from <sgn x = sgn y` have sgn (x+y) = sgn x by (rule sgn-plus)
    hence }|x+y|=(x+y)*\operatorname{sgn}x\mathrm{ by (simp add:abs-sgn)
    also from <sgn x= sgn y>
    have ...= x * sgn x + y* sgn y by (simp add: algebra-simps)
    finally show }|x+y|=|x|+|y| by (simp add: abs-sgn
qed
lemma sgn-plus-abs:
    fixes }xy\mathrm{ :: 'a::linordered-idom
    assumes }|x|>|y
    shows }\operatorname{sgn}(x+y)=\operatorname{sgn}
```

```
proof cases
    assume x>0
    with \|x| > |y|> have }x+y>0\mathrm{ by simp
    with }\langlex>0\rangle\mathrm{ show sgn (x+y)= sgn x by simp
next
    assume }\negx>
    from }\langle|x|> |y|\rangle have x\not=0 by sim
    with }\langle\negx>0\rangle\mathrm{ have }x<0\mathrm{ by simp
    with }\langle|x|> |y|\rangle have x+y<0 by sim
    with }\langlex<0\rangle\mathrm{ show sgn (x+y)= sgn x by simp
qed
lemma sqrt-4 [simp]: sqrt 4 =2
proof -
    have sqrt 4 = sqrt (2 * 2) by simp
    thus sqrt 4 = 2 by (unfold real-sqrt-abs2) simp
qed
end
```


3 Tarski's geometry

theory Tarski
imports Complex-Main Miscellany Metric
begin

3.1 The axioms

The axioms, and all theorems beginning with th followed by a number, are based on corresponding axioms and theorems in [3].

```
locale tarski-first3 \(=\)
    fixes \(C:: ' p \Rightarrow{ }^{\prime} p \Rightarrow{ }^{\prime} p \Rightarrow{ }^{\prime} p \Rightarrow\) bool \(\quad(--\equiv--[99,99,99,99] 50)\)
    assumes \(A 1: \forall a b, a b \equiv b a\)
    and A2: \(\forall a b p q r s . a b \equiv p q \wedge a b \equiv r s \longrightarrow p q \equiv r s\)
    and \(A 3: \forall a b c . a b \equiv c c \longrightarrow a=b\)
locale tarski-first5 \(=\) tarski-first3 +
    fixes \(B:: ~ ' p \Rightarrow{ }^{\prime} p \Rightarrow{ }^{\prime} p \Rightarrow\) bool
    assumes \(A 4: \forall q a b c\). \(\exists x . B q a x \wedge a x \equiv b c\)
    and \(A 5: \forall a b c d a^{\prime} b^{\prime} c^{\prime} d^{\prime} . a \neq b \wedge B a b c \wedge B a^{\prime} b^{\prime} c^{\prime}\)
                                    \(\wedge a b \equiv a^{\prime} b^{\prime} \wedge b c \equiv b^{\prime} c^{\prime} \wedge a d \equiv a^{\prime} d^{\prime} \wedge\)
\(b d \equiv b^{\prime} d^{\prime}\)
                                    \(\longrightarrow c d \equiv c^{\prime} d^{\prime}\)
```

locale tarski-absolute-space $=$ tarski-first5 +
assumes $A 6: \forall a b . B a b a \longrightarrow a=b$
and $A 7$: $\forall a b c p q . B a p c \wedge B b q c \longrightarrow(\exists x . B p x b \wedge B q x a)$

```
and A11: \(\forall X Y .(\exists a . \forall x y . x \in X \wedge y \in Y \longrightarrow B\) axy)
    \(\longrightarrow(\exists b . \forall x y . x \in X \wedge y \in Y \longrightarrow B x b y)\)
```

locale tarski-absolute $=$ tarski-absolute-space +
assumes $A 8: \exists a b c . \neg B a b c \wedge \neg B b c a \wedge \neg B c a b$
and $A 9: \forall p q a b c . p \neq q \wedge a p \equiv a q \wedge b p \equiv b q \wedge c p \equiv c q$
$\longrightarrow B a b c \vee B b c a \vee B c a b$
locale tarski-space $=$ tarski-absolute-space +
assumes A10: $\forall a b c d t$. $B a d t \wedge B b d c \wedge a \neq d$
$\longrightarrow(\exists x y . B a b x \wedge B a c y \wedge B x t y)$
locale tarski $=$ tarski-absolute + tarski-space

3.2 Semimetric spaces satisfy the first three axioms

```
context semimetric
begin
```



```
        where [simp]: a b \equivsm c d \triangleq dist ab= dist c d
end
sublocale semimetric < tarski-first3 smC
proof
    from symm show }\forallab.ab\mp@subsup{\equiv}{sm}{}ba\mathrm{ by simp
    show }\forallabpqrs.ab\mp@subsup{\equiv}{sm}{}pq\wedgeab\mp@subsup{\equiv}{sm}{}rs\longrightarrowpq\mp@subsup{\equiv}{sm}{}rs\mathrm{ by simp
    show }\forallabc.ab\mp@subsup{\equiv}{sm}{}cc\longrightarrowa=b by sim
qed
```


3.3 Some consequences of the first three axioms

```
context tarski-first3
begin
    lemma \(A 1^{\prime}: a b \equiv b a\)
    by (simp add: A1)
    lemma \(A 2^{\prime}: \llbracket a b \equiv p q ; a b \equiv r s \rrbracket \Longrightarrow p q \equiv r s\)
    proof -
    assume \(a b \equiv p q\) and \(a b \equiv r s\)
    with \(A 2\) show ?thesis by blast
qed
lemma \(A 3^{\prime}: a b \equiv c c \Longrightarrow a=b\)
    by (simp add: A3)
theorem th2-1: \(a b \equiv a b\)
proof -
    from \(A 2^{\prime}\left[\begin{array}{llll}o f & b & a & b \\ a & b\end{array}\right]\) and \(A 1^{\prime}\left[\begin{array}{ll}\text { of } b & a\end{array}\right]\) show ?thesis by simp
qed
```

```
theorem th2-2: ab\equivcd\Longrightarrowcd\equivab
proof -
    assume ab\equivcd
    with A2'[of a blccla b] and th2-1 [of a b] show ?thesis by simp
qed
theorem th2-3: \llbracketab\equivcd;cd\equivef\rrbracket\Longrightarrowab\equivef
proof -
    assume ab\equivcd
    with th2-2 [of abced] have cd \equiva b by simp
    assume cd\equivef
    with A2'[ [of c d a bef] and <c d \equivab> show ?thesis by simp
qed
theorem th2-4: a b \equivcd\Longrightarrowba\equivcd
proof -
    assume a b \equivcd
    with th2-3 [of b a a b c d] and A1'[of b a] show ?thesis by simp
qed
theorem th2-5: a b\equivcd\Longrightarrowab\equivdc
proof -
    assume ab\equivcd
    with th2-3 [of a blccld
qed
definition is-segment :: 'p set }=>\mathrm{ bool where
is-segment }X\triangleq\existsxy.X={x,y
definition segments :: ' 
segments }={X.is-segment X 
definition SC :: 'p set }=>\mathrm{ 'p set }=>\mathrm{ bool where
SCXY\triangleq\existswxyz.X={w,x}\wedgeY={y,z}\wedgewx\equivyz
definition SC-rel :: (' p set }\times\mathrm{ ' p set) set where
SC-rel ={(X,Y)|XY.SCXY}
lemma left-segment-congruence:
    assumes {a,b} ={p,q} and pq\equivcd
    shows ab\equivcd
proof cases
    assume a = p
    with unordered-pair-element-equality [of a b p q] and <{a,b} ={p,q}>
        have b=q by simp
    with }\langlepq\equivcd\rangle\mathrm{ and }\langlea=p\rangle\mathrm{ show ?thesis by simp
next
    assume }a\not=
    with }\langle{a,b}={p,q}> have a=q by aut
```

```
    with unordered-pair-element-equality [of a b q p] and <{a,b} ={p,q}>
    have b=p by auto
    with }\langlepq\equivcd\rangle\mathrm{ and }\langlea=q\rangle have b a\equivcd by sim
    with th2-4 [of b a c c d] show ?thesis by simp
qed
lemma right-segment-congruence:
    assumes {c,d}={p,q} and ab\equivpq
    shows ab\equivcd
proof -
    from th2-2 [of a b p q] and <a b\equivp q> have p q\equiva b by simp
    with left-segment-congruence [of c d p qa b] and «{c,d} ={p,q}\rangle
        have cd\equivab by simp
    with th2-2 [of c d a b] show ?thesis by simp
qed
lemma C-SC-equiv: a b \equivcd=SC {a,b}{c,d}
proof
    assume ab\equivcd
    with SC-def [of {a,b} {c,d}] show SC {a,b} {c,d} by auto
next
    assume SC {a,b} {c,d}
    with SC-def [of {a,b} {c,d}]
    obtain wxyz where {a,b}={w,x} and {c,d}={y,z} and wx\equivyz
        by blast
    from left-segment-congruence [of a b wxyz] and
        <{a,b} ={w,x}> and
        \langlew x \equivyz\rangle
    have }ab\equivyz\mathrm{ by simp
    with right-segment-congruence [of c d y zab] and <{c,d} ={y,z}>
    show ab \equivcd by simp
qed
lemmas SC-refl =th2-1 [simplified]
lemma SC-rel-refl: refl-on segments SC-rel
proof -
    note refl-on-def [of segments SC-rel]
    moreover
    { fix Z
    assume Z }\inSC\mathrm{ -rel
    with SC-rel-def obtain X Y where Z = (X,Y) and SC X Y by auto
    from }\langleSCXY\rangle and SC-def [of X Y]
        have }\existswx.X={w,x}\mathrm{ and }\existsyz.Y={y,z} by aut
        with is-segment-def [of X] and is-segment-def [of Y]
            have is-segment }X\mathrm{ and is-segment }Y\mathrm{ by auto
        with segments-def have }X\in\mathrm{ segments and Y}\in\mathrm{ segments by auto
        with }\langleZ=(X,Y)\rangle have Z\in segments \times segments by simp 
    hence SC-rel \subseteq segments }\times\mathrm{ segments by auto
```

```
moreover
    {fix }
    assume X \in segments
    with segments-def have is-segment X by auto
    with is-segment-def [of X] obtain x y where }X={x,y}\mathrm{ by auto
    with SC-def [of X X] and SC-refl have SC X X by (simp add: C-SC-equiv)
    with SC-rel-def have (X,X)\inSC-rel by simp }
    hence }\forallX.X\in\mathrm{ segments }\longrightarrow(X,X)\inSC-rel by sim
    ultimately show ?thesis by simp
qed
lemma SC-sym:
    assumes SC X Y
    shows SC Y X
proof -
    from SC-def [of X Y] and <SC X Y>
        obtain wxyz where }X={w,x}\mathrm{ and Y}={y,z} and wx\equivy
            by auto
    from th2-2 [of wxyz] and \langlewx\equivyz\rangle have y z\equivwx by simp
    with SC-def [of YX] and \langleX = {w,x}\rangle and \langleY={y,z}>
        show SC Y X by (simp add: C-SC-equiv)
qed
lemma SC-sym': SC X Y =SC YX
proof
    assume SC X Y
    with SC-sym [of X Y] show SC Y X by simp
next
    assume SC Y X
    with SC-sym [of YX] show SC X Y by simp
qed
lemma SC-rel-sym: sym SC-rel
proof -
    { fix X Y
        assume (X,Y)\inSC-rel
        with SC-rel-def have SC X Y by simp
        with SC-sym' have SC Y X by simp
        with SC-rel-def have ( Y,X) \inSC-rel by simp }
    with sym-def [of SC-rel] show ?thesis by blast
qed
lemma SC-trans:
    assumes SC X Y and SCYZ
    shows SC X Z
proof -
    from SC-def [of X Y] and \langleSC X Y>
        obtain wxyz where }X={w,x}\mathrm{ and }Y={y,z} and wx\equivy
            by auto
```

```
    from SC-def [of Y Z] and {SC Y Z\rangle
    obtain pqrs where }Y={p,q} and Z={r,s} and pq\equivrs by aut
    from \langleY ={y,z}\rangle and \langleY={p,q}\rangle and \langlepq\equivrs\rangle
    have yz\equivrs by (simp add:C-SC-equiv)
    with th2-3 [of wxyyrs] and \langlewx \equivy z> have wx\equivrs by simp
    with SC-def [of X Z] and \langleX ={w,x}\rangle and \langleZ ={r,s}\rangle
    show SC X Z by (simp add:C-SC-equiv)
qed
lemma SC-rel-trans: trans SC-rel
proof -
    { fix X Y Z
        assume (X,Y)\inSC-rel and (Y,Z)\inSC-rel
        with SC-rel-def have SCX Y and SC Y Z by auto
        with SC-trans [of X Y Z] have SC X Z by simp
        with SC-rel-def have (X,Z)\inSC-rel by simp }
    with trans-def [of SC-rel] show ?thesis by blast
qed
lemma A3-reversed:
    assumes a a\equivbc
    shows b=c
proof -
    from 〈a a \equivb c\rangle have b c\equiva a by (rule th2-2)
    thus b=c by (rule A3')
qed
lemma equiv-segments-SC-rel: equiv segments SC-rel
    by (simp add: equiv-def SC-rel-refl SC-rel-sym SC-rel-trans)
end
```


3.4 Some consequences of the first five axioms

```
context tarski-first5
begin
    lemma A4': \existsx. B qax^ax\equivbc
        by (simp add: A4 [simplified])
    theorem th2-8: a a \equivbb
    proof -
        from A4'[of-abb] obtain x where a x \equivb b by auto
        with }A\mp@subsup{3}{}{\prime}[\begin{array}{lll}{a}&{x}&{b}\end{array}]\mathrm{ have }x=a\mathrm{ by simp
        with }\langleax\equivbb\rangle\mathrm{ show ?thesis by simp
    qed
    definition OFS :: ['p,'p,'p,'p,'p,'p,'p,'p]=> bool where
        OFS abced a' b' c' d'利
        Babc^B a}\mp@subsup{b}{}{\prime}\mp@subsup{c}{}{\prime}\wedgeab\equiv\mp@subsup{a}{}{\prime}\mp@subsup{b}{}{\prime}\wedgebc\equiv\mp@subsup{b}{}{\prime}\mp@subsup{c}{}{\prime}\wedgead\equiv\mp@subsup{a}{}{\prime}\mp@subsup{d}{}{\prime}\wedgebd\equiv\mp@subsup{b}{}{\prime}\mp@subsup{d}{}{\prime
```

lemma $A 5^{\prime}: \llbracket O F S$ abced $a^{\prime} b^{\prime} c^{\prime} d^{\prime} ; a \neq b \rrbracket \Longrightarrow c d \equiv c^{\prime} d^{\prime}$ proof -
assume OFS abcclall$a^{\prime} b^{\prime} c^{\prime} d^{\prime}$ and $a \neq b$
with $A 5$ and $O F S$-def show ?thesis by blast
qed
theorem th2-11:
assumes hypotheses:
$B a b c$
$B a^{\prime} b^{\prime} c^{\prime}$
$a b \equiv a^{\prime} b^{\prime}$
$b c \equiv b^{\prime} c^{\prime}$
shows $a c \equiv a^{\prime} c^{\prime}$
proof cases
assume $a=b$
with $\left\langle a b \equiv a^{\prime} b^{\prime}\right\rangle$ have $a^{\prime}=b^{\prime}$ by (simp add: A3-reversed) with $\left\langle b c \equiv b^{\prime} c^{\prime}\right\rangle$ and $\langle a=b\rangle$ show?thesis by simp
next
assume $a \neq b$
moreover
note $A 5^{\prime}\left[\begin{array}{lllllll}o f & a & b & c & a & a^{\prime} & b^{\prime} \\ c^{\prime} & a\end{array}\right]$ and
unordered-pair-equality [of $a c$] and unordered-pair-equality [of $a^{\prime} c$]
moreover
from OFS-def $\left[\begin{array}{llllll}o f & a & b & a & a^{\prime} & b^{\prime}\end{array} c^{\prime} a^{\prime}\right]$ and
hypotheses and th2-8 [of a a \quad] and unordered-pair-equality $[$ of $a b]$ and unordered-pair-equality [of $a^{\prime} b^{\prime}$]
have OFS a b c a $a^{\prime} b^{\prime} c^{\prime} a^{\prime}$ by (simp add: C-SC-equiv)
ultimately show ?thesis by (simp add: C-SC-equiv)
qed
lemma A_{4}-unique:
assumes $q \neq a$ and $B q a x$ and $a x \equiv b c$
and $B q a x^{\prime}$ and $a x^{\prime} \equiv b c$
shows $x=x^{\prime}$
proof -
from $S C$-sym ${ }^{\prime}$ and $S C$-trans and C-SC-equiv and $\left\langle a x^{\prime} \equiv b c\right\rangle$ and $\langle a x \equiv b$
c)
have $a x \equiv a x^{\prime}$ by blast
with th2-11 [of qaax q a x] and $\langle B q a x\rangle$ and $\left\langle B q a x^{\prime}\right\rangle$ and $S C$-refl
have $q x \equiv q x^{\prime}$ by simp
with OFS-def $[$ of q a x x \quad qaxx $]$ and
$\langle B q a x\rangle$ and SC-refl and
$\left\langle a x \equiv a x^{\text {〉 }}\right.$ 〉
have OFS q a x x q a $x x^{\prime}$ by simp

```
    with A5'[of qax x qa ax x] and <q\not=a> have x x \equiv x x' by simp
    thus x= 㐌方y (rule A3-reversed)
qed
theorem th2-12:
    assumes q\not=a
    shows }\exists\mathrm{ !x. B qax}^ax\equivb
    using }\langleq\not=a\rangle\mathrm{ and A4'' and A4-unique
    by blast
end
```


3.5 Simple theorems about betweenness

theorem (in tarski-first5) th3-1: B abb
proof -
from $A 4$ [rule-format, of $a b b b]$ obtain x where $B a b x$ and $b x \equiv b b$ by auto
from $A 3$ [rule-format, of $b x b$] and $\langle b x \equiv b b\rangle$ have $b=x$ by simp with $\langle B a b x\rangle$ show $B a b b$ by simp
qed
context tarski-absolute-space
begin
lemma $A 6^{\prime}$:
assumes $B a b a$
shows $a=b$
proof -
from $A 6$ and $\langle B a b$ a show $a=b$ by simp
qed
lemma $A^{7} 7^{\prime}$:
assumes $B a p c$ and $B b q c$
shows $\exists x . B p x b \wedge B q x a$
proof -
from $A 7$ and $\langle B a p c\rangle$ and $\langle B b q c\rangle$ show ?thesis by blast
qed
lemma $A 11^{\prime}$:
assumes $\forall x y . x \in X \wedge y \in Y \longrightarrow B$ axy
shows $\exists b . \forall x y . x \in X \wedge y \in Y \longrightarrow B x b y$
proof -
from assms have $\exists a . \forall x y . x \in X \wedge y \in Y \longrightarrow B a x y$ by (rule exI)
thus $\exists b . \forall x y . x \in X \wedge y \in Y \longrightarrow B x b y$ by (rule A11 [rule-format])
qed
theorem th3-2:
assumes $B a b c$
shows $B c b a$
proof -

```
    from th3-1 have B b c c by simp
    with }A\mp@subsup{7}{}{\prime}\mathrm{ and }\langleBabc\rangle\mathrm{ obtain x where Bbxb and B cxa by blast
    from A\mp@subsup{b}{}{\prime}}\mathrm{ and }\langleBbxb\rangle\mathrm{ have }x=b\mathrm{ by auto
    with <B c x a` show B c b a by simp
qed
theorem th3-4:
    assumes Babc and Bbac
    shows }a=
proof -
    from \langleBabc\rangle and \langleB bac\rangle and A\mp@subsup{7}{}{\prime}}[\begin{array}{ll}{0f}&{abcb}
    obtain x where B bxb and B a x a by auto
    hence }b=x\mathrm{ and }a=x\mathrm{ by (simp-all add: A6')
    thus }a=b\mathrm{ by simp
qed
theorem th3-5-1:
    assumes Babd and Bbcd
    shows Babc
proof -
    from }\langleBabd\rangle and \langleB b c d > and A7'[of ablobl
    obtain x where Bbxb and Bcxa by auto
    from }\langleB|xb\rangle\mathrm{ have b=x by (rule A6')
    with }\langleBcxa\\\mathrm{ have B c b a by simp
    thus Babc by (rule th3-2)
qed
theorem th3-6-1:
    assumes Babc and Bacd
    shows B b c d
proof -
    from }\langleBacd\rangle and \langleBabc\rangle and th3-2 have Bd ca and B cba by fast
    hence B d c b by (rule th3-5-1)
    thus B b c d by (rule th3-2)
qed
theorem th3-7-1:
    assumes b\not=c and Babc and Bbcd
    shows B a c d
proof -
    from A4' obtain x where Bacx and cx\equivcd by fast
    from \langleBabc\rangle and \langleBacx\rangle have B b cx by (rule th3-6-1)
    have cd\equivc d by (rule th2-1)
    with }\langleb\not=c\rangle\mathrm{ and }\langleBbcx\rangle\mathrm{ and }\langlecx\equivc \ d\rangle and \langleB b c d
    have }x=d\mathrm{ by (rule A4-unique)
    with \langleBacx\rangle show Bacd by simp
qed
theorem th3-7-2:
```

```
    assumes b\not=c and Babc and Bbcd
    shows B abd
    proof -
        from \langleB b c d\rangle and \langleB ab c\rangle and th3-2 have B d cb and B cba by fast+
        with }\langleb\not=c\rangle\mathrm{ and th3-7-1 [of c b d a] have B d b a by simp
        thus B a b d by (rule th3-2)
    qed
end
```


3.6 Simple theorems about congruence and betweenness

```
definition (in tarski-first5) Col \(::\) ' \(p \Rightarrow{ }^{\prime} p \Rightarrow\) ' \(p \Rightarrow\) bool where
    Col \(a b c \triangleq B a b c \vee B b c a \vee B c a b\)
end
```


4 Real Euclidean space and Tarski's axioms

theory Euclid-Tarski
imports Tarski
begin

4.1 Real Euclidean space satisfies the first five axioms

abbreviation

```
real-euclid- \(C\) :: \(\left[\operatorname{real}^{\wedge}\left({ }^{\prime} n::\right.\right.\) finite \()\), real \(^{\wedge}\left({ }^{\prime} n\right), \operatorname{real}^{\wedge}\left({ }^{\prime} n\right)\), real \(\left.{ }^{\wedge}\left({ }^{\prime} n\right)\right] \Rightarrow\) bool
\(\left(--\equiv_{\mathbb{R}}-\right.\) - \(\left.\left.99,99,99,99\right] 50\right)\) where
    real-euclid- \(C \triangleq\) norm-metric.smC
definition real-euclid- \(B::\left[\right.\) real \(^{\wedge}\left({ }^{\prime} n:: f i n i t e\right)\), real \(\left.^{\wedge}\left({ }^{\prime} n\right), \operatorname{real}^{\wedge}\left({ }^{\prime} n\right)\right] \Rightarrow\) bool
\(\left(B_{\mathbb{R}}--[99,99,99] 50\right)\) where
    \(B_{\mathbb{R}} a b c \triangleq \exists l .0 \leq l \wedge l \leq 1 \wedge b-a=l *_{R}(c-a)\)
```

interpretation real-euclid: tarski-first5 real-euclid-C real-euclid-B
proof

By virtue of being a semimetric space, real Euclidean space is already known to satisfy the first three axioms.
$\{$ fix $q a b c$
have $\exists x . B_{\mathbb{R}} q a x \wedge a x \equiv_{\mathbb{R}} b c$
proof cases
assume $q=a$
let ? $x=a+c-b$
have $B_{\mathbb{R}} q a ? x$
proof -
let ?l $=0$:: real
note real-euclid-B-def $\left.\left[\begin{array}{lll}\text { of } q & a\end{array}\right] x\right]$
moreover
have $? l \geq 0$ and $? l \leq 1$ by auto

```
    moreover
            from }\langleq=a\rangle\mathrm{ have }a-q=0 by sim
            hence }a-q=?l\mp@subsup{*}{R}{}(?x-q)\mathrm{ by simp
            ultimately show ?thesis by auto
    qed
    moreover
    have }a-?,x=b-c\mathrm{ by simp
    hence a?x }\mp@subsup{\equiv}{\mathbb{R}}{}bc\mathrm{ by (simp add: field-simps)
    ultimately show ?thesis by blast
next
    assume q}=
    hence norm-dist q a>0 by simp
    let ?k = norm-dist b c / norm-dist qa
    let ? }x=a+?k**R(a-q
    have }\mp@subsup{B}{\mathbb{R}}{}q|a?
    proof -
        let ?l = 1/(1 + ?k)
        have ?l > 0 by (simp add: add-pos-nonneg)
        note real-euclid-B-def [of q a ?.x]
        moreover
            have ?l \geq0 and ?l }\leq1\mathrm{ by (auto simp add: add-pos-nonneg)
        moreover
            from scaleR-left-distrib [of 1 ?k a - q]
                have (1 + ?k) *R (a-q)=?x - q by simp
            hence ?l * * ((1 + ?k) **R (a-q)) =?l * *R (?x - q) by simp
            with 〈?l > 0\rangle and scaleR-right-diff-distrib [of ?l ?x q]
            have }a-q=?l\mp@subsup{*}{R}{}(?x-q) by sim
        ultimately show }\mp@subsup{B}{\mathbb{R}}{}qa?\mathrm{ ?x by blast
    qed
    moreover
        have }a\mathrm{ ? }x\mp@subsup{\equiv}{\mathbb{R}}{}b
        proof -
            from norm-scaleR [of ?k a - q] have
                norm-dist a ? x = |?k | * norm ( a q q) by simp
            also have
                \ldots.=?k * norm ( a - q) by simp
            also from norm-metric.symm [of q a] have
            ..= ?k * norm-dist q a by simp
            finally have
                norm-dist a ?x = norm-dist b c / norm-dist q a * norm-dist qa.
            with <norm-dist q a>0) show a ? x }\mp@subsup{\equiv}{\mathbb{R}}{}bc\mathrm{ by auto
            qed
    ultimately show ?thesis by blast
    qed }
thus }\forallqabc.\existsx.\mp@subsup{B}{\mathbb{R}}{}qax\wedgeax\mp@subsup{\equiv}{\mathbb{R}}{}bc\mathrm{ by auto
{fix abcd a' b}\mp@subsup{c}{}{\prime}\mp@subsup{d}{}{\prime
    assume a\not=b and
    B}\mp@subsup{\mathbb{R}}{}{\prime}abc\mathrm{ and
    B}\mp@subsup{\mathbb{R}}{}{}\mp@subsup{a}{}{\prime}\mp@subsup{b}{}{\prime}\mp@subsup{c}{}{\prime}\mathrm{ and
```

```
ab}\mp@subsup{\equiv}{\mathbb{R}}{}\mp@subsup{a}{}{\prime}\mp@subsup{b}{}{\prime}\mathrm{ and
    bc}\mp@subsup{\equiv}{\mathbb{R}}{}\mp@subsup{b}{}{\prime}\mp@subsup{c}{}{\prime}\mathrm{ and
    ad}\mp@subsup{\equiv}{\mathbb{R}}{}\mp@subsup{a}{}{\prime}\mp@subsup{d}{}{\prime}\mathrm{ and
    bd}\mp@subsup{\equiv}{\mathbb{R}}{}\mp@subsup{b}{}{\prime}\mp@subsup{d}{}{\prime
have cd}\mp@subsup{\equiv}{\mathbb{R}}{}\mp@subsup{c}{}{\prime}\mp@subsup{d}{}{\prime
proof -
    { fix m
    fix p q r :: real^(' }n::finite
    assume 0\leqm and
        m}\leq1\mathrm{ and
        p\not=q and
        q-p=m**}(r-p
    from }\langlep\not=q\rangle\mathrm{ and }\langleq-p=m\mp@subsup{*}{R}{}(r-p)\rangle\mathrm{ have m}=
    proof -
        { assume m=0
            with }\langleq-p=m\mp@subsup{*}{R}{}(r-p)\rangle\mathrm{ have }q-p=0 by sim
            with }\langlep\not=q\rangle\mathrm{ have False by simp }
        thus ?thesis ..
    qed
    with <m\geq0\rangle have m>0 by simp
    from }\langleq-p=m*\mp@subsup{*}{R}{}(r-p)\rangle\mathrm{ and
        scaleR-right-diff-distrib [of m r p]
        have}q-p=m*\mp@subsup{*}{R}{}r-m\mp@subsup{*}{R}{}p\mathrm{ by simp
    hence }q-p-q+p-m*\mp@subsup{*}{R}{}r
        m**R r-m**R p-q+p-m*Rr
        by simp
    with scaleR-left-diff-distrib [of 1 m p] and
        scaleR-left-diff-distrib [of 1 m q]
        have (1-m) *R p-(1-m)*R}q=m*\mp@subsup{*}{R}{}q-m\mp@subsup{*}{R}{}r\mathrm{ by auto
    with scaleR-right-diff-distrib [of 1-mpq] and
        scaleR-right-diff-distrib [of m q r]
        have (1-m) *R (p-q)=m**R (q-r) by simp
    with norm-scaleR [of 1-mp-q] and norm-scaleR [of m q-r]
        have }|1-m|*\operatorname{norm}(p-q)=|m|*\operatorname{norm}(q-r)\mathrm{ by simp
    with }\langlem>0\rangle\mathrm{ and <m}\leq1
        have norm (q-r)=(1-m)/m*norm ( }p-q\mathrm{ ) by simp
    moreover from }\langlep\not=q\rangle\mathrm{ have norm (p-q) #0 by simp
    ultimately
        have norm (q-r)/ norm ( p-q)=(1-m)/m by simp
    with < }m\not=0\mathrm{ \ have
    norm-dist q r / norm-dist p q=(1-m)/m and m\not=0 by auto }
note linelemma = this
from real-euclid-B-def [of a b c] and \langleB\mathbb{R}
    obtain l where 0\leql and l\leq1 and b-a=l *R}(c-a) by aut
from real-euclid-B-def [of a' b}\mp@subsup{b}{}{\prime
    obtain l' where }0\leq\mp@subsup{l}{}{\prime}\mathrm{ and }\mp@subsup{l}{}{\prime}\leq1\mathrm{ and }\mp@subsup{b}{}{\prime}-\mp@subsup{a}{}{\prime}=\mp@subsup{l}{}{\prime}\mp@subsup{*}{R}{}(\mp@subsup{c}{}{\prime}-\mp@subsup{a}{}{\prime})\mathrm{ by auto
from }\langlea\not=b\rangle\mathrm{ and }\langleab\mp@subsup{\equiv}{\mathbb{R}}{}\mp@subsup{a}{}{\prime}\mp@subsup{b}{}{\prime}\rangle\mathrm{ have }\mp@subsup{a}{}{\prime}\not=\mp@subsup{b}{}{\prime}\mathrm{ by auto
from linelemma [of l a b c] and
        <l\geq0> and
```

$$
\begin{aligned}
& \langle l \leq 1\rangle \text { and } \\
& \langle a \neq b\rangle \text { and } \\
& \left\langle b-a=l *_{R}(c-a)\right\rangle
\end{aligned}
$$

have $l \neq 0$ and $(1-l) / l=$ norm-dist $b c / n o r m-d i s t ~ a b$ by auto
from $\langle(1-l) / l=$ norm-dist $b c /$ norm-dist $a b\rangle$ and

$$
\left\langle a b \equiv_{\mathbb{R}} a^{\prime} b^{\prime}\right\rangle \text { and }
$$

$$
\left\langle b c \equiv_{\mathbb{R}} b^{\prime} c^{\prime}\right\rangle
$$

have $(1-l) / l=$ norm-dist $b^{\prime} c^{\prime} /$ norm-dist $a^{\prime} b^{\prime}$ by simp with linelemma $\left[\begin{array}{llll}\text { of } & l^{\prime} & a^{\prime} & b^{\prime} \\ c^{\prime}\end{array}\right]$ and

$$
\begin{aligned}
& \left\langle l^{\prime} \geq 0\right\rangle \text { and } \\
& \left\langle l^{\prime} \leq 1\right\rangle \text { and } \\
& \left\langle a^{\prime} \neq b^{\prime}\right\rangle \text { and } \\
& \left\langle b^{\prime}-a^{\prime}=l^{\prime} *_{R}\left(c^{\prime}-a^{\prime}\right)\right\rangle
\end{aligned}
$$

have $l^{\prime} \neq 0$ and $(1-l) / l=\left(1-l^{\prime}\right) / l^{\prime}$ by auto
from $\left\langle(1-l) / l=\left(1-l^{\prime}\right) / l^{\prime}\right\rangle$
have $(1-l) / l * l * l^{\prime}=\left(1-l^{\prime}\right) / l^{\prime} * l * l^{\prime}$ by simp
with $\langle l \neq 0\rangle$ and $\left\langle l^{\prime} \neq 0\right\rangle$ have $(1-l) * l^{\prime}=\left(1-l^{\prime}\right) * l$ by simp with left-diff-distrib $\left[\begin{array}{lll}\text { of } 1 & l & l\end{array}\right]$ and left-diff-distrib $\left[\begin{array}{lll}o f & 1 & l^{\prime}\end{array}\right]$
have $l=l^{\prime}$ by simp
$\{$ fix m
fix $p q r s::$ real $^{\wedge}\left({ }^{\prime} n::\right.$ finite $)$
assume $m \neq 0$ and

$$
q-p=m *_{R}(r-p)
$$

with scale R-scale R have $r-p=(1 / m) *_{R}(q-p)$ by simp
with cosine-rule [of rsp]
have $(\text { norm-dist } r s)^{2}=(\text { norm-dist } r p)^{2}+(\text { norm-dist } p s)^{2}+$ $2 *\left(\left((1 / m) *_{R}(q-p)\right) \cdot(p-s)\right)$
by simp
also from inner-scaleR-left [of $1 / m q-p p-s$]
have ... =
$(\text { norm-dist } r p)^{2}+(\text { norm-dist } p s)^{2}+2 / m *((q-p) \cdot(p-s))$
by simp
also from $\langle m \neq 0\rangle$ and cosine-rule $\left[\begin{array}{lll}\text { of } q & s & p\end{array}\right]$
have $\ldots=(\text { norm-dist } r p)^{2}+(\text { norm-dist } p s)^{2}+$ $1 / m *\left((\text { norm-dist } q s)^{2}-(\text { norm-dist } q p)^{2}-(\text { norm-dist } p s)^{2}\right)$ by simp
finally have $(\text { norm-dist } r s)^{2}=(\text { norm-dist r } p)^{2}+(\text { norm-dist } p s)^{2}+$ $1 / m *\left((\text { norm-dist } q s)^{2}-(\text { norm-dist } q p)^{2}-(\text { norm-dist } p s)^{2}\right)$.
moreover
$\left\{\right.$ from norm-dist-dot $[$ of $r p]$ and $\left\langle r-p=(1 / m) *_{R}(q-p)\right\rangle$
have $(\text { norm-dist r } p)^{2}=\left((1 / m) *_{R}(q-p)\right) \cdot\left((1 / m) *_{R}(q-p)\right)$ by simp
also from inner-scaleR-left $[$ of $1 / m q-p]$ and inner-scaleR-right $[o f-1 / m q-p]$
have $\ldots=1 / m^{2} *((q-p) \cdot(q-p))$
by (simp add: power2-eq-square)
also from norm-dist-dot $[$ of $q p]$ have $\ldots=1 / m^{2} *(\text { norm-dist } q p)^{2}$ by simp
finally have $\left.(\text { norm-dist } r p)^{2}=1 / m^{2} *(\text { norm-dist } q p)^{2} \cdot\right\}$

ultimately have

$(\text { norm-dist } r s)^{2}=1 / m^{2} *(\text { norm-dist } q p)^{2}+(\text { norm-dist } p s)^{2}+$ $1 / m *\left((\text { norm-dist } q s)^{2}-(\text { norm-dist } q p)^{2}-(\text { norm-dist } p s)^{2}\right)$ by simp
with norm-metric.symm [of q p]
have $(\text { norm-dist } r s)^{2}=1 / m^{2} *(\text { norm-dist } p q)^{2}+(\text { norm-dist } p s)^{2}+$ $1 / m *\left((\text { norm-dist } q s)^{2}-(\text { norm-dist } p q)^{2}-(\text { norm-dist } p s)^{2}\right)$ by $\operatorname{simp}\}$
note fiveseglemma $=$ this
from fiveseglemma $[$ of $l b a c d]$ and $\langle l \neq 0\rangle$ and $\left\langle b-a=l *_{R}(c-a)\right\rangle$
have $(\text { norm-dist } c l d)^{2}=1 / l^{2} *(\text { norm-dist ab })^{2}+(\text { norm-dist a d })^{2}+$ $1 / l *\left((\text { norm-dist } b d)^{2}-(\text { norm-dist } a b)^{2}-(\text { norm-dist ad })^{2}\right)$
by simp
also from $\left\langle l=l^{\prime}\right\rangle$ and

$$
\left\langle a b \equiv_{\mathbb{R}} a^{\prime} b^{\prime}\right\rangle \text { and }
$$

$\left\langle a d \equiv_{\mathbb{R}} a^{\prime} d^{\prime}\right\rangle$ and
$\left\langle b d \equiv_{\mathbb{R}} b^{\prime} d^{\prime}\right\rangle$
have $\ldots=1 / l^{\prime 2} *\left(\text { norm-dist } a^{\prime} b^{\prime}\right)^{2}+\left(\text { norm-dist } a^{\prime} d^{\prime}\right)^{2}+$ $1 / l^{\prime} *\left(\left(\text { norm-dist } b^{\prime} d^{\prime}\right)^{2}-\left(\text { norm-dist } a^{\prime} b^{\prime}\right)^{2}-\left(\text { norm-dist } a^{\prime} d^{\prime}\right)^{2}\right)$ by simp
also from fiveseglemma $\left[o f l^{\prime} b^{\prime} a^{\prime} c^{\prime} d\right]$ and

$$
\left\langle l^{\prime} \neq 0\right\rangle \text { and }
$$

$$
\left\langle b^{\prime}-a^{\prime}=l^{\prime} *_{R}\left(c^{\prime}-a^{\prime}\right)\right\rangle
$$

have $\ldots=\left(\text { norm-dist } c^{\prime} d^{\prime}\right)^{2}$ by simp
finally have $(\text { norm-dist } c d)^{2}=\left(\text { norm-dist } c^{\prime} d^{\prime}\right)^{2}$.
hence sqrt $\left((\text { norm-dist } c \quad d)^{2}\right)=\operatorname{sqrt}\left(\left(\text { norm-dist } c^{\prime} d^{\prime}\right)^{2}\right)$ by simp
with real-sqrt-abs show $c d \equiv_{\mathbb{R}} c^{\prime} d^{\prime}$ by simp
qed $\}$
thus $\forall a b c d a^{\prime} b^{\prime} c^{\prime} d^{\prime}$.

$$
\begin{aligned}
& a \neq b \wedge B_{\mathbb{R}} a b c \wedge B_{\mathbb{R}} a^{\prime} b^{\prime} c^{\prime} \wedge \\
& a b \equiv_{\mathbb{R}} a^{\prime} b^{\prime} \wedge b c \equiv_{\mathbb{R}} b^{\prime} c^{\prime} \wedge a d \equiv_{\mathbb{R}} a^{\prime} d^{\prime} \wedge b d \equiv_{\mathbb{R}} b^{\prime} d^{\prime} \longrightarrow \\
& c d \equiv_{\mathbb{R}} c^{\prime} d^{\prime}
\end{aligned}
$$

by blast
qed

4.2 Real Euclidean space also satisfies axioms 6, 7, and 11

```
lemma rearrange-real-euclid-B:
    fixes \(w y z:: \operatorname{real}^{\wedge}(' n)\) and \(h\)
    shows \(y-w=h *_{R}(z-w) \longleftrightarrow y=h *_{R} z+(1-h) *_{R} w\)
proof
    assume \(y-w=h *_{R}(z-w)\)
    hence \(y-w+w=h *_{R}(z-w)+w\) by simp
    hence \(y=h *_{R}(z-w)+w\) by \(\operatorname{simp}\)
    with scaleR-right-diff-distrib [of h z w]
    have \(y=h *_{R} z+w-h *_{R} w\) by simp
    with scaleR-left-diff-distrib [of \(1 \mathrm{~h} w\) ]
        show \(y=h *_{R} z+(1-h) *_{R} w\) by \(\operatorname{simp}\)
next
```

```
    assume y=h**Rz+(1-h)*R}
    with scaleR-left-diff-distrib [of 1 h w
    have }y=h\mp@subsup{*}{R}{}z+w-h\mp@subsup{*}{R}{}w\mathrm{ by simp
    with scaleR-right-diff-distrib [of h z w]
    have}y=h\mp@subsup{*}{R}{}(z-w)+w by sim
hence }y-w+w=h*\mp@subsup{*}{R}{}(z-w)+w by sim
    thus }y-w=h\mp@subsup{*}{R}{}(z-w)\mathrm{ by simp
qed
interpretation real-euclid: tarski-absolute-space real-euclid-C real-euclid-B
proof
    {fix ab
        assume }\mp@subsup{B}{\mathbb{R}}{}ab
        with real-euclid-B-def [of a bla]
            obtain l where b-a=l*R}(a-a) by aut
    hence }a=b\mathrm{ by simp }
thus }\forallab.\mp@subsup{B}{\mathbb{R}}{}\mathrm{ ab a }\longrightarrowa=b\mathrm{ by auto
{ fix abcpq
    assume }\mp@subsup{B}{\mathbb{R}}{}apc\mathrm{ and }\mp@subsup{B}{\mathbb{R}}{}bq
    from real-euclid-B-def [of a p c] and \langleB\mathbb{R}
        obtain }i\mathrm{ where }i\geq0\mathrm{ and }i\leq1\mathrm{ and }p-a=i*\mp@subsup{*}{R}{}(c-a)\mathrm{ by auto
    have \existsx. B}\mp@subsup{B}{\mathbb{R}}{}pxb\wedge \mp@subsup{B}{\mathbb{R}}{}qx
    proof cases
        assume i=0
        with }\langlep-a=i\mp@subsup{*}{R}{}(c-a)\rangle\mathrm{ have }p=a\mathrm{ by simp
        hence }p-a=0*\mp@subsup{*}{R}{}(b-p)\mathrm{ by simp
        moreover have (0::real)\geq0 and (0::real) \leq 1 by auto
        moreover note real-euclid-B-def [of pal
        ultimately have }\mp@subsup{B}{\mathbb{R}}{}pab\mathrm{ by auto
        moreover
        { have }a-q=1\mp@subsup{*}{R}{}(a-q) by sim
            moreover have (1::real)\geq0 and (1::real)}\leq1\mathrm{ by auto
            moreover note real-euclid-B-def [of q a a]
            ultimately have }\mp@subsup{B}{\mathbb{R}}{}q=a a by blast 
        ultimately have }\mp@subsup{B}{\mathbb{R}}{}pab\wedge\mp@subsup{B}{\mathbb{R}}{}qaa\mathrm{ by simp
        thus }\existsx.\mp@subsup{B}{\mathbb{R}}{}pxb\wedge \mp@subsup{B}{\mathbb{R}}{}qxa\mp@code{by auto
    next
        assume i\not=0
    from real-euclid-B-def [of b q c] and \langleB }\mp@subsup{B}{\mathbb{R}}{
            obtain j where j\geq0 and j\leq1 and q-b=j*R}(c-b) by aut
        from }\langlei\geq0\rangle\mathrm{ and <i}\leq1
            have 1-i\geq0 and 1-i\leq1 by auto
            from }\langlej\geq0\rangle\mathrm{ and }\langle1-i\geq0
            have}j*(1-i)\geq0 by aut
            with }\langlei\geq0\rangle\mathrm{ and }\langlei\not=0\rangle\mathrm{ have }i+j*(1-i)>0 by sim
    hence }i+j*(1-i)\not=0 by sim
    let ?l = j* (1-i)/(i+j*(1-i))
    from diff-divide-distrib [of i+j*(1-i)j*(1-i)i+j*(1-i)] and
                <i+j* (1-i)\not=0>
```

have $1-? l=i /(i+j *(1-i))$ by simp
let ? $k=i *(1-j) /(j+i *(1-j))$
from right-diff-distrib [of i 1
right-diff-distrib [of j $1 i$] and
mult.commute [of $i j]$ and
add.commute [of $i j$]
have $j+i *(1-j)=i+j *(1-i)$ by simp
with $\langle i+j *(1-i) \neq 0\rangle$ have $j+i *(1-j) \neq 0$ by simp
with diff-divide-distrib $[o f j+i *(1-j) i *(1-j) j+i *(1-j)]$
have $1-? k=j /(j+i *(1-j))$ by simp
with $\langle 1-? l=i /(i+j *(1-i))\rangle$ and $\langle j+i *(1-j)=i+j *(1-i)\rangle$ and
times-divide-eq-left $[o f-i+j *(1-i)]$ and
mult.commute [of $i j$]
have $(1-? l) * j=(1-? k) * i$ by simp

moreover

$\{$ from $\langle 1-? k=j /(j+i *(1-j))\rangle$ and $\langle j+i *(1-j)=i+j *(1-i)\rangle$
have ?l $=(1-? k) *(1-i)$ by simp $\}$

moreover

$\{$ from $\langle 1-? l=i /(i+j *(1-i))\rangle$ and $\langle j+i *(1-j)=i+j *(1-i)\rangle$
have $(1-? l) *(1-j)=? k$ by simp $\}$
ultimately
have ? $l *_{R} a+((1-? l) * j) *_{R} c+((1-? l) *(1-j)) *_{R} b=$ $? k *_{R} b+((1-? k) * i) *_{R} c+((1-? k) *(1-i)) *_{R} a$
by simp
with scaleR-scaleR
have ?l $*_{R} a+(1-? l) *_{R} j *_{R} c+(1-? l) *_{R}(1-j) *_{R} b=$ $? k *_{R} b+(1-? k) *_{R} i *_{R} c+(1-? k) *_{R}(1-i) *_{R} a$
by simp
with scaleR-right-distrib $\left[o f(1-? l) j *_{R} c(1-j) *_{R} b\right]$ and
scaleR-right-distrib $\left[\right.$ of $\left.(1-? k) i *_{R} c(1-i) *_{R} a\right]$ and add.assoc $\left[o f ? l *_{R} a(1-? l) *_{R} j *_{R} c(1-? l) *_{R}(1-j) *_{R} b\right]$ and add.assoc $\left[o f ? k *_{R} b(1-? k) *_{R} i *_{R} c(1-? k) *_{R}(1-i) *_{R} a\right]$
have ?l $*_{R} a+(1-? l) *_{R}\left(j *_{R} c+(1-j) *_{R} b\right)=$ $? k *_{R} b+(1-? k) *_{R}\left(i *_{R} c+(1-i) *_{R} a\right)$
by arith
from $\left\langle ? l *_{R} a+(1-? l) *_{R}\left(j *_{R} c+(1-j) *_{R} b\right)=\right.$ $\left.? k *_{R} b+(1-? k) *_{R}\left(i *_{R} c+(1-i) *_{R} a\right)\right\rangle$ and
$\left\langle p-a=i *_{R}(c-a)\right\rangle$ and
$\left\langle q-b=j *_{R}(c-b)\right\rangle$ and rearrange-real-euclid- B [of palll and
rearrange-real-euclid- B [of q b $j c$]
have ?l $*_{R} a+(1-? l) *_{R} q=? k *_{R} b+(1-? k) *_{R} p$ by simp
let ? $x=? l *_{R} a+(1-? l) *_{R} q$
from rearrange-real-euclid- B [of ? $x ~ q$?l a]
have ? $x-q=? l *_{R}(a-q)$ by simp
from $\left\langle ? x=? k *_{R} b+(1-? k) *_{R} p\right\rangle$ and
rearrange-real-euclid- B [of ? x p ? k b]
have ? $x-p=? k *_{R}(b-p)$ by simp
from $\langle i+j *(1-i)>0\rangle$ and
$\langle j *(1-i) \geq 0\rangle$ and
zero-le-divide-iff [of $j *(1-i) i+j *(1-i)$]
have ?l ≥ 0 by simp
from $\langle i+j *(1-i)>0\rangle$ and $\langle i \geq 0\rangle$ and
zero-le-divide-iff $[$ of $i i+j *(1-i)]$ and $\langle 1-? l=i /(i+j *(1-i))\rangle$
have $1-? l \geq 0$ by simp
hence ?l ≤ 1 by simp
with $\langle ? l \geq 0\rangle$ and
$\left\langle ? x-q=? l *_{R}(a-q)\right\rangle$ and
real-euclid-B-def [of q ? x a]
have $B_{\mathbb{R}} q$? x a by auto
from $\langle j \leq 1\rangle$ have $1-j \geq 0$ by simp
with $\langle 1-? l \geq 0\rangle$ and
$\langle(1-? l) *(1-j)=? k\rangle$ and
zero-le-mult-iff [of 1 - ?l 1 - j]
have $? k \geq 0$ by simp
from $\langle j \geq 0\rangle$ have $1-j \leq 1$ by simp
from $\langle ? l \geq 0\rangle$ have $1-? l \leq 1$ by simp
with $\langle 1-j \leq 1\rangle$ and
$\langle 1-j \geq 0\rangle$ and
mult-mono [of 1 - ?l $11-j 1]$ and $\langle(1-? l) *(1-j)=? k\rangle$
have ? $k \leq 1$ by simp
with $\langle ? k \geq 0$ 〉 and $\left\langle ? x-p=? k *_{R}(b-p)\right\rangle$ and real-euclid-B-def [of p ? x b]
have $B_{\mathbb{R}} p$?x b by auto
with $\left\langle B_{\mathbb{R}} q\right.$? x a ${ }^{\text {s }}$ show ?thesis by auto
qed $\}$
thus $\forall a b c p q . B_{\mathbb{R}} a p c \wedge B_{\mathbb{R}} b q c \longrightarrow\left(\exists x . B_{\mathbb{R}} p x b \wedge B_{\mathbb{R}} q x a\right)$ by auto
\{ fix $X Y$
assume $\exists a . \forall x y . x \in X \wedge y \in Y \longrightarrow B_{\mathbb{R}} a x y$
then obtain a where $\forall x y . x \in X \wedge y \in Y \longrightarrow B_{\mathbb{R}} a x y$ by auto
have $\exists b . \forall x y . x \in X \wedge y \in Y \longrightarrow B_{\mathbb{R}} x b y$
proof cases
assume $X \subseteq\{a\} \vee Y=\{ \}$
let ? $b=a$
$\{\boldsymbol{f i x} x y$
assume $x \in X$ and $y \in Y$
with $\langle X \subseteq\{a\} \vee Y=\{ \}\rangle$ have $x=a$ by auto
from $\left\langle\forall x y . x \in X \wedge y \in Y \longrightarrow B_{\mathbb{R}} a x y\right\rangle$ and $\langle x \in X\rangle$ and $\langle y \in Y\rangle$
have $B_{\mathbb{R}}$ ax y by simp
with $\langle x=a\rangle$ have $B_{\mathbb{R}} x$?b y by simp $\}$
hence $\forall x y . x \in X \wedge y \in Y \longrightarrow B_{\mathbb{R}} x$?b y by simp

```
thus ?thesis by auto
next
    assume }\neg(X\subseteq{a}\veeY={}
    hence }X-{a}\not={}\mathrm{ and }Y\not={}\mathrm{ by auto
    from }\langleX-{a}\not={}\rangle\mathrm{ obtain c where c}\inX \mathrm{ and }c\not=a\mathrm{ by auto
    from }\langlec\not=a\rangle\mathrm{ have c-a*=0 by simp
    {fix y
    assume }y\in
    with }\forallxy.x\inX\wedgey\inY\longrightarrow\mp@subsup{B}{\mathbb{R}}{}axy\rangle\mathrm{ and }\langlec\inX
        have }\mp@subsup{B}{\mathbb{R}}{}\mathrm{ a c y by simp
    with real-euclid-B-def [of a c y]
        obtain l where l\geq0 and l\leq1 and c-a=l **R (y-a) by auto
    from <c-a=l**
    with }\langlel\geq0\rangle\mathrm{ have }l>0\mathrm{ by simp
    with <c-a=l *R (y-a)\rangle have }y-a=(1/l)\mp@subsup{*}{R}{}(c-a)\mathrm{ by simp
    from }\langlel>0\rangle\mathrm{ and }\langlel\leq1\rangle\mathrm{ have }1/l\geq1 by sim
    with }\langley-a=(1/l)\mp@subsup{*}{R}{}(c-a)
        have }\existsj\geq1.y-a=j**R(c-a) by auto 
    note ylemma = this
    from \langleY\not={}\rangle obtain d where d\inY by auto
    with ylemma [of d]
    obtain jd where jd\geq1 and d - a = jd *R (c-a) by auto
    { fix }
    assume }x\in
    with }\langle\forallxy.x\inX\wedgey\inY\longrightarrow\mp@subsup{B}{\mathbb{R}}{}axy\rangle\mathrm{ and }\langled\inY
        have }\mp@subsup{B}{\mathbb{R}}{}axd\mathrm{ by simp
    with real-euclid-B-def [of a x d]
        obtain l where l\geq0 and x-a=l*R}(d-a) by aut
    from <x-a =l*R}(d-a)\rangle an
        <d-a=jd *R
        scaleR-scaleR
            have }x-a=(l*jd)\mp@subsup{*}{R}{}(c-a)\mathrm{ by simp
    hence }\existsi.x-a=i*\mp@subsup{*}{R}{}(c-a)\mathrm{ by auto }
note xlemma = this
let ?S = {j. j\geq1^(\existsy\inY. y - a=j**R(c-a))}
from }\langled\inY\rangle\mathrm{ and }\langlejd\geq1\rangle\mathrm{ and }\langled-a=jd\mp@subsup{*}{R}{}(c-a)
    have ?S }\not={}\mathrm{ by auto
let ?k = Inf ?S
let ?b =?k * *R}c+(1-?k)*\mp@subsup{*}{R}{}
from rearrange-real-euclid-B [of ?b a ?k c]
    have ?b - a=?k *R}(c-a) by sim
{fix x y
    assume }x\inX\mathrm{ and }y\in
    from xlemma [of x] and \langlex\inX\rangle
        obtain i where x-a=i**R(c-a) by auto
    from ylemma [of y] and \langley\inY\rangle
        obtain j where j\geq1 and y-a=j**}(c-a)\mathrm{ by auto
    with }\langley\inY\rangle\mathrm{ have j E?S by auto
    then have ?k }\leqj\mathrm{ by (auto intro: cInf-lower)
```

$\{$ fix h
assume $h \in$? S
hence $h \geq 1$ by simp
from $\langle h \in$? $S\rangle$
obtain z where $z \in Y$ and $z-a=h *_{R}(c-a)$ by auto
from $\left\langle\forall x y . x \in X \wedge y \in Y \longrightarrow B_{\mathbb{R}} a x y\right\rangle$ and $\langle x \in X\rangle$ and $\langle z \in Y\rangle$
have $B_{\mathbb{R}} a x z$ by simp
with real-euclid-B-def [of a x z]
obtain l where $l \leq 1$ and $x-a=l *_{R}(z-a)$ by auto
with $\left\langle z-a=h *_{R}(c-a)\right\rangle$ and scale R-scale R have $x-a=(l * h) *_{R}(c-a)$ by simp
with $\left\langle x-a=i *_{R}(c-a)\right\rangle$
have $i *_{R}(c-a)=(l * h) *_{R}(c-a)$ by auto
with scale R-cancel-right and $\langle c-a \neq 0\rangle$ have $i=l * h$ by blast
with $\langle l \leq 1\rangle$ and $\langle h \geq 1\rangle$ have $i \leq h$ by $\operatorname{simp}\}$
with $\langle ? S \neq\{ \}\rangle$ and cInf-greatest $[$ of ? S] have $i \leq ? k$ by simp
have $y-x=(y-a)-(x-a)$ by simp
with $\left\langle y-a=j *_{R}(c-a)\right\rangle$ and $\left\langle x-a=i *_{R}(c-a)\right\rangle$
have $y-x=j *_{R}(c-a)-i *_{R}(c-a)$ by simp
with scaleR-left-diff-distrib [of jic-a]
have $y-x=(j-i) *_{R}(c-a)$ by simp
have $? b-x=(? b-a)-(x-a)$ by simp
with 〈? $\left.b-a=? k *_{R}(c-a)\right\rangle$ and $\left\langle x-a=i *_{R}(c-a)\right\rangle$
have ? $b-x=? k *_{R}(c-a)-i *_{R}(c-a)$ by simp
with scaleR-left-diff-distrib [of ?k ic $-a$]
have ?b $-x=(? k-i) *_{R}(c-a)$ by simp
have $B_{\mathbb{R}} x ? b y$
proof cases
assume $i=j$
with $\langle i \leq ? k\rangle$ and $\langle ? k \leq j\rangle$ have $? k=i$ by simp
with $\left\langle ? b-x=(? k-i) *_{R}(c-a)\right\rangle$ have $? b-x=0$ by simp
hence ? $b-x=0 *_{R}(y-x)$ by simp
with real-euclid- B-def $\left[\right.$ of x ?b y] show $B_{\mathbb{R}} x ? b y$ by auto
next
assume $i \neq j$
with $\langle i \leq ? k\rangle$ and $\langle ? k \leq j\rangle$ have $j-i>0$ by simp
with $\left\langle y-x=(j-i) *_{R}(c-a)\right\rangle$ and scale R-scale R
have $c-a=(1 /(j-i)) *_{R}(y-x)$ by simp
with $\left\langle ? b-x=(? k-i) *_{R}(c-a)\right\rangle$ and scale R-scale R
have $? b-x=((? k-i) /(j-i)) *_{R}(y-x)$ by simp
let $? l=(? k-i) /(j-i)$
from 〈? $k \leq j\rangle$ have $? k-i \leq j-i$ by simp
with $\langle j-i>0\rangle$ have $? l \leq 1$ by simp
from $\langle i \leq ? k\rangle$ and $\langle j-i>0\rangle$ and pos-le-divide-eq [of $j-i 0 ? k-i]$
have $? l \geq 0$ by simp
with real-euclid-B-def $[$ of $x ? b$] and

$$
\begin{aligned}
& \langle ? l \leq 1\rangle \text { and } \\
& \left\langle ? b-x=? l *_{R}(y-x)\right\rangle
\end{aligned}
$$

show $B_{\mathbb{R}} x ? b y$ by auto
qed $\}$
thus $\exists b . \forall x y . x \in X \wedge y \in Y \longrightarrow B_{\mathbb{R}} x b y$ by auto qed $\}$
thus $\forall X Y .\left(\exists a . \forall x y . x \in X \wedge y \in Y \longrightarrow B_{\mathbb{R}} a x y\right) \longrightarrow$ $\left(\exists b . \forall x y . x \in X \wedge y \in Y \longrightarrow B_{\mathbb{R}} x b y\right)$
by auto
qed

4.3 Real Euclidean space satisfies the Euclidean axiom

```
lemma rearrange-real-euclid-B-2:
    fixes \(a b c::\) real \(^{\wedge}(' n:: f i n i t e)\)
    assumes \(l \neq 0\)
    shows \(b-a=l *_{R}(c-a) \longleftrightarrow c=(1 / l) *_{R} b+(1-1 / l) *_{R} a\)
proof
    from scaleR-right-diff-distrib \([\) of \(1 / l b a]\)
        have \((1 / l) *_{R}(b-a)=c-a \longleftrightarrow(1 / l) *_{R} b-(1 / l) *_{R} a+a=c\) by auto
    also with scaleR-left-diff-distrib [of \(11 / l a]\)
    have \(\ldots \longleftrightarrow c=(1 / l) *_{R} b+(1-1 / l) *_{R}\) a by auto
    finally have \(e q\) :
        \((1 / l) *_{R}(b-a)=c-a \longleftrightarrow c=(1 / l) *_{R} b+(1-1 / l) *_{R} a\).
    \{ assume \(b-a=l *_{R}(c-a)\)
        with \(\langle l \neq 0\rangle\) have \((1 / l) *_{R}(b-a)=c-a\) by simp
        with eq show \(\left.c=(1 / l) *_{R} b+(1-1 / l) *_{R} a ..\right\}\)
    \{ assume \(c=(1 / l) *_{R} b+(1-1 / l) *_{R} a\)
        with \(e q\) have \((1 / l) *_{R}(b-a)=c-a\)..
        hence \(l *_{R}(1 / l) *_{R}(b-a)=l *_{R}(c-a)\) by simp
        with \(\langle l \neq 0\rangle\) show \(b-a=l *_{R}(c-a)\) by simp \(\}\)
qed
```

interpretation real-euclid: tarski-space real-euclid-C real-euclid-B
proof
$\{\operatorname{fix} a b c d t$
assume $B_{\mathbb{R}} a d t$ and $B_{\mathbb{R}} b d c$ and $a \neq d$
from real-euclid-B-def [of adt] and $\left\langle B_{\mathbb{R}} a d t\right\rangle$
obtain j where $j \geq 0$ and $j \leq 1$ and $d-a=j *_{R}(t-a)$ by auto
from $\left\langle d-a=j *_{R}(t-a)\right\rangle$ and $\langle a \neq d\rangle$ have $j \neq 0$ by auto
with $\left\langle d-a=j *_{R}(t-a)\right\rangle$ and rearrange-real-euclid-B-2
have $t=(1 / j) *_{R} d+(1-1 / j) *_{R}$ a by auto
let ? $x=(1 / j) *_{R} b+(1-1 / j) *_{R} a$
let $? y=(1 / j) *_{R} c+(1-1 / j) *_{R} a$
from $\langle j \neq 0\rangle$ and rearrange-real-euclid- $B-2$ have
$b-a=j *_{R}(? x-a)$ and $c-a=j *_{R}(? y-a)$ by auto
with real-euclid- B-def and $\langle j \geq 0\rangle$ and $\langle j \leq 1\rangle$ have
$B_{\mathbb{R}} a b ? x$ and $B_{\mathbb{R}} a c ? y$ by auto
from real-euclid-B-def and $\left\langle B_{\mathbb{R}} b d c\right\rangle$ obtain k where
$k \geq 0$ and $k \leq 1$ and $d-b=k *_{R}(c-b)$ by blast
from $\left\langle t=(1 / j) *_{R} d+(1-1 / j) *_{R} a\right\rangle$ have
$t-? x=(1 / j) *_{R} d-(1 / j) *_{R} b$ by simp
also from scaleR-right-diff-distrib [of $1 / j d b]$ have
$\ldots=(1 / j) *_{R}(d-b)$ by simp
also from $\left\langle d-b=k *_{R}(c-b)\right\rangle$ have
$\ldots=k *_{R}(1 / j) *_{R}(c-b)$ by simp
also from scaleR-right-diff-distrib [of $1 / j c b]$ have
$\ldots=k *_{R}(? y-? x)$ by simp
finally have $t-? x=k *_{R}(? y-? x)$.
with real-euclid-B-def and $\langle k \geq 0\rangle$ and $\langle k \leq 1\rangle$ have $B_{\mathbb{R}}$? $x t$?y by blast with $\left\langle B_{\mathbb{R}} a b ? x\right\rangle$ and $\left\langle B_{\mathbb{R}} a c\right.$? $\left.y\right\rangle$ have
$\exists x y . B_{\mathbb{R}} a b x \wedge B_{\mathbb{R}} a c y \wedge B_{\mathbb{R}} x t y$ by auto $\}$
thus $\forall a b c d t . B_{\mathbb{R}} a d t \wedge B_{\mathbb{R}} b d c \wedge a \neq d \longrightarrow$
$\left(\exists x y \cdot B_{\mathbb{R}} a b x \wedge B_{\mathbb{R}} a c y \wedge B_{\mathbb{R}} x t y\right)$
by auto
qed

4.4 The real Euclidean plane

lemma Col-dep2:

real-euclid.Col a b $c \longleftrightarrow$ dep2 $(b-a)(c-a)$
proof -
from real-euclid.Col-def have real-euclid.Col $a b c \longleftrightarrow B_{\mathbb{R}} a b c \vee B_{\mathbb{R}} b c a \vee B_{\mathbb{R}} c a b$ by auto
moreover from dep2-def have
dep2 $(b-a)(c-a) \longleftrightarrow\left(\exists w r s . b-a=r *_{R} w \wedge c-a=s *_{R} w\right)$
by auto
moreover
$\left\{\right.$ assume $B_{\mathbb{R}} a b c \vee B_{\mathbb{R}} b c a \vee B_{\mathbb{R}} c a b$ moreover
\{ assume $B_{\mathbb{R}} a b c$
with real-euclid-B-def obtain l where $b-a=l *_{R}(c-a)$ by blast moreover have $c-a=1 *_{R}(c-a)$ by simp
ultimately have $\exists w r s . b-a=r *_{R} w \wedge c-a=s *_{R} w$ by blast \} moreover
\{ assume $B_{\mathbb{R}} b c a$
with real-euclid-B-def obtain l where $c-b=l *_{R}(a-b)$ by blast moreover have $c-a=(c-b)-(a-b)$ by simp
ultimately have $c-a=l *_{R}(a-b)-(a-b)$ by simp
with scaleR-left-diff-distrib [of l $1 a-b]$ have
$c-a=(l-1) *_{R}(a-b)$ by simp
moreover from scaleR-minus-left [of $1 a-b$] have
$b-a=(-1) *_{R}(a-b)$ by simp
ultimately have $\exists w r s . b-a=r *_{R} w \wedge c-a=s *_{R} w$ by blast \}
moreover
\{ assume $B_{\mathbb{R}} c a b$
with real-euclid-B-def obtain l where $a-c=l *_{R}(b-c)$ by blast moreover have $c-a=-(a-c)$ by simp
ultimately have $c-a=-\left(l *_{R}(b-c)\right)$ by simp
with scale R-minus-left have $c-a=(-l) *_{R}(b-c)$ by simp
moreover have $b-a=(b-c)+(c-a)$ by simp
ultimately have $b-a=1 *_{R}(b-c)+(-l) *_{R}(b-c)$ by simp with scaleR-left-distrib $[$ of $1-l b-c]$ have $b-a=(1+(-l)) *_{R}(b-c)$ by simp with $\left\langle c-a=(-l) *_{R}(b-c)\right\rangle$ have
$\exists w r s . b-a=r *_{R} w \wedge c-a=s *_{R} w$ by blast $\}$
ultimately have $\exists w r s . b-a=r *_{R} w \wedge c-a=s *_{R} w$ by auto \}
moreover
\{ assume $\exists w r s . b-a=r *_{R} w \wedge c-a=s *_{R} w$
then obtain $w r s$ where $b-a=r *_{R} w$ and $c-a=s *_{R} w$ by auto
have $B_{\mathbb{R}} a b c \vee B_{\mathbb{R}} b c a \vee B_{\mathbb{R}} c a b$
proof cases
assume $s=0$
with $\left\langle c-a=s *_{R} w\right\rangle$ have $a=c$ by simp
with real-euclid.th3-1 have $B_{\mathbb{R}} b c a$ by simp
thus ?thesis by simp
next
assume $s \neq 0$
with $\left\langle c-a=s *_{R} w\right\rangle$ have $w=(1 / s) *_{R}(c-a)$ by simp
with $\left\langle b-a=r *_{R} w\right\rangle$ have $b-a=(r / s) *_{R}(c-a)$ by simp
have $r / s<0 \vee(r / s \geq 0 \wedge r / s \leq 1) \vee r / s>1$ by arith
moreover
\{ assume $r / s \geq 0 \wedge r / s \leq 1$
with real-euclid- B-def and $\left\langle b-a=(r / s) *_{R}(c-a)\right\rangle$ have $B_{\mathbb{R}} a b c$ by auto
hence ?thesis by simp \}
moreover
\{ assume $r / s>1$
with $\left\langle b-a=(r / s) *_{R}(c-a)\right\rangle$ have $c-a=(s / r) *_{R}(b-a)$ by auto
from $\langle r / s\rangle 1\rangle$ and le-imp-inverse-le $[o f 1 r / s$] have
$s / r \leq 1$ by simp
from $\langle r / s>1\rangle$ and inverse-positive-iff-positive $[$ of r / s] have $s / r \geq 0$ by simp
with real-euclid-B-def
and $\left\langle c-a=(s / r) *_{R}(b-a)\right\rangle$
and $\langle s / r \leq 1\rangle$
have $B_{\mathbb{R}} a c b$ by auto
with real-euclid.th3-2 have $B_{\mathbb{R}} b c a$ by auto
hence ?thesis by simp \}

moreover

\{ assume $r / s<0$
have $b-c=(b-a)+(a-c)$ by simp
with $\left\langle b-a=(r / s) *_{R}(c-a)\right\rangle$ have
$b-c=(r / s) *_{R}(c-a)+(a-c)$ by simp
have $c-a=-(a-c)$ by simp
with scaleR-minus-right [of r/sa-c] have $(r / s) *_{R}(c-a)=-\left((r / s) *_{R}(a-c)\right)$ by arith
with $\left\langle b-c=(r / s) *_{R}(c-a)+(a-c)\right\rangle$ have $b-c=-(r / s) *_{R}(a-c)+(a-c)$ by simp
with scaleR-left-distrib $[o f-(r / s) 1 a-c]$ have

```
                b-c=(-(r/s)+1) *R (a-c) by simp
moreover from <r/s<0\rangle have -(r/s)+1>1 by simp
ultimately have }a-c=(1/(-(r/s)+1))\mp@subsup{*}{R}{}(b-c)\mathrm{ by auto
let ?l = 1 / (-(r/s) + 1)
from <-(r/s)+1> 1> and le-imp-inverse-le [of 1-(r/s) + 1] have
?l}\leq1\mathrm{ by simp
from <-(r/s) + 1> 1>
    and inverse-positive-iff-positive [of -(r/s)+1]
have
                ?l \geq0 by simp
with real-euclid-B-def and \?l }\leq1\rangle\mathrm{ and }\langlea-c=?l*\mp@subsup{*}{R}{}(b-c)\rangle hav
        B}\mp@subsup{\mathbb{R}}{}{c}cab\mathrm{ by blast
        hence ?thesis by simp }
        ultimately show ?thesis by auto
    qed }
    ultimately show ?thesis by blast
qed
lemma non-Col-example:
    \neg(real-euclid.Col 0 (vector [1/2,0] :: real^2) (vector [0,1/2]))
    (is ᄀ(real-euclid.Col ?a ?b ?c))
proof -
    { assume dep2 (?b - ?a) (?c - ?a)
        with dep2-def [of ?b - ?a ?c - ?a] obtain wrs where
            ?b - ?a = r** w and ?c - ?a = s*R w by auto
    have ?b$1 = 1/2 by simp
    with <?b - ?a = r** w` have r*(w$1) = 1/2 by simp
    hence }w$1\not=0\mathrm{ by auto
    have ?c$1=0 by simp
    with }\langle?c-?a=s*\mp@subsup{*}{R}{}w\rangle\mathrm{ have }s*(w$1)=0 by sim
    with }\langlew$1\not=0\rangle\mathrm{ have s=0 by simp
    have ?c$2 = 1/2 by simp
    with <?c - ?a = s*R w〉 have }s*(w$2)=1/2 by sim
    with }\langles=0\rangle\mathrm{ have False by simp }
    hence }\neg(dep2(?b - ?a) (?c - ?a)) by aut
    with Col-dep2 show }\neg(\mathrm{ real-euclid.Col ?a ?b ?c) by blast
qed
interpretation real-euclid:
    tarski real-euclid-C::([real^2, real^2, real`2, real`2] }=>\mathrm{ bool) real-euclid-B
proof
    { let ?a = 0 :: real^2
    let ?b = vector [1/2,0] :: real^2
    let ?c = vector [0, 1/2] :: real^2
    from non-Col-example and real-euclid.Col-def have
        \neg }\mp@subsup{B}{\mathbb{R}}{}\mathrm{ ?a ?b ?c }\wedge\neg\mp@subsup{B}{\mathbb{R}}{}\mathrm{ ?b ?c ?a }\wedge\neg\mp@subsup{B}{\mathbb{R}}{}\mathrm{ ?c ?a ?b by auto }
    thus }\existsabc:: real^2.\neg 怔}abc\wedge\neg\mp@subsup{B}{\mathbb{R}}{}bca\wedge\neg\mp@subsup{B}{\mathbb{R}}{}ca
    by auto
    {fix p q abc :: real^2
```

```
assume \(p \neq q\) and \(a p \equiv_{\mathbb{R}} \quad a q\) and \(b p \equiv_{\mathbb{R}} b q\) and \(c p \equiv_{\mathbb{R}} c q\)
let \(? m=(1 / 2) *_{R}(p+q)\)
from scaleR-right-distrib \([\) of \(1 / 2 p q]\) and
    scaleR-right-diff-distrib \(\left[\begin{array}{ll}\text { of } 1 / 2 & q\end{array}\right]\) and
    scaleR-left-diff-distrib [of 1/2 1 p]
have \(? m-p=(1 / 2) *_{R}(q-p)\) by simp
with \(\langle p \neq q\rangle\) have ? \(m-p \neq 0\) by simp
from scaleR-right-distrib \([\) of \(1 / 2 p q]\) and
    scaleR-right-diff-distrib \(\left[\begin{array}{ll}\text { of } 1 / 2 & p\end{array}\right]\) and
    scaleR-left-diff-distrib [of 1/2 1 q]
have ? \(m-q=(1 / 2) *_{R}(p-q)\) by \(\operatorname{simp}\)
with \(\left\langle ? m-p=(1 /\right.\) 2 \() *_{R}(q-p)\) )
    and scaleR-minus-right \([\) of 1/2 \(q-p]\)
have \(? m-q=-(? m-p)\) by \(\operatorname{simp}\)
with norm-minus-cancel \([o f ? m-p]\) have
    \((\text { norm }(? m-q))^{2}=(\text { norm }(? m-p))^{2}\) by (simp only: norm-minus-cancel)
\{ fix \(d\)
    assume \(d p \equiv_{\mathbb{R}} d q\)
    hence \((\operatorname{norm}(d-p))^{2}=(\operatorname{norm}(d-q))^{2}\) by simp
    have \((d-\) ? \(m) \cdot(? m-p)=0\)
    proof -
        have \(d+(-q)=d-q\) by simp
        have \(d+(-p)=d-p\) by \(\operatorname{simp}\)
        with dot-norm \([\) of \(d-\) ? \(m\) ? \(m-p]\) have
        \((d-? m) \cdot(? m-p)=\)
        \(\left((\operatorname{norm}(d-p))^{2}-(\operatorname{norm}(d-? m))^{2}-(\operatorname{norm}(? m-p))^{2}\right) / 2\)
        by \(\operatorname{simp}\)
    also from \(\left\langle(\operatorname{norm}(d-p))^{2}=(\operatorname{norm}(d-q))^{2}\right\rangle\)
    and \(\left\langle(\operatorname{norm}(? m-q))^{2}=(\operatorname{norm}(? m-p))^{2}\right\rangle\)
    have
        \(\ldots=\left((\operatorname{norm}(d-q))^{2}-(\operatorname{norm}(d-? m))^{2}-(\operatorname{norm}(? m-q))^{2}\right) / 2\)
        by \(\operatorname{simp}\)
    also from dot-norm \([\) of \(d-\) ? \(m\) ? \(m-q\) ]
        and \(\langle d+(-q)=d-q\rangle\)
    have
        \(\ldots=(d-? m) \cdot(? m-q)\) by \(\operatorname{simp}\)
    also from inner-minus-right \([\) of \(d-\) ? \(m\) ? \(m-p]\)
        and \(\langle ? m-q=-(? m-p)\rangle\)
    have
        \(\ldots=-((d-? m) \cdot(? m-p))\) by (simp only: inner-minus-left)
    finally have \((d-? m) \cdot(? m-p)=-((d-? m) \cdot(? m-p))\).
    thus \((d-? m) \cdot(? m-p)=0\) by arith
    qed \}
note \(m\)-lemma \(=\) this
with \(\left\langle a p \equiv_{\mathbb{R}} a q\right\rangle\) have \((a-? m) \cdot(? m-p)=0\) by simp
\(\{\) fix \(d\)
    assume \(d p \equiv_{\mathbb{R}} d q\)
    with \(m\)-lemma have \((d-? m) \cdot(? m-p)=0\) by simp
    with dot-left-diff-distrib [of \(d-\) ? \(m a-\) ? \(m\) ? \(m-p\) ]
```

$$
\text { and }\langle(a-? m) \cdot(? m-p)=0\rangle
$$

have $(d-a) \cdot(? m-p)=0$ by (simp add: inner-diff-left inner-diff-right) $\}$ with $\left\langle b p \equiv_{\mathbb{R}} b q\right\rangle$ and $\left\langle c p \equiv_{\mathbb{R}} c q\right\rangle$ have
$(b-a) \cdot(? m-p)=0$ and $(c-a) \cdot(? m-p)=0$ by $\operatorname{simp}+$
with real2-orthogonal-dep2 and $\langle ? m-p \neq 0\rangle$ have dep2 $(b-a)(c-a)$
by blast
with Col-dep2 have real-euclid.Col $a b c$ by auto
with real-euclid.Col-def have $B_{\mathbb{R}} a b c \vee B_{\mathbb{R}} b c a \vee B_{\mathbb{R}} c a b$ by auto \}
thus $\forall p q a b c::$ real ${ }^{\wedge}$ 2.

$$
p \neq q \wedge a p \equiv_{\mathbb{R}} a q \wedge b p \equiv_{\mathbb{R}} b q \wedge c p \equiv_{\mathbb{R}} c q \longrightarrow
$$

by blast

$$
B_{\mathbb{R}} a b c \vee B_{\mathbb{R}} b c a \vee B_{\mathbb{R}} c a b
$$

qed

4.5 Special cases of theorems of Tarski's geometry

lemma real-euclid-B-disjunction:
assumes $l \geq 0$ and $b-a=l *_{R}(c-a)$
shows $B_{\mathbb{R}} a b c \vee B_{\mathbb{R}} a c b$
proof cases
assume $l \leq 1$
with $\langle l \geq 0\rangle$ and $\left\langle b-a=l *_{R}(c-a)\right\rangle$
have $B_{\mathbb{R}}$ abc by (unfold real-euclid-B-def) (simp add: exI [of - l])
thus $B_{\mathbb{R}} a b c \vee B_{\mathbb{R}} a c b$..
next
assume $\neg(l \leq 1)$
hence $1 / l \leq 1$ by simp
from $\langle l \geq 0\rangle$ have $1 / l \geq 0$ by simp
from $\left\langle b-a=l *_{R}(c-a)\right\rangle$
have $(1 / l) *_{R}(b-a)=(1 / l) *_{R}\left(l *_{R}(c-a)\right)$ by simp
with $\langle\neg(l \leq 1)\rangle$ have $c-a=(1 / l) *_{R}(b-a)$ by simp
with $\langle 1 / l \geq 0\rangle$ and $\langle 1 / l \leq 1\rangle$
have $B_{\mathbb{R}}$ a cbley (unfold real-euclid-B-def) (simp add: exI [of - $\left.1 / l\right]$)
thus $B_{\mathbb{R}} a b c \vee B_{\mathbb{R}} a c b .$.
qed
The following are true in Tarski's geometry, but to prove this would require much more development of it, so only the Euclidean case is proven here.
theorem real-euclid-th5-1:
assumes $a \neq b$ and $B_{\mathbb{R}} a b c$ and $B_{\mathbb{R}} a b d$
shows $B_{\mathbb{R}} a c d \vee B_{\mathbb{R}} a d c$
proof -
from $\left\langle B_{\mathbb{R}} a b c\right\rangle$ and $\left\langle B_{\mathbb{R}} a b d\right\rangle$
obtain l and m where $l \geq 0$ and $b-a=l *_{R}(c-a)$
and $m \geq 0$ and $b-a=m *_{R}(d-a)$
by (unfold real-euclid-B-def) auto

```
from }\langleb-a=m*\mp@subsup{*}{R}{}(d-a)\rangle\mathrm{ and }\langlea\not=b\rangle\mathrm{ have m}\not=0\mathrm{ by auto
from }\langlel\geq0\rangle\mathrm{ and \m }\geq0\rangle\mathrm{ have }l/m\geq0\mathrm{ by (simp add: zero-le-divide-iff)
from <b-a=l * * (c-a)\rangle and <b-a=m *R (d - a)\rangle
have m**R}(d-a)=l*\mp@subsup{*}{R}{}(c-a)\mathrm{ by simp
hence (1/m)**R (m**R (d-a))=(1/m)*R
with }\langlem\not=0\rangle\mathrm{ have }d-a=(l/m)*\mp@subsup{*}{R}{}(c-a)\mathrm{ by simp
with }\langlel/m\geq0\rangle\mathrm{ and real-euclid-B-disjunction
show }\mp@subsup{B}{\mathbb{R}}{}acd\vee\mp@subsup{B}{\mathbb{R}}{}adc\mathrm{ by auto
qed
theorem real-euclid-th5-3:
    assumes }\mp@subsup{B}{\mathbb{R}}{}abd\mathrm{ and }\mp@subsup{B}{\mathbb{R}}{}ac
    shows }\mp@subsup{B}{\mathbb{R}}{}abc\vee\mp@subsup{B}{\mathbb{R}}{}ac
proof -
    from }\langle\mp@subsup{B}{\mathbb{R}}{}abd\rangle\mathrm{ and }\langle\mp@subsup{B}{\mathbb{R}}{}acd
    obtain l and m}\mathrm{ where l \0 and b-a=l * R}(d-a
        and m\geq0 and c-a=m**}(d-a
        by (unfold real-euclid-B-def) auto
    show }\mp@subsup{B}{\mathbb{R}}{}abc\vee\mp@subsup{B}{\mathbb{R}}{}ac
    proof cases
        assume}l=
        with }\langleb-a=l\mp@subsup{*}{R}{}(d-a)\rangle\mathrm{ have }b-a=l*\mp@subsup{*}{R}{}(c-a)\mathrm{ by simp
        with }\langlel=0
        have }\mp@subsup{B}{\mathbb{R}}{}\mathrm{ abcc by (unfold real-euclid-B-def) (simp add: exI [of - l])
        thus }\mp@subsup{B}{\mathbb{R}}{}abc\vee\mp@subsup{B}{\mathbb{R}}{}acb.
    next
        assume l}=
        from \langlel\geq0\rangle and \langlem}\geq0\rangle\mathrm{ have m/l }\geq0\mathrm{ by (simp add:zero-le-divide-iff)
    from <b-a =l**R(d-a)\rangle
    have }(1/l)\mp@subsup{*}{R}{}(b-a)=(1/l)\mp@subsup{*}{R}{}(l\mp@subsup{*}{R}{}(d-a))\mathrm{ by simp
    with }\langlel\not=0\rangle\mathrm{ have }d-a=(1/l)\mp@subsup{*}{R}{}(b-a)\mathrm{ by simp
    with }\langlec-a=m\mp@subsup{*}{R}{}(d-a)\rangle\mathrm{ have }c-a=(m/l)\mp@subsup{*}{R}{}(b-a)\mathrm{ by simp
    with \langlem/l\geq0\rangle and real-euclid-B-disjunction
    show }\mp@subsup{B}{\mathbb{R}}{}abc\vee\mp@subsup{B}{\mathbb{R}}{}acb\mathrm{ by auto
    qed
qed
end
```


5 Linear algebra

theory Linear-Algebra2
imports Miscellany
begin

```
lemma exhaust-4:
    fixes }x::
    shows }x=1\veex=2\veex=3\veex=
proof (induct x)
    case (of-int z)
    hence 0\leqz and z<4 by simp-all
    hence z=0\vee z=1\vee z=2 2\veez=3 by arith
    thus?case by auto
qed
lemma forall-4:(\foralli::4.Pi)\longleftrightarrowP1\wedgeP2\wedgeP3^P4
    by (metis exhaust-4)
lemma UNIV-4:(UNIV::(4 set)) ={1, 2, 3, 4}
    using exhaust-4
    by auto
lemma vector-4:
    fixes w :: 'a::zero
    shows (vector [ }w,x,y,z]:: 'a^4)$1=
    and (vector [ }w,x,y,z]::' 'a^4)$2 = x
    and (vector [ }w,x,y,z]:: 'a^4)$3=
    and (vector [ }w,x,y,z]:: 'a^4)$4=
    unfolding vector-def
    by simp-all
```


definition

```
    is-basis :: (real^('n::finite)) set }=>\mathrm{ bool where
    is-basis S\triangleq independent S ^ span S=UNIV
lemma card-finite:
    assumes card S = CARD('n::finite)
    shows finite S
proof -
    from <card S=CARD(' n)> have card S}=0\mathrm{ by simp
    with card-eq-0-iff [of S] show finite S by simp
qed
lemma independent-is-basis:
    fixes B :: (real^(' }n::finite)) se
    shows independent B}\wedge\mathrm{ card B=CARD('n) }\longleftrightarrow\mathrm{ cis-basis B
proof
    assume independent B}\wedge card B=CARD('n
    hence independent B and card B=CARD('n) by simp+
    from card-finite [of B, where ' }n='n]\mathrm{ and <card B = CARD('n)>
    have finite B by simp
    from <card B = CARD('n)\rangle
    have card B = dim(UNIV :: ((real^'n) set))
```

```
    by (simp add: dim-UNIV)
    with card-eq-dim [of B UNIV] and 〈finite B\rangle and 〈independent B\rangle
    have span B = UNIV by auto
    with <independent B` show is-basis B unfolding is-basis-def ..
next
    assume is-basis B
    hence independent B unfolding is-basis-def ..
    moreover have card B=CARD('n)
    proof -
    have B\subseteqUNIV by simp
    moreover
    {from 〈is-basis B\rangle have UNIV \subseteq span B and independent B
                unfolding is-basis-def
                by simp+}
    ultimately have card B = dim (UNIV::((real^^}n) set)
        using basis-card-eq-dim [of B UNIV]
        by simp
    then show card B = CARD(' n) by (simp add: dim-UNIV)
    qed
    ultimately show independent B ^ card B = CARD('n) ..
qed
lemma basis-finite:
    fixes B :: (real^('}n::finite)) se
    assumes is-basis B
    shows finite B
proof -
    from independent-is-basis [of B] and \is-basis B> have card B = CARD('n)
        by simp
    with card-finite [of B, where ' }n='n]\mathrm{ show finite B by simp
qed
lemma basis-expand:
    assumes is-basis B
    shows \existsc.v=(\sumw\inB.(cw)*R
proof -
    from <is-basis B> have v\in span B unfolding is-basis-def by simp
    from basis-finite [of B] and \langleis-basis B\rangle have finite B by simp
    with span-finite [of B] and }\langlev\in\operatorname{span}B
    show \existsc.v=(\sumw\inB.(cw)*R
qed
lemma not-span-independent-insert:
    fixes v::('a::real-vector) ^'}
    assumes independent S and v}\not\in\operatorname{span}
    shows independent (insert vS
proof -
    from span-superset and }\langlev\not\in\mathrm{ span S> have v}\not\inS\mathrm{ by auto
    with independent-insert [of v S] and <independent S\rangle and \langlev & span S\rangle
```

```
    show independent (insert v S) by simp
qed
lemma in-span-eq:
    fixes v :: ('a::real-vector) ^'b
    assumes v\in span S
    shows span (insert vS)= span S
proof
    {fix w
        assume w}\in\mathrm{ span (insert v S)
        with }\langlev\in\operatorname{span}S\rangle\mathrm{ have w}\mathrm{ w span S by (rule span-trans) }
    thus span (insert v S)\subseteq span S ..
    have S\subseteqinsert vS by (rule subset-insertI)
    thus span S\subseteq\operatorname{span}(insert vS) by (rule span-mono)
qed
lemma dot-setsum-right-distrib:
    fixes v :: real^'n
    shows v}\cdot(\sumj\inS.wj)=(\sumj\inS.v ( (wj)
proof -
    have v • (\sumj\inS.wj)=(\sum i\inUNIV.v$i*(\sum j\inS. (wj)$i))
        unfolding inner-vec-def
        by simp
    also from setsum-right-distrib [where ?A =S and ?'b = real]
    have ... = (\sum i\inUNIV. \sum j\inS.v$i*(wj)$i) by simp
    also from setsum.commute [of \lambdaij.v$i* (wj)$i S UNIV]
    have ... = (\sumj\inS. \sum i\inUNIV.v$i*(wj)$i) by simp
    finally show v}\cdot(\sumj\inS.wj)=(\sumj\inS.v\cdot(wj)
        unfolding inner-vec-def
        by simp
qed
lemma orthogonal-setsum:
    fixes v :: real^'}
    assumes }\forallw\inS\mathrm{ . orthogonal v w
    shows orthogonal v (\sumw\inS.c w*sw)
proof -
    from dot-setsum-right-distrib [of v]
    have v}\cdot(\sumw\inS.cw*sw)=(\sumw\inS.v\cdot(cw*sw))\mathrm{ by auto
    with inner-scaleR-right [of v]
    have v. (\sumw\inS.cw*sw)=(\sumw\inS.c w*(v | w))
    by (simp add: scalar-equiv)
    with }\forall \forall w\inS\mathrm{ . orthogonal v w> show orthogonal v ( }\sumw\inS.cw*sw
    unfolding orthogonal-def
    by simp
qed
lemma orthogonal-self-eq-0:
```

```
    fixes v :: ('a::real-inner) ^('n::finite)
    assumes orthogonal vv
    shows v=0
    using inner-eq-zero-iff [of v] and assms
    unfolding orthogonal-def
    by simp
lemma orthogonal-in-span-eq-0:
    fixes v :: real^(' }n::finite
```



```
    shows v=0
proof -
    from span-explicit [of S] and }\langlev\in\mathrm{ span S>
    obtain T and u where T\subseteqS and v=(\sumw\inT.uw*R}w)\mathrm{ by auto
    from }\langle\forallw\inS\mathrm{ . orthogonal v w〉 and }\langleT\subseteqS\rangle\mathrm{ have }\forallw\inT\mathrm{ . orthogonal v w by
auto
    with orthogonal-setsum [of T v u] and }\langlev=(\sumw\inT.uw w *Rw)
    have orthogonal v v by (auto simp add: scalar-equiv)
    with orthogonal-self-eq-0 show v=0 by auto
qed
lemma orthogonal-independent:
    fixes v :: real^(' }n::\mathrm{ : finite)
    assumes independent S and v\not=0 and }\forallw\inS\mathrm{ . orthogonal v w
    shows independent (insert v S)
proof -
    from orthogonal-in-span-eq-0 and }\langlev\not=0\rangle\mathrm{ and }\langle\forallw\inS\mathrm{ . orthogonal v w>
    have v}\not\in\operatorname{span S by auto
    with not-span-independent-insert and 〈independent S>
    show independent (insert v S) by auto
qed
lemma card-ge-dim:
    fixes S :: (real^('n::finite)) set
    assumes finite }
    shows card S\geq\operatorname{dim}S
proof -
    from span-inc have S\subseteq span S by auto
    with span-card-ge-dim [of S span S] and 〈finite S〉
    have card S\geqdim (span S) by simp
    with dim-span [of S] show card S\geq\operatorname{dim}S}\mathrm{ by simp
qed
lemma dot-scaleR-mult:
    shows (k**Ra)\cdotb=k*(a\cdotb) and a ( (k*R
    unfolding inner-vec-def
    by (simp-all add: algebra-simps setsum-right-distrib)
lemma dependent-explicit-finite:
```

```
    fixes S :: (('a::{real-vector,field}) ^'}n)\mathrm{ set
    assumes finite S
    shows dependent S\longleftrightarrow(\existsu.(\existsv\inS.uv\not=0)^(\sumv\inS.uv*Rv)=0)
proof
    assume dependent S
    with dependent-explicit [of S]
    obtain S' and u}\mathrm{ where
        S'\subseteqS and \exists}v\in\mp@subsup{S}{}{\prime}.uv\not=0\mathrm{ and ( }\sumv\in\mp@subsup{S}{}{\prime}.uv\mp@subsup{*}{R}{}v)=
        by auto
    let ? }\mp@subsup{u}{}{\prime}=\lambdav.\mathrm{ . if }v\in\mp@subsup{S}{}{\prime}\mathrm{ then }u\mathrm{ v else 0
    from }\langle\mp@subsup{S}{}{\prime}\subseteqS\rangle\mathrm{ and }\exists\existsv\in\mp@subsup{S}{}{\prime}.uv\not=0\rangle\mathrm{ have }\existsv\inS\mathrm{ . ? u' v}=0\mathrm{ by auto
    moreover from setsum.mono-neutral-cong-right [of S S'\lambdav.?u'v}v\mp@subsup{*}{R}{\prime}v
```



```
    have (\sumv\inS.?u'v*R}v)=0 by sim
    ultimately show (\existsu. (\existsv\inS.uv\not=0)^(\sumv\inS.uv** v)=0) by auto
next
    assume (\existsu. (\existsv\inS.uv\not=0)^(\sumv\inS.uv*Rv)=0)
    with dependent-explicit [of S] and 〈finite S>
    show dependent S by auto
qed
lemma dependent-explicit-2:
    fixes v w::('a::{field,real-vector})^'n
    assumes v\not=w
    shows dependent {v,w}\longleftrightarrow(\existsij. (i\not=0\veej\not=0)\wedgei**Rv+j**Rw=0)
proof
    let ?S = {v,w}
    have finite ?S by simp
    { assume dependent ?S
    with dependent-explicit-finite [of ?S] and 〈finite ?S` and }\langlev\not=w
    show \existsij. (i\not=0\veej\not=0)\wedgei*\mp@subsup{*}{R}{}v+j\mp@subsup{*}{R}{}w=0\mathrm{ by auto }}
    { assume \existsij.(i\not=0\veej\not=0)^i**Rv+j**R}w=
        then obtain i and j where }i\not=0\veej\not=0\mathrm{ and i*R}v+j\mp@subsup{*}{R}{}w=0\mathrm{ by
auto
        let ?u = \lambda x. if }x=v\mathrm{ then i else }
        from }\langlei\not=0\veej\not=0\rangle\mathrm{ and }\langlev\not=w\rangle\mathrm{ have }\existsx\in?S.\mathrm{ . ?u }x\not=0\mathrm{ by simp
    from }\langlei\mp@subsup{*}{R}{}v+j\mp@subsup{*}{R}{}w=0\rangle\mathrm{ and }\langlev\not=w
    have ( }\sumx\in\mathrm{ ?S. ?u x * R}x)=0\mathrm{ by simp
    with dependent-explicit-finite [of ?S]
        and 〈finite ?S\rangle and «\exists x\in?S. ?u x = 0\rangle
    show dependent ?S by best }
qed
```


5．1 Matrices

```
lemma zero－times：
\[
0 * * A=\left(0:: \text { real }^{\wedge}\left({ }^{\prime} n:: \text { finite }\right)^{\wedge} \prime n\right)
\]
```

unfolding matrix－matrix－mult－def and zero－vec－def
by simp
lemma zero－not－invertible：
$\neg\left(\right.$ invertible $\left(0::\right.$ real $\left.\left.^{\wedge}\left({ }^{\prime} n:: \text { finite }\right)^{\wedge} n\right)\right)$
proof－
let ？$\Lambda=0::$ real ${ }^{\wedge} n^{\wedge} n^{\prime} n$
let ？$I=$ mat $1::$ real $^{\wedge} n^{\wedge} n$
let $? k=$ undefined $::$＇n
have ？I $\$? k \$? k \neq ? \Lambda \$? k \$? k$
unfolding mat－def
by simp
hence ？$\Lambda \neq$ ？I by auto
from zero－times have $\forall A$ ．？$\Lambda * * A=$ ？Λ by auto
with $\langle ? \Lambda \neq ? I\rangle$ show $\neg($ invertible ？$\Lambda)$
unfolding invertible－def
by simp
qed
Based on matrix－vector－column in HOL／Multivariate＿Analysis／Euclidean＿Space．thy in Isabelle 2009－1：

```
lemma vector-matrix-row:
    fixes \(x::\left({ }^{\prime} a::\right.\) comm-semiring-1) \({ }^{\wedge} m\) and \(A::\left({ }^{\prime} a^{\wedge} n^{\wedge} n^{\prime} m\right)\)
    shows \(x v * A=\left(\sum i \in U N I V .(x \$ i) * s(A \$ i)\right)\)
    unfolding vector-matrix-mult-def
    by (simp add: vec-eq-iff mult.commute)
lemma invertible-mult:
    fixes \(A B\) :: real^(' \(n:: f\) inite \()^{\wedge} n\)
    assumes invertible \(A\) and invertible \(B\)
    shows invertible \((A * * B)\)
proof -
    from 〈invertible \(A\) 〉 and 〈invertible \(B\) 〉
    obtain \(A^{\prime}\) and \(B^{\prime}\) where \(A * * A^{\prime}=\) mat 1 and \(A^{\prime} * * A=\) mat 1
        and \(B * * B^{\prime}=\) mat 1 and \(B^{\prime} * * B=\) mat 1
        unfolding invertible-def
        by auto
    have \((A * * B) * *\left(B^{\prime} * * A^{\prime}\right)=A * *\left(B * * B^{\prime}\right) * * A^{\prime}\)
    by (simp add: matrix-mul-assoc)
    with \(\left\langle A * * A^{\prime}=\right.\) mat 1\(\rangle\) and \(\left\langle B * * B^{\prime}=\right.\) mat 1\(\rangle\)
    have \((A * * B) * *\left(B^{\prime} * * A^{\prime}\right)=\) mat 1 by (auto simp add: matrix-mul-rid)
    with matrix-left-right-inverse have \(\left(B^{\prime} * * A^{\prime}\right) * *(A * * B)=\) mat 1 by auto
    with \(\left\langle(A * * B) * *\left(B^{\prime} * * A^{\prime}\right)=\right.\) mat 1\(\rangle\)
    show invertible \((A\) ** \(B)\)
        unfolding invertible-def
        by auto
qed
```

lemma scalar－matrix－assoc：

```
    fixes }A\mathrm{ :: real^' }\mp@subsup{m}{}{\wedge\prime}
    shows k**R}(A**B)=(k*\mp@subsup{*}{R}{}A)**
proof -
    have }\forallij.(k\mp@subsup{*}{R}{}(A**B))$i$j=((k\mp@subsup{*}{R}{}A)**B)$i$
    proof standard+
    fix i j
    have (k**}(A**B))$i$j=k*(\suml\inUNIV.A$i$l*B$l$j
        unfolding matrix-matrix-mult-def
        by simp
    also from scaleR-right.setsum [of k \lambda l. A$i$l*B$l$j UNIV]
    have ... = (\sum l\inUNIV. k*A$i$l*B$l$j) by (simp add: algebra-simps)
    finally show (k*R
        unfolding matrix-matrix-mult-def
        by simp
    qed
    thus }k\mp@subsup{*}{R}{}(A**B)=(k\mp@subsup{*}{R}{}A)**B\mathrm{ by (simp add: vec-eq-iff)
qed
lemma transpose-scalar: transpose (k *RA ) =k *R transpose A
    unfolding transpose-def
    by (simp add: vec-eq-iff)
lemma transpose-iff [iff]: transpose }A=\mathrm{ transpose }B\longleftrightarrowA=
proof
    assume transpose }A=\mathrm{ transpose B
    with transpose-transpose [of A] have A = transpose (transpose B) by simp
    with transpose-transpose [of B] show }A=B\mathrm{ by simp
next
    assume }A=
    thus transpose }A=\mathrm{ transpose B by simp
qed
lemma matrix-scalar-ac:
    fixes }A\mathrm{ :: real^' }\mp@subsup{m}{}{\wedge\prime}
    shows A** (k**R B)=k*RA ***
proof -
    from matrix-transpose-mul [of A k*R B] and transpose-scalar [of k B]
    have transpose (A** (k\mp@subsup{*}{R}{}B))=k\mp@subsup{*}{R}{}\mathrm{ transpose }B** transpose }
        by simp
    also from matrix-transpose-mul [of A B] and transpose-scalar [of k A** B]
    have ... = transpose ( }k\mp@subsup{*}{R}{}A**B)\mathrm{ by (simp add: scalar-matrix-assoc)
    finally show }A**(k\mp@subsup{*}{R}{}B)=k\mp@subsup{*}{R}{}A**B\mathrm{ by simp
qed
lemma scalar-invertible:
    fixes }A:: real^' m ' ' n
    assumes }k\not=0\mathrm{ and invertible }
    shows invertible ( }k\mp@subsup{*}{R}{}A
proof -
```

```
    from <invertible A>
    obtain }\mp@subsup{A}{}{\prime}\mathrm{ where }A**\mp@subsup{A}{}{\prime}=mat1\mathrm{ and }\mp@subsup{A}{}{\prime}**A=mat 
    unfolding invertible-def
    by auto
    with <k\not=0`
    have (k*\mp@subsup{*}{R}{}A)**((1/k)*\mp@subsup{*}{R}{}\mp@subsup{A}{}{\prime})=\mathrm{ mat 1}
    and}((1/k)\mp@subsup{*}{R}{}\mp@subsup{A}{}{\prime})** (k\mp@subsup{*}{R}{}A)=mat
    by (simp-all add: matrix-scalar-ac)
    thus invertible ( }k\mp@subsup{*}{R}{}A\mathrm{ )
    unfolding invertible-def
    by auto
qed
lemma matrix-inv:
    assumes invertible M
    shows matrix-inv M ** M = mat 1
    and M ** matrix-inv M = mat 1
    using〈invertible M` and someI-ex [of \lambda N. M ** N= mat 1 ^N** M=
mat 1]
    unfolding invertible-def and matrix-inv-def
    by simp-all
lemma matrix-inv-invertible:
    assumes invertible M
    shows invertible (matrix-inv M)
    using <invertible M> and matrix-inv
    unfolding invertible-def [of matrix-inv M]
    by auto
lemma vector-matrix-mul-rid:
    fixes v :: ('a::semiring-1 ) ^('n::finite)
    shows v v* mat 1 = v
proof -
    have vv* mat 1 = transpose (mat 1) *vv by simp
    thus vv* mat 1 = v by (simp only: transpose-mat matrix-vector-mul-lid)
qed
lemma vector-matrix-mul-assoc:
    fixes v :: ('a::comm-semiring-1)^'n
    shows (vv*M) v*N=vv*(M**N)
proof -
    from matrix-vector-mul-assoc
    have transpose N*v(transpose M*vv)=(transpose N** transpose M) *vv
by fast
    thus (vv*M) v*N=vv* (M**N)
    by (simp add: matrix-transpose-mul [symmetric])
qed
lemma matrix-scalar-vector-ac:
```

```
    fixes A :: real^('m::finite) ^(' }n::finite
    shows}A*v(k\mp@subsup{*}{R}{}v)=k*RA*v
proof -
    have A*v(k**}v)=k\mp@subsup{*}{R}{}(vv* transpose A)
    by (subst scalar-vector-matrix-assoc [symmetric]) simp
    also have ... =vv*k *R transpose A
    by (subst vector-scalar-matrix-ac) simp
    also have ... = vv* transpose ( }k\mp@subsup{*}{R}{}A\mathrm{ ) by (subst transpose-scalar) simp
    also have \ldots.. =k*\mp@subsup{*}{R}{}A*vv by simp
    finally show }A*v(k\mp@subsup{*}{R}{}v)=k\mp@subsup{*}{R}{}A*vv
qed
lemma scalar-matrix-vector-assoc:
    fixes }A:: real^('m::finite) ^(' n::finite)
    shows }k\mp@subsup{*}{R}{}(A*vv)=k\mp@subsup{*}{R}{}A*v
proof -
    have k**R(A*vv)=k**R(vv* transpose A) by simp
    also have \ldots=vv*k *R transpose A
    by (rule vector-scalar-matrix-ac [symmetric])
    also have ... = vv* transpose ( }k\mp@subsup{*}{R}{}A\mathrm{ ) apply (subst transpose-scalar) ..
    finally show }k\mp@subsup{*}{R}{}(A*vv)=k\mp@subsup{*}{R}{}A*vv\mathrm{ by simp
qed
lemma invertible-times-non-zero:
    fixes }M\mathrm{ :: real^' }\mp@subsup{n}{}{\wedge}('n::{inite
    assumes invertible M and v\not=0
    shows M*vv\not=0
    using <invertible M\rangle and }\langlev\not=0\rangle\mathrm{ and invertible-times-eq-zero [of M v]
    by auto
lemma matrix-right-invertible-ker:
    fixes M :: real`('m::finite) ^('n::finite)
    shows (\exists M'.M** M'= mat 1) \longleftrightarrow(\forallx.xv*M=0\longrightarrowx=0)
proof
    assume }\exists\mp@subsup{M}{}{\prime}.M** M'= mat 1
    then obtain }\mp@subsup{M}{}{\prime}\mathrm{ where M** M'= mat 1 ..
    have transpose (M** M') = transpose (mat 1) apply (subst <M ** M' = mat
1)) ..
    hence transpose M' ** transpose M = mat 1
            by (simp add: matrix-transpose-mul transpose-mat)
    hence }\exists\mp@subsup{M}{}{\prime\prime}.\mp@subsup{M}{}{\prime\prime}** transpose M = mat 1 ..
    with matrix-left-invertible-ker [of transpose M]
    have }\forallx\mathrm{ . transpose }M*vx=0\longrightarrowx=0 by sim
    thus }\forallx.xv*M=0\longrightarrowx=0 by sim
next
    assume }\forallx.xv*M=0\longrightarrowx=
    hence }\forallx\mathrm{ . transpose M*vx=0 
    with matrix-left-invertible-ker [of transpose M]
    obtain }\mp@subsup{M}{}{\prime\prime}\mathrm{ where }\mp@subsup{M}{}{\prime\prime}** transpose M = mat 1 by aut
```

```
    hence transpose ( }\mp@subsup{M}{}{\prime\prime}**\mathrm{ transpose M) = transpose (mat 1) by simp
    hence M ** transpose M"}=\mathrm{ mat 1
    by (simp add: matrix-transpose-mul transpose-transpose transpose-mat)
    thus \exists}\mp@subsup{M}{}{\prime}.M** M'= mat 1 ..
qed
lemma left-invertible-iff-invertible:
    fixes M :: real^(' }n::\mathrm{ finite ) ^'}
    shows }(\existsN.N**M=\mathrm{ mat 1) }\longleftrightarrow\mathrm{ invertible M
    using matrix-left-right-inverse
    unfolding invertible-def
    by auto
lemma right-invertible-iff-invertible:
    fixes M :: real^(' }n::\mp@subsup{:}{inite) ^'}{
    shows (\existsN.M**N=mat 1) \longleftrightarrow invertible M
    using left-invertible-iff-invertible
    by (subst matrix-left-right-inverse) auto
definition symmatrix :: ' }\mp@subsup{a}{}{\wedge}\n\mp@subsup{}{}{\wedge}'n=>\mathrm{ bool where
    symmatrix }M\triangleq\mathrm{ transpose M = M
lemma symmatrix-preserve:
    fixes M N :: ('a::comm-semiring-1) ^' n}\mp@subsup{n}{}{\wedge\prime}
    assumes symmatrix M
    shows symmatrix (N** M ** transpose N)
proof -
    have transpose (N** M ** transpose N)=N ** transpose M ** transpose N
    by (simp add: matrix-transpose-mul transpose-transpose matrix-mul-assoc)
    with \symmatrix M`
    show symmatrix (N** M** transpose N)
        unfolding symmatrix-def
        by simp
qed
lemma matrix-vector-right-distrib:
    fixes vw :: real^('n::finite) and M :: real^' }\mp@subsup{n}{}{\wedge('m::finite)
    shows M*v (v+w)=M*vv+M*vw
proof -
    have M*v (v+w)=(v+w)v* transpose M by simp
    also have ...=vv* transpose M + wv* transpose M
    by (rule vector-matrix-left-distrib [of v w transpose M])
    finally show }M*v(v+w)=M*vv+M*vw\mathrm{ by simp
qed
lemma non-zero-mult-invertible-non-zero:
    fixes }M\mathrm{ :: real^' }n\mp@subsup{}{}{\wedge\prime}
    assumes v\not=0 and invertible M
    shows vv* M\not=0
```

using $\langle v \neq 0\rangle$ and \langle invertible $M\rangle$ and times-invertible-eq-zero by auto
end

6 Right group actions

```
theory Action
    imports \(\sim \sim /\) src/HOL/Algebra/Group
begin
locale action = group +
    fixes act :: ' \(b \Rightarrow{ }^{\prime} a \Rightarrow\) ' \(b\) (infixl <o 69)
    assumes id-act [simp]: \(b<o \mathbf{1}=b\)
    and act-act':
    \(g \in\) carrier \(G \wedge h \in \operatorname{carrier} G \longrightarrow(b<o g)<o h=b<o(g \otimes h)\)
begin
lemma act-act:
    assumes \(g \in\) carrier \(G\) and \(h \in\) carrier \(G\)
    shows \((b<o g)<o h=b<o(g \otimes h)\)
proof -
    from \(\langle g \in\) carrier \(G\rangle\) and \(\langle h \in\) carrier \(G\rangle\) and act-act'
    show \((b<o g)<o h=b<o(g \otimes h)\) by simp
qed
lemma act-act-inv [simp]:
    assumes \(g \in\) carrier \(G\)
    shows \(b<o g<o\) inv \(g=b\)
proof -
    from \(\langle g \in\) carrier \(G\rangle\) have inv \(g \in\) carrier \(G\) by (rule inv-closed)
    with \(\langle g \in\) carrier \(G\rangle\) have \(b<o g<o\) inv \(g=b<o g \otimes\) inv \(g\) by (rule act-act)
    with \(\langle g \in\) carrier \(G\rangle\) show \(b<o g<o\) inv \(g=b\) by simp
qed
lemma act-inv-act [simp]:
    assumes \(g \in\) carrier \(G\)
    shows \(b<o\) inv \(g<o g=b\)
    using \(\langle g \in\) carrier \(G\rangle\) and act-act-inv [of inv \(g]\)
    by \(\operatorname{simp}\)
lemma act-inv-iff:
    assumes \(g \in\) carrier \(G\)
    shows \(b<o\) inv \(g=c \longleftrightarrow b=c<o g\)
proof
    assume \(b<o\) inv \(g=c\)
    hence \(b<o\) inv \(g<o g=c<o g\) by simp
    with \(\langle g \in\) carrier \(G\rangle\) show \(b=c<o g\) by simp
next
```

```
    assume b =c<o g
    hence b<o inv g=c<o g<o inv g by simp
    with }\langleg\in\mathrm{ carrier }G\rangle\mathrm{ show b<o inv g=c by simp
qed
end
end
```


$7 \quad$ Projective geometry

theory Projective
imports Linear-Algebra2
Euclid-Tarski
Action
begin

7.1 Proportionality on non-zero vectors

context vector-space
begin

```
definition proportionality :: ('b×'b) set where
    proportionality \(\triangleq\{(x, y) . x \neq 0 \wedge y \neq 0 \wedge(\exists k . x=\) scale \(k y)\}\)
definition non-zero-vectors :: 'b set where
    non-zero-vectors \(\triangleq\{x . x \neq 0\}\)
lemma proportionality-refl-on: refl-on non-zero-vectors proportionality
proof -
    have proportionality \(\subseteq\) non-zero-vectors \(\times\) non-zero-vectors
        unfolding proportionality-def non-zero-vectors-def
        by auto
    moreover have \(\forall x \in\) non-zero-vectors. \((x, x) \in\) proportionality
    proof
        fix \(x\)
        assume \(x \in\) non-zero-vectors
        hence \(x \neq 0\) unfolding non-zero-vectors-def ..
        moreover have \(x=\) scale \(1 x\) by simp
        ultimately show \((x, x) \in\) proportionality
            unfolding proportionality-def
            by blast
    qed
    ultimately show refl-on non-zero-vectors proportionality
        unfolding refl-on-def ..
qed
lemma proportionality-sym: sym proportionality
proof -
```

```
    {fix x y
    assume (x,y)\in proportionality
    hence }x\not=0\mathrm{ and }y\not=0\mathrm{ and }\existsk.x=\mathrm{ scale }k
        unfolding proportionality-def
        by simp+
    from }\exists\existsk.x=\mathrm{ scale k y` obtain k where }x=\mathrm{ scale k y by auto
    with }\langlex\not=0\rangle\mathrm{ have }k\not=0\mathrm{ by simp
    with \langlex= scale ky> have }y=\mathrm{ scale (1/k)x by simp
    with }\langlex\not=0\rangle\mathrm{ and }\langley\not=0\rangle\mathrm{ have ( }y,x)\in\mathrm{ proportionality
        unfolding proportionality-def
        by auto
    }
    thus sym proportionality
    unfolding sym-def
    by blast
qed
lemma proportionality-trans: trans proportionality
proof -
    { fix x yz
    assume (x,y)\in proportionality and (y,z)\in proportionality
    hence }x\not=0\mathrm{ and }z\not=0\mathrm{ and }\existsj.x=\mathrm{ scale j y and }\existsk.y=scale k
        unfolding proportionality-def
        by simp+
    from }\langle\existsj.x= scale jy\rangle\mathrm{ and }\langle\existsk.y=\mathrm{ scale }kz
    obtain j and k where }x=\mathrm{ scale j y and y=scale kz by auto+
    hence }x=\operatorname{scale}(j*k)z\mathrm{ by simp
    with }\langlex\not=0\rangle\mathrm{ and }\langlez\not=0\rangle\mathrm{ have (x,z) f proportionality
        unfolding proportionality-def
        by auto
    }
    thus trans proportionality
    unfolding trans-def
    by blast
qed
theorem proportionality-equiv: equiv non-zero-vectors proportionality
    unfolding equiv-def
    by (simp add:
    proportionality-refl-on
    proportionality-sym
    proportionality-trans)
end
definition invertible-proportionality ::
((real^('}n::finite) ^' n) > (real^' n^' n)) set wher
invertible-proportionality \triangleq
real-vector.proportionality }\cap\mathrm{ (Collect invertible }\times\mathrm{ Collect invertible)
```

```
lemma invertible-proportionality-equiv:
    equiv (Collect invertible :: (real^('n::finite) ^'}n)\mathrm{ set)
    invertible-proportionality
    (is equiv ?invs -)
proof -
    from zero-not-invertible
    have real-vector.non-zero-vectors \cap ?invs = ?invs
        unfolding real-vector.non-zero-vectors-def
        by auto
    from equiv-restrict and real-vector.proportionality-equiv
    have equiv (real-vector.non-zero-vectors \cap ?invs) invertible-proportionality
        unfolding invertible-proportionality-def
    by auto
    with 〈real-vector.non-zero-vectors \cap ?invs = ?invs`
    show equiv ?invs invertible-proportionality
        by simp
qed
```


7.2 Points of the real projective plane

typedef proj2 $=($ real-vector.non-zero-vectors $::($ real^3) set $) / /$ real-vector.proportionality proof
have (axis 11 :: real^3) \in real-vector.non-zero-vectors unfolding real-vector.non-zero-vectors-def by (simp add: axis-def vec-eq-iff [where ' $a=$ real])
thus real-vector.proportionality " $\left\{\begin{array}{lll}\text { axis } & 1 & 1\end{array}\right\} \in($ real-vector.non-zero-vectors ::
(real^3) set)//real-vector.proportionality
unfolding quotient-def
by auto
qed
definition proj2-rep :: proj2 \Rightarrow real^3 where proj2-rep $x \triangleq \epsilon v . v \in$ Rep-proj2 x
definition proj2-abs :: real^3 \Rightarrow proj2 where
proj2-abs $v \triangleq$ Abs-proj2 (real-vector.proportionality " $\{v\}$)
lemma proj2-rep-in: proj2-rep $x \in$ Rep-proj2 x
proof -
let $? v=$ proj2-rep x
from quotient-element-nonempty and
real-vector.proportionality-equiv and
Rep-proj2 [of x]
have $\exists w . w \in \operatorname{Rep}$-proj2 x
by auto
with someI-ex $[$ of $\lambda z . z \in$ Rep-proj2 $x]$
show ? $v \in$ Rep-proj2 x
unfolding proj2-rep-def

```
    by simp
qed
lemma proj2-rep-non-zero: proj2-rep x = 0
proof -
    from
        Union-quotient [of real-vector.non-zero-vectors real-vector.proportionality]
        and real-vector.proportionality-equiv
        and Rep-proj2 [of x] and proj2-rep-in [of x]
    have proj2-rep x \in real-vector.non-zero-vectors
        unfolding quotient-def
        by auto
    thus proj2-rep x}\not=
        unfolding real-vector.non-zero-vectors-def
        by simp
qed
lemma proj2-rep-abs:
    fixes v:: real^3
    assumes v\in real-vector.non-zero-vectors
    shows (v, proj2-rep (proj2-abs v)) \in real-vector.proportionality
proof -
    from }\langlev\in\mathrm{ real-vector.non-zero-vectors 
    have real-vector.proportionality " {v}\in(real-vector.non-zero-vectors :: (real^3)
set)// real-vector.proportionality
            unfolding quotient-def
            by auto
    with Abs-proj2-inverse
    have Rep-proj2 (proj2-abs v) = real-vector.proportionality " {v}
        unfolding proj2-abs-def
        by simp
    with proj2-rep-in
    have proj2-rep (proj2-abs v)\in real-vector.proportionality " {v} by auto
    thus (v, proj2-rep (proj2-abs v)) \in real-vector.proportionality by simp
qed
lemma proj2-abs-rep: proj2-abs (proj2-rep x) =x
proof -
    from partition-Image-element
    [of real-vector.non-zero-vectors
    real-vector.proportionality
    Rep-proj2 x
    proj2-rep x]
    and real-vector.proportionality-equiv
    and Rep-proj2 [of x] and proj2-rep-in [of x]
    have real-vector.proportionality " {proj2-rep x}=Rep-proj2 x
    by simp
    with Rep-proj2-inverse show proj2-abs (proj2-rep x) =x
    unfolding proj2-abs-def
```

```
    by simp
qed
lemma proj2-abs-mult:
    assumes c\not=0
    shows proj2-abs (c**R v) = proj2-abs v
proof cases
    assume v=0
    thus proj2-abs (c** v)= proj2-abs v by simp
next
    assume v\not=0
    with <c\not=0 \
    have (c**R}v,v)\in\mathrm{ real-vector.proportionality
        and c**R}v\in\mathrm{ real-vector.non-zero-vectors
        and}v\in\mathrm{ real-vector.non-zero-vectors
        unfolding real-vector.proportionality-def
            and real-vector.non-zero-vectors-def
    by simp-all
    with eq-equiv-class-iff
    [of real-vector.non-zero-vectors
        real-vector.proportionality
        c*R}
        v]
        and real-vector.proportionality-equiv
    have real-vector.proportionality " {c**R}v}
        real-vector.proportionality " {v}
        by simp
    thus proj2-abs (c**R v)= proj2-abs v
        unfolding proj2-abs-def
        by simp
qed
lemma proj2-abs-mult-rep:
    assumes c\not=0
    shows proj2-abs (c**R proj2-rep x) =x
    using proj2-abs-mult and proj2-abs-rep and assms
    by simp
lemma proj2-rep-inj: inj proj2-rep
    by (simp add: inj-on-inverseI [of UNIV proj2-abs proj2-rep] proj2-abs-rep)
lemma proj2-rep-abs2:
    assumes v\not=0
    shows \existsk.k\not=0^\operatorname{proj2-rep (proj2-abs v)=k*Rv}
proof -
    from proj2-rep-abs [of v] and }\langlev\not=0
    have (v, proj2-rep (proj2-abs v))\in real-vector.proportionality
        unfolding real-vector.non-zero-vectors-def
        by simp
```

```
    then obtain c where v=c** proj2-rep (proj2-abs v)
    unfolding real-vector.proportionality-def
    by auto
    with }\langlev\not=0\rangle\mathrm{ have }c\not=0\mathrm{ by auto
    hence 1/c\not=0 by simp
    from }\langlev=c\mp@subsup{*}{R}{}\mathrm{ proj2-rep (proj2-abs v)>
    have (1/c)**R v=(1/c)**R c *R proj2-rep (proj2-abs v)
    by simp
    with }\langlec\not=0\rangle\mathrm{ have proj2-rep (proj2-abs v)=(1/c) *R v by simp
    with 〈1/c\not=0\rangle show \exists k. k\not=0^ proj2-rep (proj2-abs v)=k *R v
    by blast
qed
lemma proj2-abs-abs-mult:
    assumes proj2-abs v= proj2-abs w and w\not=0
    shows \exists}\boldsymbol{\exists}.v=c*\mp@subsup{*}{R}{}
proof cases
    assume v=0
    hence v=0 *R w by simp
    thus \existsc.v=c**R w ..
next
    assume v\not=0
    from <proj2-abs v = proj2-abs w>
    have proj2-rep (proj2-abs v) = proj2-rep (proj2-abs w) by simp
    with proj2-rep-abs2 and \langlew\not=0\rangle
    obtain k where proj2-rep (proj2-abs v) =k *R w by auto
    with proj2-rep-abs2 [of v] and \langlev}\not=0
    obtain j where j\not=0 and j*\mp@subsup{*}{R}{}v=k\mp@subsup{*}{R}{}w\mathrm{ by auto}
    hence (1/j)**}\mp@subsup{*}{R}{}j\mp@subsup{*}{R}{}v=(1/j)\mp@subsup{*}{R}{}k\mp@subsup{*}{R}{}w\mathrm{ by simp
    with }\langlej\not=0\rangle\mathrm{ have v=(k/j)**R w by simp
    thus \existsc.v=c**R w..
qed
lemma dependent-proj2-abs:
    assumes }p\not=0\mathrm{ and }q\not=0\mathrm{ and }i\not=0\veej\not=0\mathrm{ and }i\mp@subsup{*}{R}{}p+j\mp@subsup{*}{R}{}q=
    shows proj2-abs p = proj2-abs q
proof -
    have i\not=0
    proof
        assume i=0
        with }\langlei\not=0\veej\not=0\rangle\mathrm{ have j}\not=0\mathrm{ by simp
    with }\langlei\mp@subsup{*}{R}{}p+j\mp@subsup{*}{R}{}q=0\rangle\mathrm{ and }\langleq\not=0\rangle\mathrm{ have }i\mp@subsup{*}{R}{}p\not=0\mathrm{ by auto
    with }\langlei=0\rangle\mathrm{ show False by simp
qed
with }\langlep\not=0\rangle\mathrm{ and }\langlei\mp@subsup{*}{R}{}p+j\mp@subsup{*}{R}{}q=0\rangle\mathrm{ have }j\not=0\mathrm{ by auto
from <i\not=0\rangle
```

```
    have proj2-abs p = proj2-abs ( }i\mp@subsup{*}{R}{
    also from <i *R p+j**R q=0` and proj2-abs-mult [of -1 j**R
    have ... = proj2-abs ( }j\mp@subsup{*}{R}{}q)\mathrm{ by (simp add: algebra-simps [symmetric])
    also from }<j\not=0\rangle\mathrm{ have ... = proj2-abs q by (rule proj2-abs-mult)
    finally show proj2-abs p = proj2-abs q.
qed
lemma proj2-rep-dependent:
    assumes i*R proj2-rep v +j*R proj2-rep w=0
    (is i**R}\mp@subsup{}{R}{?}p+j\mp@subsup{*}{R}{}
    and i\not=0\veej\not=0
    shows v=w
proof -
    have }?p\not=0\mathrm{ and }?q\not=0\mathrm{ by (rule proj2-rep-non-zero)+
    with }\langlei\not=0\veej\not=0\rangle\mathrm{ and }\langlei\mp@subsup{*}{R}{}
    have proj2-abs ?p = proj2-abs ?q by (simp add: dependent-proj2-abs)
    thus v=w by (simp add: proj2-abs-rep)
qed
lemma proj2-rep-independent:
    assumes p}\not=
    shows independent {proj2-rep p, proj2-rep q}
proof
    let ? p' = proj2-rep p
    let ? ? ' = proj2-rep q
    let ?S = {? p', ?q
    assume dependent ?S
    from projQ-rep-inj and }\langlep\not=q\rangle have ? p' \not=? ?q
        unfolding inj-on-def
        by auto
    with dependent-explicit-2 [of ? p' ?q] and <dependent ?S>
    obtain i and j where i**R?? ' ' + j* *R ? q' = 0 and i\not=0\veej\not=0
    by (simp add: scalar-equiv) auto
    with proj2-rep-dependent have p=q by simp
    with }\langlep\not=q\rangle\mathrm{ show False ..
qed
```


7.3 Lines of the real projective plane

definition proj2-Col :: [proj2, proj2, proj2] \Rightarrow bool where
proj2-Col p q r \triangleq
(\exists ijk. $i *_{R}$ proj2-rep $p+j *_{R}$ proj2-rep $q+k *_{R}$ proj2-rep $r=0$
$\wedge(i \neq 0 \vee j \neq 0 \vee k \neq 0))$
lemma proj2-Col-abs:
assumes $p \neq 0$ and $q \neq 0$ and $r \neq 0$ and $i \neq 0 \vee j \neq 0 \vee k \neq 0$
and $i *_{R} p+j *_{R} q+k *_{R} r=0$
shows proj2-Col (proj2-abs p) (proj2-abs q) (proj2-abs r)
(is proj2-Col ?pp ?pq ?pr)

```
proof -
    from }\langlep\not=0\rangle\mathrm{ and proj2-rep-abs2
    obtain }\mp@subsup{i}{}{\prime}\mathrm{ where }\mp@subsup{i}{}{\prime}\not=0\mathrm{ and proj2-rep ? pp = i'* *R p (is ?rp = -) by auto
    from }\langleq\not=0\rangle\mathrm{ and proj2-rep-abs2
    obtain j' where j'\not=0 and proj2-rep ?pq= j'*R q (is ? rq = -) by auto
    from }\langler\not=0\rangle\mathrm{ and proj2-rep-abs2
    obtain }\mp@subsup{k}{}{\prime}\mathrm{ where }\mp@subsup{k}{}{\prime}\not=0\mathrm{ and proj2-rep ? pr = k' *}\mp@subsup{R}{R}{}r (is ?rr = -) by aut
    with }\langlei\mp@subsup{*}{R}{}p+j\mp@subsup{*}{R}{}q+k\mp@subsup{*}{R}{}r=0
        and }\langle\mp@subsup{i}{}{\prime}\not=0\rangle\mathrm{ and 〈proj2-rep ?pp = i' *R p>
        and }\langle\mp@subsup{j}{}{\prime}\not=0\rangle\mathrm{ \and <proj2-rep ?pq=j' * *R q>
    have (i/i')**R?rp + (j/\mp@subsup{j}{}{\prime})\mp@subsup{*}{R}{\prime}?rq+(k/\mp@subsup{k}{}{\prime})\mp@subsup{*}{R}{}?rrr=0 by simp
    from }\langle\mp@subsup{i}{}{\prime}\not=0\rangle\mathrm{ and }\langle\mp@subsup{j}{}{\prime}\not=0\rangle\mathrm{ and }\langle\mp@subsup{k}{}{\prime}\not=0\rangle\mathrm{ and }\langlei\not=0\veej\not=0\veek\not=0
    have }i/\mp@subsup{i}{}{\prime}\not=0\veej/\mp@subsup{j}{}{\prime}\not=0\veek/\mp@subsup{k}{}{\prime}\not=0\mathrm{ by simp
    with <(i/i') *R ?rp + (j/j') * *R ?rq + (k/k') * *R ?rr = 0>
    show proj2-Col ?pp ?pq ?pr by (unfold proj2-Col-def, best)
qed
lemma proj2-Col-permute:
    assumes projo-Col a b c
    shows proj2-Col a c b
    and proj2-Col b a c
proof -
    let ?a' = proj2-rep a
    let ? }\mp@subsup{b}{}{\prime}=\mathrm{ proj2-rep b
    let ?c' = proj2-rep c
    from <proj2-Col a b c>
    obtain i and j and k}\mathrm{ where
        i**
        and i\not=0\veej\not=0\veek\not=0
        unfolding proj2-Col-def
        by auto
    from 〈i * *R? ?a' + j**R
    have}i\mp@subsup{*}{R}{}??\mp@subsup{a}{}{\prime}+k\mp@subsup{*}{R}{\prime}?\mp@subsup{c}{}{\prime}+j\mp@subsup{*}{R}{}??\mp@subsup{b}{}{\prime}=
        and j **R ? b}\mp@subsup{}{}{\prime}+i\mp@subsup{*}{R}{}??\mp@subsup{a}{}{\prime}+k\mp@subsup{*}{R}{}?\mp@subsup{c}{}{\prime}=
        by (simp-all add: ac-simps)
    moreover from <i\not=0\veej\not=0\veek\not=0\rangle
    have }i\not=0\veek\not=0\veej\not=0\mathrm{ and j}\not=0\veei\not=0\veek\not=0\mathrm{ by auto
    ultimately show proj2-Col a c b and proj2-Col b a c
        unfolding proj2-Col-def
        by auto
qed
lemma proj2-Col-coincide: proj2-Col a a c
proof -
    have 1 ** proj2-rep a + (-1) *R proj2-rep a + 0 ** proj2-rep c = 0
        by simp
    moreover have (1::real) \not=0 by simp
```

```
    ultimately show proj2-Col a a c
    unfolding proj2-Col-def
    by blast
qed
lemma proj2-Col-iff:
    assumes \(a \neq r\)
    shows proj2-Col a r \(t \longleftrightarrow\)
    \(t=a \vee\left(\exists i . t=\operatorname{proj2-abs}\left(i *_{R}(\right.\right.\) proj2-rep \(a)+(\) proj2-rep \(\left.\left.r)\right)\right)\)
proof
    let \(? a^{\prime}=\) proj2-rep \(a\)
    let \(? r^{\prime}=\) proj2-rep \(r\)
    let \(? t^{\prime}=\) proj2-rep \(t\)
    \{ assume proj2-Col a r t
    then obtain \(h\) and \(j\) and \(k\) where
        \(h *_{R} ? a^{\prime}+j *_{R} ? r^{\prime}+k *_{R} ? t^{\prime}=0\)
        and \(h \neq 0 \vee j \neq 0 \vee k \neq 0\)
        unfolding proj2-Col-def
        by auto
    show \(t=a \vee\left(\exists i . t=\operatorname{proj2-abs}\left(i *_{R} ? a^{\prime}+? r^{\prime}\right)\right)\)
    proof cases
        assume \(j=0\)
        with \(\langle h \neq 0 \vee j \neq 0 \vee k \neq 0\rangle\) have \(h \neq 0 \vee k \neq 0\) by simp
        with proj2-rep-dependent
            and \(\left\langle h *_{R} ? a^{\prime}+j *_{R} ? r^{\prime}+k *_{R} ? t^{\prime}=0\right\rangle\)
            and \(\langle j=0\rangle\)
    have \(t=a\) by auto
    thus \(t=a \vee\left(\exists i . t=\operatorname{proj2-abs}\left(i *_{R} ? a^{\prime}+? r^{\prime}\right)\right) .\).
next
    assume \(j \neq 0\)
    have \(k \neq 0\)
    proof (rule ccontr)
    assume \(\neg k \neq 0\)
    with proj2-rep-dependent
        and \(\left\langle h *_{R} ? a^{\prime}+j *_{R} ? r^{\prime}+k *_{R} ? t^{\prime}=0\right\rangle\)
        and \(\langle j \neq 0\rangle\)
        have \(a=r\) by simp
        with \(\langle a \neq r\rangle\) show False ..
    qed
    from \(\left\langle h *_{R} ? a^{\prime}+j *_{R} ? r^{\prime}+k *_{R}\right.\) ? \(\left.t^{\prime}=0\right\rangle\)
    have \(h *_{R} ? a^{\prime}+j *_{R} ? r^{\prime}+k *_{R} ? t^{\prime}-k *_{R} ? t^{\prime}=-k *_{R} ? t^{\prime}\) by simp
    hence \(h *_{R} ? a^{\prime}+j *_{R} ? r^{\prime}=-k *_{R}\) ? \(t^{\prime}\) by simp
    with proj2-abs-mult-rep \([o f-k]\) and \(\langle k \neq 0\rangle\)
    have projo-abs \(\left(h *_{R} ? a^{\prime}+j *_{R} ? r^{\prime}\right)=t\) by simp
    with proj2-abs-mult [of \(\left.1 / j h *_{R} ? a^{\prime}+j *_{R} ? r\right]\) and \(\langle j \neq 0\rangle\)
    have proj2-abs \(\left((h / j) *_{R} ? a^{\prime}+? r^{\prime}\right)=t\)
```

```
                by (simp add: scaleR-right-distrib)
            hence }\exists\mathrm{ i. t = proj2-abs ( }i\mp@subsup{*}{R}{}\mathrm{ ? ?a' + ? r') by auto
            thus t=a\vee(\exists i.t=proj2-abs (i*R ? a' 
        qed
    }
    { assume t=a\vee(\exists i.t=proj2-abs (i*\mp@subsup{*}{R}{\prime}?\mp@subsup{a}{}{\prime}+?\mp@subsup{r}{}{\prime})}
        show proj2-Col a r t
        proof cases
            assume t=a
            with proj2-Col-coincide and proj2-Col-permute
            show proj2-Col a r t by blast
    next
            assume t}\not=
            with }\langlet=a\vee(\exists i.t=proj2-abs (i**R ? a'' + ?r'))>
            obtain i where t= proj2-abs (i**R ?a' + ? ? ' ) by auto
            from proj2-rep-dependent [of i a 1 1r] and \langlea\not=r\rangle
            have i*R
            with proj2-rep-abs2 and <t = proj2-abs ( }i\mp@subsup{*}{R}{}
            obtain }j\mathrm{ where ? 't' = j**R (i**R}?,\mp@subsup{a}{}{\prime}+??\mp@subsup{r}{}{\prime})\mathrm{ by auto
```



```
            by (simp add: scaleR-right-distrib)
    hence (j*i)**R ?a' + j** 的的}+(-1)\mp@subsup{*}{R}{\prime}?\mp@subsup{t}{}{\prime}=0\mathrm{ by simp
    have }\exists\textrm{hjk.h
        \wedge(h\not=0\veej\not=0\veek\not=0)
    proof standard+
```



```
            show (j*i)*\mp@subsup{*}{R}{}?\mp@subsup{a}{}{\prime}+j\mp@subsup{*}{R}{}?\mp@subsup{?}{}{\prime}+(-1)\mp@subsup{*}{R}{\prime}?\mp@subsup{t}{}{\prime}=0.
            show }j*i\not=0\veej\not=0\vee(-1::\mathrm{ real ) }\not=0\mathrm{ by simp
            qed
            thus proj2-Col a r t
                unfolding proj2-Col-def .
    qed
}
qed
definition proj2-Col-coeff :: proj2 => proj2 = proj2 => real where
    proj2-Col-coeff a r t 太 \epsilon i.t=proj2-abs ( i*R proj2-rep a + proj2-rep r)
lemma proj2-Col-coeff:
    assumes proj2-Col a r t and a\not=r and t\not=a
    shows t = proj2-abs ((proj2-Col-coeff a r t) *R proj2-rep a + proj2-rep r)
proof -
    from }\langlea\not=r\rangle\mathrm{ and 〈proj2-Col a r t> and }\langlet\not=a\rangle\mathrm{ and proj2-Col-iff
    have \exists i. t = proj2-abs ( i** proj2-rep a + proj2-rep r) by simp
    thus t = proj2-abs ((proj2-Col-coeff a r t)*R proj2-rep a + proj2-rep r)
        by (unfold proj2-Col-coeff-def) (rule someI-ex)
qed
```

```
lemma proj2-Col-coeff-unique':
    assumes \(a \neq 0\) and \(r \neq 0\) and proj2-abs \(a \neq\) proj2-abs \(r\)
    and proj2-abs \(\left(i *_{R} a+r\right)=\) projQ-abs \(\left(j *_{R} a+r\right)\)
    shows \(i=j\)
proof -
    from \(\langle a \neq 0\rangle\) and \(\langle r \neq 0\rangle\) and \(\langle\) proj2-abs \(a \neq\) proj2-abs \(r\rangle\)
        and dependent-proj2-abs [of a \(r\) - 1]
    have \(i *_{R} a+r \neq 0\) and \(j *_{R} a+r \neq 0\) by auto
    with proj2-rep-abs2 [of \(i *_{R} a+r\) ]
        and proj2-rep-abs2 [of \(j *_{R} a+r\) ]
    obtain \(k\) and \(l\) where \(k \neq 0\)
        and proj2-rep (proj2-abs \(\left.\left(i *_{R} a+r\right)\right)=k *_{R}\left(i *_{R} a+r\right)\)
        and proj2-rep (proj2-abs \(\left.\left(j *_{R} a+r\right)\right)=l *_{R}\left(j *_{R} a+r\right)\)
        by auto
    with \(\left\langle\right.\) proj2-abs \(\left.\left(i *_{R} a+r\right)=\operatorname{proj2-abs}\left(j *_{R} a+r\right)\right\rangle\)
    have \((k * i) *_{R} a+k *_{R} r=(l * j) *_{R} a+l *_{R} r\)
        by (simp add: scaleR-right-distrib)
    hence \((k * i-l * j) *_{R} a+(k-l) *_{R} r=0\)
    by (simp add: algebra-simps vec-eq-iff)
    with \(\langle a \neq 0\rangle\) and \(\langle r \neq 0\rangle\) and \(\langle p r o j 2-a b s\) a \(a \neq\) proj2-abs \(r\rangle\)
        and dependent-proj2-abs [of a \(r k * i-l * j k-l\) ]
    have \(k * i-l * j=0\) and \(k-l=0\) by auto
    from \(\langle k-l=0\rangle\) have \(k=l\) by simp
    with \(\langle k * i-l * j=0\rangle\) have \(k * i=k * j\) by \(\operatorname{simp}\)
    with \(\langle k \neq 0\rangle\) show \(i=j\) by simp
qed
lemma proj2-Col-coeff-unique:
    assumes \(a \neq r\)
    and proj2-abs ( \(i *_{R}\) proj2-rep \(a+\) proj2-rep \(\left.r\right)\)
    \(=\) proj2-abs ( \(j *_{R}\) proj2-rep \(a+\) proj2-rep \(\left.r\right)\)
    shows \(i=j\)
proof -
    let \(? a^{\prime}=\) proj2-rep \(a\)
    let \(? r^{\prime}=\) proj2-rep \(r\)
    have \(? a^{\prime} \neq 0\) and \(? r^{\prime} \neq 0\) by (rule proj2-rep-non-zero) +
    from \(\langle a \neq r\rangle\) have proj2-abs \(? a^{\prime} \neq\) proj2-abs \(? r^{\prime}\) by (simp add: proj2-abs-rep)
    with \(\left\langle ? a^{\prime} \neq 0\right\rangle\) and \(\left\langle ? r^{\prime} \neq 0\right\rangle\)
        and \(\left\langle\right.\) proj2-abs \(\left.\left(i *_{R} ? a^{\prime}+? r^{\prime}\right)=\operatorname{proj2-abs}\left(j *_{R} ? a^{\prime}+? r^{\prime}\right)\right\rangle\)
    and proj2-Col-coeff-unique'
    show \(i=j\) by simp
qed
datatype proj2-line \(=\) P2L proj2
definition \(L 2 P\) :: proj2-line \(\Rightarrow\) proj2 where
    L2P \(l \triangleq\) case \(l\) of P2L \(p \Rightarrow p\)
```

```
lemma L2P-P2L [simp]:L2P (P2L p) = p
    unfolding L2P-def
    by simp
lemma P2L-L2P [simp]: P2L (L2P l) =l
    by (induct l) simp
lemma L2P-inj [simp]:
    assumes L2P l = L2P m
    shows l=m
    using P2L-L2P [of l] and assms
    by simp
lemma P2L-to-L2P: P2L p=l \longleftrightarrowp=L2P l
proof
    assume P2L p=l
    hence L2P (P2L p)=L2Pl by simp
    thus p=L2P l by simp
next
    assume p=L2Pl
    thus P2L p=l by simp
qed
definition proj2-line-abs :: real^3 }=>\mathrm{ proj2-line where
    proj2-line-abs v\triangleq P2L (proj2-abs v)
definition proj2-line-rep :: proj2-line }=>\mathrm{ real^3 where
    proj2-line-rep l \triangleq proj2-rep (L2P l)
lemma proj2-line-rep-abs:
    assumes v\not=0
    shows \existsk.k\not=0^ proj2-line-rep (proj2-line-abs v)=k *R v
    unfolding proj2-line-rep-def and proj2-line-abs-def
    using proj2-rep-abs2 and }\langlev\not=0
    by simp
lemma proj2-line-abs-rep [simp]: proj2-line-abs (proj2-line-rep l) =l
    unfolding proj2-line-abs-def and proj2-line-rep-def
    by (simp add: proj2-abs-rep)
lemma proj2-line-rep-non-zero: proj2-line-rep l\not=0
    unfolding proj2-line-rep-def
    using proj2-rep-non-zero
    by simp
lemma proj2-line-rep-dependent:
    assumes i* * projo-line-rep l + j** proj2-line-rep m=0
    and i\not=0\veej\not=0
    shows l=m
```

using proj2-rep-dependent [of i L2P lj L2P m] and assms unfolding proj2-line-rep-def
by simp
lemma proj2-line-abs-mult:
assumes $k \neq 0$
shows proj2-line-abs $\left(k *_{R} v\right)=$ proj2-line-abs v
unfolding proj2-line-abs-def
using $\langle k \neq 0$ 〉
by (subst proj2-abs-mult) simp-all
lemma projo-line-abs-abs-mult:
assumes proj2-line-abs $v=$ proj2-line-abs w and $w \neq 0$
shows $\exists k . v=k *_{R} w$
using assms
by (unfold proj2-line-abs-def) (simp add: proj2-abs-abs-mult)
definition proj2-incident :: proj2 \Rightarrow proj2-line \Rightarrow bool where proj2-incident $p l \triangleq($ proj2-rep $p) \cdot($ proj2-line-rep $l)=0$
lemma proj2-points-define-line:
shows $\exists l$. proj2-incident $p l \wedge$ proj2-incident $q l$
proof -
let $? p^{\prime}=$ proj2-rep p
let $? q^{\prime}=$ proj2-rep q
let $? B=\left\{? p^{\prime}, ? q^{\prime}\right\}$
from card-suc-ge-insert $\left[\right.$ of ? $\left.p^{\prime}\left\{? q^{\prime}\right\}\right]$ have card ?B ≤ 2 by simp
with card-ge-dim [of ? B] have $\operatorname{dim} ? B<3$ by simp
with lowdim-subset-hyperplane [of ?B]
obtain l^{\prime} where $l^{\prime} \neq 0$ and span $? B \subseteq\left\{x . l^{\prime} \cdot x=0\right\}$ by auto
let $? l=$ proj2-line-abs l^{\prime}
let ? $l^{\prime \prime}=$ proj2-line-rep ?l
from proj2-line-rep-abs and $\left\langle l^{\prime} \neq 0\right\rangle$
obtain k where ? $l^{\prime \prime}=k *_{R} l^{\prime}$ by auto
have $? p^{\prime} \in ? B$ and $? q^{\prime} \in ? B$ by simp-all
with span-inc $[o f ? B]$ and 〈span ? $\left.B \subseteq\left\{x . l^{\prime} \cdot x=0\right\}\right\rangle$
have $l^{\prime} \cdot ? p^{\prime}=0$ and $l^{\prime} \cdot ? q^{\prime}=0$ by auto
hence $? p^{\prime} \cdot l^{\prime}=0$ and $? q^{\prime} \cdot l^{\prime}=0$ by (simp-all add: inner-commute)
with dot-scaleR-mult(2) $\left[o f-k l^{\prime}\right]$ and $\left\langle ? l^{\prime \prime}=k *_{R} l^{\prime}\right\rangle$
have proj2-incident p ?l \wedge proj2-incident q ?l unfolding proj2-incident-def by simp
thus $\exists l$. proj2-incident $p l \wedge$ proj2-incident $q l$ by auto qed
definition proj2-line-through $::$ proj2 \Rightarrow proj2 \Rightarrow proj2-line where proj2-line-through p $q \triangleq \epsilon$ l. proj2-incident pl $1 \wedge$ proj2-incident ql
lemma proj2-line-through-incident:
shows proj2-incident p (proj2-line-through $p q$)
and proj2-incident q (proj2-line-through $p q$)
unfolding proj2-line-through-def
using proj2-points-define-line
and someI-ex $[$ of λl. proj2-incident p $l \wedge$ proj2-incident $q l]$
by simp-all
lemma proj2-line-through-unique:
assumes $p \neq q$ and proj2-incident $p l$ and proj2-incident $q l$
shows $l=$ projo-line-through $p q$
proof -
let $? l^{\prime}=$ proj2-line-rep l
let $? m=$ proj2-line-through $p q$
let $?^{\prime} m^{\prime}=$ proj2-line-rep ? m
let $? p^{\prime}=$ proj2-rep p
let $? q^{\prime}=$ proj2-rep q
let $? A=\left\{? p^{\prime}, ? q^{\prime}\right\}$
let $? B=$ insert $?^{\prime} m^{\prime} ? A$
from proj2-line-through-incident
have proj2-incident p ?m and proj2-incident q ?m by simp-all
with $\langle p r o j 2-i n c i d e n t ~ p l\rangle$ and $\langle p r o j 2-i n c i d e n t ~ q ~ l\rangle$
have $\forall w \in ?$. orthogonal ? $m^{\prime} w$ and $\forall w \in$?A. orthogonal ? $l^{\prime} w$ unfolding proj2-incident-def and orthogonal-def
by (simp-all add: inner-commute)
from proj2-rep-independent and $\langle p \neq q\rangle$ have independent ?A by simp
from proj2-line-rep-non-zero have $? m^{\prime} \neq 0$ by simp
with orthogonal-independent
and «independent ? $A\rangle$ and $\left\langle\forall w \in\right.$? A. orthogonal ? $\left.m^{\prime} w\right\rangle$
have independent ? B by auto
from proj2-rep-inj and $\langle p \neq q\rangle$ have $? p^{\prime} \neq ? q^{\prime}$
unfolding inj-on-def
by auto
hence card $? A=2$ by simp
moreover have $? m^{\prime} \notin ? A$
proof
assume ? $m^{\prime} \in ? A$
with span-inc $[o f ? A]$ have ? $m^{\prime} \in$ span ? A by auto
with orthogonal-in-span-eq-0 and $\left\langle\forall\right.$ w ? A. orthogonal ? $\left.m^{\prime} w\right\rangle$
have $? m^{\prime}=0$ by auto
with $\left\langle ? m^{\prime} \neq 0\right\rangle$ show False ..
qed
ultimately have card $? B=3$ by simp
with independent-is-basis [of ?B] and «independent ?B>
have is-basis ?B by simp
with basis-expand obtain c where ? $l^{\prime}=\left(\sum v \in ? B . c v *_{R} v\right)$ by auto
let ? $l^{\prime \prime}=? l^{\prime}-c ? m^{\prime} *_{R} ? m^{\prime}$
from $\left\langle ? l^{\prime}=\left(\sum v \in ? B . c v *_{R} v\right)\right\rangle$ and $\left\langle ? m^{\prime} \notin ? A\right\rangle$

```
    have ?l'|}=(\sumv\in?A.cv\mp@subsup{*}{R}{\prime}v)\mathrm{ by simp
    with orthogonal-setsum [of ?A]
    and \langle\forall w\in?A. orthogonal ? l' w\rangle and \langle\forall w\in?A. orthogonal ?m}\mp@subsup{m}{}{\prime}w
    have orthogonal ?l' ?l'" and orthogonal ?m' ?l'"
    by (simp-all add: scalar-equiv)
    from <orthogonal ?m' ?l'\
    have orthogonal (c?m'*}\mp@subsup{*}{R}{}?\mp@subsup{m}{}{\prime})\mathrm{ ? l' by (simp add: orthogonal-clauses)
    with <orthogonal ?l' ?l'\
    have orthogonal ?l"' ?l' by (simp add: orthogonal-clauses)
    with orthogonal-self-eq-0 [of ?l'] have ?l'\prime = 0 by simp
    with proj2-line-rep-dependent [of 1 l-c?m'?m] show l=?m by simp
qed
lemma proj2-incident-unique:
    assumes projo-incident pl
    and proj2-incident q l
    and proj2-incident p m
    and proj2-incident q m
    shows }p=q\veel=
proof cases
    assume p=q
    thus p=q\veel=m..
next
    assume p\not=q
    with \langleproj2-incident pl\rangle and \langleproj2-incident q l>
        and proj2-line-through-unique
    have l= proj2-line-through p q by simp
    moreover from \langlep\not=q\rangle and \langleproj2-incident p m> and \langleproj2-incident q m>
    have m= proj2-line-through p q by (rule proj2-line-through-unique)
    ultimately show }p=q\veel=m\mathrm{ by simp
qed
lemma proj2-lines-define-point: \exists p. proj2-incident pl \ proj2-incident p m
proof -
    let ?l'=L2P l
    let ? m' = L2P m
    from proj2-points-define-line [of ?l' ?m']
    obtain p' where proj2-incident ?l' p'^ proj2-incident?m' p' by auto
    hence proj2-incident (L2P p') l ^ proj2-incident (L2P p')m
    unfolding proj2-incident-def and proj2-line-rep-def
    by (simp add: inner-commute)
    thus \exists p.proj2-incident pl^ proj2-incident p m by auto
qed
definition proj2-intersection :: proj2-line => proj2-line => proj2 where
    proj2-intersection l m\triangleq L2P (proj2-line-through (L2P l) (L2P m))
lemma proj2-incident-switch:
    assumes proj2-incident pl
```

```
    shows proj2-incident (L2P l) (P2L p)
    using assms
    unfolding proj2-incident-def and proj2-line-rep-def
    by (simp add: inner-commute)
lemma proj2-intersection-incident:
    shows proj2-incident (proj2-intersection l m) l
    and proj2-incident (projQ-intersection l m) m
    using proj2-line-through-incident(1) [of L2P l L2P m]
    and proj2-line-through-incident(2) [of L2P m L2P l]
    and proj2-incident-switch [of L2P l]
    and proj2-incident-switch [of L2P m]
    unfolding proj2-intersection-def
    by simp-all
lemma proj2-intersection-unique:
    assumes l\not=m and proj2-incident pl and proj2-incident p m
    shows p= proj2-intersection l m
proof -
    from <l\not=m> have L2P l\not=L2P m by auto
    from 〈proj2-incident pl\rangle and \langleproj2-incident p m>
        and proj2-incident-switch
    have proj2-incident (L2P l) (P2L p) and proj2-incident (L2P m) (P2L p)
    by simp-all
    with <L2P l\not=L2P m> and proj2-line-through-unique
    have P2L p = proj2-line-through (L2P l) (L2P m) by simp
    thus p=proj2-intersection l m
        unfolding proj2-intersection-def
    by (simp add: P2L-to-L2P)
qed
lemma proj2-not-self-incident:
    \neg(proj2-incident p (P2L p))
    unfolding proj2-incident-def and proj2-line-rep-def
    using proj2-rep-non-zero and inner-eq-zero-iff [of proj2-rep p]
    by simp
lemma proj2-another-point-on-line:
    \exists q. q\not=p^ proj2-incident q l
proof -
    let ?m=P2L p
    let ?q = projQ-intersection l ?m
    from proj2-intersection-incident
    have proj2-incident ?q l and proj2-incident ?q ?m by simp-all
    from 〈proj2-incident ?q ?m> and proj2-not-self-incident have ?q }\not=p\mathrm{ by auto
    with \langleproj\mathcal{-incident ?q l> show \exists q. q\not=p\wedge projQ-incident q l by auto}
qed
lemma proj2-another-line-through-point:
```

```
    \exists m. m \not=l^ proj2-incident p m
proof -
    from proj2-another-point-on-line
    obtain q}\mathrm{ where q}\not=L\mathrm{ L2P l ^ proj2-incident q (P2L p) by auto
    with proj2-incident-switch [of q P2L p]
    have P2L q}\not=l\wedge proj2-incident p(P2L q) by aut
    thus \exists m. m\not=l^ proj2-incident p m..
qed
lemma proj2-incident-abs:
    assumes v\not=0 and w\not=0
    shows proj2-incident (proj2-abs v) (proj2-line-abs w) \longleftrightarrowv (w=0
proof -
    from }\langlev\not=0\rangle\mathrm{ and proj2-rep-abs2
    obtain j where j\not=0 and proj2-rep (proj2-abs v) =j *R v by auto
    from }\langlew\not=0\rangle\mathrm{ and proj2-line-rep-abs
    obtain }k\mathrm{ where }k\not=
        and proj2-line-rep(proj2-line-abs w) = k**}
        by auto
    with }\langlej\not=0\rangle\mathrm{ and 〈proj2-rep (proj2-abs v)=j** v>
    show proj2-incident (proj2-abs v) (proj2-line-abs w) \longleftrightarrowv (w = 0
        unfolding proj2-incident-def
    by (simp add: dot-scaleR-mult)
qed
lemma proj2-incident-left-abs:
    assumes v\not=0
    shows proj2-incident (proj2-abs v)l}\longleftrightarrowu\cdot(\mathrm{ proj2-line-rep l)}=
proof -
    have proj2-line-rep l\not=0 by (rule proj2-line-rep-non-zero)
    with }\langlev\not=0\rangle\mathrm{ and proj2-incident-abs [of v proj2-line-rep l]
    show proj2-incident (proj2-abs v) l\longleftrightarrowv (proj2-line-rep l) = 0 by simp
qed
lemma proj2-incident-right-abs:
    assumes v\not=0
    shows proj2-incident p (proj2-line-abs v) \longleftrightarrow(proj2-rep p) • v = 0
proof -
    have proj2-rep p\not=0 by (rule proj2-rep-non-zero)
    with }\langlev\not=0\rangle\mathrm{ and proj2-incident-abs [of proj2-rep p v]
    show proj2-incident p (proj2-line-abs v)\longleftrightarrow \longleftrightarrow(proj2-rep p) •v=0
    by (simp add: proj2-abs-rep)
qed
definition proj2-set-Col :: proj2 set }=>\mathrm{ bool where
    proj2-set-Col S\triangleq\existsl.}\forallp\inS.proj2-incident p
lemma proj2-subset-Col:
```

```
assumes T\subseteqS and proj2-set-Col S
shows proj2-set-Col T
using 〈T\subseteqS\rangle and <proj2-set-Col S〉
by (unfold proj2-set-Col-def) auto
```

definition proj2-no-3-Col :: proj2 set \Rightarrow bool where
proj2-no-3-Col $S \triangleq \operatorname{card} S=4 \wedge(\forall p \in S . \neg \operatorname{proj2-set-Col}(S-\{p\}))$
lemma proj2-Col-iff-not-invertible:
proj2-Col p q r
$\longleftrightarrow \neg$ invertible (vector [proj2-rep p, proj2-rep q, proj2-rep r] :: real^3^3)
(is $-\longleftrightarrow \neg$ invertible (vector $[? u, ? v, ? w])$)
proof -
let $? M=$ vector $[? u, ? v, ? w]::$ real $l^{\wedge} 3^{\wedge} 3$
have proj2-Col p qr $\longleftrightarrow(\exists x . x \neq 0 \wedge x v * ? M=0)$
proof
assume proj2-Col p q r
then obtain i and j and k
where $i \neq 0 \vee j \neq 0 \vee k \neq 0$ and $i *_{R} ? u+j *_{R} ? v+k *_{R} ? w=0$
unfolding proj2-Col-def
by auto
let ? $x=$ vector $[i, j, k]::$ real $^{\wedge} 3$
from $\langle i \neq 0 \vee j \neq 0 \vee k \neq 0\rangle$
have ? $x \neq 0$
unfolding vector-def
by (simp add: vec-eq-iff forall-3)
moreover \{
from $\left\langle i *_{R} ? ?+j *_{R} ? v+k *_{R} ? w=0\right\rangle$
have ? $x v *$? $M=0$
unfolding vector-def and vector-matrix-mult-def
by (simp add: setsum-3 vec-eq-iff algebra-simps) \}
ultimately show $\exists x . x \neq 0 \wedge x v * ? M=0$ by auto
next
assume $\exists x . x \neq 0 \wedge x v * ? M=0$
then obtain x where $x \neq 0$ and $x v * ? M=0$ by auto
let ? $i=x \$ 1$
let ? $j=x \$ 2$
let $? k=x \$ 3$
from $\langle x \neq 0\rangle$ have $? i \neq 0 \vee ? j \neq 0 \vee ? k \neq 0$ by (simp add: vec-eq-iff forall-3)
moreover \{
from $\langle x v * ? M=0\rangle$
have ? $i *_{R}$? $u+? j *_{R}$? $v+? k *_{R}$? $w=0$
unfolding vector-matrix-mult-def and setsum-3 and vector-def
by (simp add: vec-eq-iff algebra-simps) \}
ultimately show projo-Col p q r
unfolding proj2-Col-def
by auto
qed
also from matrix-right-invertible-ker [of ?M]

```
    have ...\longleftrightarrow\neg(\exists M'.?M ** M'= mat 1) by auto
    also from matrix-left-right-inverse
    have ...\longleftrightarrow\neg invertible ?M
    unfolding invertible-def
    by auto
    finally show proj2-Col p qr \longleftrightarrow \checkmark invertible ?M .
qed
lemma not-invertible-iff-proj2-set-Col:
    \neg invertible (vector [proj2-rep p, proj2-rep q, proj2-rep r] :: real^3^3)
    \longleftrightarrow proj2-set-Col {p,q,r}
    (is \neg invertible ?M \longleftrightarrow -)
proof -
    from left-invertible-iff-invertible
    have }\neg\mathrm{ invertible ?M }\longleftrightarrow\neg(\exists\mp@subsup{M}{}{\prime}.\mp@subsup{M}{}{\prime}**\mathrm{ ?M = mat 1) by auto
    also from matrix-left-invertible-ker [of ?M]
    have ...\longleftrightarrow(\existsy.y\not=0^?M*vy=0) by auto
    also have }\ldots\longleftrightarrow(\existsl.\foralls\in{p,q,r}. proj2-incident s l
    proof
    assume }\existsy.y\not=0\wedge?M*vy=
    then obtain }y\mathrm{ where }y\not=0\mathrm{ and ?M*vy=0 by auto
    let ?l = proj2-line-abs y
    from <?M *v y=0`
    have }\foralls\in{p,q,r}.proj2-rep s \cdot y=
            unfolding vector-def
                and matrix-vector-mult-def
                and inner-vec-def
                and setsum-3
        by (simp add: vec-eq-iff forall-3)
    with }\langley\not=0\rangle\mathrm{ and proj2-incident-right-abs
    have }\foralls\in{p,q,r}.proj2-incident s ?l by sim
    thus \existsl.}\foralls\in{p,q,r}. proj2-incident s l ..
next
    assume }\existsl.\foralls\in{p,q,r}.proj2-incident s l
    then obtain l where }\foralls\in{p,q,r}.proj2-incident s l ..
    let ?y = proj2-line-rep l
    have ?y \not=0 by (rule proj2-line-rep-non-zero)
    moreover {
        from }\langle\foralls\in{p,q,r}.proj2-incident s l>
        have ?M*v ?y = 0
            unfolding vector-def
                and matrix-vector-mult-def
                and inner-vec-def
                and setsum-3
                and proj2-incident-def
                by (simp add: vec-eq-iff) }
    ultimately show }\existsy.y\not=0\wedge?M*vy=0 by aut
qed
finally show }\neg\mathrm{ invertible ?M }\longleftrightarrow\mathrm{ proj2-set-Col {p,q,r}
```

unfolding proj2-set-Col-def .
qed
lemma projo-Col-iff-set-Col:
proj2-Col p q $r \longleftrightarrow$ proj2-set-Col $\{p, q, r\}$
by (simp add: proj2-Col-iff-not-invertible not-invertible-iff-proj2-set-Col)
lemma proj2-incident-Col:
assumes proj2-incident pl and proj2-incident $q l$ and proj2-incident r l shows proj2-Col p q r
proof -
from 〈proj2-incident $p l\rangle$ and \langle proj2-incident $q l\rangle$ and \langle proj2-incident $r l\rangle$
have proj2-set-Col $\{p, q, r\}$ by (unfold proj2-set-Col-def) auto
thus proj2-Col p q r by (subst proj2-Col-iff-set-Col)
qed
lemma projo-incident-iff-Col:
assumes $p \neq q$ and proj2-incident $p l$ and proj2-incident $q l$
shows proj2-incident $r l \longleftrightarrow$ proj2-Col $p q r$
proof
assume proj2-incident rl
with \langle proj2-incident $p l\rangle$ and \langle proj2-incident $q l\rangle$
show proj2-Col p q r by (rule proj2-incident-Col)
next
assume proj2-Col p q r
hence proj2-set-Col $\{p, q, r\}$ by (simp add: proj2-Col-iff-set-Col)
then obtain m where $\forall s \in\{p, q, r\}$. proj2-incident s m unfolding proj2-set-Col-def ..
hence proj2-incident $p m$ and proj2-incident q and proj2-incident $r m$ by simp-all
from $\langle p \neq q\rangle$ and $\langle p r o j 2-i n c i d e n t p l\rangle$ and $\langle p r o j 2-i n c i d e n t ~ q l\rangle$
and $\langle p r o j 2-i n c i d e n t p m\rangle$ and $\langle p r o j 2-i n c i d e n t ~ q ~ m\rangle$
and proj2-incident-unique
have $m=l$ by auto
with \langle proj2-incident $r m$ show proj2-incident r l by simp
qed
lemma proj2-incident-iff:
assumes $p \neq q$ and proj2-incident $p l$ and proj2-incident $q l$
shows projo-incident $r l$
$\longleftrightarrow r=p \vee\left(\exists k . r=\operatorname{proj2-abs}\left(k *_{R}\right.\right.$ proj2-rep $\left.\left.p+\operatorname{proj2-rep~} q\right)\right)$
proof -
from $\langle p \neq q\rangle$ and $\langle p r o j 2-i n c i d e n t p l\rangle$ and $\langle p r o j 2-i n c i d e n t ~ q l\rangle$
have proj2-incident $r l \longleftrightarrow$ proj2-Col $p q r$ by (rule proj2-incident-iff-Col)
with $\langle p \neq q\rangle$ and proj2-Col-iff
show proj2-incident $r l$
$\longleftrightarrow r=p \vee\left(\exists k . r=\operatorname{proj2} 2-a b s\left(k *_{R}\right.\right.$ proj2-rep $\left.\left.p+\operatorname{proj2-rep~} q\right)\right)$
by simp

```
qed
lemma not-proj2-set-Col-iff-span:
    assumes card S=3
    shows \neg proj2-set-Col S \longleftrightarrow span (proj2-rep'S) = UNIV
proof -
    from \card S = 3` and choose-3 [of S]
    obtain p and q and r where S={p,q,r} by auto
    let ?u = proj2-rep p
    let ?v = proj2-rep q
    let ?w = proj2-rep r
    let ?M = vector [?u,?v, ?w] :: real^3`^3
    from 〈S ={p,q,r}` and not-invertible-iff-proj2-set-Col[of p q r]
    have \neg proj2-set-Col S \longleftrightarrow invertible ?M by auto
    also from left-invertible-iff-invertible
    have ... \longleftrightarrow(\existsN.N** ?M = mat 1)..
    also from matrix-left-invertible-span-rows
    have ...\longleftrightarrow span (rows ?M) = UNIV by auto
    finally have }\neg\mathrm{ proj2-set-Col S }\longleftrightarrow\mathrm{ span (rows ?M) = UNIV .
    have rows ?M = {?u, ?v, ?w}
    proof
    {fix }
        assume x fows ?M
        then obtain i:: 3 where }x=\mathrm{ ?M $ i
                unfolding rows-def and row-def
                by (auto simp add: vec-lambda-beta vec-lambda-eta)
            with exhaust-3 have x=? u \vee x = ?v \vee x =?w
                unfolding vector-def
                by auto
            hence }x\in{?u,?v,?w} by simp 
    thus rows ?M \subseteq{?u,?v,?w} ..
    {fix }
        assume }x\in{?u,?v,?w
        hence }x=??u\veex=?v\veex=?w\mathrm{ by simp
        hence }x=\mathrm{ ?M $ 1 V x=? M $ 2 V x =? ? $ 3
            unfolding vector-def
                by simp
            hence x f rows ?M
                unfolding rows-def and row-def
                by (auto simp add: vec-lambda-eta) }
    thus {?u,?v,?w}\subseteq rows ?M ..
    qed
    with \S = {p,q,r}>
    have rows ?M = proj2-rep ' }
    unfolding image-def
    by auto
    with }\neg\mathrm{ proj2-set-Col S }\longleftrightarrow\mathrm{ span (rows ?M) = UNIV`
    show \neg proj2-set-Col S \longleftrightarrow span (proj2-rep'S) = UNIV by simp
```


qed

lemma proj2－no－3－Col－span：
assumes proj2－no－3－Col S and $p \in S$
shows span（proj2－rep＇$(S-\{p\}))=U N I V$
proof－
from 〈proj2－no－3－Col $S\rangle$ have card $S=4$ unfolding proj2－no－3－Col－def ．．
with $\langle p \in S\rangle$ and \langle card $S=4$ 〉 and card－gt－0－diff－singleton［of S ］
have $\operatorname{card}(S-\{p\})=3$ by simp
from 〈proj2－no－3－Col $S\rangle$ and $\langle p \in S$
have \neg proj2－set－Col $(S-\{p\})$
unfolding proj2－no－3－Col－def
by simp
with $\langle\operatorname{card}(S-\{p\})=3$ ）and not－proj2－set－Col－iff－span
show span（proj2－rep＇$(S-\{p\}))=U N I V$ by simp
qed
lemma fourth－proj2－no－3－Col：
assumes \neg proj2－Col $p q r$
shows \exists s．proj2－no－3－Col $\{s, r, p, q\}$
proof－
from $\neg \neg$ proj2－Col p $q r\rangle$ and proj2－Col－coincide have $p \neq q$ by auto
hence $\operatorname{card}\{p, q\}=2$ by simp
from \triangleleft proj2－Col p q $r\rangle$ and proj2－Col－coincide and proj2－Col－permute
have $r \notin\{p, q\}$ by fast
with \langle card $\{p, q\}=2\rangle$ have card $\{r, p, q\}=3$ by simp
have finite $\{r, p, q\}$ by simp
let $? s=\operatorname{proj2-abs}\left(\sum t \in\{r, p, q\}\right.$. proj2－rep $\left.t\right)$
have $\exists j$ ．$\left(\sum t \in\{r, p, q\}\right.$ ．proj2－rep $\left.t\right)=j *_{R}$ proj2－rep ？s
proof cases
assume $\left(\sum t \in\{r, p, q\}\right.$ ．proj2－rep $\left.t\right)=0$
hence $\left(\sum t \in\{r, p, q\}\right.$ ．proj2－rep $\left.t\right)=0 *_{R}$ proj2－rep ？s by simp
thus $\exists j$ ．$\left(\sum t \in\{r, p, q\}\right.$ ．proj2－rep $\left.t\right)=j *_{R}$ proj2－rep ？s ．．
next
assume $\left(\sum t \in\{r, p, q\}\right.$ ．proj2－rep $\left.t\right) \neq 0$
with proj2－rep－abs2
obtain k where $k \neq 0$
and proj2－rep ？s $=k *_{R}\left(\sum t \in\{r, p, q\}\right.$ ．proj2－rep $\left.t\right)$
by auto
hence $(1 / k) *_{R}$ proj2－rep ？s $=\left(\sum t \in\{r, p, q\}\right.$ ．proj2－rep $\left.t\right)$ by simp
from this［symmetric］
show $\exists j$ ．（ $\sum t \in\{r, p, q\}$ ．proj2－rep $\left.t\right)=j *_{R}$ proj2－rep ？s ．．
qed
then obtain j where $\left(\sum t \in\{r, p, q\}\right.$ ．proj2－rep $\left.t\right)=j *_{R}$ proj2－rep ？s ．．
let ？c $=\lambda t$ ．if $t=$ ？s then $1-j$ else 1

```
from \(\langle p \neq q\rangle\) have ?c \(p \neq 0 \vee\) ?c \(q \neq 0\) by simp
let ? \(d=\lambda t\). if \(t=\) ? s then \(j\) else -1
let \(? S=\{? s, r, p, q\}\)
have ?s \(\notin\{r, p, q\}\)
proof
    assume ?s \(\in\{r, p, q\}\)
    from \(\langle r \notin\{p, q\}\rangle\) and \(\langle p \neq q\rangle\)
    have ?c \(r *_{R}\) proj2-rep \(r+\) ?c \(p *_{R}\) proj2-rep \(p+\) ?c \(q *_{R}\) proj2-rep \(q\)
        \(=\left(\sum t \in\{r, p, q\}\right.\). ?c \(t *_{R}\) proj2-rep \(\left.t\right)\)
        by (simp add: setsum.insert \(\left[\right.\) of \(-\lambda t\). ?c \(t *_{R}\) proj2-rep \(\left.t\right]\) )
    also from 〈finite \(\{r, p, q\}\) 〉 and 〈? \(s \in\{r, p, q\}\rangle\)
    have \(\ldots=\) ?c ? \(s *_{R}\) proj2-rep ?s \(+\left(\sum t \in\{r, p, q\}-\{? s\}\right.\). ?c \(t *_{R}\) proj2-rep \(\left.t\right)\)
        by (simp only:
        setsum.remove \(\left[\right.\) of \(\{r, p, q\}\) ?s \(\lambda t\). ?c \(t *_{R}\) proj2-rep \(\left.\left.t\right]\right)\)
    also have ...
        \(=-j *_{R}\) proj2-rep ? \(s+\left(\right.\) proj2-rep \(? s+\left(\sum t \in\{r, p, q\}-\{? s\}\right.\). proj2-rep \(\left.\left.t\right)\right)\)
        by (simp add: algebra-simps)
    also from 〈finite \(\{r, p, q\}\) 〉 and 〈?s \(\in\{r, p, q\}\rangle\)
    have \(\ldots=-j *_{R}\) proj2-rep ?s \(+\left(\sum t \in\{r, p, q\}\right.\). proj2-rep \(\left.t\right)\)
        by (simp only:
            setsum.remove [of \(\{r, p, q\}\) ?s \(\lambda t\). proj2-rep t,symmetric])
    also from \(\left\langle\left(\sum t \in\{r, p, q\}\right.\right.\). proj2-rep \(\left.t\right)=j *_{R}\) proj2-rep ? \(\left.s\right\rangle\)
    have \(\ldots=0\) by \(\operatorname{simp}\)
    finally
    have ?c \(r *_{R}\) proj2-rep \(r+\) ?c \(p *_{R}\) proj2-rep \(p+\) ?c \(q *_{R}\) proj2-rep \(q=0\)
    with 〈? \(c p \neq 0 \vee ? c q \neq 0\) 〉
    have proj2-Col p q r
    by (unfold proj2-Col-def) (auto simp add: algebra-simps)
    with \(\neg\) projo-Col p q r show False ..
qed
with \(\langle\) card \(\{r, p, q\}=3\rangle\) have card \(? S=4\) by simp
from \(\triangleleft \neg\) proj2-Col p \(q\) r and proj2-Col-permute
have \(\neg\) proj2-Col r p \(q\) by fast
hence \(\neg\) proj2-set-Col \(\{r, p, q\}\) by (subst proj2-Col-iff-set-Col [symmetric])
have \(\forall u \in ? S . \neg\) proj2-set-Col \((? S-\{u\})\)
proof
    fix \(u\)
    assume \(u \in\) ? \(S\)
    with \(\langle\) card \(? S=4\rangle\) have card \((? S-\{u\})=3\) by simp
    show \(\neg\) proj2-set-Col \((? S-\{u\})\)
    proof cases
        assume \(u=\) ?s
```

with 〈？s $\notin\{r, p, q\}$ 〉 have ？$S-\{u\}=\{r, p, q\}$ by simp with \neg proj2－set－Col $\{r, p, q\}\rangle$ show \neg proj2－set－Col $(? S-\{u\})$ by simp next
assume $u \neq$ ？s
hence insert ？s $(\{r, p, q\}-\{u\})=? S-\{u\}$ by auto
from \langle finite $\{r, p, q\}\rangle$ have finite $(\{r, p, q\}-\{u\})$ by simp
from 〈？s $\notin\{r, p, q\}$ 〉 have ？s $\notin\{r, p, q\}-\{u\}$ by simp
hence $\forall t \in\{r, p, q\}-\{u\}$ ．？$d t=-1$ by auto
from $\langle u \neq ? s\rangle$ and $\langle u \in ? S\rangle$ have $u \in\{r, p, q\}$ by simp
hence（ $\sum t \in\{r, p, q\}$ ．proj2－rep t ）
$=$ proj2－rep $u+\left(\sum t \in\{r, p, q\}-\{u\}\right.$ ．proj2－rep $\left.t\right)$
by（simp add：setsum．remove）
with $\left\langle\left(\sum t \in\{r, p, q\}\right.\right.$ ．proj2－rep $\left.t\right)=j *_{R}$ proj2－rep ？s \rangle
have proj2－rep u

$$
=j *_{R} \text { proj2-rep ?s }-\left(\sum t \in\{r, p, q\}-\{u\} \text {. proj2-rep } t\right)
$$ by simp

also from $\langle\forall t \in\{r, p, q\}-\{u\}$ ．？d $t=-1$ ）
have $\ldots=j *_{R}$ proj2－rep ？s $+\left(\sum t \in\{r, p, q\}-\{u\}\right.$ ．？d $t *_{R}$ proj2－rep $\left.t\right)$ by（simp add：setsum－negf）
also from 〈finite $(\{r, p, q\}-\{u\})\rangle$ and 〈？s $\notin\{r, p, q\}-\{u\}\rangle$
have $\ldots=\left(\sum_{\left.t \in \text { insert } ? s(\{r, p, q\}-\{u\}) \text { ．？d } t *_{R} \text { proj2－rep } t\right) ~}^{\text {？}}\right.$
by（simp add：setsum．insert）
also from 〈insert？s $(\{r, p, q\}-\{u\})=? S-\{u\}\rangle$
have $\ldots=\left(\sum t \in\right.$ ？$S-\{u\}$ ．？d $t *_{R}$ proj2－rep $\left.t\right)$ by simp
finally have proj2－rep $u=\left(\sum t \in ? S-\{u\}\right.$ ．？d $t *_{R}$ proj2－rep $\left.t\right)$ ．
moreover
have $\forall t \in$ ？$S-\{u\}$ ．？d $t *_{R}$ proj2－rep $t \in \operatorname{span}($ proj2－rep＇$(? S-\{u\}))$ by（simp add：span－clauses）
ultimately have proj2－rep $u \in \operatorname{span}($ proj2－rep＇$(? S-\{u\}))$
by（simp add：span－setsum）
have $\forall t \in\{r, p, q\}$ ．proj2－rep $t \in \operatorname{span}($ proj2－rep＇$(? S-\{u\})$ ）
proof
fix t
assume $t \in\{r, p, q\}$
show proj2－rep $t \in \operatorname{span}($ proj2－rep＇$(? S-\{u\}))$
proof cases
assume $t=u$
from 〈proj2－rep $u \in \operatorname{span}($ image proj2－rep（？S $-\{u\})$ ）〉
show proj2－rep $t \in \operatorname{span}($ proj2－rep＇$(? S-\{u\}))$
by（subst $\langle t=u\rangle$ ）
next
assume $t \neq u$ with $\langle t \in\{r, p, q\}\rangle$ have proj2－rep $t \in$ projo－rep＇$(? S-\{u\})$ by simp with span－inc［of proj2－rep＇$(? S-\{u\})$ ］

```
            show proj2-rep t f span (proj2-rep'(?S - {u})) by fast
        qed
    qed
    hence proj2-rep ' {r,p,q}\subseteq span (proj2-rep '(?S - {u}))
        by (simp only: image-subset-iff)
    hence
        span (proj2-rep'{r,p,q})\subseteq span (span (proj2-rep'(?S - {u})))
        by (simp only: span-mono)
    hence span (proj2-rep ' {r,p,q})\subseteq span (proj2-rep ' (?S - {u}))
        by (simp only: span-span)
    moreover
    from \\neg proj2-set-Col {r,p,q}>
        and <card {r,p,q} = 3\rangle
        and not-proj2-set-Col-iff-span
    have span (proj2-rep ' {r,p,q}) = UNIV by simp
    ultimately have span (proj2-rep '(?S - {u})) = UNIV by auto
    with \card (?S - {u})=3\rangle and not-proj2-set-Col-iff-span
    show \neg proj2-set-Col (?S - {u}) by simp
    qed
    qed
    with <card ?S = 4\rangle
    have proj2-no-3-Col ?S by (unfold proj2-no-3-Col-def) fast
    thus \exists s. proj2-no-3-Col {s,r,p,q} ..
qed
lemma proj2-set-Col-expand:
    assumes proj2-set-Col S and {p,q,r}\subseteqS and p\not=q and r\not=p
    shows \existsk.r = proj2-abs ( }k\mp@subsup{*}{R}{}\mathrm{ proj2-rep p + proj2-rep q)
proof -
    from\proj2-set-Col S〉
    obtain l where }\forallt\inS\mathrm{ . proj2-incident t l unfolding proj2-set-Col-def ..
    with }\langle{p,q,r}\subseteqS\rangle\mathrm{ and }\langlep\not=q\rangle\mathrm{ and }\langler\not=p\rangle\mathrm{ and proj2-incident-iff [of p q l r]
    show \exists k.r = proj2-abs ( }k\mp@subsup{*}{R}{}\mathrm{ proj2-rep p + proj2-rep q) by simp
qed
```


7.4 Collineations of the real projective plane

```
typedef cltn2 =
    (Collect invertible :: (real^3^3) set)//invertible-proportionality
proof
    from matrix-id-invertible have (mat 1 :: real^3^3) \in Collect invertible
    by simp
    thus invertible-proportionality " {mat 1}\in
        (Collect invertible :: (real^3^3) set)//invertible-proportionality
    unfolding quotient-def
    by auto
qed
definition cltn2-rep :: cltn2 => real^3^^3 where
```

```
    cltn2-rep }A\triangleq\epsilonB.B\inRep-cltn2 A
definition cltn2-abs :: real`^`^3 # cltn2 where
    cltn2-abs B\triangleq Abs-cltn2 (invertible-proportionality " {B})
definition cltn2-independent :: cltn2 set }=>\mathrm{ bool where
    cltn2-independent }X\triangleq\mathrm{ independent {cltn2-rep A|A.A AX}
definition apply-cltn2 :: proj2 }=>\mathrm{ cltn2 }=>\mathrm{ proj2 where
    apply-cltn2 x A \triangleq proj2-abs (proj2-rep x v* cltn2-rep A)
lemma cltn2-rep-in:cltn2-rep B \inRep-cltn2 B
proof -
    let ?A = cltn2-rep B
    from quotient-element-nonempty and
        invertible-proportionality-equiv and
        Rep-cltn2 [of B]
    have \exists C.C G Rep-cltn2 B
        by auto
    with someI-ex [of \lambda C.C C Rep-cltn2 B]
    show ?A A Rep-cltn2 B
        unfolding cltn2-rep-def
        by simp
qed
lemma cltn2-rep-invertible: invertible (cltn2-rep A)
proof -
    from
        Union-quotient [of Collect invertible invertible-proportionality]
        and invertible-proportionality-equiv
        and Rep-cltn2 [of A] and cltn2-rep-in [of A]
    have cltn2-rep A \in Collect invertible
        unfolding quotient-def
        by auto
    thus invertible (cltn2-rep A)
        unfolding invertible-proportionality-def
        by simp
qed
lemma cltn2-rep-abs:
    fixes A :: real^3^3
    assumes invertible A
    shows (A, cltn2-rep (cltn2-abs A)) \in invertible-proportionality
proof -
    from <invertible A>
    have invertible-proportionality " {A}\in(Collect invertible :: (real``^3) set)//invertible-proportionality
        unfolding quotient-def
        by auto
    with Abs-cltn2-inverse
```

```
    have Rep-cltn2 (cltn2-abs A) = invertible-proportionality " {A}
    unfolding cltn2-abs-def
    by simp
    with cltn2-rep-in
    have cltn2-rep (cltn2-abs A) \in invertible-proportionality " {A} by auto
    thus (A, cltn2-rep (cltn2-abs A)) \in invertible-proportionality by simp
qed
lemma cltn2-rep-abs2:
    assumes invertible A
    shows \exists k. k\not=0^cltn2-rep (cltn2-abs A)=k*R A
proof -
    from <invertible A> and cltn2-rep-abs
    have (A, cltn2-rep (cltn2-abs A)) \in invertible-proportionality by simp
    then obtain c where A=c** cltn2-rep (cltn2-abs A)
        unfolding invertible-proportionality-def and real-vector.proportionality-def
        by auto
    with «invertible A> and zero-not-invertible have c\not=0 by auto
    hence 1/ c\not=0 by simp
    let ? k = 1/c
    from \A = c**R cltn2-rep (cltn2-abs A)\rangle
    have ?k **R A = ?k * * c * *R cltn2-rep (cltn2-abs A) by simp
    with }\langlec\not=0\rangle\mathrm{ have cltn2-rep (cltn2-abs A) =?k *R A by simp
    with <? k = 0`
    show \exists k.k\not=0^ cltn2-rep (cltn2-abs A) =k *R A by blast
qed
lemma cltn2-abs-rep: cltn2-abs (cltn2-rep A) = A
proof -
    from partition-Image-element
    [of Collect invertible
        invertible-proportionality
        Rep-cltn2 A
        cltn2-rep A]
    and invertible-proportionality-equiv
    and Rep-cltn2 [of A] and cltn2-rep-in [of A]
    have invertible-proportionality" {cltn2-rep A} = Rep-cltn2 A
    by simp
    with Rep-cltn2-inverse
    show cltn2-abs (cltn2-rep A) = A
        unfolding cltn2-abs-def
        by simp
qed
lemma cltn2-abs-mult:
    assumes k\not=0 and invertible A
    shows cltn2-abs ( }k\mp@subsup{*}{R}{}A)=\mathrm{ cltn2-abs A
proof -
```

from $\langle k \neq 0\rangle$ and \langle invertible $A\rangle$ and scalar－invertible
have invertible $\left(k *_{R} A\right)$ by auto
with 〈invertible A 〉
have $\left(k *_{R} A, A\right) \in$ invertible－proportionality
unfolding invertible－proportionality－def and real－vector．proportionality－def
by（auto simp add：zero－not－invertible）
with eq－equiv－class－iff
［of Collect invertible invertible－proportionality $k *_{R} A \quad A$ ］
and invertible－proportionality－equiv
and 〈invertible A ）and＜invertible $\left(k *_{R} A\right)$ 〉
have invertible－proportionality＂$\left\{k *_{R} A\right\}$
＝invertible－proportionality＂$\{A\}$
by simp
thus cltn2－abs $\left(k *_{R} A\right)=$ cltn2－abs A
unfolding cltn2－abs－def by simp
qed
lemma cltn2－abs－mult－rep：
assumes $k \neq 0$
shows cltn2－abs $\left(k *_{R}\right.$ cltn2－rep $\left.A\right)=A$
using cltn2－rep－invertible and cltn2－abs－mult and cltn2－abs－rep and assms
by simp
lemma apply－cltn2－abs：
assumes $x \neq 0$ and invertible A
shows apply－cltn2（proj2－abs $x)($ cltn2－abs $A)=$ proj2－abs $(x v * A)$
proof－
from proj2－rep－abs2 and $\langle x \neq 0\rangle$
obtain k where $k \neq 0$ and proj2－rep（proj2－abs $x)=k *_{R} x$ by auto
from cltn2－rep－abs2 and 〈invertible A 〉
obtain c where $c \neq 0$ and cltn2－rep（cltn2－abs $A)=c *_{R} A$ by auto
from $\langle k \neq 0\rangle$ and $\langle c \neq 0\rangle$ have $k * c \neq 0$ by simp
from \langle proj2－rep（proj2－abs $\left.x)=k *_{R} x\right\rangle$ and $\left\langle\right.$ cltn2－rep（cltn2－abs A ）$\left.=c *_{R} A\right\rangle$
have proj2－rep（proj2－abs x ）v＊cltn2－rep（cltn2－abs $A)=(k * c) *_{R}(x v * A)$
by（simp add：scalar－vector－matrix－assoc vector－scalar－matrix－ac）
with $\langle k * c \neq 0\rangle$
show apply－cltn2（proj2－abs $x)($ cltn2－abs $A)=\operatorname{proj2-abs}(x v * A)$
unfolding apply－cltn2－def
by（simp add：proj2－abs－mult）
qed
lemma apply－cltn2－left－abs：
assumes $v \neq 0$
shows apply－cltn2（proj2－abs v）$C=$ proj2－abs（ v v＊cltn2－rep C ）

```
proof -
    have cltn2-abs (cltn2-rep C) =C by (rule cltn2-abs-rep)
    with }\langlev\not=0\rangle\mathrm{ and cltn2-rep-invertible and apply-cltn2-abs [of v cltn2-rep C]
    show apply-cltn2 (proj2-abs v) C = proj2-abs (v v* cltn2-rep C)
        by simp
qed
lemma apply-cltn2-right-abs:
    assumes invertible M
    shows apply-cltn2 p (cltn2-abs M)= proj2-abs (proj2-rep p v* M)
proof -
    from proj2-rep-non-zero and <invertible M> and apply-cltn2-abs
    have apply-cltn2 (proj2-abs (proj2-rep p)) (cltn2-abs M)
        = proj2-abs(proj2-rep p v* M)
        by simp
    thus apply-cltn2 p (cltn2-abs M)=proj2-abs (proj2-rep p v* M)
        by (simp add: proj2-abs-rep)
qed
lemma non-zero-mult-rep-non-zero:
    assumes v\not=0
    shows vv* cltn2-rep C\not=0
    using \langlev\not=0\rangle and cltn2-rep-invertible and times-invertible-eq-zero
    by auto
lemma rep-mult-rep-non-zero: proj2-rep p v* cltn2-rep A =0
    using proj2-rep-non-zero
    by (rule non-zero-mult-rep-non-zero)
definition cltn2-image :: proj2 set }=>\mathrm{ cltn2 }=>\mathrm{ proj2 set where
    cltn2-image P A\triangleq {apply-cltn2 p A | p.p\inP}
```


7．4．1 As a group

```
definition cltn2－id ：：cltn2 where cltn2－id \(\triangleq c l t n 2-a b s\)（mat 1）
definition cltn2－compose ：：cltn2 \(\Rightarrow\) cltn2 \(\Rightarrow\) cltn2 where cltn2－compose \(A \triangleq\) cltn2－abs（cltn2－rep \(A * *\) cltn2－rep \(B\) ）
definition cltn2－inverse ：：cltn2 \(\Rightarrow\) cltn2 where cltn2－inverse \(A \triangleq\) cltn2－abs（matrix－inv \((\) cltn2－rep \(A))\)
lemma cltn2－compose－abs：
assumes invertible \(M\) and invertible \(N\)
shows cltn2－compose \((\) cltn2－abs \(M)(\) cltn2－abs \(N)=\operatorname{cltn2-abs~}(M * * N)\)
proof－
from 〈invertible \(M\) 〉 and \(\langle\) invertible \(N\) 〉 and invertible－mult have invertible \(\left(M_{* *} N\right.\) ）by auto
```

```
    from <invertible M` and «invertible N` and cltn2-rep-abs2
    obtain j and k where j\not=0 and k\not=0
    and cltn2-rep (cltn2-abs M) =j **R M
    and cltn2-rep (cltn2-abs N) =k**N
    by blast
    from }\langlej\not=0\rangle\mathrm{ and }\langlek\not=0\rangle\mathrm{ have }j*k\not=0\mathrm{ by simp
    from <cltn2-rep (cltn2-abs M) =j * R M> and <cltn2-rep (cltn2-abs N) =k *R
N
    have cltn2-rep (cltn2-abs M) ** cltn2-rep (cltn2-abs N)
        =(j*k)*R
    by (simp add: matrix-scalar-ac scalar-matrix-assoc [symmetric])
    with }\langlej*k\not=0\rangle\mathrm{ and <invertible ( }M**N\mathrm{ )〉
    show cltn2-compose (cltn2-abs M) (cltn2-abs N) = cltn2-abs (M**N)
        unfolding cltn2-compose-def
        by (simp add: cltn2-abs-mult)
qed
lemma cltn2-compose-left-abs:
    assumes invertible M
    shows cltn2-compose (cltn2-abs M) A = cltn2-abs (M** cltn2-rep A)
proof -
    from <invertible M> and cltn2-rep-invertible and cltn2-compose-abs
    have cltn2-compose (cltn2-abs M) (cltn2-abs (cltn2-rep A))
            = cltn2-abs (M ** cltn2-rep A)
            by simp
    thus cltn2-compose (cltn2-abs M) A = cltn2-abs ( }M**\mathrm{ cltn2-rep A)
        by (simp add: cltn2-abs-rep)
qed
lemma cltn2-compose-right-abs:
    assumes invertible M
    shows cltn2-compose A (cltn2-abs M)= cltn2-abs (cltn2-rep A ** M)
proof -
    from <invertible M> and cltn2-rep-invertible and cltn2-compose-abs
    have cltn2-compose (cltn2-abs (cltn2-rep A)) (cltn2-abs M)
        = cltn2-abs (cltn2-rep A ** M)
        by simp
    thus cltn2-compose A (cltn2-abs M)= cltn2-abs (cltn2-rep A ** M)
    by (simp add: cltn2-abs-rep)
qed
lemma cltn2-abs-rep-abs-mult:
    assumes invertible M and invertible N
    shows cltn2-abs (cltn2-rep (cltn2-abs M)**N)=\operatorname{cltn2-abs (M**N)}
proof -
    from <invertible M> and <invertible N>
```

```
    have invertible (M** N) by (simp add: invertible-mult)
    from 〈invertible M> and cltn2-rep-abs2
    obtain k where k\not=0 and cltn2-rep (cltn2-abs M) =k *R M by auto
    from <cltn2-rep (cltn2-abs M) =k *R M 
    have cltn2-rep (cltn2-abs M) ** N=k*\mp@subsup{*}{R}{}M**N by simp
    with \k\not=0\rangle and <invertible ( }M**N\mathrm{ ) \ and cltn2-abs-mult
    show cltn2-abs (cltn2-rep (cltn2-abs M) ** N) = cltn2-abs (M**N)
    by (simp add: scalar-matrix-assoc [symmetric])
qed
lemma cltn2-assoc:
    cltn2-compose (cltn2-compose A B) C= cltn2-compose A (cltn2-compose B C)
proof -
    let ? A' = cltn2-rep }
    let ? }\mp@subsup{B}{}{\prime}=\mathrm{ cltn2-rep }
    let ? }\mp@subsup{C}{}{\prime}=\mathrm{ cltn2-rep }
    from cltn2-rep-invertible
    have invertible? 'A' and invertible ? ' '' and invertible ?C' by simp-all
    with invertible-mult
    have invertible (?A' ** ?B') and invertible (?\mp@subsup{B}{}{\prime}** ?C')
        and invertible (?A' ** ? 'B' ** ?C')
        by auto
    from <invertible (?A'** ? ' ') > and <invertible ?C'` and cltn2-abs-rep-abs-mult
    have cltn2-abs (cltn2-rep (cltn2-abs (? 'A' ** ? B')) ** ? (')
    = cltn2-abs(?A' ** ? B' ** ?C')
    by simp
    from <invertible (?\mp@subsup{B}{}{\prime}** ?C')> and cltn2-rep-abs2 [of ? B' ** ?C ]
    obtain k where k}\not=
        and cltn2-rep (cltn2-abs (?\mp@subsup{B}{}{\prime}** ?C')) =k *R (?B'** ?C')
        by auto
    from \cltn2-rep (cltn2-abs (?\mp@subsup{B}{}{\prime}** ?C')) =k*R (?\mp@subsup{B}{}{\prime}** ?C')>
    have ?A' ** cltn2-rep (cltn2-abs (?B'** ?C')) =k *R (?A'** ? 施 ** ?C')
    by (simp add: matrix-scalar-ac matrix-mul-assoc scalar-matrix-assoc)
```



```
    and cltn2-abs-mult [of k? 'A'** ? ' '' ** ?C']
    have cltn2-abs (?A' ** cltn2-rep (cltn2-abs (?B'** ?C')))
        = cltn2-abs (? 'A'** ? B' ** ?C')
        by simp
    with <cltn2-abs (cltn2-rep (cltn2-abs (?A' ** ?B')) ** ?C')
    = cltn2-abs(?A'** ?B'** ? C')>
    show
        cltn2-compose (cltn2-compose A B) C = cltn2-compose A (cltn2-compose B C)
    unfolding cltn2-compose-def
    by simp
qed
lemma cltn2-left-id: cltn2-compose cltn2-id \(A=A\)
```

```
proof -
    let ? A' = cltn2-rep A
    from cltn2-rep-invertible have invertible ? A' by simp
    with matrix-id-invertible and cltn2-abs-rep-abs-mult [of mat 1 ?A']
    have cltn2-compose cltn2-id A = cltn2-abs (cltn2-rep A)
        unfolding cltn2-compose-def and cltn2-id-def
        by (auto simp add: matrix-mul-lid)
    with cltn2-abs-rep show cltn2-compose cltn2-id A = A by simp
qed
lemma cltn2-left-inverse: cltn2-compose (cltn2-inverse A) A = cltn2-id
proof -
    let ?M = cltn2-rep A
    let ?M' = matrix-inv ?M
    from cltn2-rep-invertible have invertible ?M by simp
    with matrix-inv-invertible have invertible ?M' by auto
    with <invertible ?M> and cltn2-abs-rep-abs-mult
    have cltn2-compose (cltn2-inverse A) A = cltn2-abs (?M'** ?M)
    unfolding cltn2-compose-def and cltn2-inverse-def
    by simp
    with <invertible ?M>
    show cltn2-compose (cltn2-inverse A) A = cltn2-id
    unfolding cltn2-id-def
    by (simp add: matrix-inv)
qed
lemma cltn2-left-inverse-ex:
    \exists B. cltn2-compose B A = cltn2-id
    using cltn2-left-inverse ..
interpretation cltn2:
    group (|carrier = UNIV, mult = cltn2-compose, one = cltn2-id |)
    using cltn2-assoc and cltn2-left-id and cltn2-left-inverse-ex
    and groupI [of (|carrier = UNIV,mult = cltn2-compose, one = cltn2-id |)]
    by simp-all
lemma cltn2-inverse-inv [simp]:
    inv (|carrier = UNIV, mult = cltn2-compose,one = cltn2-id |)}
    = cltn2-inverse A
    using cltn2-left-inverse [of A] and cltn2.inv-equality
    by simp
lemmas cltn2-inverse-id [simp] = cltn2.inv-one [simplified]
    and cltn2-inverse-compose = cltn2.inv-mult-group [simplified]
```


7.4.2 As a group action

lemma apply-cltn2-id [simp]: apply-cltn2 p cltn2-id $=p$
proof -

```
    from matrix-id-invertible and apply-cltn2-right-abs
    have apply-cltn2 p cltn2-id = proj2-abs (proj2-rep p v* mat 1)
    unfolding cltn2-id-def
    by auto
    thus apply-cltn2 p cltn2-id = p
    by (simp add: vector-matrix-mul-rid proj2-abs-rep)
qed
lemma apply-cltn2-compose:
    apply-cltn2 (apply-cltn2 p A) B = apply-cltn2 p (cltn2-compose A B)
proof -
    from rep-mult-rep-non-zero and cltn2-rep-invertible and apply-cltn2-abs
    have apply-cltn2 (apply-cltn2 p A) (cltn2-abs (cltn2-rep B))
        = proj2-abs ((proj2-rep p v* cltn2-rep A) v* cltn2-rep B)
        unfolding apply-cltn2-def [of p A]
        by simp
    hence apply-cltn2 (apply-cltn2 p A) B
        = proj2-abs (proj2-rep p v* (cltn2-rep A ** cltn2-rep B))
        by (simp add: cltn2-abs-rep vector-matrix-mul-assoc)
    from cltn2-rep-invertible and invertible-mult
    have invertible (cltn2-rep A ** cltn2-rep B) by auto
    with apply-cltn2-right-abs
    have apply-cltn2 p (cltn2-compose A B)
    = proj2-abs (proj2-rep p v* (cltn2-rep A ** cltn2-rep B))
    unfolding cltn2-compose-def
    by simp
    with <apply-cltn2 (apply-cltn2 p A) B
        = proj2-abs (proj2-rep p v* (cltn2-rep A ** cltn2-rep B))>
    show apply-cltn2 (apply-cltn2 p A) B=apply-cltn2 p (cltn2-compose A B)
    by simp
qed
interpretation cltn2:
    action (|carrier = UNIV, mult = cltn2-compose,one = cltn2-id |) apply-cltn2
proof
    let ?G = ( carrier = UNIV, mult = cltn2-compose, one = cltn2-id |}
    fix p
    show apply-cltn2 p 1? (G)}=p\mathrm{ by simp
    fix }A
    have apply-cltn2 (apply-cltn2 p A) B=apply-cltn2 p ( }A\otimes\mathrm{ QG }B
        by simp (rule apply-cltn2-compose)
    thus }A\in\mathrm{ carrier ? }G\wedgeB\in\mathrm{ carrier ? G
        \longrightarrow a p p l y - c l t n 2 ~ ( a p p l y - c l t n 2 ~ p ~ A ) B = a p p l y - c l t n 2 ~ p ~ ( A \otimes ? G ~ B ) ~
    ..
qed
definition cltn2-transpose :: cltn2 # cltn2 where
    cltn2-transpose A \ cltn2-abs (transpose (cltn2-rep A))
```

```
definition apply-cltn2-line :: proj2-line }=>\mathrm{ cltn2 }=>\mathrm{ proj2-line where
    apply-cltn2-line l A
    \triangleq P2L (apply-cltn2 (L2P l) (cltn2-transpose (cltn2-inverse A)))
lemma cltn2-transpose-abs:
    assumes invertible M
    shows cltn2-transpose (cltn2-abs M)= cltn2-abs (transpose M)
proof -
    from <invertible M> and transpose-invertible have invertible (transpose M) by
auto
    from 〈invertible M> and cltn2-rep-abs2
    obtain k where k\not=0 and cltn2-rep (cltn2-abs M) =k**R M by auto
    from 〈cltn2-rep (cltn2-abs M) =k *R M>
    have transpose (cltn2-rep (cltn2-abs M)) =k *R transpose M
    by (simp add: transpose-scalar)
    with }\langlek\not=0\rangle\mathrm{ and <invertible (transpose M)>
    show cltn2-transpose (cltn2-abs M) = cltn2-abs (transpose M)
    unfolding cltn2-transpose-def
    by (simp add: cltn2-abs-mult)
qed
lemma cltn2-transpose-compose:
    cltn2-transpose (cltn2-compose A B)
    = cltn2-compose (cltn2-transpose B)(cltn2-transpose A)
proof -
    from cltn2-rep-invertible
    have invertible (cltn2-rep A) and invertible (cltn2-rep B)
    by simp-all
    with transpose-invertible
    have invertible (transpose (cltn2-rep A))
    and invertible (transpose (cltn2-rep B))
    by auto
    from <invertible (cltn2-rep A)> and <invertible (cltn2-rep B)>
    and invertible-mult
    have invertible (cltn2-rep A ** cltn2-rep B) by auto
    with <invertible (cltn2-rep A ** cltn2-rep B)` and cltn2-transpose-abs
    have cltn2-transpose (cltn2-compose A B)
    = cltn2-abs (transpose (cltn2-rep A ** cltn2-rep B))
    unfolding cltn2-compose-def
    by simp
    also have ... = cltn2-abs (transpose (cltn2-rep B) ** transpose (cltn2-rep A))
    by (simp add: matrix-transpose-mul)
    also from <invertible (transpose (cltn2-rep B))>
    and <invertible (transpose (cltn2-rep A))>
    and cltn2-compose-abs
```

```
    have ... = cltn2-compose (cltn2-transpose B) (cltn2-transpose A)
    unfolding cltn2-transpose-def
    by simp
    finally show cltn2-transpose (cltn2-compose A B)
    = cltn2-compose (cltn2-transpose B)(cltn2-transpose A).
qed
lemma cltn2-transpose-transpose: cltn2-transpose (cltn2-transpose A) = A
proof -
    from cltn2-rep-invertible have invertible (cltn2-rep A) by simp
    with transpose-invertible have invertible (transpose (cltn2-rep A)) by auto
    with cltn2-transpose-abs [of transpose (cltn2-rep A)]
    have
    cltn2-transpose (cltn2-transpose A) = cltn2-abs (transpose (transpose (cltn2-rep
A)))
            unfolding cltn2-transpose-def [of A]
            by simp
    with cltn2-abs-rep and transpose-transpose [of cltn2-rep A]
    show cltn2-transpose (cltn2-transpose A) = A by simp
qed
lemma cltn2-transpose-id [simp]: cltn2-transpose cltn2-id = cltn2-id
    using cltn2-transpose-abs
    unfolding cltn2-id-def
    by (simp add: transpose-mat matrix-id-invertible)
lemma apply-cltn2-line-id [simp]: apply-cltn2-line l cltn2-id = l
    unfolding apply-cltn2-line-def
    by simp
lemma apply-cltn2-line-compose:
    apply-cltn2-line (apply-cltn2-line l A) B
    = apply-cltn2-line l (cltn2-compose A B)
proof -
    have cltn2-compose
        (cltn2-transpose (cltn2-inverse A)) (cltn2-transpose (cltn2-inverse B))
        = cltn2-transpose (cltn2-inverse (cltn2-compose A B))
        by (simp add: cltn2-transpose-compose cltn2-inverse-compose)
    thus apply-cltn2-line (apply-cltn2-line l A) B
        = apply-cltn2-line l (cltn2-compose A B)
        unfolding apply-cltn2-line-def
        by (simp add: apply-cltn2-compose)
qed
interpretation cltn2-line:
    action
    |carrier = UNIV, mult = cltn2-compose, one = cltn2-id |)
    apply-cltn2-line
proof
```

```
    let ?G = (|carrier = UNIV, mult = cltn2-compose, one = cltn2-id |}
    fix l
    show apply-cltn2-line l 1 1?G}=l\mathrm{ by simp
    fix }A
    have apply-cltn2-line (apply-cltn2-line l A) B
    = apply-cltn2-line l ( }A\otimes?GG
    by simp (rule apply-cltn2-line-compose)
    thus }A\in\mathrm{ carrier ?G }\wedgeB\in\mathrm{ carrier ?G
    \longrightarrow \text { apply-cltn2-line (apply-cltn2-line l A) B}
    = apply-cltn2-line l ( A \otimes?G B)
    ..
qed
lemmas apply-cltn2-inv [simp] = cltn2.act-act-inv [simplified]
lemmas apply-cltn2-line-inv [simp] = cltn2-line.act-act-inv [simplified]
lemma apply-cltn2-line-alt-def:
    apply-cltn2-line l A
    = proj2-line-abs (cltn2-rep (cltn2-inverse A)*v proj2-line-rep l)
proof -
    have invertible (cltn2-rep (cltn2-inverse A)) by (rule cltn2-rep-invertible)
    hence invertible (transpose (cltn2-rep (cltn2-inverse A)))
        by (rule transpose-invertible)
    hence
        apply-cltn2 (L2P l) (cltn2-transpose (cltn2-inverse A))
        = proj2-abs (proj2-rep (L2P l) v* transpose (cltn2-rep (cltn2-inverse A)))
        unfolding cltn2-transpose-def
        by (rule apply-cltn2-right-abs)
    hence apply-cltn2 (L2P l) (cltn2-transpose (cltn2-inverse A))
        = proj2-abs (cltn2-rep (cltn2-inverse A)*v proj2-line-rep l)
        unfolding proj2-line-rep-def
        by simp
    thus apply-cltn2-line l A
        = proj2-line-abs (cltn2-rep (cltn2-inverse A)*v proj2-line-rep l)
        unfolding apply-cltn2-line-def and proj2-line-abs-def ..
qed
lemma rep-mult-line-rep-non-zero: cltn2-rep A *v proj2-line-rep l\not=0
    using proj2-line-rep-non-zero and cltn2-rep-invertible
        and invertible-times-eq-zero
    by auto
lemma apply-cltn2-incident:
    proj2-incident p (apply-cltn2-line l A)
     proj2-incident (apply-cltn2 p (cltn2-inverse A)) l
proof -
    have proj2-rep p v* cltn2-rep (cltn2-inverse A) =0
        by (rule rep-mult-rep-non-zero)
    with proj2-rep-abs2
```

obtain j where $j \neq 0$
and proj2-rep (proj2-abs (proj2-rep p $v *$ cltn2-rep (cltn2-inverse A))) $=j *_{R}($ proj2-rep $p v *$ cltn2-rep (cltn2-inverse $\left.A)\right)$
by auto
let $? v=$ cltn2-rep (cltn2-inverse $A) * v$ proj2-line-rep l
have $? v \neq 0$ by (rule rep-mult-line-rep-non-zero)
with projo-line-rep-abs [of ?v]
obtain k where $k \neq 0$
and proj2-line-rep (proj2-line-abs ?v) $=k *_{R}$?v
by auto
hence proj2-incident p (apply-cltn2-line l A)
\longleftrightarrow proj2-rep $p \cdot($ cltn2-rep $($ cltn2-inverse $A) * v$ proj2-line-rep $l)=0$ unfolding proj2-incident-def and apply-cltn2-line-alt-def by (simp add: dot-scaleR-mult)
also from dot-lmul-matrix [of proj2-rep p cltn2-rep (cltn2-inverse A)]
have

```
    \(\ldots \longleftrightarrow(\) proj2-rep p \(v *\) cltn2-rep \((\) cltn2-inverse \(A)) \cdot\) proj2-line-rep \(l=0\)
```

 by \(\operatorname{simp}\)
 also from \(\langle j \neq 0\rangle\)
 and \(<\) proj2-rep (proj2-abs (proj2-rep p v* cltn2-rep (cltn2-inverse A)))
 \(=j *_{R}\) (proj2-rep p \(v *\) cltn2-rep (cltn2-inverse A)) >
 have \(\ldots \longleftrightarrow\) proj2-incident (apply-cltn2 \(p\) (cltn2-inverse A)) \(l\)
 unfolding proj2-incident-def and apply-cltn2-def
 by (simp add: dot-scaleR-mult)
 finally show ?thesis .
 qed
lemma apply-cltn2-preserve-incident [iff]:
proj2-incident (apply-cltn2 p A) (apply-cltn2-line l A)
\longleftrightarrow proj2-incident $p l$
by (simp add: apply-cltn2-incident)
lemma apply-cltn2-preserve-set-Col:
assumes proj2-set-Col S
shows proj2-set-Col \{apply-cltn2 $p C \mid p . p \in S\}$
proof -
from 〈proj2-set-Col S〉
obtain l where $\forall p \in S$. proj2-incident plunfolding proj2-set-Col-def ..
hence $\forall q \in\{$ apply-cltn2 $p C \mid p . p \in S\}$.
proj2-incident q (apply-cltn2-line $l C$)
by auto
thus proj2-set-Col \{apply-cltn2 p $C \mid p . p \in S\}$
unfolding proj2-set-Col-def ..
qed
lemma apply-cltn2-injective:
assumes apply-cltn2 $p C=$ apply-cltn2 $q C$
shows $p=q$

```
proof -
    from <apply-cltn2 p C = apply-cltn2 q C>
    have apply-cltn2 (apply-cltn2 p C) (cltn2-inverse C)
        = apply-cltn2 (apply-cltn2 q C) (cltn2-inverse C)
        by simp
    thus p=q by simp
qed
lemma apply-cltn2-line-injective:
    assumes apply-cltn2-line l C = apply-cltn2-line m C
    shows l=m
proof -
    from〈apply-cltn2-line l C = apply-cltn2-line m C`
    have apply-cltn2-line (apply-cltn2-line l C) (cltn2-inverse C)
        = apply-cltn2-line (apply-cltn2-line m C) (cltn2-inverse C)
        by simp
    thus l=m by simp
qed
lemma apply-cltn2-line-unique:
    assumes p\not=q and proj2-incident pl and proj2-incident q l
    and proj2-incident (apply-cltn2 p C) m
    and proj2-incident (apply-cltn2 q C) m
    shows apply-cltn2-line l C = m
proof -
    from <proj2-incident pl>
    have proj2-incident (apply-cltn2 p C) (apply-cltn2-line l C) by simp
    from <proj2-incident q l>
    have proj2-incident (apply-cltn2 q C) (apply-cltn2-line l C) by simp
    from }\langlep\not=q\rangle\mathrm{ and apply-cltn2-injective [of p C q]
    have apply-cltn2 p C = apply-cltn2 q C by auto
    with \langleproj2-incident (apply-cltn2 p C) (apply-cltn2-line l C)\rangle
        and <proj2-incident (apply-cltn2 q C) (apply-cltn2-line l C)>
        and <proj2-incident (apply-cltn2 p C) m>
        and <proj2-incident (apply-cltn2 q C) m>
        and proj2-incident-unique
    show apply-cltn2-line l C = m by fast
qed
lemma apply-cltn2-unique:
    assumes l\not=m and proj2-incident pl and proj2-incident p m
    and proj2-incident q (apply-cltn2-line l C)
    and proj2-incident q (apply-cltn2-line m C)
    shows apply-cltn2 p C = q
proof -
    from <proj2-incident pl>
    have proj2-incident (apply-cltn2 p C) (apply-cltn2-line l C) by simp
```

```
from <proj2-incident p m>
have proj2-incident (apply-cltn2 p C) (apply-cltn2-line m C) by simp
from }\langlel\not=m> and apply-cltn2-line-injective [of l C m]
have apply-cltn2-line l C F apply-cltn2-line m C by auto
with <proj2-incident (apply-cltn2 p C) (apply-cltn2-line l C)>
    and 〈proj2-incident (apply-cltn2 p C) (apply-cltn2-line m C)>
    and <proj2-incident q (apply-cltn2-line l C)>
    and <proj2-incident q (apply-cltn2-line m C)>
    and proj2-incident-unique
show apply-cltn2 p C=q by fast
qed
```


7.4.3 Parts of some Statements from [1]

All theorems with names beginning with statement are based on corresponding theorems in [1].

```
lemma statement52-existence:
    fixes a :: proj2^3 and a3 :: proj2
    assumes proj2-no-3-Col (insert a3 (range (op $ a)))
    shows \exists A. apply-cltn2 (proj2-abs (vector [1,1,1])) A = a3 ^
    (\forall j. apply-cltn2 (proj2-abs (axis j 1)) A = a$j)
proof -
    let ?v = proj2-rep a3
    let ?B = proj2-rep'range (op $ a)
    from <proj2-no-3-Col (insert a3 (range (op $ a)))>
    have card (insert a3 (range (op $ a))) = 4 unfolding proj2-no-3-Col-def ..
    from card-image-le [of UNIV op $ a]
    have card (range (op $ a)) \leq 3 by simp
    with card-insert-if [of range (op $ a) a3]
    and <card (insert a3 (range (op $a))) = 4>
    have a3 & range (op $ a) by auto
    hence (insert a3 (range (op $ a))) - {a3} = range (op $ a) by simp
    with <proj2-no-3-Col (insert a3 (range (op $ a)))>
    and proj2-no-3-Col-span [of insert a3 (range (op $ a)) a3]
    have span ?B = UNIV by simp
    from card-suc-ge-insert [of a3 range (op $ a)]
        and \card (insert a3 (range (op $ a))) = 4>
        and <card (range (op $ a)) \leq 3>
    have card (range (op $ a)) = 3 by simp
    with card-image [of proj2-rep range (op $ a)]
        and proj2-rep-inj
        and subset-inj-on
    have card ?B=3 by auto
    hence finite ?B by simp
```

with \langle span $? B=U N I V\rangle$ and span－finite $[o f ? B]$
obtain c where $\left(\sum w \in ? B .(c w) *_{R} w\right)=? v$ by（auto simp add：scalar－equiv）
let ？$C=\chi$ i．c $($ proj2－rep $(a \$ i)) *_{R}($ proj2－rep $(a \$ i))$
let $? A=$ cltn2－abs $? C$
from proj2－rep－inj and $\langle a 3 \notin$ range $(o p \$ a)\rangle$ have ？$v \notin ? B$
unfolding inj－on－def
by auto

```
have \(\forall\) i. \(c(\) proj2-rep \((a \$ i)) \neq 0\)
proof
    fix \(i\)
    let ? \(\mathrm{Bi}=\) proj2-rep' \((\) range \((\) op \(\$ a)-\{a \$ i\})\)
    have \(a \$ i \in\) insert \(a 3\) (range (op \(\$ a)\) ) by simp
    have projo-rep \((a \$ i) \in ? B\) by auto
    from image-set-diff [of proj2-rep] and proj2-rep-inj
    have ? \(B i=? B-\{\) projo-rep (a\$i)\} by simp
    with setsum-diff1 [of ? \(\left.B \lambda w .(c w) *_{R} w\right]\)
    and (finite ? B〉
    and 〈proj2-rep \((a \$ i) \in ? B\rangle\)
have \(\left(\sum w \in\right.\) ?Bi. \(\left.(c w) *_{R} w\right)=\)
        \(\left(\sum w \in\right.\) ?B. \(\left.(c w) *_{R} w\right)-c(\) proj2-rep \((a \$ i)) *_{R} \operatorname{proj2-rep}(a \$ i)\)
    by \(\operatorname{simp}\)
```

 from \(\langle a 3 \notin\) range \((o p \$ a)\rangle\) have \(a 3 \neq a \$ i\) by auto
 hence insert a3 (range (op \$a)) - \{a\$i\}=
 insert a3 (range (op \$a) - \{a\$i\}) by auto
 hence proj2-rep' (insert a3 (range (op \$ a)) - \{a\$i\}) = insert ?v ?Bi
 by simp
 moreover from 〈proj2-no-3-Col (insert a3 (range (op \$ a))) 〉
 and \(\langle a \$ i \in\) insert \(a 3\) (range (op \(\$ a)\)) 〉
 have span (proj2-rep' (insert a3 (range (op \$ a)) - \{a\$i\})) =UNIV
by (rule proj2-no-3-Col-span)
ultimately have span (insert ?v ?Bi) $=$ UNIV by simp
from 〈? ${ }^{\text {Bi }}=? B-\{$ proj2-rep $\left.(a \$ i)\}\right\rangle$
and 〈proj2-rep $(a \$ i) \in$? $B\rangle$
and \langle card $? B=3\rangle$
have card ? Bi $=2$ by (simp add: card-gt-0-diff-singleton)
hence finite ? Bi by simp
with \langle card ? $B i=2$) and card-ge-dim $[$ of ? Bi] have $\operatorname{dim} ?$ Bi ≤ 2 by simp
hence $\operatorname{dim}($ span ?Bi $) \leq 2$ by (subst dim-span)
then have span ? $B i \neq U N I V$
by clarify (auto simp: dim-UNIV)
with \langle span (insert ?v ? Bi) $=U N I V\rangle$ and in-span-eq
have ?v \notin span ?Bi by auto

```
    \{ assume \(c(\) proj2-rep \((a \$ i))=0\)
    with \(\left\langle\left(\sum w \in\right.\right.\) ? Bi. \(\left.(c w) *_{R} w\right)=\)
        \(\left(\sum w \in\right.\) ? B. \(\left.\left.(c w) *_{R} w\right)-c(\operatorname{proj2-rep}(a \$ i)) *_{R} \operatorname{proj2-rep}(a \$ i)\right\rangle\)
        and \(\left\langle\left(\sum w \in ? B .(c w) *_{R} w\right)=? v\right\rangle\)
    have ? \(v=\left(\sum w \in ? B i .(c w) *_{R} w\right)\)
        by \(\operatorname{simp}\)
    with span-finite \([\) of ?Bi] and 〈finite ?Bi〉
    have ?v \(\in\) span ? Bi by (simp add: scalar-equiv) auto
    with «?v \(\notin\) span ? Bi〉 have False .. \}
thus \(c(\) proj2-rep \((a \$ i)) \neq 0\)..
qed
hence \(\forall w \in ? B . c w \neq 0\)
    unfolding image-def
    by auto
have rows ? \(C=\left(\lambda w .(c w) *_{R} w\right)\) ' ? \(B\)
    unfolding rows-def
    and row-def
    and image-def
    by (auto simp: vec-lambda-eta)
have \(\forall x . x \in \operatorname{span}\) (rows ?C)
proof
    fix \(x\) :: real^3
    from 〈finite ?B〉 and span-finite \([o f ? B]\) and \(\langle\) span ? \(B=U N I V\rangle\)
obtain \(u b\) where \(\left(\sum w \in ? B .(u b w) *_{R} w\right)=x\) by (auto simp add: scalar-equiv)
    have \(\forall w \in\) ? \(B .(u b w) *_{R} w \in \operatorname{span}\) (rows ?C)
    proof
        fix \(w\)
        assume \(w \in ? B\)
        with span-inc [of rows ? \(C\) ] and 〈rows ? \(C=\) image \(\left(\lambda w .(c w) *_{R} w\right)\) ?B>
        have \((c w) *_{R} w \in \operatorname{span}(r o w s ? C)\) by auto
        with span-mul [of \((c w) *_{R} w\) rows ? \(\left.C(u b w) /(c w)\right]\)
        have \(((u b w) /(c w)) *_{R}\left((c w) *_{R} w\right) \in\) span (rows ?C)
            by (simp add: scalar-equiv)
        with \(\langle\forall w \in\) ? B. \(c w \neq 0\rangle\) and \(\langle w \in\) ? \(B\rangle\)
        show \((u b w) *_{R} w \in \operatorname{span}(\) rows ? \(C\) ) by auto
    qed
    with span-setsum \(\left[o f ? B \lambda w .(u b w) *_{R} w\right]\) and 〈finite ? \(\left.B\right\rangle\)
    have \(\left(\sum w \in ? B .(u b w) *_{R} w\right) \in\) span (rows ?C) by simp
    with «( \(\sum w \in\) ? \(\left.\left.B .(u b w) *_{R} w\right)=x\right\rangle\) show \(x \in \operatorname{span}\) (rows ?C) by simp
qed
hence span (rows ?C) = UNIV by auto
with matrix-left-invertible-span-rows [of ?C]
have \(\exists C^{\prime} . C^{\prime} * *\) ? \(C=\) mat 1 ..
with left-invertible-iff-invertible
have invertible ?C ..
```

```
have (vector \([1,1,1]::\) real^3) \(\neq 0\)
    unfolding vector-def
    by (simp add: vec-eq-iff forall-3)
with apply-cltn2-abs and «invertible ?C〉
have apply-cltn2 (proj2-abs (vector \([1,1,1])\) ) ? \(A=\)
    proj2-abs (vector \([1,1,1] v * ? C)\)
    by \(\operatorname{simp}\)
from inj-on-iff-eq-card \([\) of UNIV op \(\$\) a] and \(\langle\) card (range \((o p \$ a))=3\) >
have inj (op \$ a) by simp
from exhaust-3 have \(\forall i:: 3\). (vector \([1::\) real, 1,1\(]) \$ i=1\)
    unfolding vector-def
    by auto
with vector-matrix-row [of vector \([1,1,1]\) ?C]
have (vector \([1,1,1]) v *\) ? \(C=\)
    ( \(\left.\sum i \in U N I V .(c(\operatorname{proj2-rep}(a \$ i))) *_{R}(\operatorname{proj2-rep}(a \$ i))\right)\)
    by \(\operatorname{simp}\)
also from setsum.reindex
[of op \$ a UNIV \(\lambda\) x. \((c(\) proj2-rep \(x)) *_{R}(\) proj2-rep \(\left.x)\right]\)
    and \(\langle\operatorname{inj}(o p \$ a)\rangle\)
have \(\ldots=\left(\sum x \in(\right.\) range \((o p \$ a)) .(c(\) proj2-rep \(x)) *_{R}(\) proj2-rep \(\left.x)\right)\)
    by \(\operatorname{simp}\)
also from setsum.reindex
[of proj2-rep range (op \$ a) \(\lambda w .(c w) *_{R} w\) ]
    and proj2-rep-inj and subset-inj-on [of proj2-rep UNIV range (op \$ a) ]
have \(\ldots=\left(\sum w \in ? B .(c w) *_{R} w\right)\) by simp
also from \(\left\langle\left(\sum w \in ? B .(c w) *_{R} w\right)=? v\right\rangle\) have \(\ldots=? v\) by simp
finally have (vector \([1,1,1]) v * ? C=? v\).
with apply-cltn2 (proj2-abs (vector \([1,1,1])\) ) ? \(A=\)
    proj2-abs (vector \([1,1,1]\) v* ?C) >
have apply-cltn2 (proj2-abs (vector \([1,1,1])\) ) ?A = proj2-abs ?v by simp
with proj2-abs-rep have apply-cltn2 (proj2-abs (vector \([1,1,1]\) )) ? \(A=a 3\)
    by \(\operatorname{simp}\)
have \(\forall j\). apply-cltn2 (proj2-abs (axis j 1)) ? \(A=a \$ j\)
proof
    fix \(j\) :: 3
    have ((axis j 1)::real^3) \(\neq 0\) by (simp add: vec-eq-iff axis-def)
    with apply-cltn2-abs and 〈invertible ?C〉
    have apply-cltn2 (proj2-abs (axis j 1)) ? A = proj2-abs (axis j 1 v* ?C)
    by \(\operatorname{simp}\)
    have \(\forall i \in(U N I V-\{j\})\).
        \(((\) axis \(j 1) \$ i * c(\) proj2-rep \((a \$ i))) *_{R}(\operatorname{proj2-rep}(a \$ i))=0\)
        by (simp add: axis-def)
    with setsum.mono-neutral-left [of UNIV \{j\}
        \(\lambda i .\left((\right.\) axis j 1) \$i * \(c(\) proj2-rep \(\left.(a \$ i))) *_{R}(\operatorname{proj2-rep}(a \$ i))\right]\)
        and vector-matrix-row [of axis j 1 ?C]
have (axis j1) \(v * ? C=? C \$ j\) by (simp add: scalar-equiv)
hence (axis j 1) v* ? \(C=c(\) proj2-rep \((a \$ j)) *_{R}(\) proj2-rep \((a \$ j))\) by simp
with proj2-abs-mult-rep and \(\langle\forall\) i. c (proj2-rep \((a \$ i)) \neq 0\rangle\)
```

```
    and <apply-cltn2 (proj2-abs (axis j 1)) ?A = proj2-abs (axis j 1 v* ?C)>
    show apply-cltn2 (proj2-abs (axis j 1)) ?A = a$j
        by simp
    qed
    with \apply-cltn2 (proj2-abs (vector [1,1,1])) ?A = a3>
    show \exists A. apply-cltn2 (proj2-abs (vector [1,1,1])) A = a3 ^
    (\forall j. apply-cltn2 (proj2-abs (axis j 1)) A = a$j)
    by auto
qed
lemma statement53-existence:
    fixes p :: proj2^4^2
    assumes }\forall\mathrm{ i. proj2-no-3-Col (range (op $ (p$i)))
    shows \existsC.\forall j. apply-cltn2 ( }p$0$j)C=p$1$
proof -
    let ?q = \chi i. \chi j::3. p$i $(of-int (Rep-bit1 j))
    let ?D = \chi i.\epsilon D. apply-cltn2 (proj2-abs (vector [1,1,1])) D=p$i$3
    \wedge(\forall j'. apply-cltn2 (proj2-abs (axis j' 1)) D=?q$i$j')
    have }\forall\mathrm{ i. apply-cltn2 (proj2-abs (vector [1,1,1])) (?D$i) = p$i$3
    \wedge(\forall j'. apply-cltn2 (proj2-abs (axis j' 1)) (?D$i) =?q$i$j')
    proof
    fix }
    have range (op $ (p$i)) = insert (p$i$3) (range (op $ (?q$i)))
    proof
        show range (op $ (p$i)) \supseteq insert (p$i$3) (range (op $ (?q$i))) by auto
        show range (op $ (p$i))\subseteqinsert (p$i$3) (range (op $ (?q$i)))
        proof
            fix r
            assume r frange (op $ (p$i))
            then obtain j where r=p$i$j by auto
            with eq-3-or-of-3 [of j]
            show r insert (p$i$3) (range (op $ (?q$i))) by auto
        qed
    qed
    moreover from <\forall i. proj2-no-3-Col (range (op $ (p$i)))>
    have proj2-no-3-Col (range (op $ (p$i))) ..
    ultimately have proj2-no-3-Col (insert (p$i$3) (range (op $ (?q$i))))
        by simp
    hence \exists D. apply-cltn2 (proj2-abs (vector [1,1,1])) D=p$i$3
        \wedge(\forall j'.apply-cltn2 (proj2-abs (axis j' 1)) D =?q$i$j')
        by (rule statement52-existence)
    with someI-ex [of \lambda D. apply-cltn2 (proj2-abs (vector [1,1,1])) D = p$i$3
        \wedge (\forall j'. apply-cltn2 (proj2-abs (axis j' 1)) D = ?q$i$j')]
    show apply-cltn2 (proj2-abs (vector [1,1,1])) (?D$i) = p$i$3
        \wedge (\forall j'. apply-cltn2 (proj2-abs (axis j' 1)) (?D$i) = ?q$i$j')
        by simp
    qed
    hence apply-cltn2 (proj2-abs (vector [1,1,1])) (?D$0) = p$0$3
    and apply-cltn2 (proj2-abs (vector [1,1,1])) (?D$1) = p$1$3
```

and $\forall j^{\prime}$ ．apply－cltn2（proj2－abs $\left(\right.$ axis $\left.\left.j^{\prime} 1\right)\right)(? D \$ 0)=? q \$ 0 \$ j^{\prime}$ and $\forall j^{\prime}$ ．apply－cltn2 $\left(\right.$ proj2－abs $\left(\right.$ axis $\left.\left.j^{\prime} 1\right)\right)(? D \$ 1)=? q \$ 1 \$ j^{\prime}$ by simp－all
let ？C $=$ cltn2－compose（cltn2－inverse（？D\＄0））（？D\＄1）
have $\forall j$ ．apply－cltn2 $(p \$ 0 \$ j)$ ？$C=p \$ 1 \$ j$
proof
fix j
show apply－cltn2 $(p \$ 0 \$ j) ? C=p \$ 1 \$ j$
proof cases
assume $j=3$
with 〈apply－cltn2（proj2－abs（vector $[1,1,1]))(? D \$ 0)=p \$ 0 \$ 3$ 〉
and cltn2．act－inv－iff
have
apply－cltn2 $(p \$ 0 \$ j)($ cltn2－inverse $(? D \$ 0))=$ proj2－abs $($ vector $[1,1,1])$
by simp
with 〈apply－cltn2（proj2－abs（vector $[1,1,1]))(? D \$ 1)=p \$ 1 \$ 3$ 〉
and $\langle j=3\rangle$
and cltn2．act－act［of cltn2－inverse（？D $\$ 0$ ）？$D \$ 1 \quad p \$ 0 \$ j]$
show apply－cltn2 $(p \$ 0 \$ j)$ ？$C=p \$ 1 \$ j$ by simp
next
assume $j \neq 3$
with eq－3－or－of－3 obtain $j^{\prime}:: 3$ where $j=o f-i n t\left(\right.$ Rep－bit1 j^{\prime} ）
by metis
with $\forall \forall j^{\prime}$ ．apply－cltn2（proj2－abs $\left(\right.$ axis $\left.\left.j^{\prime} 1\right)\right)(? D \$ 0)=? q \$ 0 \$ j^{\prime}$ ’
and $\left\langle\forall j^{\prime}\right.$ ．apply－cltn2（proj2－abs（axis $\left.\left.\left.j^{\prime} 1\right)\right)(? D \$ 1)=? q \$ 1 \$ j^{\prime}\right\rangle$
have $p \$ 0 \$ j=$ apply－cltn2 $\left(\right.$ proj2－abs $\left.\left(a x i s j^{\prime} 1\right)\right)(? D \$ 0)$
and $p \$ 1 \$ j=$ apply－cltn2 $\left(\right.$ proj2－abs $\left(\right.$ axis $\left.\left.j^{\prime} 1\right)\right)(? D \$ 1)$
by simp－all
from $\left\langle p \$ 0 \$ j=\right.$ apply－cltn2 $\left(\right.$ proj2－abs $\left(\right.$ axis $\left.\left.\left.j^{\prime} 1\right)\right)(? D \$ 0)\right\rangle$
and cltn2．act－inv－iff
have apply－cltn2 $(p \$ 0 \$ j)($ cltn2－inverse $(? D \$ 0))=$ proj2－abs $\left(\right.$ axis $\left.j^{\prime} 1\right)$ by simp
with $\left\langle p \$ 1 \$ j=\right.$ apply－cltn2 $\left(\right.$ proj2－abs（axis $\left.\left.\left.j^{\prime} 1\right)\right)(? D \$ 1)\right\rangle$
and cltn2．act－act［of cltn2－inverse（？D $\$ 0$ ）？D $\$ 1$ p $\$ 0 \$ j$ ］
show apply－cltn2 $(p \$ 0 \$ j)$ ？$C=p \$ 1 \$ j$ by simp
qed
qed
thus $\exists C . \forall j$ ．apply－cltn2 $(p \$ 0 \$ j) C=p \$ 1 \$ j$ by（rule exI［of－？C ］）
qed
lemma apply－cltn2－linear：
assumes $j *_{R} v+k *_{R} w \neq 0$
shows $j *_{R}(v v *$ cltn2－rep $C)+k *_{R}(w v *$ cltn2－rep $C) \neq 0$
（is ？$u \neq 0$ ）
and apply－cltn2（proj2－abs $\left.\left(j *_{R} v+k *_{R} w\right)\right) C$
$=\operatorname{proj2-abs}\left(j *_{R}(v v *\right.$ cltn2－rep $C)+k *_{R}(w v *$ cltn2－rep $\left.C)\right)$
proof－
have ？$u=\left(j *_{R} v+k *_{R} w\right) v *$ cltn2－rep C

```
    by (simp only: vector-matrix-left-distrib scalar-vector-matrix-assoc)
    with }\langlej\mp@subsup{*}{R}{}v+k\mp@subsup{*}{R}{}w\not=0\rangle\mathrm{ and non-zero-mult-rep-non-zero
    show ?u\not=0 by simp
    from\?u = (j*R
    and }\langlej\mp@subsup{*}{R}{}v+k\mp@subsup{*}{R}{}w\not=0
    and apply-cltn2-left-abs
    show apply-cltn2 (proj2-abs (j**R v k k*R w)) C= proj2-abs ?u
    by simp
qed
lemma apply-cltn2-imp-mult:
    assumes apply-cltn2 p C = q
    shows \existsk.k\not=0^ proj2-rep p v* cltn2-rep C = k*R proj2-rep q
proof -
    have proj2-rep p v* cltn2-rep C = 0 by (rule rep-mult-rep-non-zero)
    from 〈apply-cltn2 p C= q>
    have proj2-abs (proj2-rep p v* cltn2-rep C)=q by (unfold apply-cltn2-def)
    hence proj2-rep (proj2-abs (proj2-rep p v* cltn2-rep C)) = proj2-rep q
        by simp
    with <proj2-rep p v* cltn2-rep C = 0` and proj2-rep-abs2 [of proj2-rep p v*
cltn2-rep C]
    have \existsj.j\not=0^ proj2-rep q=j** (proj2-rep p v* cltn2-rep C) by simp
    then obtain }j\mathrm{ where j}\not=
    and proj2-rep q = j*R (proj2-rep p v* cltn2-rep C) by auto
    hence proj2-rep p v* cltn2-rep C=(1/j)*R proj2-rep q
        by (simp add: field-simps)
    with }\langlej\not=0\mathrm{ `
    show \exists k.k\not=0^ proj2-rep p v* cltn2-rep C=k *R proj2-rep q
    by (simp add: exI [of-1/j])
qed
lemma statement55:
    assumes }p\not=
    and apply-cltn2 p C=q
    and apply-cltn2 q C = p
    and proj2-incident pl
    and proj2-incident q l
    and proj2-incident r l
    shows apply-cltn2 (apply-cltn2 r C) C=r
proof cases
    assume r=p
    with 〈apply-cltn2 p C= q> and 〈apply-cltn2 q C = p>
    show apply-cltn2 (apply-cltn2 r C) C=r by simp
next
    assume r}\not=
    from «apply-cltn2 p C=q> and apply-cltn2-imp-mult [of p C q]
```

```
obtain \(i\) where \(i \neq 0\) and proj2-rep p \(v *\) cltn2-rep \(C=i *_{R}\) proj2-rep \(q\)
    by auto
from 〈apply-cltn2 \(q C=p\rangle\) and apply-cltn2-imp-mult \([\) of \(q C p]\)
obtain \(j\) where \(j \neq 0\) and proj2-rep \(q v *\) cltn2-rep \(C=j *_{R}\) proj2-rep p
    by auto
from \(\langle p \neq q\rangle\)
    and \(\langle\) proj2-incident \(p l\rangle\)
    and \(\langle p r o j 2-i n c i d e n t ~ q ~ l\rangle\)
    and \(\langle p r o j 2-i n c i d e n t r l\rangle\)
    and projo-incident-iff
have \(r=p \vee\left(\exists k . r=\operatorname{proj2-abs}\left(k *_{R}\right.\right.\) proj2-rep \(\left.\left.p+\operatorname{proj2-rep~} q\right)\right)\)
    by fast
with \(\langle r \neq p\rangle\)
obtain \(k\) where \(r=\) proj2-abs ( \(k *_{R}\) proj2-rep \(p+\operatorname{proj2-rep~} q\) ) by auto
from \(\langle p \neq q\rangle\) and proj2-rep-dependent [of \(k\) p 1 q]
have \(k *_{R}\) proj2-rep \(p+\operatorname{proj} 2-r e p ~ q \neq 0\) by auto
with \(\left\langle r=\right.\) proj2-abs \(\left(k *_{R}\right.\) proj2-rep \(\left.\left.p+\operatorname{proj} 2-r e p q\right)\right\rangle\)
    and apply-cltn2-linear [of \(k\) proj2-rep p 1 proj2-rep \(q]\)
have \(k *_{R}(\) proj2-rep \(p\) v* cltn2-rep \(C)+\) proj2-rep \(q v *\) cltn2-rep \(C \neq 0\)
    and apply-cltn2 \(r\) C
    \(=\) proj2-abs
```



```
    by simp-all
with 〈proj2-rep p \(v *\) cltn2-rep \(C=i *_{R}\) proj2-rep \(\left.q\right\rangle\)
    and 〈proj2-rep q v* cltn2-rep \(C=j *_{R}\) proj2-rep \(\left.p\right\rangle\)
have \((k * i) *_{R}\) proj2-rep \(q+j *_{R}\) proj2-rep \(p \neq 0\)
    and apply-cltn2 \(r\) r
    \(=\) proj2-abs \(\left((k * i) *_{R}\right.\) proj2-rep \(q+j *_{R}\) proj2-rep \(\left.p\right)\)
    by simp-all
with apply-cltn2-linear
have apply-cltn2 (apply-cltn2 \(r\) C) \(C\)
    \(=\) proj2-abs
    \(\left((k * i) *_{R}(\right.\) proj2-rep \(q v *\) cltn2-rep \(C)\)
    \(+j *_{R}\) (proj2-rep p \(v *\) cltn2-rep \(\left.C\right)\) )
    by \(\operatorname{simp}\)
with 〈proj2-rep p \(v *\) cltn2-rep \(C=i *_{R}\) proj2-rep \(\left.q\right\rangle\)
    and 〈proj2-rep \(q v *\) cltn2-rep \(C=j *_{R}\) proj2-rep \(\left.p\right\rangle\)
have apply-cltn2 (apply-cltn2 \(r C\) ) \(C\)
    \(=\) proj2-abs \(\left((k * i * j) *_{R}\right.\) proj2-rep \(p+(j * i) *_{R}\) proj2-rep \(\left.q\right)\)
    by \(\operatorname{simp}\)
also have \(\ldots=\operatorname{proj2-abs}\left((i * j) *_{R}\left(k *_{R}\right.\right.\) proj2-rep \(\left.\left.p+\operatorname{proj2-rep~} q\right)\right)\)
    by (simp add: algebra-simps)
also from \(\langle i \neq 0\rangle\) and \(\langle j \neq 0\rangle\) and proj2-abs-mult
have \(\ldots=\) proj2-abs \(\left(k *_{R}\right.\) proj2-rep \(p+\) proj2-rep \(\left.q\right)\) by simp
also from 〈r \(=\) proj2-abs \(\left(k *_{R}\right.\) proj2-rep \(\left.\left.p+\operatorname{proj2-rep~} q\right)\right\rangle\)
have \(\ldots=r\) by \(\operatorname{simp}\)
```

finally show apply-cltn2 (apply-cltn2 $r C$) $C=r$.
qed

7.5 Cross ratios

definition cross-ratio $::$ proj2 \Rightarrow proj2 \Rightarrow proj2 \Rightarrow proj2 \Rightarrow real where cross-ratio p qrs $\begin{gathered}\text { proj2-Col-coeff } p q s / p r o j 2-C o l-c o e f f ~ p ~ q ~ r ~\end{gathered}$
definition cross-ratio-correct $::$ proj2 \Rightarrow proj2 \Rightarrow proj2 \Rightarrow proj2 \Rightarrow bool where cross-ratio-correct p qrs \triangleq proj2-set-Col $\{p, q, r, s\} \wedge p \neq q \wedge r \neq p \wedge s \neq p \wedge r \neq q$
lemma proj2-Col-coeff-abs:
assumes $p \neq q$ and $j \neq 0$
shows proj2-Col-coeff $p q\left(\right.$ proj2-abs ($i *_{R}$ proj2-rep $p+j *_{R}$ proj2-rep $\left.\left.q\right)\right)$
$=i / j$
(is proj2-Col-coeff p q ? $r=i / j$)
proof -
from $\langle j \neq 0\rangle$
and proj2-abs-mult [of $1 / j i *_{R}$ proj2-rep $p+j *_{R}$ proj2-rep q]
have ?r $=$ proj2-abs $\left((i / j) *_{R}\right.$ proj2-rep $p+$ proj2-rep $\left.q\right)$
by (simp add: scaleR-right-distrib)
from $\langle p \neq q\rangle$ and proj2-rep-dependent $\left[\begin{array}{lll}o f-p & 1\end{array}\right]$
have $(i / j) *_{R}$ proj2-rep $p+$ proj2-rep $q \neq 0$ by auto
with 〈? $r=$ proj2-abs $\left((i / j) *_{R}\right.$ proj2-rep $p+$ proj2-rep $\left.q\right)$ 〉
and proj2-rep-abs2
obtain k where $k \neq 0$
and proj2-rep ? $r=k *_{R}\left((i / j) *_{R}\right.$ proj2-rep $p+$ proj2-rep $\left.q\right)$
by auto
hence $(k * i / j) *_{R}$ proj2-rep $p+k *_{R}$ proj2-rep $q-$ proj2-rep ? $r=0$
by (simp add: scaleR-right-distrib)
hence $\exists l$. $(k * i / j) *_{R}$ projo-rep $p+k *_{R}$ projo-rep $q+l *_{R}$ proj2-rep ? $r=0$ $\wedge(k * i / j \neq 0 \vee k \neq 0 \vee l \neq 0)$
by (simp add: exI [of -1$]$)
hence proj2-Col p q ?r by (unfold proj2-Col-def) auto
have ? $r \neq p$
proof
assume $? r=p$
with $\left\langle(k * i / j) *_{R}\right.$ proj2-rep $p+k *_{R}$ proj2-rep $q-$ proj2-rep ? $\left.r=0\right\rangle$
have $(k * i / j-1) *_{R}$ proj2-rep $p+k *_{R}$ proj2-rep $q=0$
by (simp add: algebra-simps)
with $\langle k \neq 0\rangle$ and proj2-rep-dependent have $p=q$ by simp
with $\langle p \neq q\rangle$ show False ..
qed
with $\langle p r o j 2-C o l p q ? r\rangle$ and $\langle p \neq q\rangle$
have ?r = proj2-abs (proj2-Col-coeff p q ? $r *_{R}$ proj2-rep $\left.p+\operatorname{proj2-rep~} q\right)$
by (rule proj2-Col-coeff)
with $\langle p \neq q\rangle$ and $\left\langle ? r=\operatorname{proj2-abs}\left((i / j) *_{R}\right.\right.$ proj2-rep $\left.\left.p+\operatorname{proj2-rep~} q\right)\right\rangle$ and proj2-Col-coeff-unique
show proj2-Col-coeff $p q$? $r=i / j$ by simp
qed
lemma proj2-set-Col-coeff:
assumes proj2-set-Col S and $\{p, q, r\} \subseteq S$ and $p \neq q$ and $r \neq p$
shows $r=$ proj2-abs (proj2-Col-coeff p $q r *_{R}$ proj2-rep $p+$ proj2-rep q)
(is $\left.r=\operatorname{proj} 2-a b s\left(? i *_{R} ? u+? v\right)\right)$
proof -
from $\langle\{p, q, r\} \subseteq S\rangle$ and $\langle p r o j 2$-set-Col $S\rangle$
have proj2-set-Col $\{p, q, r\}$ by (rule proj2-subset-Col)
hence proj2-Col p q r by (subst proj2-Col-iff-set-Col)
with $\langle p \neq q\rangle$ and $\langle r \neq p\rangle$ and proj2-Col-coeff
show $r=$ projo-abs $\left(? i *_{R} ? u+? v\right)$ by simp
qed
lemma cross-ratio-abs:
fixes $u v::$ real^3 and $i j k l::$ real
assumes $u \neq 0$ and $v \neq 0$ and proj2-abs $u \neq$ proj2-abs v
and $j \neq 0$ and $l \neq 0$
shows cross-ratio (proj2-abs u) (proj2-abs v)
(proj2-abs $\left.\left(i *_{R} u+j *_{R} v\right)\right)$
(proj2-abs $\left.\left(k *_{R} u+l *_{R} v\right)\right)$
$=j * k /(i * l)$
(is cross-ratio ?p ?q ?r ? $s=-$)
proof -
from $\langle u \neq 0\rangle$ and proj2-rep-abs2
obtain g where $g \neq 0$ and proj2-rep ?p $=g *_{R} u$ by auto
from $\langle v \neq 0\rangle$ and proj2-rep-abs2
obtain h where $h \neq 0$ and proj2-rep ? $q=h *_{R} v$ by auto
with $\langle g \neq 0\rangle$ and $\left\langle p r o j 2-r e p\right.$? $\left.p=g *_{R} u\right\rangle$
have ?r $=$ proj2-abs $\left((i / g) *_{R}\right.$ proj2-rep ? $p+(j / h) *_{R}$ proj2-rep ?q)
and ?s $=$ proj2-abs $\left((k / g) *_{R}\right.$ proj2-rep ?p $+(l / h) *_{R}$ proj2-rep ?q)
by (simp-all add: field-simps)
with $\langle ? p \neq ? q\rangle$ and $\langle h \neq 0\rangle$ and $\langle j \neq 0\rangle$ and $\langle l \neq 0\rangle$ and proj2-Col-coeff-abs
have proj2-Col-coeff ?p ?q ?r $=h * i /(g * j)$
and proj2-Col-coeff ?p ?q ?s $=h * k /(g * l)$
by simp-all
with $\langle g \neq 0\rangle$ and $\langle h \neq 0\rangle$
show cross-ratio ?p ? q ?r ?s $=j * k /(i * l)$
by (unfold cross-ratio-def) (simp add: field-simps)
qed
lemma cross-ratio-abs2:
assumes $p \neq q$
shows cross-ratio $p q$
(proj2-abs ($i *_{R}$ proj2-rep $\left.p+\operatorname{proj2-rep~q)}\right)$

```
    (proj2-abs (j *R proj2-rep p + proj2-rep q))
    =j/i
    (is cross-ratio p q ?r ?s = -)
proof -
    let ?u = proj2-rep p
    let ?v = proj2-rep q
    have ?u\not=0 and ?v}\not=0\mathrm{ by (rule proj2-rep-non-zero)+
    have proj2-abs ?u = p and proj2-abs ?v = q by (rule proj2-abs-rep)+
    with }\langle?u\not=0\rangle\mathrm{ and }\langle?v\not=0\rangle\mathrm{ and }\langlep\not=q\rangle\mathrm{ and cross-ratio-abs [of ?u ?v 1 1 i j]
    show cross-ratio p q ?r ?s = j/i by simp
qed
lemma cross-ratio-correct-cltn2:
    assumes cross-ratio-correct p q r s
    shows cross-ratio-correct (apply-cltn2 p C) (apply-cltn2 q C)
    (apply-cltn2 r C) (apply-cltn2 s C)
    (is cross-ratio-correct ?pC ?qC ?rC ?sC)
proof -
    from \cross-ratio-correct p q r s`
    have proj2-set-Col {p,q,r,s}
        and p\not=q and r\not=p and s\not=p and r\not=q
    by (unfold cross-ratio-correct-def) simp-all
    have {apply-cltn2 t C | t.t\in{p,q,r,s}}={?pC,?qC,?rC,?sC} by auto
    with <proj2-set-Col {p,q,r,s}>
    and apply-cltn2-preserve-set-Col [of {p,q,r,s} C]
    have proj2-set-Col {?pC,?qC,?rC,?sC} by simp
    from }\langlep\not=q\rangle\mathrm{ and }\langler\not=p\rangle\mathrm{ and }\langles\not=p\rangle\mathrm{ and }\langler\not=q\rangle\mathrm{ and apply-cltn2-injective
    have ?pC\not=?qC and ?r C \not=?pC and ?sC\not=?pC and ?r }C\not=?qC by fast
    with <proj2-set-Col {?pC,?qC,?rC,?sC}>
    show cross-ratio-correct ?pC ?qC ?rC ?sC
    by (unfold cross-ratio-correct-def) simp
qed
lemma cross-ratio-cltn2:
    assumes proj2-set-Col {p,q,r,s} and p\not=q and r\not=p and s\not=p
    shows cross-ratio (apply-cltn2 p C) (apply-cltn2 q C)
    (apply-cltn2 r C) (apply-cltn2 s C)
    =cross-ratio p qrs
    (is cross-ratio ?p C ?qC ?rC ?sC = -)
proof -
    let ?u = proj2-rep p
    let ?v = proj2-rep q
    let ?i = proj2-Col-coeff p qr
    let ?j = proj2-Col-coeff p q s
    from \langleproj2-set-Col {p,q,r,s}\rangle and }\langlep\not=q\rangle\mathrm{ and }\langler\not=p\rangle\mathrm{ and }\langles\not=p
    and proj2-set-Col-coeff
```

```
    have \(r=\) proj2-abs \(\left(? i *_{R} ? u+? v\right)\) and \(s=\operatorname{proj2-abs}\left(? j *_{R} ? u+? v\right)\)
    by simp-all
    let ? \(u C=\) ? u \(v *\) cltn2-rep \(C\)
    let \(? v C=\) ? \(v v *\) cltn2-rep \(C\)
    have \(? u C \neq 0\) and \(? v C \neq 0\) by (rule rep-mult-rep-non-zero) +
    have proj2-abs \(? u C=? p C\) and proj2-abs \(? v C=? q C\)
    by (unfold apply-cltn2-def) simp-all
    from \(\langle p \neq q\rangle\) and apply-cltn2-injective have ? \(p C \neq ? q C\) by fast
    from \(\langle p \neq q\rangle\) and proj2-rep-dependent \(\left[\begin{array}{lll}o f-p & 1\end{array}\right]\)
    have \(? i *_{R} ? u+? v \neq 0\) and \(? j *_{R} ? u+? v \neq 0\) by auto
    with \(\left\langle r=\right.\) proj2-abs \(\left.\left(? i *_{R} ? u+? v\right)\right\rangle\) and \(\left\langle s=\operatorname{proj} 2-a b s\left(? j *_{R} ? u+? v\right)\right\rangle\)
    and apply-cltn2-linear [of ?i ?u 1 ?v]
    and apply-cltn2-linear \([\) of ?j ?u 1 ?v]
    have ?r \(C=\) proj2-abs \(\left(? i *_{R} ? u C+? v C\right)\)
    and ?s \(C=\) proj2-abs \(\left(? j *_{R} ? u C+? v C\right)\)
    by simp-all
    with \(\langle ? u C \neq 0\rangle\) and \(\langle ? v C \neq 0\rangle\) and \(\langle p r o j 2-a b s ? u C=? p C\rangle\)
    and \(\langle p r o j 2-a b s ? v C=? q C\rangle\) and \(\langle ? p C \neq ? q C\rangle\)
    and cross-ratio-abs [of ?uC ?vC 11 ? 1 ?j]
    have cross-ratio ? \(p C\) ? \(q C\) ? \(r C\) ?s \(C=? j\) ? i by simp
    thus cross-ratio ? \(p C\) ? \(q C\) ? \(r C\) ?s \(C=\) cross-ratio \(p q r s\)
    unfolding cross-ratio-def \(\left[\begin{array}{ll}o f & p\end{array} q r s\right]\).
qed
lemma cross-ratio-unique:
    assumes cross-ratio-correct p qrs and cross-ratio-correct p qrt
    and cross-ratio \(p q r s=\) cross-ratio \(p q r t\)
    shows \(s=t\)
proof -
    from 〈cross-ratio-correct p q r s〉 and 〈cross-ratio-correct p q r t〉
    have proj2-set-Col \(\{p, q, r, s\}\) and proj2-set-Col \(\{p, q, r, t\}\)
        and \(p \neq q\) and \(r \neq p\) and \(r \neq q\) and \(s \neq p\) and \(t \neq p\)
        by (unfold cross-ratio-correct-def) simp-all
    let \(? u=\) proj2-rep \(p\)
    let \(? v=\) proj2-rep \(q\)
    let \(? i=\) proj2-Col-coeff \(p q r\)
    let \(? j=\) proj2-Col-coeff \(p q s\)
    let \(? k=\) proj2-Col-coeff \(p q t\)
    from 〈proj2-set-Col \(\{p, q, r, s\}\rangle\) and 〈proj2-set-Col \(\{p, q, r, t\}\rangle\)
    and \(\langle p \neq q\rangle\) and \(\langle r \neq p\rangle\) and \(\langle s \neq p\rangle\) and \(\langle t \neq p\rangle\) and proj2-set-Col-coeff
    have \(r=\operatorname{proj} 2-a b s\left(? i *_{R} ? u+? v\right)\)
    and \(s=\) proj2-abs \(\left(? j *_{R} ? u+? v\right)\)
    and \(t=\) proj2-abs \(\left(? k *_{R} ? u+? v\right)\)
    by simp-all
```

```
    from \langler\not=q\rangle and \langler= proj2-abs (?i **R ?u + ?v)\rangle
    have ?i}\not=0\mathrm{ by (auto simp add: proj2-abs-rep)
    with \cross-ratio p q r s = cross-ratio p q r t\rangle
    have ?j = ?k by (unfold cross-ratio-def) simp
    with «s = proj2-abs (?j * *R ?u + ?v)\rangle and <t = proj2-abs (?k ** ?u + ?v)\rangle
    show s=t by simp
qed
lemma cltn2-three-point-line:
    assumes }p\not=q\mathrm{ and }r\not=p\mathrm{ and }r\not=
    and proj2-incident pl and proj2-incident q l and proj2-incident r l
    and apply-cltn2 p C=p and apply-cltn2 q C = q and apply-cltn2 r C = r
    and proj2-incident s l
    shows apply-cltn2 s C =s (is ?sC=s)
proof cases
    assume s=p
    with <apply-cltn2 p C = p\rangle show ?s }C=s\mathrm{ by simp
next
    assume s\not=p
    let ?pC=apply-cltn2 p C
    let ?qC = apply-cltn2 q C
    let ?rC = apply-cltn2 r C
    from <proj2-incident pl\rangle and \langleproj2-incident q l> and <proj2-incident r l>
    and <proj2-incident s l>
    have proj2-set-Col {p,q,r,s} by (unfold proj2-set-Col-def) auto
    with }\langlep\not=q\rangle\mathrm{ and }\langler\not=p\rangle\mathrm{ and }\langles\not=p\rangle\mathrm{ and }\langler\not=q
    have cross-ratio-correct p qr s by (unfold cross-ratio-correct-def) simp
    hence cross-ratio-correct ?pC ?qC ?rC ?sC
    by (rule cross-ratio-correct-cltn2)
    with }\langle?pC=p\rangle\mathrm{ and }\langle?qC=q\rangle\mathrm{ and }\langle?rC=r
    have cross-ratio-correct p q r ?s C by simp
    from <proj2-set-Col {p,q,r,s}\rangle and \langlep\not=q\rangle and \langler\not=p\rangle and \langles\not=p\rangle
    have cross-ratio ?pC ?qC ?rC ?sC = cross-ratio p q r s
    by (rule cross-ratio-cltn2)
    with \langle?}\PC=p\rangle\mathrm{ and }\langle?qQ=q\rangle\mathrm{ and }\langle?rC=r
    have cross-ratio p qr ?sC= cross-ratio p q r s by simp
    with \cross-ratio-correct p qr ?sC\rangle and \cross-ratio-correct p qr s\rangle
    show ?sC=s by (rule cross-ratio-unique)
qed
lemma cross-ratio-equal-cltn2:
    assumes cross-ratio-correct p q r s
    and cross-ratio-correct (apply-cltn2 p C) (apply-cltn2 q C)
    (apply-cltn2 r C) t
    (is cross-ratio-correct ?p C ?qC ?rC t)
```

and cross－ratio（apply－cltn2 p C）（apply－cltn2 q C）（apply－cltn2 r C）t $=$ cross－ratio $p q r s$
shows $t=$ apply－cltn2 $s C$（is $t=$ ？$s C$ ）
proof－
from 〈cross－ratio－correct p qr s〉
have cross－ratio－correct ？p C ？$q C$ ？r C ？s C by（rule cross－ratio－correct－cltn2）
from 〈cross－ratio－correct $p q r s\rangle$
have proj2－set－Col $\{p, q, r, s\}$ and $p \neq q$ and $r \neq p$ and $s \neq p$
by（unfold cross－ratio－correct－def）simp－all
hence cross－ratio ？p C ？qC ？r C ？s $C=$ cross－ratio $p q r s$
by（rule cross－ratio－cltn2）
with 〈cross－ratio ？p C ？$q C$ ？$r C t=$ cross－ratio $p q r s\rangle$
have cross－ratio ？$p C$ ？$q C$ ？$r C t=$ cross－ratio ？$p C$ ？$q C$ ？$r C$ ？s C by simp
with \langle cross－ratio－correct ？$p C$ ？$q C$ ？$r C t\rangle$ and 〈cross－ratio－correct ？p C ？qC ？r C ？s $C\rangle$
show $t=$ ？s C by（rule cross－ratio－unique）
qed
lemma proj2－Col－distinct－coeff－non－zero：
assumes proj2－Col p q r and $p \neq q$ and $r \neq p$ and $r \neq q$
shows proj2－Col－coeff p q $r \neq 0$
proof
assume proj2－Col－coeff p q r $=0$
from $\langle p r o j 2$－Col $p q r\rangle$ and $\langle p \neq q\rangle$ and $\langle r \neq p\rangle$
have $r=$ proj2－abs（（proj2－Col－coeff $p q r) *_{R}$ proj2－rep $p+$ proj2－rep $\left.q\right)$
by（rule proj2－Col－coeff）
with 〈proj2－Col－coeff p q r $=0$ 〉 have $r=q$ by（simp add：proj2－abs－rep）
with $\langle r \neq q\rangle$ show False ．．
qed
lemma cross－ratio－product：
assumes proj2－Col p q s and $p \neq q$ and $s \neq p$ and $s \neq q$
shows cross－ratio p $q r s *$ cross－ratio $p q s t=$ cross－ratio $p q r t$
proof－
from \langle proj2－Col p q s〉 and $\langle p \neq q\rangle$ and $\langle s \neq p\rangle$ and $\langle s \neq q\rangle$
have proj2－Col－coeff p q s $\neq 0$ by（rule proj2－Col－distinct－coeff－non－zero）
thus cross－ratio $p q r s *$ cross－ratio $p q s t=$ cross－ratio $p q r t$
by（unfold cross－ratio－def）simp
qed
lemma cross－ratio－equal－1：
assumes proj2－Col p q r and $p \neq q$ and $r \neq p$ and $r \neq q$
shows cross－ratio p q r r＝ 1
proof－
from $\langle p r o j 2-C o l p q r\rangle$ and $\langle p \neq q\rangle$ and $\langle r \neq p\rangle$ and $\langle r \neq q\rangle$
have proj2－Col－coeff p q r $\neq 0$ by（rule projo－Col－distinct－coeff－non－zero）
thus cross－ratio p q r r $=1$ by（unfold cross－ratio－def）simp

qed

lemma cross－ratio－1－equal：
assumes cross－ratio－correct p qrs and cross－ratio p qrs＝1
shows $r=s$
proof－
from 〈cross－ratio－correct p q r s〉
have proj2－set－Col $\{p, q, r, s\}$ and $p \neq q$ and $r \neq p$ and $r \neq q$
by（unfold cross－ratio－correct－def）simp－all
from 〈proj2－set－Col $\{p, q, r, s\}\rangle$
have proj2－set－Col $\{p, q, r\}$
by（simp add：proj2－subset－Col $[$ of $\{p, q, r\}\{p, q, r, s\}])$
with $\langle p \neq q\rangle$ and $\langle r \neq p\rangle$ and $\langle r \neq q\rangle$
have cross－ratio－correct $p q r r$ by（unfold cross－ratio－correct－def）simp
from 〈proj2－set－Col $\{p, q, r\}$ 〉
have proj2－Col p q r by（subst proj2－Col－iff－set－Col）
with $\langle p \neq q\rangle$ and $\langle r \neq p\rangle$ and $\langle r \neq q\rangle$
have cross－ratio p q r r $=1$ by（simp add：cross－ratio－equal－1）
with 〈cross－ratio $p q r s=1$ 〉
have cross－ratio p q r r cross－ratio p qrs by simp

show $r=s$ by（rule cross－ratio－unique）
qed
lemma cross－ratio－swap－34：
shows cross－ratio p qs $r=1 /($ cross－ratio $p q r s)$
by（unfold cross－ratio－def）simp
lemma cross－ratio－swap－13－24：
assumes cross－ratio－correct pqrs and $r \neq s$
shows cross－ratio rsp q cross－ratio $p q r s$
proof－
from 〈cross－ratio－correct p q r s〉
have proj2－set－Col $\{p, q, r, s\}$ and $p \neq q$ and $r \neq p$ and $s \neq p$ and $r \neq q$
by（unfold cross－ratio－correct－def，simp－all）
have proj2－rep $p \neq 0($ is $? u \neq 0)$ and proj2－rep $q \neq 0($ is $? v \neq 0)$
by（rule proj2－rep－non－zero）+
have $p=$ proj2－abs ？u and $q=$ proj2－abs ？v
by（simp－all add：proj2－abs－rep）
with $\langle p \neq q\rangle$ have proj2－abs ？$u \neq$ proj2－abs ？v by simp
let $? i=$ proj2－Col－coeff $p q r$
let $? j=$ proj2－Col－coeff $p q s$
from $\langle p r o j 2-s e t-C o l\{p, q, r, s\}\rangle$ and $\langle p \neq q\rangle$ and $\langle r \neq p\rangle$ and $\langle s \neq p\rangle$
have $r=$ proj2－abs $\left(? i *_{R} ? u+? v\right)$（is $\left.r=\operatorname{proj} 2-a b s ? w\right)$

```
    and s=proj2-abs (?j *R ?u + ?v) (is s=proj2-abs ?x)
    by (simp-all add: proj2-set-Col-coeff)
    with }\langler\not=s\rangle\mathrm{ have ?i}\not=
    from \langle?u\not=0\rangle and \langle?v 
    and dependent-projo-abs [of ?u ?v - 1]
    have ?}w\not=0\mathrm{ and ? }x\not=0\mathrm{ by auto
    from \langler= proj2-abs (?i **R ?u + ?v)\rangle and \langler\not=q\rangle
    have ?i }\not=0\mathrm{ by (auto simp add: proj2-abs-rep)
    have ?w - ?x = (?i - ?j) *R ?u by (simp add: algebra-simps)
    with 〈?i\not= ?j\rangle
    have p= proj2-abs (?w - ?x) by (simp add: proj2-abs-mult-rep)
    have ?j * * ? w - ?i * *R ?x = (?j - ?i) * *R ?v by (simp add: algebra-simps)
    with 〈?i\not= ?j`
    have q= proj2-abs (?j *}\mp@subsup{*}{R}{}?w-?i*\mp@subsup{*}{R}{}?x)\mathrm{ by (simp add: proj2-abs-mult-rep)
    with }\langle?w\not=0\rangle\mathrm{ and }\langle?x\not=0\rangle\mathrm{ and }\langler\not=s\rangle\mathrm{ and }\langle?i\not=0\rangle\mathrm{ and }\langler=proj2-abs ?w
    and <s=proj2-abs ?x\rangle and <p = proj2-abs (?w - ?x)\rangle
    and cross-ratio-abs [of ?w ?x - 1 - ?i 1 ?j]
    have cross-ratio r s p q=?j / ?i by (simp add: algebra-simps)
    thus cross-ratio rs p q=cross-ratio p q r s
    by (unfold cross-ratio-def [of p q r s], simp)
qed
lemma cross-ratio-swap-12:
    assumes cross-ratio-correct p q r s and cross-ratio-correct q p r s
    shows cross-ratio q prs=1/(cross-ratio pqrs)
proof cases
    assume r=s
    from \cross-ratio-correct p q r s\rangle
    have proj2-set-Col {p,q,r,s} and p\not=q and r\not=p and r\not=q
    by (unfold cross-ratio-correct-def) simp-all
    from <proj2-set-Col {p,q,r,s}> and \langler=s\rangle
    have proj2-Col p q r by (simp-all add: proj2-Col-iff-set-Col)
    hence proj2-Col q p r by (rule proj2-Col-permute)
    with \langleproj2-Col p q r\rangle and \langlep\not=q\rangle and \langler\not=p\rangle and \langler\not=q\rangle and \langler=s\rangle
    have cross-ratio p qrs=1 and cross-ratio q prs=1
    by (simp-all add:cross-ratio-equal-1)
    thus cross-ratio q prs=1/(cross-ratio p qr s) by simp
next
    assume r\not=s
    with \cross-ratio-correct q p r s`
    have cross-ratio q p r s=cross-ratio r s q p
    by (simp add: cross-ratio-swap-13-24)
also have ... =1 / (cross-ratio rs p q) by (rule cross-ratio-swap-34)
```

also from 〈cross-ratio-correct p qris and $\langle r \neq s\rangle$
have $\ldots=1 /($ cross-ratio p q r s) by (simp add: cross-ratio-swap-13-24)
finally show cross-ratio $q p r s=1 /($ cross-ratio $p q r s)$.
qed

7.6 Cartesian subspace of the real projective plane

definition vector2-append1 :: real^2 \Rightarrow real^3 where vector2-append1 $v=$ vector $[v \$ 1, v \$ 2,1]$
lemma vector2-append1-non-zero: vector2-append1 $v \neq 0$
proof -
have (vector2-append1 v) $\$ 3 \neq 0 \$ 3$
unfolding vector2-append1-def and vector-def
by simp
thus vector2-append1 $v \neq 0$ by auto
qed
definition proj2-pt :: real^2 \Rightarrow proj2 where
proj2-pt $v \triangleq$ proj2-abs (vector2-append1 v)
lemma proj2-pt-scalar:
$\exists c . c \neq 0 \wedge$ proj2-rep $($ proj2-pt $v)=c *_{R}$ vector2-append1 v
unfolding proj2-pt-def
by (simp add: proj2-rep-abs2 vector2-append1-non-zero)
abbreviation z-non-zero :: proj2 \Rightarrow bool where
z-non-zero $p \triangleq($ proj2-rep $p) \$ 3 \neq 0$
definition cart2-pt :: proj2 \Rightarrow real^2 2 where
cart2-pt $p \triangleq$
vector $[($ proj2-rep p)\$1 / (proj2-rep p)\$3, (proj2-rep p)\$2 / (proj2-rep p)\$3]
definition cart2-append1 :: proj2 \Rightarrow real^3 where
cart2-append1 $p \triangleq(1 /(($ proj2-rep $p) \$ 3)) *_{R}$ proj2-rep p
lemma cart2-append1-z:
assumes z-non-zero p
shows $($ cart2-append1 p) $\$ 3=1$
using $\langle z$-non-zero $p\rangle$
by (unfold cart2-append1-def) simp
lemma cart2-append1-non-zero:
assumes z-non-zero p
shows cart2-append1 $p \neq 0$
proof -
from 〈z-non-zero $p\rangle$ have (cart2-append1 p) $\$ 3=1$ by (rule cart2-append1-z) thus cart2-append1 $p \neq 0$ by (simp add: vec-eq-iff exI [of-3])
qed

```
lemma proj2-rep-cart2-append1:
    assumes z-non-zero p
    shows proj2-rep p = ((proj2-rep p)$3) *R cart2-append1 p
    using <z-non-zero p>
    by (unfold cart2-append1-def) simp
lemma proj2-abs-cart2-append1:
    assumes z-non-zero p
    shows proj2-abs (cart2-append1 p)=p
proof -
    from 〈z-non-zero p\rangle
    have proj2-abs (cart2-append1 p)= proj\mathcal{L-abs (proj2-rep p)}
    by (unfold cart2-append1-def) (simp add: proj2-abs-mult)
    thus proj2-abs (cart2-append1 p)=p by (simp add: proj2-abs-rep)
qed
lemma cart2-append1-inj:
    assumes z-non-zero p and cart2-append1 p=cart2-append1 q
    shows p=q
proof -
    from 〈z-non-zero p〉 have (cart2-append1 p)$3 = 1 by (rule cart2-append1-z)
    with \cart2-append1 p = cart2-append1 q>
    have (cart2-append1 q)$3 = 1 by simp
    hence z-non-zero q by (unfold cart2-append1-def) auto
    from \cart2-append1 p = cart2-append1 q>
    have proj2-abs (cart2-append1 p) = proj2-abs (cart2-append1 q) by simp
    with \z-non-zero p\rangle and \langlez-non-zero q\rangle
    show p =q by (simp add: proj2-abs-cart2-append1)
qed
lemma cart2-append1:
    assumes z-non-zero p
    shows vector2-append1 (cart2-pt p)= cart2-append1 p
    using 〈z-non-zero p>
    unfolding vector2-append1-def
    and cart2-append1-def
    and cart2-pt-def
    and vector-def
    by (simp add: vec-eq-iff forall-3)
lemma cart2-proj2:cart2-pt (proj2-pt v) =v
proof -
    let ?v' = vector2-append1 v
    let ?p = proj2-pt v
    from proj2-pt-scalar
    obtain c where c\not=0 and proj2-rep ? p = c*RR ? v' by auto
    hence (cart2-pt ?p)$1 = v$1 and (cart2-pt ?p)$2 = v$2
```

unfolding cart2-pt-def and vector2-append1-def and vector-def
by $\operatorname{simp}+$
thus cart2-pt ? $p=v$ by (simp add: vec-eq-iff forall-2)
qed
lemma z-non-zero-proj2-pt: z-non-zero (proj2-pt v)
proof -
from proj2-pt-scalar
obtain c where $c \neq 0$ and proj2-rep (proj2-pt $v)=c *_{R}($ vector2-append1 $v)$ by auto
from 〈proj2-rep $($ proj2-pt $v)=c *_{R}($ vector2-append1 $\left.v)\right\rangle$
have (proj2-rep (proj2-pt v))\$3 $=c$
unfolding vector2-append1-def and vector-def
by simp
with $\langle c \neq 0\rangle$ show z-non-zero (proj2-pt v) by simp
qed
lemma cart2-append1-proj2: cart2-append1 $($ proj2-pt $v)=$ vector2-append1 v proof -
from z-non-zero-proj2-pt
have cart2-append1 (proj2-pt v) = vector2-append1 (cart2-pt $($ proj2-pt $v))$
by (simp add: cart2-append1)
thus cart2-append1 (proj2-pt $v)=$ vector2-append1 v
by (simp add: cart2-proj2)
qed
lemma proj2-pt-inj: inj proj2-pt
by (simp add: inj-on-inverseI [of UNIV cart2-pt proj2-pt] cart2-proj2)
lemma proj2-cart2:
assumes z-non-zero p
shows proj2-pt (cart2-pt p) $=p$
proof -
from 〈z-non-zero $p\rangle$
have (proj2-rep p)\$3 * vector2-append1 (cart2-pt p) = proj2-rep p unfolding vector2-append1-def and cart2-pt-def and vector-def by (simp add: vec-eq-iff forall-3)
with $\langle z$-non-zero $p\rangle$
and proj2-abs-mult [of (proj2-rep p)\$3 vector2-append1 (cart2-pt p)]
have proj2-abs (vector2-append1 $($ cart2-pt $p))=\operatorname{proj2-abs}(\operatorname{proj2}-r e p ~ p)$
by simp
thus proj2-pt (cart2-pt p) $=p$
by (unfold proj2-pt-def) (simp add: proj2-abs-rep)
qed
lemma cart2-injective:
assumes z-non-zero p and z-non-zero q and cart2-pt $p=\operatorname{cart2-pt} q$
shows $p=q$
proof -

```
    from \(\langle z\)-non-zero \(p\rangle\) and \(\langle z\)-non-zero \(q\rangle\)
    have proj2-pt (cart2-pt \(p)=p\) and proj2-pt \((\) cart2-pt \(q)=q\)
    by (simp-all add: proj2-cart2)
    from \(\langle\) proj2-pt \((\) cart2-pt \(p)=p\rangle\) and \(\langle\) cart2-pt \(p=\operatorname{cart2-pt~} q\rangle\)
    have proj2-pt \((\) cart2-pt \(q)=p\) by simp
    with \(\langle\) proj2-pt \((\) cart2-pt \(q)=q\rangle\) show \(p=q\) by \(\operatorname{simp}\)
qed
lemma proj2-Col-iff-euclid:
proj2-Col (proj2-pt a) (proj2-pt b) (proj2-pt c) \(\longleftrightarrow\) real-euclid.Col a b c
(is proj2-Col ?p ?q ?r \(\longleftrightarrow-\) )
proof
let \(? a^{\prime}=\) vector2-append1 \(a\)
let \(? b^{\prime}=\) vector2-append1 \(b\)
let \(? c^{\prime}=\) vector2-append1 \(c\)
let \(? a^{\prime \prime}=\) proj2-rep ?p
let \(? b^{\prime \prime}=\) proj2-rep ?q
let \(?^{\prime \prime} c^{\prime \prime}=\) proj2-rep \(?\) r
from proj2-pt-scalar obtain \(i\) and \(j\) and \(k\) where
    \(i \neq 0\) and \(? a^{\prime \prime}=i *_{R} ? a^{\prime}\)
    and \(j \neq 0\) and \(? b^{\prime \prime}=j *_{R} ? b^{\prime}\)
    and \(k \neq 0\) and \(? c^{\prime \prime}=k *_{R} ? c^{\prime}\)
    by metis
hence \(? a^{\prime}=(1 / i) *_{R} ? a^{\prime \prime}\)
    and \(? b^{\prime}=(1 / j) *_{R} ? b^{\prime \prime}\)
    and \(? c^{\prime}=(1 / k) *_{R} ? c^{\prime \prime}\)
    by simp-all
\{ assume proj2-Col ?p ?q ?r
    then obtain \(i^{\prime}\) and \(j^{\prime}\) and \(k^{\prime}\) where
        \(i^{\prime} *_{R} ? a^{\prime \prime}+j^{\prime} *_{R} ? b^{\prime \prime}+k^{\prime} *_{R} ? c^{\prime \prime}=0\) and \(i^{\prime} \neq 0 \vee j^{\prime} \neq 0 \vee k^{\prime} \neq 0\)
        unfolding proj2-Col-def
        by auto
    let ? \(i^{\prime \prime}=i * i^{\prime}\)
    let ? \(j^{\prime \prime}=j * j^{\prime}\)
    let \(? k^{\prime \prime}=k * k^{\prime}\)
    from \(\langle i \neq 0\rangle\) and \(\langle j \neq 0\rangle\) and \(\langle k \neq 0\rangle\) and \(\left\langle i^{\prime} \neq 0 \vee j^{\prime} \neq 0 \vee k^{\prime} \neq 0\right\rangle\)
    have \(? i^{\prime \prime} \neq 0 \vee ? j^{\prime \prime} \neq 0 \vee ? k^{\prime \prime} \neq 0\) by simp
    from \(\left\langle i^{\prime} *_{R} ? a^{\prime \prime}+j^{\prime} *_{R} ? b^{\prime \prime}+k^{\prime} *_{R} ? c^{\prime \prime}=0\right\rangle\)
        and \(\left\langle ? a^{\prime \prime}=i *_{R}{ }^{?} a^{\prime}\right\rangle\)
        and \(\left\langle ? b^{\prime \prime}=j *_{R} ? b^{\prime}\right\rangle\)
        and \(\left\langle ? c^{\prime \prime}=k *_{R} ? c^{\prime}\right\rangle\)
    have \(? i^{\prime \prime} *_{R} ? a^{\prime}+? j^{\prime \prime} *_{R} ? b^{\prime}+? k^{\prime \prime} *_{R} ? c^{\prime}=0\)
    by (simp add: ac-simps)
    hence \(\left(? i^{\prime \prime} *_{R} ? a^{\prime}+? j^{\prime \prime} *_{R} ? b^{\prime}+? k^{\prime \prime} *_{R} ? c^{\prime}\right) \$ 3=0\)
        by \(\operatorname{simp}\)
```

```
hence \(? i^{\prime \prime}+? j^{\prime \prime}+? k^{\prime \prime}=0\)
    unfolding vector2-append1-def and vector-def
    by \(\operatorname{simp}\)
```

```
have \(\left(? i^{\prime \prime} *_{R} ? a^{\prime}+? j^{\prime \prime} *_{R} ? b^{\prime}+? k^{\prime \prime} *_{R} ? c c^{\prime}\right) \$ 1=\)
```

have $\left(? i^{\prime \prime} *_{R} ? a^{\prime}+? j^{\prime \prime} *_{R} ? b^{\prime}+? k^{\prime \prime} *_{R} ? c c^{\prime}\right) \$ 1=$
$\left(? i^{\prime \prime} *_{R} a+? j^{\prime \prime} *_{R} b+? k^{\prime \prime} *_{R} c\right) \$ 1$
$\left(? i^{\prime \prime} *_{R} a+? j^{\prime \prime} *_{R} b+? k^{\prime \prime} *_{R} c\right) \$ 1$
and $\left(? i^{\prime \prime} *_{R} ? a^{\prime}+? j^{\prime \prime} *_{R} ? b^{\prime}+? k^{\prime \prime} *_{R} ? c^{\prime}\right) \$ 2=$
and $\left(? i^{\prime \prime} *_{R} ? a^{\prime}+? j^{\prime \prime} *_{R} ? b^{\prime}+? k^{\prime \prime} *_{R} ? c^{\prime}\right) \$ 2=$
$\left(? i^{\prime \prime} *_{R} a+? j^{\prime \prime} *_{R} b+? k^{\prime \prime} *_{R} c\right) \$ 2$
$\left(? i^{\prime \prime} *_{R} a+? j^{\prime \prime} *_{R} b+? k^{\prime \prime} *_{R} c\right) \$ 2$
unfolding vector2-append1-def and vector-def
unfolding vector2-append1-def and vector-def
by $\operatorname{simp}+$
by $\operatorname{simp}+$
with 〈? $\left.i^{\prime \prime} *_{R} ? a^{\prime}+? j^{\prime \prime} *_{R} ? b^{\prime}+? k^{\prime \prime} *_{R} ? c^{\prime}=0\right\rangle$
with 〈? $\left.i^{\prime \prime} *_{R} ? a^{\prime}+? j^{\prime \prime} *_{R} ? b^{\prime}+? k^{\prime \prime} *_{R} ? c^{\prime}=0\right\rangle$
have ? $i^{\prime \prime} *_{R} a+? j^{\prime \prime} *_{R} b+? k^{\prime \prime} *_{R} c=0$
have ? $i^{\prime \prime} *_{R} a+? j^{\prime \prime} *_{R} b+? k^{\prime \prime} *_{R} c=0$
by (simp add: vec-eq-iff forall-2)
by (simp add: vec-eq-iff forall-2)
have dep2 $(b-a)(c-a)$
proof cases
assume $? k^{\prime \prime}=0$
with $\left\langle ? i^{\prime \prime}+? j^{\prime \prime}+? k^{\prime \prime}=0\right\rangle$ have $? j^{\prime \prime}=-? i^{\prime \prime}$ by simp
with $\left\langle ? i^{\prime \prime} \neq 0 \vee ? j^{\prime \prime} \neq 0 \vee ? k^{\prime \prime} \neq 0\right\rangle$ and $\left\langle ? k^{\prime \prime}=0\right\rangle$ have $? i^{\prime \prime} \neq 0$ by simp
from 〈? $\left.i^{\prime \prime} *_{R} a+? j^{\prime \prime} *_{R} b+? k^{\prime \prime} *_{R} c=0\right\rangle$
and $\left\langle ? k^{\prime \prime}=0\right\rangle$ and $\left\langle ? j^{\prime \prime}=-? i^{\prime \prime}\right\rangle$
have $? i^{\prime \prime} *_{R} a+\left(-? i^{\prime \prime} *_{R} b\right)=0$ by simp
with $\left\langle ? i^{\prime \prime} \neq 0\right.$ 〉 have $a=b$ by (simp add: algebra-simps)
hence $b-a=0 *_{R}(c-a)$ by simp
moreover have $c-a=1 *_{R}(c-a)$ by simp
ultimately have $\exists x t s . b-a=t *_{R} x \wedge c-a=s *_{R} x$
by blast
thus dep2 $(b-a)(c-a)$ unfolding dep2-def.
next
assume $? k^{\prime \prime} \neq 0$
from 〈? $\left.i^{\prime \prime}+? j^{\prime \prime}+? k^{\prime \prime}=0\right\rangle$ have $? i^{\prime \prime}=-\left(? j^{\prime \prime}+? k^{\prime \prime}\right)$ by simp
with 〈? $\left.i^{\prime \prime} *_{R} a+? j^{\prime \prime} *_{R} b+? k^{\prime \prime} *_{R} c=0\right\rangle$
have $-\left(? j^{\prime \prime}+? k^{\prime \prime}\right) *_{R} a+? j^{\prime \prime} *_{R} b+? k^{\prime \prime} *_{R} c=0$ by simp
hence ? $k^{\prime \prime} *_{R}(c-a)=-? j^{\prime \prime} *_{R}(b-a)$
by (simp add: scaleR-left-distrib
scaleR-right-diff-distrib
scaleR-left-diff-distrib
algebra-simps)
hence $\left(1 / ? k^{\prime \prime}\right) *_{R} ? k^{\prime \prime} *_{R}(c-a)=\left(-? j^{\prime \prime} / ? k^{\prime \prime}\right) *_{R}(b-a)$
by simp
with $\left\langle ? k^{\prime \prime} \neq 0\right\rangle$ have $c-a=\left(-? j^{\prime \prime} / ? k^{\prime \prime}\right) *_{R}(b-a)$ by simp
moreover have $b-a=1 *_{R}(b-a)$ by simp
ultimately have $\exists x t s . b-a=t *_{R} x \wedge c-a=s *_{R} x$ by blast
thus dep2 $(b-a)(c-a)$ unfolding dep2-def.
qed
with Col-dep2 show real-euclid.Col $a b c$ by auto
\}

```
```

 { assume real-euclid.Col a b c
 with Col-dep2 have dep2 (b-a) (c-a) by auto
 then obtain x and t and s where b-a=t**R}x\mathrm{ and }c-a=s*\mp@subsup{*}{R}{}
 unfolding dep2-def
 by auto
 show proj2-Col ?p ?q ?r
 proof cases
 assume t=0
 with }\langleb-a=t*\mp@subsup{*}{R}{}x\rangle\mathrm{ have }a=b\mathrm{ by simp
 with proj2-Col-coincide show proj2-Col ?p ?q ?r by simp
 next
 assume t\not=0
 from }\langleb-a=t*\mp@subsup{*}{R}{}x\rangle\mathrm{ and }\langlec-a=s*\mp@subsup{*}{R}{}x
 have s**R}(b-a)=t*\mp@subsup{*}{R}{}(c-a)\mathrm{ by simp
 hence (s-t)**Ra+(-s)*}\mp@subsup{*}{R}{}b+t\mp@subsup{*}{R}{}c=
 by (simp add: scaleR-right-diff-distrib
 scaleR-left-diff-distrib
 algebra-simps)
 hence ((s-t)**R ?a' + (-s) * * ? ?b}\mp@subsup{b}{}{\prime}+t\mp@subsup{*}{R}{\prime}?\mp@subsup{c}{}{\prime})$1=
 and ((s-t)**R}?\mp@subsup{a}{}{\prime}+(-s)\mp@subsup{*}{R}{}?\mp@subsup{b}{}{\prime}+t\mp@subsup{*}{R}{}??\mp@subsup{c}{}{\prime})$2=
 unfolding vector2-append1-def and vector-def
 by (simp-all add: vec-eq-iff)
 moreover have ((s-t) **R ?a' + (-s) * *R ?b '
 unfolding vector2-append1-def and vector-def
 by simp
 ultimately have (s-t)\mp@subsup{*}{R}{}?\mp@subsup{a}{}{\prime}+(-s)\mp@subsup{*}{R}{}?\mp@subsup{b}{}{\prime}+t\mp@subsup{*}{R}{}?\mp@subsup{}{}{\prime}\mp@subsup{c}{}{\prime}=0
 by (simp add: vec-eq-iff forall-3)
 with <? a' = (1/i) *R ? ?a'\
 and }\langle?\mp@subsup{b}{}{\prime}=(1/j)\mp@subsup{*}{R}{}??\mp@subsup{b}{}{\prime\prime}
 and \langle? }\mp@subsup{c}{}{\prime}=(1/k)\mp@subsup{*}{R}{}??\mp@subsup{c}{}{\prime\prime}
 have ((s-t)/i)**R? ?a'' + (-s/j)**R?b'\prime}+(t/k)\mp@subsup{*}{R}{}??\mp@subsup{c}{}{\prime\prime}=
 by simp
 moreover from }\langlet\not=0\rangle\mathrm{ and }\langlek\not=0\rangle\mathrm{ have }t/k\not=0\mathrm{ by simp
 ultimately show proj2-Col ?p ?q ?r
 unfolding proj2-Col-def
 by blast
 qed
 }
 qed
lemma proj2-Col-iff-euclid-cart2:
assumes z-non-zero p and z-non-zero q and z-non-zero r
shows
proj2-Col p qr \longleftrightarrow real-euclid.Col (cart2-pt p) (cart2-pt q) (cart2-pt r)
(is - \longleftrightarrow real-euclid.Col ?a ?b ?c)
proof -
from 〈z-non-zero p\rangle and \langlez-non-zero q\rangle and \langlez-non-zero r\rangle

```
```

 have proj2-pt ?a = p and proj2-pt ?b = q and proj2-pt ?c = r
 by (simp-all add: proj2-cart2)
 with proj2-Col-iff-euclid [of ?a ?b ?c]
 show proj2-Col p q r \longleftrightarrow real-euclid.Col ?a ?b ?c by simp
 qed
lemma euclid-Col-cart2-incident:
assumes z-non-zero p and z-non-zero q and z-non-zero r and p\not=q
and proj2-incident pl and proj2-incident q l
and real-euclid.Col (cart2-pt p) (cart2-pt q) (cart2-pt r)
(is real-euclid.Col ?cp ?cq ?cr)
shows proj2-incident r l
proof -
from \langlez-non-zero p\rangle and \langlez-non-zero q\rangle and \z-non-zero r\rangle
and 〈real-euclid.Col ?cp ?cq ?cr>
have proj2-Col p q r by (subst proj2-Col-iff-euclid-cart2, simp-all)
hence proj2-set-Col {p,q,r} by (simp add: proj2-Col-iff-set-Col)
then obtain m}\mathrm{ where
proj2-incident p m and proj2-incident q m and proj2-incident r m
by (unfold proj2-set-Col-def, auto)
from }\langlep\not=q\rangle\mathrm{ and 〈proj2-incident pl> and <proj2-incident q l>
and 〈proj2-incident p m> and <proj2-incident q m> and proj2-incident-unique
have l=m by auto
with <proj2-incident r m> show proj2-incident r l by simp
qed
lemma euclid-B-cart2-common-line:
assumes z-non-zero p and z-non-zero q and z-non-zero r
and }\mp@subsup{B}{\mathbb{R}}{}(cart2-pt p)(cart2-pt q) (cart2-pt r)
(is }\mp@subsup{B}{\mathbb{R}}{}\mp@subsup{?}{}{?}cp ?cq ?crr
shows \exists l. proj2-incident pl^ proj2-incident q l ^ proj2-incident r l
proof -
from 〈z-non-zero p\rangle and \z-non-zero q\rangle and \z-non-zero r\rangle
and \langle\mp@subsup{B}{\mathbb{R}}{}}\mathrm{ ?cp ?cq ?cr> and proj2-Col-iff-euclid-cart2
have proj2-Col p q r by (unfold real-euclid.Col-def) simp
hence proj2-set-Col {p,q,r} by (simp add: proj2-Col-iff-set-Col)
thus \exists l. proj2-incident pl^ proj2-incident q l ^ proj2-incident r l
by (unfold proj2-set-Col-def) simp
qed
lemma cart2-append1-between:
assumes z-non-zero p and z-non-zero q and z-non-zero r
shows }\mp@subsup{B}{\mathbb{R}}{}\mathrm{ (cart2-pt p) (cart2-pt q) (cart2-pt r)
\longleftrightarrow(\existsk\geq0.k\leq1
^cart2-append1 q = k *R cart2-append1 r + (1-k) ** cart2-append1 p)
proof -
let ?.cp = cart2-pt p
let ?cq= cart2-pt q

```
```

 let ?cr = cart2-pt r
 let ?cp1 = vector2-append1 ?cp
 let ?cq1 = vector2-append1 ?cq
 let ?cr1 = vector2-append1 ?cr
 from \langlez-non-zero p\rangle and \langlez-non-zero q\rangle and \langlez-non-zero r\rangle
 have ?cp1 = cart2-append1 p
 and ?cq1 = cart2-append1 q
 and ?cr1 = cart2-append1 r
 by (simp-all add: cart2-append1)
 have }\forallk.?.cq-?.cp=k = *R (?cr - ?cp) \longleftrightarrow??cq=k * *R ?cr + (1-k)**
 ?cp
by (simp add: algebra-simps)
hence }\forallk.?.cq- ?cp=k*\mp@subsup{*}{R}{}(?.cr-?.cp
\longleftrightarrow?cq1 = k *R
unfolding vector2-append1-def and vector-def
by (simp add: vec-eq-iff forall-2 forall-3)
with \?cp1 = cart2-append1 p>
and \langle?cq1 = cart2-append1 q>
and <?cr1 = cart2-append1 r>
have }\forallk.?.cq-?.cp=k\mp@subsup{*}{R}{}(?.cr-?.cp
\longleftrightarrowcart2-append1 q = k*R cart2-append1 r + (1 - k) *R cart2-append1 p
by simp
thus }\mp@subsup{B}{\mathbb{R}}{}(\mathrm{ cart2-pt p) (cart2-pt q) (cart2-pt r)
\longleftrightarrow (\exists k\geq0.k\leq1
^cart2-append1 q = k** cart2-append1 r + (1 - k) *R cart2-append1 p)
by (unfold real-euclid-B-def) simp
qed
lemma cart2-append1-between-right-strict:
assumes z-non-zero p and z-non-zero q and z-non-zero r
and }\mp@subsup{B}{\mathbb{R}}{}(cart2-pt p)(cart2-pt q) (cart2-pt r) and q\not=
shows \existsk\geq0. k<1
^cart2-append1 q=k *R cart2-append1 r + (1 - k)*R cart2-append1 p
proof -
from \langlez-non-zero p\rangle and \z-non-zero q\rangle and \langlez-non-zero r\rangle
and }\langle\mp@subsup{B}{\mathbb{R}}{}(cart2-pt p) (cart2-pt q) (cart2-pt r)\rangle and cart2-append1-between
obtain k where k\geq0 and k\leq1
and cart2-append1 q = k*R cart2-append1 r + (1 - k) *R cart2-append1 p
by auto
have k}\not=
proof
assume k=1
with \cart2-append1 q = k*R cart2-append1 r + (1 - k)*R cart2-append1 p>
have cart2-append1 q= cart2-append1 r by simp
with 〈z-non-zero q\rangle have q=r by (rule cart2-append1-inj)
with }\langleq\not=r\rangle\mathrm{ show False ..
qed

```
```

with <k\leq1` have }k<1\mathrm{ by simp
with <k\geq0\rangle
and <cart2-append1 q=k *R cart2-append1 r + (1-k) *R cart2-append1 p>
show \exists k\geq0.k<1
^cart2-append1 q=k *R cart2-append1 r + (1 - k)*R cart2-append1 p
by (simp add: exI [of - k])
qed
lemma cart2-append1-between-strict:
assumes z-non-zero p and z-non-zero q and z-non-zero r
and }\mp@subsup{B}{\mathbb{R}}{}(\mathrm{ cart2-pt p) (cart2-pt q) (cart2-pt r) and q}\not=p\mathrm{ and }q\not=
shows \exists k>0. k<1
^cart2-append1 q=k *R cart2-append1 r + (1-k)*R cart2-append1 p
proof -
from 〈z-non-zero p\rangle and \z-non-zero q\rangle and \langlez-non-zero r\rangle
and}\langle\mp@subsup{B}{\mathbb{R}}{}(cart2-pt p)(cart2-pt q) (cart2-pt r)\rangle and \langleq\not=r
and cart2-append1-between-right-strict [of p q r]
obtain k}\mathrm{ where }k\geq0\mathrm{ and }k<
and cart2-append1 q = k*R}\mathrm{ cart2-append1 r + (1-k) *R cart2-append1 p
by auto
have k\not=0
proof
assume k=0
with <cart2-append1 q = k *R cart2-append1 r + (1-k) *R cart2-append1 p>
have cart2-append1 q= cart2-append1 p by simp
with 〈z-non-zero q\rangle have q=p by (rule cart2-append1-inj)
with }\langleq\not=p>\mathrm{ show False ..
qed
with }\langlek\geq0\rangle\mathrm{ have }k>0\mathrm{ by simp
with <k< 1>
and <cart2-append1 q = k*R cart2-append1 r + (1 - k) *R cart2-append1 p>
show \exists k>0.k<1
^cart2-append1 q = k*R cart2-append1 r + (1-k) *R cart2-append1 p
by (simp add: exI [of - k])
qed
end

```

\section*{8 Roots of real quadratics}
theory Quadratic-Discriminant
imports Complex-Main
begin
definition discrim \(::[\) real, real,real \(] \Rightarrow\) real where
discrim \(a b c \triangleq b^{2}-4 * a * c\)
lemma complete-square:
```

 fixes \(a b c x\) :: real
 assumes \(a \neq 0\)
 shows \(a * x^{2}+b * x+c=0 \longleftrightarrow(2 * a * x+b)^{2}=\) discrim \(a b c\)
 proof -
have $4 * a^{2} * x^{2}+4 * a * b * x+4 * a * c=4 * a *\left(a * x^{2}+b * x+c\right)$
by (simp add: algebra-simps power2-eq-square)
with $\langle a \neq 0\rangle$
have $a * x^{2}+b * x+c=0 \longleftrightarrow 4 * a^{2} * x^{2}+4 * a * b * x+4 * a * c=0$
by simp
thus $a * x^{2}+b * x+c=0 \longleftrightarrow(2 * a * x+b)^{2}=$ discrim a $b c$
unfolding discrim-def
by (simp add: power2-eq-square algebra-simps)
qed
lemma discriminant-negative:
fixes $a b c x$:: real
assumes $a \neq 0$
and discrim abc<0
shows $a * x^{2}+b * x+c \neq 0$
proof -
have $(2 * a * x+b)^{2} \geq 0$ by simp
with \langle discrim $a b c<0\rangle$ have $(2 * a * x+b)^{2} \neq \operatorname{discrim} a b c$ by arith
with complete-square and $\langle a \neq 0\rangle$ show $a * x^{2}+b * x+c \neq 0$ by simp
qed
lemma plus-or-minus-sqrt:
fixes x y :: real
assumes $y \geq 0$
shows $x^{2}=y \longleftrightarrow x=$ sqrt $y \vee x=-$ sqrt y
proof
assume $x^{2}=y$
hence $\operatorname{sqrt}\left(x^{2}\right)=$ sqrt y by simp
hence sqrt $y=|x|$ by simp
thus $x=$ sqrt $y \vee x=-$ sqrt y by auto
next
assume $x=$ sqrt $y \vee x=-$ sqrt y
hence $x^{2}=(\text { sqrt y })^{2} \vee x^{2}=(- \text { sqrt } y)^{2}$ by auto
with $\langle y \geq 0\rangle$ show $x^{2}=y$ by simp
qed
lemma divide-non-zero:
fixes x y z :: real
assumes $x \neq 0$
shows $x * y=z \longleftrightarrow y=z / x$
proof
assume $x * y=z$
with $\langle x \neq 0\rangle$ show $y=z / x$ by (simp add: field-simps)
next
assume $y=z / x$

```
with \(\langle x \neq 0\rangle\) show \(x * y=z\) by simp
qed
lemma discriminant-nonneg:
fixes \(a b c x::\) real
assumes \(a \neq 0\)
and discrim a \(b c \geq 0\)
shows \(a * x^{2}+b * x+c=0 \longleftrightarrow\)
\(x=(-b+\operatorname{sqrt}(\operatorname{discrim} a b c)) /(2 * a) \vee\)
\(x=(-b-\operatorname{sqrt}(\operatorname{discrim} a b c)) /(2 * a)\)
proof -
from complete-square and plus-or-minus-sqrt and assms
have \(a * x^{2}+b * x+c=0 \longleftrightarrow\)
\((2 * a) * x+b=\operatorname{sqrt}(\) discrim \(a b c) \vee\)
\((2 * a) * x+b=-\operatorname{sqrt}(\operatorname{discrim} a b c)\)
by \(\operatorname{simp}\)
also have \(\ldots \longleftrightarrow(2 * a) * x=(-b+\operatorname{sqrt}(\) discrim \(a b c)) \vee\)
\((2 * a) * x=(-b-\operatorname{sqrt}(\operatorname{discrim} a b c))\)
by auto
also from \(\langle a \neq 0\rangle\) and divide-non-zero \([\) of \(2 * a x]\)
have \(\ldots \longleftrightarrow x=(-b+\operatorname{sqrt}(\operatorname{discrim} a b c)) /(2 * a) \vee\)
\(x=(-b-\operatorname{sqrt}(\operatorname{discrim} a b c)) /(2 * a)\)
by \(\operatorname{simp}\)
finally show \(a * x^{2}+b * x+c=0 \longleftrightarrow\)
\(x=(-b+\operatorname{sqrt}(\) discrim \(a b c)) /(2 * a) \vee\)
\(x=(-b-s q r t(\operatorname{discrim} a b c)) /(2 * a)\).
qed
lemma discriminant-zero:
fixes \(a b c x\) :: real
assumes \(a \neq 0\)
and discrim a \(b c=0\)
shows \(a * x^{2}+b * x+c=0 \longleftrightarrow x=-b /(2 * a)\)
using discriminant-nonneg and assms
by \(\operatorname{simp}\)
theorem discriminant-iff:
fixes \(a b c x\) :: real
assumes \(a \neq 0\)
shows \(a * x^{2}+b * x+c=0 \longleftrightarrow\)
discrim abc\(c \geq \wedge\)
\((x=(-b+\operatorname{sqrt}(\operatorname{discrim} a b c)) /(2 * a) \vee\)
\(x=(-b-\operatorname{sqrt}(\operatorname{discrim} a b c)) /(2 * a))\)
proof
assume \(a * x^{2}+b * x+c=0\)
with discriminant-negative and \(\langle a \neq 0\rangle\) have \(\neg(\operatorname{discrim} a b c<0)\) by auto
hence discrim abc 0 by simp
with discriminant-nonneg and \(\left\langle a * x^{2}+b * x+c=0\right\rangle\) and \(\langle a \neq 0\rangle\)
have \(x=(-b+\operatorname{sqrt}(\operatorname{discrim} a b c)) /(2 * a) \vee\)
```

 x = (-b-sqrt (discrim abc)) / (2*a)
 by simp
 with <discrim a b c\geq0>
 show discrim a b c\geq0^
 (x=(-b+sqrt (discrim a b c)) /((2*a)\vee
 x = (-b-sqrt (discrim abc)) / (2*a))..
    ```
next
    assume discrim abc\(\geq 0 \wedge\)
        \((x=(-b+\operatorname{sqrt}(\operatorname{discrim} a b c)) /(2 * a) \vee\)
        \(x=(-b-\operatorname{sqrt}(\operatorname{discrim} a b c)) /(2 * a))\)
    hence discrim abc \(\geq 0\) and
        \(x=(-b+\operatorname{sqrt}(\operatorname{discrim} a b c)) /(2 * a) \vee\)
        \(x=(-b-\operatorname{sqrt}(\operatorname{discrim} a b c)) /(2 * a)\)
        by simp-all
    with discriminant-nonneg and \(\langle a \neq 0\rangle\) show \(a * x^{2}+b * x+c=0\) by simp
qed
lemma discriminant-nonneg-ex:
    fixes \(a b c::\) real
    assumes \(a \neq 0\)
    and discrim a \(b c \geq 0\)
    shows \(\exists x . a * x^{2}+b * x+c=0\)
    using discriminant-nonneg and assms
    by auto
lemma discriminant-pos-ex:
    fixes \(a b c\) :: real
    assumes \(a \neq 0\)
    and discrim abc>0
    shows \(\exists x y . x \neq y \wedge a * x^{2}+b * x+c=0 \wedge a * y^{2}+b * y+c=0\)
proof -
    let \(? x=(-b+\operatorname{sqrt}(\operatorname{discrim} a b c)) /(2 * a)\)
    let \(? y=(-b-\operatorname{sqrt}(\operatorname{discrim} a b c)) /(2 * a)\)
    from \(\langle\) discrim \(a b c>0\rangle\) have sqrt (discrim abc) \(\neq 0\) by simp
    hence sqrt (discrim abc)\(\neq-\) sqrt (discrim abc) by arith
    with \(\langle a \neq 0\rangle\) have ? \(x \neq ? y\) by simp
    moreover
    from discriminant-nonneg [of abcex]
        and discriminant-nonneg [of \(a b c ? y]\)
        and assms
    have \(a * ? x^{2}+b * ? x+c=0\) and \(a * ? y^{2}+b * ? y+c=0\) by simp-all
    ultimately
    show \(\exists x y . x \neq y \wedge a * x^{2}+b * x+c=0 \wedge a * y^{2}+b * y+c=0\) by
blast
qed
lemma discriminant-pos-distinct:
    fixes \(a b c x\) :: real
    assumes \(a \neq 0\) and discrim a \(b c>0\)
```

 shows \exists y. }x\not=y\wedgea*\mp@subsup{y}{}{2}+b*y+c=
 proof -
from discriminant-pos-ex and \langlea\not=0\rangle and \discrim abc>0\rangle
obtain w and z where }w\not=
and }a*\mp@subsup{w}{}{2}+b*w+c=0\mathrm{ and }a*\mp@subsup{z}{}{2}+b*z+c=
by blast
show \exists}y.x\not=y^a*\mp@subsup{y}{}{2}+b*y+c=
proof cases
assume }x=
with }\langlew\not=z\rangle\mathrm{ have }x\not=z\mathrm{ by simp
with <a* z
show \existsy. }x\not=y\wedgea*\mp@subsup{y}{}{2}+b*y+c=0\mathrm{ by auto
next
assume }x\not=
with <a* w
show \existsy. }x\not=y\wedgea*\mp@subsup{y}{}{2}+b*y+c=0\mathrm{ by auto
qed
qed
end

```

\section*{9 The hyperbolic plane and Tarski's axioms}
theory Hyperbolic-Tarski
imports Euclid-Tarski
Projective
\(\sim \sim / s r c / H O L / L i b r a r y / Q u a d r a t i c-D i s c r i m i n a n t ~\)
begin

\subsection*{9.1 Characterizing a specific conic in the projective plane}
definition \(M\) :: real \({ }^{\wedge} 3^{\wedge} 3\) where
\(M \triangleq\) vector \([\)
vector \([1,0,0]\),
vector \([0,1,0]\),
vector \([0,0,-1]\).
lemma \(M\)-symmatrix: symmatrix \(M\)
unfolding symmatrix-def and transpose-def and M-def
by (simp add: vec-eq-iff forall-3 vector-3)
lemma \(M\)-self-inverse: \(M * * M=\) mat 1
unfolding \(M\)-def and matrix-matrix-mult-def and mat-def and vector-def
by (simp add: setsum-3 vec-eq-iff forall-3)
lemma \(M\)-invertible: invertible \(M\)
unfolding invertible-def
using \(M\)-self-inverse
by auto
```

definition polar :: proj2 => proj2-line where
polar p\triangleq proj2-line-abs (}M*v\mathrm{ proj2-rep p)
definition pole :: proj2-line => proj2 where
pole l \triangleq proj2-abs (M*v proj2-line-rep l)
lemma polar-abs:
assumes v\not=0
shows polar (proj2-abs v) = proj2-line-abs (M*vv)
proof -
from }\langlev\not=0\rangle\mathrm{ and proj2-rep-abs2
obtain k where k\not=0 and proj2-rep (proj2-abs v)=k *R}v\mathrm{ by auto
from <proj2-rep (proj2-abs v) =k**}v
have polar (proj2-abs v) = proj2-line-abs (}k\mp@subsup{*}{R}{}(M*vv)
unfolding polar-def
by (simp add: matrix-scalar-vector-ac scalar-matrix-vector-assoc)
with }\langlek\not=0\rangle\mathrm{ and proj2-line-abs-mult
show polar (proj2-abs v) = proj2-line-abs (M*vv) by simp
qed
lemma pole-abs:
assumes v\not=0
shows pole (proj2-line-abs v) = proj2-abs (M*vv)
proof -
from }\langlev\not=0\rangle\mathrm{ and proj2-line-rep-abs
obtain k where k\not=0 and proj2-line-rep (proj2-line-abs v) =k *R
by auto
from 〈proj2-line-rep (proj2-line-abs v) =k *R
have pole (proj2-line-abs v)=proj2-abs (k\mp@subsup{*}{R}{}(M*vv))
unfolding pole-def
by (simp add: matrix-scalar-vector-ac scalar-matrix-vector-assoc)
with \k\not=0\rangle and proj2-abs-mult
show pole (proj2-line-abs v) = proj2-abs (M*vv) by simp
qed
lemma polar-rep-non-zero: M *v proj2-rep p \not=0
proof -
have proj2-rep p\not=0 by (rule proj2-rep-non-zero)
with M-invertible
show M*v proj2-rep p\not=0 by (rule invertible-times-non-zero)
qed
lemma pole-polar: pole (polar p) = p
proof -
from polar-rep-non-zero
have pole (polar p) = proj2-abs (M*v (M*v proj2-rep p))
unfolding polar-def
by (rule pole-abs)

```
```

 with M-self-inverse
 show pole (polar p) = p
 by (simp add: matrix-vector-mul-assoc proj2-abs-rep matrix-vector-mul-lid)
 qed
lemma pole-rep-non-zero: M*v proj2-line-rep l\not=0
proof -
have proj2-line-rep l\not=0 by (rule proj2-line-rep-non-zero)
with M-invertible
show M*v proj2-line-rep l\not=0 by (rule invertible-times-non-zero)
qed
lemma polar-pole: polar (pole l) =l
proof -
from pole-rep-non-zero
have polar (pole l) = proj2-line-abs (M*v (M*v proj2-line-rep l))
unfolding pole-def
by (rule polar-abs)
with M-self-inverse
show polar (pole l) = l
by (simp add: matrix-vector-mul-assoc proj2-line-abs-rep
matrix-vector-mul-lid)
qed
lemma polar-inj:
assumes polar p = polar q
shows p=q
proof -
from <polar p = polar q> have pole (polar p) = pole (polar q) by simp
thus p=q by (simp add: pole-polar)
qed
definition conic-sgn :: proj2 => real where
conic-sgn p\triangleq\operatorname{sgn}(\mathrm{ proj2-rep p • (M*v proj2-rep p))}
lemma conic-sgn-abs:
assumes v\not=0
shows conic-sgn (proj2-abs v) = sgn (v • (M*vv))
proof -
from }\langlev\not=0\rangle\mathrm{ and proj2-rep-abs2
obtain j where j\not=0 and proj2-rep (proj2-abs v)=j*R v by auto
from }\langlej\not=0\rangle\mathrm{ have j}\mp@subsup{j}{}{2}>0\mathrm{ by simp
from \proj2-rep (proj2-abs v) =j** v>
have conic-sgn (proj2-abs v)=\operatorname{sgn}(\mp@subsup{j}{}{2}*(v\cdot(M*vv)))
unfolding conic-sgn-def
by (simp add:
matrix-scalar-vector-ac
scalar-matrix-vector-assoc [symmetric]

```
```

 dot-scaleR-mult
 power2-eq-square
 algebra-simps)
 also have \ldots. = sgn (j}\mp@subsup{j}{}{2})*\operatorname{sgn}(v\cdot(M*vv))\mathrm{ by (rule sgn-times)
 also from \langlej}\mp@subsup{j}{}{2}>0\rangle\mathrm{ have ... = sgn (v • (M*vv)) by simp
 finally show conic-sgn (proj2-abs v)=sgn (v • (M*vv)).
 qed
lemma sgn-conic-sgn: sgn (conic-sgn p) = conic-sgn p
by (unfold conic-sgn-def) simp
definition S :: proj2 set where
S\triangleq{p.conic-sgn p=0}
definition K2 :: proj2 set where
K2 \triangleq{p.conic-sgn p<0}
lemma S-K2-empty:S \cap K2 = {}
unfolding S-def and K2-def
by auto
lemma K2-abs:
assumes v\not=0
shows proj2-abs v\inK2 \longleftrightarrowv ((M*vv)<0
proof -
have proj2-abs v\inK2 \longleftrightarrow conic-sgn (proj2-abs v)<0
by (simp add: K2-def)
with }\langlev\not=0\rangle\mathrm{ and conic-sgn-abs
show proj2-abs v\inK2 \longleftrightarrowv • (M*vv)<0 by simp
qed
definition K2-centre = proj2-abs (vector [0,0,1])
lemma K2-centre-non-zero:vector [0,0,1] = (0 :: real`3)
by (unfold vector-def) (simp add: vec-eq-iff forall-3)
lemma K2-centre-in-K2: K2-centre \inK2
proof -
from K2-centre-non-zero and proj2-rep-abs2
obtain k where k\not=0 and proj2-rep K2-centre =k *R vector [0,0,1]
by (unfold K2-centre-def) auto
from }\langlek\not=0\rangle\mathrm{ have 0< k}\mp@subsup{}{}{2}\mathrm{ by simp
with \langleproj2-rep K2-centre =k *R vector [0,0,1]>
show K2-centre \inK2
unfolding K2-def
and conic-sgn-def
and M-def
and matrix-vector-mult-def
and inner-vec-def

```
```

 and vector-def
 by (simp add: vec-eq-iff setsum-3 power2-eq-square)
 qed
lemma K2-imp-M-neg:
assumes v\not=0 and proj2-abs v\inK2
shows v\cdot(M*vv)<0
using assms
by (simp add: K2-abs)
lemma M-neg-imp-z-squared-big:
assumes v•(M*vv)<0
shows (v\$3)}\mp@subsup{)}{}{2}>(v\$1\mp@subsup{)}{}{2}+(v\$2\mp@subsup{)}{}{2
using <v • (M*vv)<0>
unfolding matrix-vector-mult-def and M-def and vector-def
by (simp add: inner-vec-def setsum-3 power2-eq-square)
lemma M-neg-imp-z-non-zero:
assumes v•(M*vv)<0
shows v\$3}\not=
proof -
have (v\$1\mp@subsup{)}{}{2}+(v\$2\mp@subsup{)}{}{2}\geq0 by simp
with M-neg-imp-z-squared-big [of v] and <v • (M*v v)<0\rangle
have (v\$3\mp@subsup{)}{}{2}>0 by arith
thus v\$3\not=0 by simp
qed
lemma M-neg-imp-K2:
assumes v•(M*vv)<0
shows proj2-abs v GK2
proof -
from }\langlev\cdot(M*vv)<0\rangle\mathrm{ have v\$3 =0 by (rule M-neg-imp-z-non-zero)
hence v\not=0 by auto
with }\langlev\cdot(M*vv)<0\rangle\mathrm{ and K2-abs show proj2-abs v GK2 by simp
qed
lemma M-reverse: a ((M*v b) = b • (M*v a)
unfolding matrix-vector-mult-def and M-def and vector-def
by (simp add: inner-vec-def setsum-3)
lemma S-abs:
assumes v\not=0
shows proj2-abs v}\inS\longleftrightarrowv\cdot(M*vv)=
proof -
have proj2-abs v GS \longleftrightarrow conic-sgn (proj2-abs v)=0
unfolding S-def
by simp
also from }\langlev\not=0\rangle\mathrm{ and conic-sgn-abs
have }···\longleftrightarrow\operatorname{sgn}(v\cdot(M*vv))=0 by sim

```
```

 finally show proj2-abs v\inS\longleftrightarrowu v (M*v v)=0 by (simp add: sgn-0-0)
 qed
lemma S-alt-def: p \inS \longleftrightarrow proj2-rep p • (M*v proj2-rep p)=0
proof -
have proj2-rep p\not=0 by (rule proj2-rep-non-zero)
hence projQ-abs (proj2-rep p) \inS \longleftrightarrow proj2-rep p • (M *v proj2-rep p)=0
by (rule S-abs)
thus }p\inS\longleftrightarrow\mathrm{ proj2-rep p • (M*v proj2-rep p)=0
by (simp add: proj2-abs-rep)
qed
lemma incident-polar:
proj2-incident p (polar q) \longleftrightarrow proj2-rep p • (M*v proj2-rep q) =0
using polar-rep-non-zero
unfolding polar-def
by (rule proj2-incident-right-abs)
lemma incident-own-polar-in-S: proj2-incident p(polar p) \longleftrightarrowp\inS
using incident-polar and S-alt-def
by simp
lemma incident-polar-swap:
assumes proj2-incident p (polar q)
shows proj2-incident q (polar p)
proof -
from 〈proj2-incident p (polar q)〉
have proj2-rep p • (M *v proj2-rep q) = 0 by (unfold incident-polar)
hence proj2-rep q • (M*v proj2-rep p)=0 by (simp add: M-reverse)
thus proj2-incident q (polar p) by (unfold incident-polar)
qed
lemma incident-pole-polar:
assumes proj2-incident pl
shows proj2-incident (pole l) (polar p)
proof -
from <proj2-incident p l>
have proj2-incident p (polar (pole l)) by (subst polar-pole)
thus proj2-incident (pole l) (polar p) by (rule incident-polar-swap)
qed
definition z-zero :: proj2-line where
z-zero \triangleq proj2-line-abs (vector [0,0,1])
lemma z-zero:
assumes (proj2-rep p)\$3 = 0
shows proj2-incident p z-zero
proof -
from K2-centre-non-zero and proj2-line-rep-abs

```
```

 obtain k where proj2-line-rep z-zero = k *R vector [0,0,1]
 by (unfold z-zero-def) auto
 with «(proj2-rep p)$3 = 0`
 show proj2-incident p z-zero
 unfolding proj2-incident-def and inner-vec-def and vector-def
 by (simp add: setsum-3)
 qed
lemma z-zero-conic-sgn-1:
assumes proj2-incident p z-zero
shows conic-sgn p=1
proof -
let ?v = proj2-rep p
have (vector [0,0,1] :: real^3) }\not=
unfolding vector-def
by (simp add: vec-eq-iff)
with 〈proj2-incident p z-zero〉
have ?v \cdot vector [0,0,1]=0
unfolding z-zero-def
by (simp add: proj2-incident-right-abs)
hence ?v\$3 = 0
unfolding inner-vec-def and vector-def
by (simp add: setsum-3)
hence ?v \cdot (M*v?v) = (?v\$1)}\mp@subsup{)}{}{2}+(?v\$2\mp@subsup{)}{}{2
unfolding inner-vec-def
and power2-eq-square
and matrix-vector-mult-def
and M-def
and vector-def
and setsum-3
by simp
have ?v\not=0 by (rule proj2-rep-non-zero)
with <?v\$3 = 0〉 have ?v\$1 = 0 \vee ?v\$2 \# 0 by (simp add: vec-eq-iff forall-3)
hence (?v\$1\mp@subsup{)}{}{2}>0\vee(?v\$2\mp@subsup{)}{}{2}>0 by simp
with add-sign-intros [of (?v\$1)2}(?v\$2)2
have (?v\$1\mp@subsup{)}{}{2}+(?v\$2\mp@subsup{)}{}{2}>0 by auto
with \?v \cdot (M*v ?v) = (?v\$1)
have ?v • (M*v ?v) > 0 by simp
thus conic-sgn p=1
unfolding conic-sgn-def
by simp
qed
lemma conic-sgn-not-1-z-non-zero:
assumes conic-sgn p}\not=
shows z-non-zero p
proof -
from <conic-sgn p\not=1〉

```
```

 have \neg proj2-incident p z-zero by (auto simp add:z-zero-conic-sgn-1)
 thus z-non-zero p by (auto simp add: z-zero)
 qed
lemma z-zero-not-in-S:
assumes proj2-incident p z-zero
shows p}\not\in
proof -
from <proj2-incident p z-zero` have conic-sgn p=1
by (rule z-zero-conic-sgn-1)
thus p\not\inS
unfolding S-def
by simp
qed
lemma line-incident-point-not-in-S: \exists p. p\not\inS\wedge proj2-incident pl
proof -
let ?p = proj2-intersection l z-zero
have proj2-incident ?p l and proj2-incident ?p z-zero
by (rule proj2-intersection-incident)+
from <proj2-incident ?p z-zero> have ?p }\not\inS\mathrm{ by (rule z-zero-not-in-S)
with <proj2-incident ?p l>
show \exists p. p\not\inS\wedge proj2-incident pl by auto
qed
lemma apply-cltn2-abs-abs-in-S:
assumes v\not=0 and invertible J
shows apply-cltn2 (proj2-abs v) (cltn2-abs J) \inS
\longleftrightarrow v \cdot (J * * M * * ~ t r a n s p o s e ~ J * v v) = 0
proof -
from \langlev\not=0\rangle and <invertible J\rangle
have vv*J\not=0 by (rule non-zero-mult-invertible-non-zero)
from \langlev\not=0\rangle and <invertible J\rangle
have apply-cltn2 (proj2-abs v) (cltn2-abs J) = proj2-abs (v v*J)
by (rule apply-cltn2-abs)
also from }\langlevv*J\not=0
have }···\inS\longleftrightarrow(vv*J)\cdot(M*v(vv*J))=0 by (rule S-abs
finally show apply-cltn2 (proj2-abs v) (cltn2-abs J) \inS
\longleftrightarrow
by (simp add: dot-lmul-matrix matrix-vector-mul-assoc [symmetric])
qed
lemma apply-cltn2-right-abs-in-S:
assumes invertible J
shows apply-cltn2 p (cltn2-abs J) \inS
\longleftrightarrow(proj2-rep p)\cdot(J**M** transpose J *v (proj2-rep p))}=
proof -
have proj2-rep p\not=0 by (rule proj2-rep-non-zero)

```
```

 with <invertible J>
 have apply-cltn2 (proj2-abs (proj2-rep p)) (cltn2-abs J) \inS
 \longleftrightarrow proj2-rep p • (J**M** transpose }J*v proj2-rep p)=
 by (simp add: apply-cltn2-abs-abs-in-S)
 thus apply-cltn2 p (cltn2-abs J) \inS
 \longleftrightarrow proj2-rep p • (J** M** transpose J *v proj2-rep p)=0
 by (simp add: proj2-abs-rep)
 qed
lemma apply-cltn2-abs-in-S:
assumes v\not=0
shows apply-cltn2 (proj2-abs v) C\inS
\longleftrightarrowv•(cltn2-rep C** M** transpose (cltn2-rep C) *vv)=0
proof -
have invertible (cltn2-rep C) by (rule cltn2-rep-invertible)
with <v\not=0\rangle
have apply-cltn2 (proj2-abs v) (cltn2-abs (cltn2-rep C)) \inS
\longleftrightarrow v \cdot (c l t n 2 - r e p ~ C ~ * * ~ M ~ * * ~ t r a n s p o s e ~ (c l t n 2 - r e p ~ C) * v v) = 0
by (rule apply-cltn2-abs-abs-in-S)
thus apply-cltn2 (proj2-abs v) C\inS
\longleftrightarrowv\cdot(cltn2-rep C** M ** transpose (cltn2-rep C)*vv)=0
by (simp add: cltn2-abs-rep)
qed
lemma apply-cltn2-in-S:
apply-cltn2 p C \inS
\longleftrightarrow proj2-rep p • (cltn2-rep C ** M ** transpose (cltn2-rep C) *v proj2-rep p)
=0
proof -
have proj2-rep p\not=0 by (rule proj2-rep-non-zero)
hence apply-cltn2 (proj2-abs (proj2-rep p)) C\inS
\longleftrightarrow proj2-rep p • (cltn2-rep C** M** transpose (cltn2-rep C) *v proj2-rep p)
= 0
by (rule apply-cltn2-abs-in-S)
thus apply-cltn2 p C \inS
\longleftrightarrow proj2-rep p • (cltn2-rep C ** M ** transpose (cltn2-rep C) *v proj2-rep p)
=0
by (simp add: proj2-abs-rep)
qed
lemma norm-M:(vector2-append1 v)\cdot(M*v vector2-append1 v)=(norm v)}\mp@subsup{)}{}{2}
1
proof -
have (norm v)}\mp@subsup{)}{}{2}=(v\$1\mp@subsup{)}{}{2}+(v\$2\mp@subsup{)}{}{2
unfolding norm-vec-def
and setL2-def
by (simp add: setsum-2)
thus (vector2-append1 v)\cdot(M*v vector2-append1 v)=(norm v)}\mp@subsup{)}{}{2}-
unfolding vector2-append1-def

```

> and inner-vec-def
and matrix-vector-mult-def
and vector-def
and \(M\)-def
and power2-norm-eq-inner
by (simp add: setsum-3 power2-eq-square)
qed

\subsection*{9.2 Some specific points and lines of the projective plane}
definition east \(=\) proj2-abs \((\) vector \([1,0,1])\)
definition west \(=\) proj2-abs \((\) vector \([-1,0,1])\)
definition north \(=\) proj2-abs \((\) vector \([0,1,1])\)
definition south \(=\) proj2-abs \((\) vector \([0,-1,1])\)
definition far-north \(=\) proj2-abs \((\) vector \([0,1,0])\)
lemmas compass-defs \(=\) east-def west-def north-def south-def
lemma compass-non-zero:
shows vector \([1,0,1] \neq\left(0::\right.\) real \(\left.^{\wedge} 3\right)\)
and vector \([-1,0,1] \neq(0::\) real^ 3\()\)
and vector \([0,1,1] \neq\left(0::\right.\) real \(\left.^{\wedge} 3\right)\)
and vector \([0,-1,1] \neq(0::\) real \(\wedge)\)
and vector \([0,1,0] \neq\left(0::\right.\) real \(\left.{ }^{\wedge} 3\right)\)
and vector \([1,0,0] \neq(0::\) real^ 3\()\)
unfolding vector-def
by (simp-all add: vec-eq-iff forall-3)
lemma east-west-distinct: east \(\neq\) west
proof
assume east \(=\) west
with compass-non-zero
and proj2-abs-abs-mult \([\) of vector \([1,0,1]\) vector \([-1,0,1]]\)
obtain \(k\) where (vector \([1,0,1]::\) real \(\left.\wedge^{\wedge} 3\right)=k *_{R}\) vector \([-1,0,1]\)
unfolding compass-defs
by auto
thus False
unfolding vector-def
by (auto simp add: vec-eq-iff forall-3)
qed
lemma north-south-distinct: north \(\neq\) south
proof
assume north \(=\) south
with compass-non-zero
and proj2-abs-abs-mult [of vector \([0,1,1]\) vector \([0,-1,1]]\)
obtain \(k\) where (vector \([0,1,1]::\) real 3\()=k *_{R}\) vector \([0,-1,1]\)
unfolding compass-defs
by auto
```

 thus False
 unfolding vector-def
 by (auto simp add: vec-eq-iff forall-3)
 qed
lemma north-not-east-or-west: north }\not\in{\mathrm{ east, west}
proof
assume north }\in{\mathrm{ east, west}
hence east = north \vee west = north by auto
with compass-non-zero
and proj2-abs-abs-mult [of-vector [0,1,1]]
obtain k where (vector [1,0,1] :: real^3) = k*R vector [0,1,1]
\vee (v e c t o r ~ [- 1 , 0 , 1] ~ : : ~ r e a l ` 3) ~ = ~ k * R ~ v e c t o r ~ [0 , 1 , 1]
unfolding compass-defs
by auto
thus False
unfolding vector-def
by (simp add: vec-eq-iff forall-3)
qed
lemma compass-in-S:
shows east }\inS\mathrm{ and west }\inS\mathrm{ and north }\inS\mathrm{ and south }\in
using compass-non-zero and S-abs
unfolding compass-defs
and M-def
and inner-vec-def
and matrix-vector-mult-def
and vector-def
by (simp-all add: setsum-3)
lemma east-west-tangents:
shows polar east = proj2-line-abs (vector [-1,0,1])
and polar west = proj2-line-abs (vector [1,0,1])
proof -
have M*v vector [1,0,1]=(-1)** vector [-1,0,1]
and M*v vector [-1,0,1]=(-1)*R vector [1,0,1]
unfolding M-def and matrix-vector-mult-def and vector-def
by (simp-all add: vec-eq-iff setsum-3)
with compass-non-zero and polar-abs
have polar east = proj2-line-abs ((-1)** vector [-1,0,1])
and polar west = proj2-line-abs ((-1) *R vector [1,0,1])
unfolding compass-defs
by simp-all
with proj2-line-abs-mult [of - 1]
show polar east = proj2-line-abs (vector [-1,0,1])
and polar west = proj2-line-abs (vector [1,0,1])
by simp-all
qed

```
```

lemma east-west-tangents-distinct: polar east }\not=\mathrm{ polar west
proof
assume polar east = polar west
hence east = west by (rule polar-inj)
with east-west-distinct show False ..
qed
lemma east-west-tangents-incident-far-north:
shows proj2-incident far-north (polar east)
and proj2-incident far-north (polar west)
using compass-non-zero and proj2-incident-abs
unfolding far-north-def and east-west-tangents and inner-vec-def
by (simp-all add: setsum-3 vector-3)
lemma east-west-tangents-far-north:
proj2-intersection (polar east) (polar west) = far-north
using east-west-tangents-distinct and east-west-tangents-incident-far-north
by (rule proj2-intersection-unique [symmetric])
instantiation proj2 :: zero
begin
definition proj2-zero-def: 0 = proj2-pt 0
instance ..
end
definition equator \triangleq proj2-line-abs (vector [0,1,0])
definition meridian \triangleq proj2-line-abs (vector [1,0,0])
lemma equator-meridian-distinct: equator }\not==\mathrm{ meridian
proof
assume equator = meridian
with compass-non-zero
and proj2-line-abs-abs-mult [of vector [0,1,0] vector [1,0,0]]
obtain k}\mathrm{ where (vector [0,1,0] :: real^3) =k *R vector [1,0,0]
by (unfold equator-def meridian-def) auto
thus False by (unfold vector-def) (auto simp add:vec-eq-iff forall-3)
qed
lemma east-west-on-equator:
shows proj2-incident east equator and proj2-incident west equator
unfolding east-def and west-def and equator-def
using compass-non-zero
by (simp-all add: proj2-incident-abs inner-vec-def vector-def setsum-3)
lemma north-far-north-distinct: north }\not=\mathrm{ far-north
proof
assume north = far-north
with compass-non-zero
and proj2-abs-abs-mult [of vector [0,1,1] vector [0,1,0]]

```
```

 obtain k}\mathrm{ where (vector [0,1,1] :: real^3) = k*R vector [0,1,0]
 by (unfold north-def far-north-def) auto
 thus False
 unfolding vector-def
 by (auto simp add: vec-eq-iff forall-3)
 qed
lemma north-south-far-north-on-meridian:
shows proj2-incident north meridian and proj2-incident south meridian
and proj2-incident far-north meridian
unfolding compass-defs and far-north-def and meridian-def
using compass-non-zero
by (simp-all add: proj2-incident-abs inner-vec-def vector-def setsum-3)
lemma K2-centre-on-equator-meridian:
shows proj2-incident K2-centre equator
and proj2-incident K2-centre meridian
unfolding K2-centre-def and equator-def and meridian-def
using K2-centre-non-zero and compass-non-zero
by (simp-all add: proj2-incident-abs inner-vec-def vector-def setsum-3)
lemma on-equator-meridian-is-K2-centre:
assumes proj2-incident a equator and proj2-incident a meridian
shows a=K2-centre
using assms and K2-centre-on-equator-meridian and equator-meridian-distinct
and proj2-incident-unique
by auto
definition rep-equator-reflect \triangleq vector [
vector [1, 0,0],
vector [0,-1,0],
vector [0, 0,1]] :: real^3^`3
definition rep-meridian-reflect }\triangleq\mathrm{ vector [
vector [-1,0,0],
vector [0,1,0],
vector [0,0,1]] :: real^3^3
definition equator-reflect }\triangleq\mathrm{ cltn2-abs rep-equator-reflect
definition meridian-reflect }\triangleq cltn2-abs rep-meridian-reflect
lemmas compass-reflect-defs = equator-reflect-def meridian-reflect-def
rep-equator-reflect-def rep-meridian-reflect-def
lemma compass-reflect-self-inverse:
shows rep-equator-reflect ** rep-equator-reflect = mat 1
and rep-meridian-reflect ** rep-meridian-reflect = mat 1
unfolding compass-reflect-defs matrix-matrix-mult-def mat-def
by (simp-all add: vec-eq-iff forall-3 setsum-3 vector-3)
lemma compass-reflect-invertible:

```
shows invertible rep-equator-reflect and invertible rep-meridian-reflect unfolding invertible-def using compass-reflect-self-inverse by auto
lemma compass-reflect-compass:
shows apply-cltn2 east meridian-reflect \(=\) west
and apply-cltn2 west meridian-reflect \(=\) east
and apply-cltn2 north meridian-reflect \(=\) north
and apply-cltn2 south meridian-reflect \(=\) south
and apply-cltn2 K2-centre meridian-reflect \(=\) K2-centre
and apply-cltn2 east equator-reflect \(=\) east
and apply-cltn2 west equator-reflect \(=\) west
and apply-cltn2 north equator-reflect \(=\) south
and apply-cltn2 south equator-reflect \(=\) north
and apply-cltn2 K2-centre equator-reflect \(=\) K2-centre
proof -
have (vector \([1,0,1]::\) real^3) \(v *\) rep-meridian-reflect \(=\) vector \([-1,0,1]\)
and (vector \([-1,0,1]::\) real^3) \(v *\) rep-meridian-reflect \(=\) vector \([1,0,1]\)
and (vector \([0,1,1]::\) real^3) \(v *\) rep-meridian-reflect \(=\) vector \([0,1,1]\)
and (vector \([0,-1,1]::\) real^3) \(v *\) rep-meridian-reflect \(=\) vector \([0,-1,1]\)
and (vector \([0,0,1]::\) real^3) \(v *\) rep-meridian-reflect \(=\) vector \([0,0,1]\)
and (vector \([1,0,1]::\) real^3) \(v *\) rep-equator-reflect \(=\) vector \([1,0,1]\)
and (vector \([-1,0,1]::\) real^3) \(v *\) rep-equator-reflect \(=\) vector \([-1,0,1]\)
and (vector \([0,1,1]::\) real^3) \(v *\) rep-equator-reflect \(=\operatorname{vector}[0,-1,1]\)
and (vector \([0,-1,1]::\) real^3) \(v *\) rep-equator-reflect \(=\) vector \([0,1,1]\)
and (vector \([0,0,1]::\) real^3) \(v *\) rep-equator-reflect \(=\operatorname{vector}[0,0,1]\)
unfolding rep-meridian-reflect-def and rep-equator-reflect-def and vector-matrix-mult-def
by (simp-all add: vec-eq-iff forall-3 vector-3 setsum-3)
with compass-reflect-invertible and compass-non-zero and K2-centre-non-zero
show apply-cltn2 east meridian-reflect \(=\) west
and apply-cltn2 west meridian-reflect \(=\) east
and apply-cltn2 north meridian-reflect \(=\) north
and apply-cltn2 south meridian-reflect \(=\) south
and apply-cltn2 K2-centre meridian-reflect \(=\) K2-centre
and apply-cltn2 east equator-reflect \(=\) east
and apply-cltn2 west equator-reflect \(=\) west
and apply-cltn2 north equator-reflect \(=\) south
and apply-cltn2 south equator-reflect \(=\) north
and apply-cltn2 K2-centre equator-reflect \(=\) K2-centre
unfolding compass-defs and K2-centre-def and meridian-reflect-def and equator-reflect-def
by (simp-all add: apply-cltn2-abs)

\section*{qed}
lemma on-equator-rep:
assumes z-non-zero a and proj2-incident a equator
shows \(\exists x . a=\) proj2-abs (vector \([x, 0,1]\) )
```

proof -
let ?ra = proj2-rep a
let ?ca1 = cart2-append1 a
let ? }x=\mathrm{ ?ca1\$1
from compass-non-zero and 〈proj2-incident a equator〉
have ?ra \cdot vector [0,1,0]=0
by (unfold equator-def) (simp add: projQ-incident-right-abs)
hence ?ra\$2 = 0 by (unfold inner-vec-def vector-def) (simp add: setsum-3)
hence ?ca1\$2 = 0 by (unfold cart2-append1-def) simp
moreover
from 〈z-non-zero a> have ?ca1\$3 = 1 by (rule cart2-append1-z)
ultimately
have ?ca1 = vector [?x,0,1]
by (unfold vector-def) (simp add: vec-eq-iff forall-3)
with 〈z-non-zero a〉
have proj2-abs (vector [?x,0,1]) = a by (simp add: proj2-abs-cart2-append1)
thus \existsx.a=proj2-abs (vector [x,0,1]) by (simp add: exI [of - ?x])
qed
lemma on-meridian-rep:
assumes z-non-zero a and proj2-incident a meridian
shows \exists y. a = proj2-abs (vector [0,y,1])
proof -
let ?ra = proj2-rep a
let ?ca1 = cart2-append1 a
let ?y = ?ca1\$2
from compass-non-zero and <proj2-incident a meridian>
have ?ra \cdot vector [1,0,0] = 0
by (unfold meridian-def) (simp add: proj2-incident-right-abs)
hence ?ra\$1 = 0 by (unfold inner-vec-def vector-def) (simp add: setsum-3)
hence ?ca1\$1 = 0 by (unfold cart2-append1-def) simp
moreover
from 〈z-non-zero a> have ?ca1\$3 = 1 by (rule cart2-append1-z)
ultimately
have ?ca1 = vector [0,?y,1]
by (unfold vector-def) (simp add: vec-eq-iff forall-3)
with 〈z-non-zero a〉
have proj2-abs (vector [0,?y,1]) = a by (simp add: proj2-abs-cart2-append1)
thus \existsy.a = proj2-abs (vector [0,y,1]) by (simp add: exI [of - ?y])
qed

```

\section*{9．3 Definition of the Klein－Beltrami model of the hyperbolic plane}
abbreviation hyp2＝K 2
typedef hyp2 \(=K 2\)
using K2－centre－in－K2
by auto
```

definition hyp2-rep :: hyp2 }=>\mathrm{ real^2 where
hyp2-rep p\triangleq cart2-pt (Rep-hyp2 p)
definition hyp2-abs :: real^2 }=>\mathrm{ hyp2 where
hyp2-abs v = Abs-hyp2 (proj2-pt v)
lemma norm-lt-1-iff-in-hyp2:
shows norm v<1\longleftrightarrow proj2-pt v\in hyp2
proof -
let ?v' = vector2-append1 v
have ?}\mp@subsup{v}{}{\prime}\not=0\mathrm{ by (rule vector2-append1-non-zero)
from real-less-rsqrt [of norm v 1]
and abs-square-less-1 [of norm v]
have norm v<1\longleftrightarrow(norm v)}\mp@subsup{)}{}{2}<1\mathrm{ by auto
hence norm v<1\longleftrightarrow?\mp@subsup{v}{}{\prime}\cdot(M*v?v})<0\mathrm{ by (simp add: norm-M)
with \langle?v'\not=0\rangle have norm v<1\longleftrightarrow proj2-abs ?v'\inK2 by (subst K2-abs)
thus norm v<1\longleftrightarrow proj2-pt v\in hyp2 by (unfold proj2-pt-def)
qed
lemma norm-eq-1-iff-in-S:
shows norm v=1 \longleftrightarrow proj2-pt v}\in
proof -
let ?v}\mp@subsup{v}{}{\prime}=\mathrm{ vector2-append1 v
have ?v'\not=0 by (rule vector2-append1-non-zero)
from real-sqrt-unique [of norm v 1]
have norm v=1 \longleftrightarrow(norm v)
hence norm v=1 \longleftrightarrow? ?'}\cdot(M*v?v')=0 by (simp add: norm-M
with }\langle?\mp@subsup{v}{}{\prime}\not=0\rangle\mathrm{ have norm v=1 « proj2-abs ?v' }\inS\mathrm{ by (subst S-abs)
thus norm v=1 \longleftrightarrow proj2-pt v GS by (unfold proj2-pt-def)
qed
lemma norm-le-1-iff-in-hyp2-S:
norm v}\leq1\longleftrightarrow\mathrm{ proj2-pt v hyp2 }\cup
using norm-lt-1-iff-in-hyp2 [of v] and norm-eq-1-iff-in-S [of v]
by auto
lemma proj2-pt-hyp2-rep: proj2-pt (hyp2-rep p)= Rep-hyp2 p
proof -
let ? p' = Rep-hyp2 p
let ?v = proj2-rep ?p'
have ?v }=0\mathrm{ by (rule proj2-rep-non-zero)
have proj2-abs ?v = ? p' by (rule proj2-abs-rep)
have ?p' \in hyp2 by (rule Rep-hyp2)
with \langle?v \not=0\rangle and \langleproj2-abs ?v = ?p

```
```

 have ?v • (M*v ?v) < 0 by (simp add: K2-imp-M-neg)
 hence ?v$3}\not=0\mathrm{ by (rule M-neg-imp-z-non-zero)
 hence proj2-pt (cart2-pt ?p') = ? p' by (rule proj2-cart2)
 thus proj2-pt (hyp2-rep p) = ?p' by (unfold hyp2-rep-def)
 qed
lemma hyp2-rep-abs:
assumes norm v<1
shows hyp2-rep (hyp2-abs v)=v
proof -
from <norm v<1>
have proj2-pt v G hyp2 by (simp add: norm-lt-1-iff-in-hyp2)
hence Rep-hyp2 (Abs-hyp2 (proj2-pt v)) = proj2-pt v
by (simp add: Abs-hyp2-inverse)
hence hyp2-rep (hyp2-abs v) = cart2-pt (proj2-pt v)
by (unfold hyp2-rep-def hyp2-abs-def) simp
thus hyp2-rep (hyp2-abs v)=v by (simp add: cart2-proj2)
qed
lemma hyp2-abs-rep: hyp2-abs (hyp2-rep p) = p
by (unfold hyp2-abs-def) (simp add: proj2-pt-hyp2-rep Rep-hyp2-inverse)
lemma norm-hyp2-rep-lt-1: norm (hyp2-rep p) < 1
proof -
have proj2-pt (hyp2-rep p) = Rep-hyp2 p by (rule proj2-pt-hyp2-rep)
hence proj2-pt (hyp2-rep p) \in hyp2 by (simp add: Rep-hyp2)
thus norm (hyp2-rep p)<1 by (simp add: norm-lt-1-iff-in-hyp2)
qed
lemma hyp2-S-z-non-zero:
assumes p\in hyp2 US
shows z-non-zero p
proof -
from <p < hyp2 \cup S`
have conic-sgn p\leq0 by (unfold K2-def S-def) auto
hence conic-sgn p\not=1 by simp
thus z-non-zero p by (rule conic-sgn-not-1-z-non-zero)
qed
lemma hyp2-S-not-equal:
assumes a\inhyp2 and p\inS
shows }a\not=
using assms and S-K2-empty
by auto
lemma hyp2-S-cart2-inj:
assumes p hyp2 \cupS and q\in hyp2 \cupS and cart2-pt p = cart2-pt q
shows p=q
proof -

```
```

 from }\langlep\inhyp2\cupS\rangle\mathrm{ and }\langleq\inhyp2\cupS
 have z-non-zero p and z-non-zero q by (simp-all add: hyp2-S-z-non-zero)
 hence proj2-pt (cart2-pt p) = p and proj2-pt (cart2-pt q) =q
 by (simp-all add: proj2-cart2)
 from \cart2-pt p = cart2-pt q\rangle
 have proj2-pt (cart2-pt p) = proj2-pt (cart2-pt q) by simp
 with \langleproj2-pt (cart2-pt p)=p\rangle[symmetric] and \langleproj2-pt (cart2-pt q) =q\rangle
 show }p=q\mathrm{ by simp
 qed
lemma on-equator-in-hyp2-rep:
assumes a\inhyp2 and proj2-incident a equator
shows \exists x. |x| < 1^a= proj2-abs (vector [x,0,1])
proof -
from <a \in hyp2\rangle have z-non-zero a by (simp add: hyp2-S-z-non-zero)
with <proj2-incident a equator> and on-equator-rep
obtain x where a=proj2-abs (vector [x,0,1]) (is a=proj2-abs ?v)
by auto
have ?v \not=0 by (simp add: vec-eq-iff forall-3 vector-3)
with \langlea \in hyp2\rangle and \a = proj2-abs ?v\rangle
have ?v • (M*v ?v) < 0 by (simp add: K2-abs)
hence }\mp@subsup{x}{}{2}<
unfolding M-def matrix-vector-mult-def inner-vec-def
by (simp add: setsum-3 vector-3 power2-eq-square)
with real-sqrt-abs [of x] and real-sqrt-less-iff [of (2 1]
have }|x|<1\mathrm{ by simp
with <a = proj2-abs ?v>
show \exists x. |x|< < ^a= proj2-abs (vector [x,0,1])
by (simp add: exI [of - x])
qed
lemma on-meridian-in-hyp2-rep:
assumes a Ghyp2 and proj2-incident a meridian
shows \existsy. |y| < 1 ^a= proj2-abs (vector [0,y,1])
proof -
from <a \in hyp2` have z-non-zero a by (simp add: hyp2-S-z-non-zero)
with <proj2-incident a meridian> and on-meridian-rep
obtain y where a=proj2-abs (vector [0,y,1]) (is a= proj2-abs ?v)
by auto
have ?v \not=0 by (simp add: vec-eq-iff forall-3 vector-3)
with \langlea \in hyp2\rangle and <a = proj2-abs ?v\rangle
have ?v • (M*v ?v) < 0 by (simp add: K2-abs)
hence }\mp@subsup{y}{}{2}<
unfolding M-def matrix-vector-mult-def inner-vec-def
by (simp add: setsum-3 vector-3 power2-eq-square)
with real-sqrt-abs [of y] and real-sqrt-less-iff [of y }\mp@subsup{y}{}{2}1

```
```

 have }|y|<1\mathrm{ by simp
 with <a = proj2-abs ?v>
 show }\existsy.|y|<1\wedgea=proj2-abs (vector [0,y,1]
 by (simp add: exI [of-y])
 qed
definition hyp2-cltn2 :: hyp2 }=>\mathrm{ cltn2 }=>\mathrm{ hyp2 where
hyp2-cltn2 p A A Abs-hyp2 (apply-cltn2 (Rep-hyp2 p) A)
definition is-K2-isometry :: cltn2 => bool where
is-K2-isometry }J\triangleq(\forall p.apply-cltn2 p J GS\longleftrightarrowp\inS
lemma cltn2-id-is-K2-isometry: is-K2-isometry cltn2-id
unfolding is-K2-isometry-def
by simp
lemma J-M-J-transpose-K2-isometry:
assumes k\not=0
and repJ** M ** transpose repJ=k *R M (is ? N = -)
shows is-K2-isometry (cltn2-abs repJ) (is is-K2-isometry ?J)
proof -
from \?N = k *R M>
have ?N ** ((1/k) *R M)= mat 1
by (simp add: matrix-scalar-ac 〈k\not=0\rangleM-self-inverse)
with right-invertible-iff-invertible [of repJ]
have invertible repJ
by (simp add: matrix-mul-assoc
exI[of - M ** transpose repJ** ((1/k)**R M)])

```

```

 proof
 fix t :: proj2
 have proj2-rep t • ((k**R M)*v proj2-rep t)
 =k*(proj2-rep t • (M*v proj2-rep t))
 by (simp add: scalar-matrix-vector-assoc [symmetric] dot-scaleR-mult)
 with \?N = k *R M`
 have proj2-rep t • (?N *v proj2-rep t)
 =k*(proj2-rep t • (M*v proj2-rep t))
 by simp
 hence proj2-rep t • (?N *v proj2-rep t)=0
 \longleftrightarrowk*(proj2-rep t • (M*v proj2-rep t))=0
 by simp
 with <k\not=0\rangle
 have proj2-rep t • (?N *v proj2-rep t)=0
 \longleftrightarrow proj2-rep t • (M*v proj2-rep t)=0
 by simp
 with <invertible repJ`
 have apply-cltn2 t ?J \inS \longleftrightarrow proj2-rep t • (M*v proj2-rep t)=0
 by (simp add: apply-cltn2-right-abs-in-S)
    ```
```

 thus apply-cltn2 t?J \inS < <t\inS by (unfold S-alt-def)
 qed
 thus is-K2-isometry?J by (unfold is-K2-isometry-def)
 qed
lemma equator-reflect-K2-isometry:
shows is-K2-isometry equator-reflect
unfolding compass-reflect-defs
by (rule J-M-J-transpose-K2-isometry [of 1])
(simp-all add:M-def matrix-matrix-mult-def transpose-def
vec-eq-iff forall-3 setsum-3 vector-3)
lemma meridian-reflect-K2-isometry:
shows is-K2-isometry meridian-reflect
unfolding compass-reflect-defs
by (rule J-M-J-transpose-K2-isometry [of 1])
(simp-all add: M-def matrix-matrix-mult-def transpose-def
vec-eq-iff forall-3 setsum-3 vector-3)
lemma cltn2-compose-is-K2-isometry:
assumes is-K2-isometry H and is-K2-isometry J
shows is-K2-isometry (cltn2-compose H J)
using <is-K2-isometry H> and <is-K2-isometry J〉
unfolding is-K2-isometry-def
by (simp add: cltn2.act-act [simplified, symmetric])
lemma cltn2-inverse-is-K2-isometry:
assumes is-K2-isometry J
shows is-K2-isometry (cltn2-inverse J)
proof -
{fix p
from 〈is-K2-isometry J\rangle
have apply-cltn2 p (cltn2-inverse J) \inS
\longleftrightarrow ~ a p p l y - c l t n 2 ~ (a p p l y - c l t n 2 ~ p ~ (c l t n 2 - i n v e r s e ~ J)) ~ J ~ \in S ~ S
unfolding is-K2-isometry-def
by simp
hence apply-cltn2 p (cltn2-inverse J) }\inS\longleftrightarrowp\in
by (simp add: cltn2.act-inv-act [simplified])}
thus is-K2-isometry (cltn2-inverse J)
unfolding is-K2-isometry-def ..
qed
interpretation K2-isometry-subgroup: subgroup
Collect is-K2-isometry
|carrier = UNIV, mult = cltn2-compose, one = cltn2-id |)
unfolding subgroup-def
by (simp add:
cltn2-id-is-K2-isometry
cltn2-compose-is-K2-isometry

```
```

 cltn2-inverse-is-K2-isometry)
    ```

\section*{interpretation K2-isometry: group}
\((\mid\) carrier \(=\) Collect is-K2-isometry, mult \(=\) cltn2-compose, one \(=\) cltn2-id \(\mid)\)
using cltn2.is-group and K2-isometry-subgroup.subgroup-is-group
by \(\operatorname{simp}\)
lemma K2-isometry-inverse-inv [simp]:
assumes is-K2-isometry \(J\)
shows inv \(^{(\mid \text {carrier }}=\) Collect is-K2-isometry, mult \(=\) cltn2-compose, one \(\left.=c l t n 2-i d \mid\right)\)
J
= cltn2-inverse J
using cltn2-left-inverse
and 〈is-K2-isometry \(J\rangle\)
and cltn2-inverse-is-K2-isometry
and K2-isometry.inv-equality
by \(\operatorname{simp}\)
definition real-hyp2-C :: [hyp2, hyp2, hyp2, hyp2] \(\Rightarrow\) bool
\(\left(--\equiv_{K}--[99,99,99,99] 50\right)\) where
\(p q \equiv_{K} r s \triangleq\)
\((\exists\) A. is-K2-isometry \(A \wedge\) hyp2-cltn2 \(p A=r \wedge\) hyp2-cltn2 \(q A=s)\)
definition real-hyp2-B :: [hyp2, hyp2, hyp2] \(\Rightarrow\) bool
( \(B_{K}\)-- - \(\left.99,99,99\right] 50\) ) where
\(B_{K} p q r \triangleq B_{\mathbb{R}}(\) hyp2-rep \(p)(\) hyp2-rep \(q)(\) hyp2-rep \(r)\)

\section*{9.4 \(K\)-isometries map the interior of the conic to itself}
lemma collinear-quadratic:
assumes \(t=i *_{R} a+r\)
shows \(t \cdot(M * v t)=\)
\((a \cdot(M * v a)) * i^{2}+2 *(a \cdot(M * v r)) * i+r \cdot(M * v r)\)
proof -
from \(M\)-reverse have \(i *(a \cdot(M * v r))=i *(r \cdot(M * v a))\) by simp
with \(\left\langle t=i *_{R} a+r\right\rangle\)
show \(t \cdot(M * v t)=\)
\((a \cdot(M * v a)) * i^{2}+2 *(a \cdot(M * v r)) * i+r \cdot(M * v r)\)
by (simp add:
inner-add-left
matrix-vector-right-distrib
inner-add-right
matrix-scalar-vector-ac
inner-scaleR-right
scalar-matrix-vector-assoc [symmetric]
M-reverse
power2-eq-square
algebra-simps)
qed
```

lemma S-quadratic':
assumes }p\not=0\mathrm{ and q}\not=0\mathrm{ and proj2-abs p}\not=\mathrm{ proj2-abs q
shows proj2-abs (}k\mp@subsup{*}{R}{}p+q)\in
\longleftrightarrowp\cdot(M*vp)*\mp@subsup{k}{}{2}+p\cdot(M*vq)*2*k+q\cdot(M*vq)=0
proof -
let ?r = k*R p+q
from }\langlep\not=0\rangle\mathrm{ and }\langleq\not=0\rangle\mathrm{ and 〈projQ-abs p = projQ-abs q>
and dependent-proj2-abs [of p q k 1]
have ?r }\not=0\mathrm{ by auto
hence proj2-abs ?r }\inS\longleftrightarrow\mathrm{ ?r • (M*v ?r) = 0 by (rule S-abs)
with collinear-quadratic [of ?r k p q]
show proj2-abs ?r }\in
\longleftrightarrowp\cdot(M*vp)* k
by (simp add: dot-lmul-matrix [symmetric] algebra-simps)
qed
lemma S-quadratic:
assumes p\not=q and r= proj2-abs (}k\mp@subsup{*}{R}{}\mathrm{ proj2-rep p + proj2-rep q)
shows r\inS
\longleftrightarrow proj2-rep p • (M *v proj2-rep p)* *
+ proj2-rep p • (M *v proj2-rep q)* 2 *k
+ proj2-rep q • (M *v proj2-rep q)
=0
proof -
let ?u = proj2-rep p
let ?v = proj2-rep q
let ?w = k*R ?u + ?v
have ?u\not=0 and ?v}\not=0\mathrm{ by (rule proj2-rep-non-zero)+
from }\langlep\not=q\rangle\mathrm{ have proj2-abs ?u f proj2-abs ?v by (simp add: proj2-abs-rep)
with \langle?u\not=0\rangle and \langle?v
show }r\in
\longleftrightarrow ? ~ \longleftrightarrow u \cdot (M * v ? u) * k ^ { 2 } + ? u \cdot (M * v ? v) * 2 * k + ? v \cdot (M * v ? v) = 0
by (simp add: S-quadratic')
qed
definition quarter-discrim :: real^3 }=>\mathrm{ real^3 }=>\mathrm{ real where
quarter-discrim p q\triangleq(p\cdot(M*vq))}\mp@subsup{)}{}{2}-p\cdot(M*vp)*(q\cdot(M*vq)
lemma quarter-discrim-invariant:
assumes t=i*R}a+
shows quarter-discrim a t= quarter-discrim a r
proof -
from <t =i * R}a+r
have }a\cdot(M*vt)=i*(a\cdot(M*va))+a\cdot(M*vr
by (simp add:
matrix-vector-right-distrib
inner-add-right

```
```

 matrix-scalar-vector-ac
 scalar-matrix-vector-assoc [symmetric])
 hence (a\cdot(M*vt)\mp@subsup{)}{}{2}=
 (a\cdot(M*va))}\mp@subsup{)}{}{2}*\mp@subsup{i}{}{2}
 2*(a\cdot(M*va))*(a\cdot(M*vr))*i+
 (a\cdot(M*vr))}\mp@subsup{)}{}{2
 by (simp add: power2-eq-square algebra-simps)
 moreover from collinear-quadratic and }\langlet=i\mp@subsup{*}{R}{}a+r
 have }a\cdot(M*va)*(t\cdot(M*vt))
 (a\cdot(M*va))}\mp@subsup{)}{}{2}*\mp@subsup{i}{}{2}
 2*(a\cdot(M*va))*(a\cdot(M*vr))*i+
 a\cdot(M*va)*(r}\cdot(M*vr)
 by (simp add: power2-eq-square algebra-simps)
 ultimately show quarter-discrim a t=quarter-discrim a r
 by (unfold quarter-discrim-def, simp)
 qed
lemma quarter-discrim-positive:

```

```

 and proj2-abs p \inK2
 shows quarter-discrim p q>0
 proof -
let ?i = -q\$3/p\$3
let ?t = ?i * *R p+q
from }\langlep\not=0\rangle\mathrm{ and <? pp GK2>

```

```

 hence p$3 \not=0 by (rule M-neg-imp-z-non-zero)
 hence ?t$3 = 0 by simp
 hence ?t • (M*v ?t) = (?t$ 1)
 unfolding matrix-vector-mult-def and M-def and vector-def
 by (simp add: inner-vec-def setsum-3 power2-eq-square)
 from }\langlep$3\not=0\rangle\mathrm{ have }p\not=0\mathrm{ by auto
 with }\langleq\not=0\rangle\mathrm{ and <?pp #=?pq> and dependent-proj2-abs [of p q ?i 1]
 have ?t }\not=0\mathrm{ by auto
 with <?t$3 = 0` have ?t$1 = 0 \vee ?t$2 = 0 by (simp add: vec-eq-iff forall-3)
 hence (?t$1\mp@subsup{)}{}{2}>0\vee(?t$2)}\mp@subsup{)}{}{2}>0\mathrm{ by simp
 moreover have (?t$2\mp@subsup{)}{}{2}\geq0 and (?t$1\mp@subsup{)}{}{2}\geq0 by simp-all
 ultimately have (?t$1\mp@subsup{)}{}{2}+(?t$2\mp@subsup{)}{}{2}>0 by arith
 with <?t \cdot (M*v ?t) = (?t$1)
 with mult-neg-pos [of p \cdot (M*vp)] and <p}\cdot(M*vp)<0
 have p}\cdot(M*vp)*(?t \cdot (M*v?t))<0 by sim
 moreover have (p\cdot(M*v?t)\mp@subsup{)}{}{2}\geq0 by simp
 ultimately
 have}(p\cdot(M*v?t)\mp@subsup{)}{}{2}-p\cdot(M*vp)*(?t\cdot(M*v?t))>0 by arith
 with quarter-discrim-invariant [of ?t ?i p q]
 show quarter-discrim p q>0 by (unfold quarter-discrim-def, simp)
 qed

```
```

lemma quarter-discrim-self-zero:
assumes proj2-abs a = proj2-abs b
shows quarter-discrim a b=0
proof cases
assume b=0
thus quarter-discrim a b=0 by (unfold quarter-discrim-def, simp)
next
assume b}=
with <proj2-abs a = proj2-abs b> and proj2-abs-abs-mult
obtain k where a=k *R b by auto
thus quarter-discrim a b=0
unfolding quarter-discrim-def
by (simp add: power2-eq-square
matrix-scalar-vector-ac
scalar-matrix-vector-assoc [symmetric])
qed
definition S-intersection-coeff1 :: real^3 \# real^3 \# real where
S-intersection-coeff1 p q
\triangleq(-p\cdot(M*vq)+ sqrt (quarter-discrim p q)) / (p\cdot(M*vp))

```
definition \(S\)-intersection-coeff2 :: real^ \(3 \Rightarrow\) real \(\wedge 3 \Rightarrow\) real where
    S-intersection-coeff2 \(p q\)
    \(\triangleq(-p \cdot(M * v q)-\operatorname{sqrt}(q u a r t e r-\operatorname{discrim} p q)) /(p \cdot(M * v p))\)
definition \(S\)-intersection1-rep :: real^3 \(\Rightarrow\) real \({ }^{\wedge} 3 \Rightarrow\) real \({ }^{\wedge} 3\) where
    S-intersection1-rep p \(q \triangleq(S\)-intersection-coeff1 \(p q) *_{R} p+q\)
definition \(S\)-intersection2-rep \(::\) real^3 \(\Rightarrow\) real^3 \(\Rightarrow\) real^3 \({ }^{\wedge}\) where
    S-intersection2-rep p \(q \triangleq(S\)-intersection-coeff2 \(p q) *_{R} p+q\)
definition \(S\)-intersection1 :: real^3 \(\Rightarrow\) real^3 \(\Rightarrow\) proj2 where
    \(S\)-intersection1 \(p q \triangleq\) proj2-abs (S-intersection1-rep \(p q\) )
definition \(S\)-intersection2 :: real^3 \(\Rightarrow\) real \({ }^{\wedge} 3 \Rightarrow\) proj2 where
    \(S\)-intersection2 \(p q \triangleq\) proj2-abs (S-intersection2-rep \(p q\) )
lemmas \(S\)-intersection-coeffs-defs \(=\)
    \(S\)-intersection-coeff1-def S-intersection-coeff2-def
lemmas \(S\)-intersections-defs \(=\)
    S-intersection1-def S-intersection2-def
    S-intersection1-rep-def S-intersection2-rep-def
lemma \(S\)-intersection-coeffs-distinct:
    assumes \(p \neq 0\) and \(q \neq 0\) and proj2-abs \(p \neq\) proj2-abs \(q\) (is ? \(p p \neq ? p q\) )
    and proj2-abs \(p \in K 2\)
    shows \(S\)-intersection-coeff1 \(p q \neq S\)-intersection-coeff2 \(p q\)
```

proof -
from }\langlep\not=0\rangle\mathrm{ and <? pp < K2>
have p\cdot(M*v p)<0 by (subst K2-abs [symmetric])
from assms have quarter-discrim p q>0 by (rule quarter-discrim-positive)
with <p • (M *v p) < 0>
show S-intersection-coeff1 p q}\not=S\mathrm{ -intersection-coeff2 p q
by (unfold S-intersection-coeffs-defs, simp)
qed
lemma S-intersections-distinct:
assumes p\not=0 and q\not=0 and proj2-abs p\not= proj2-abs q (is ?pp \not=?pq)
and proj2-abs p }\inK
shows S-intersection1 p q}\not=S\mathrm{ -intersection2 p q
proof-
from }\langlep\not=0\rangle\mathrm{ and }\langleq\not=0\rangle\mathrm{ and \?pp }\not=??pq\rangle\mathrm{ and 〈?}\langlepp\inK2
have S-intersection-coeff1 p q}==S\mathrm{ -intersection-coeff2 p q
by (rule S-intersection-coeffs-distinct)

```

```

 show S-intersection1 p q\not=S-intersection2 p q
 by (unfold S-intersections-defs, auto)
 qed
lemma S-intersections-in-S:
assumes }p\not=0\mathrm{ and q}\not=0\mathrm{ and proj2-abs }p\not=\mathrm{ proj2-abs q (is ?pp \#= ?pq)
and proj2-abs p \inK2
shows S-intersection1 p q\inS and S-intersection2 p q\inS
proof -
let ?j =S-intersection-coeff1 pq
let ?k =S-intersection-coeff2 p q
let ?a = p \cdot (M*v p)
let ?b =2*(p\cdot(M*vq))
let ?c = q \cdot(M*vq)
from }\langlep\not=0\rangle\mathrm{ and \??p }\inK2\rangle\mathrm{ have ? a < 0 by (subst K2-abs [symmetric])
have qd: discrim ?a ?b ?c = 4 * quarter-discrim p q
unfolding discrim-def quarter-discrim-def
by (simp add: power2-eq-square)
with times-divide-times-eq [of
2 2 sqrt (quarter-discrim p q) - p • (M*vq) ?a]
and times-divide-times-eq [of
2 2 -p. (M*v q) - sqrt (quarter-discrim p q) ?a]
and real-sqrt-mult and real-sqrt-abs [of 2]
have ?j = (-?b + sqrt (discrim ?a ?b ?c)) / (2 * ?a)
and ?k = (-?b - sqrt (discrim ?a ?b ?c)) / (2* ?a)
by (unfold S-intersection-coeffs-defs, simp-all add: algebra-simps)
from assms have quarter-discrim p $q>0$ by (rule quarter-discrim-positive)

```
with \(q d\)
have \(\operatorname{discrim}(p \cdot(M * v p))(2 *(p \cdot(M * v q)))(q \cdot(M * v q))>0\)
by simp
with \(\langle ? j=(-? b+\operatorname{sqrt}(\) discrim ? \(a ? b ? c)) /(2 * ? a)\rangle\)
and \(\langle ? k=(-? b-\operatorname{sqrt}(\) discrim \(? a ? b ? c)) /(2 * ? a)\rangle\)
and \(\langle ? a<0\rangle\) and discriminant-nonneg \([\) of ?a ?b ? \(c\) ? \(j]\)
and discriminant-nonneg \([o f ? a\) ? \(b\) ?c ? \(k]\)
have \(p \cdot(M * v p) * ? j^{2}+2 *(p \cdot(M * v q)) * ? j+q \cdot(M * v q)=0\) and \(p \cdot(M * v p) * ? k^{2}+2 *(p \cdot(M * v q)) * ? k+q \cdot(M * v q)=0\) by (unfold \(S\)-intersection-coeffs-defs, auto)
with \(\langle p \neq 0\rangle\) and \(\langle q \neq 0\rangle\) and \(\langle ? p p \neq ? p q\rangle\) and \(S\)-quadratic \({ }^{\prime}\)
show \(S\)-intersection1 \(p q \in S\) and \(S\)-intersection2 \(p q \in S\)
by (unfold \(S\)-intersections-defs, simp-all)
qed
lemma \(S\)-intersections-Col:
assumes \(p \neq 0\) and \(q \neq 0\)
shows proj2-Col (proj2-abs p) (proj2-abs q) (S-intersection1 p \(q\) )
(is proj2-Col ?pp ?pq ?pr)
and proj2-Col (proj2-abs p) (proj2-abs q) (S-intersection2 \(p q\) )
(is proj2-Col ?pp ?pq ?ps)
proof -
\{ assume \(? p p=? p q\)
hence proj2-Col ?pp ?pq ?pr and proj2-Col ?pp ?pq ?ps by (simp-all add: proj2-Col-coincide) \}
moreover
\{ assume ? \(p p \neq ? p q\)
with \(\langle p \neq 0\rangle\) and \(\langle q \neq 0\rangle\) and dependent-proj2-abs [of \(p q-1]\)
have \(S\)-intersection1-rep p \(q \neq 0\) (is \(? r \neq 0)\)
and \(S\)-intersection2-rep \(p q \neq 0\) (is ?s \(\neq 0\) )
by (unfold \(S\)-intersection1-rep-def \(S\)-intersection2-rep-def, auto)
with \(\langle p \neq 0\rangle\) and \(\langle q \neq 0\rangle\)
and proj2-Col-abs [of p q ?r S-intersection-coeff1 p q 1-1]
and proj2-Col-abs [of \(p q\) ?s S-intersection-coeff2 \(p\) q 1 -1]
have proj2-Col ?pp ?pq ?pr and proj2-Col ?pp ?pq ?ps
by (unfold \(S\)-intersections-defs, simp-all) \}
ultimately show proj2-Col ?pp ?pq ?pr and proj2-Col ?pp ?pq ?ps by fast+ qed
lemma \(S\)-intersections-incident:
assumes \(p \neq 0\) and \(q \neq 0\) and proj2-abs \(p \neq\) proj2-abs \(q\) (is \(? p p \neq ? p q\) )
and proj2-incident (proj2-abs p) \(l\) and proj2-incident (proj2-abs q) \(l\)
shows proj2-incident (S-intersection1 p q) \(l\) (is proj2-incident ?pr l)
and proj2-incident (S-intersection2 p q) \(l\) (is proj2-incident ?ps \(l\) )
proof -
from \(\langle p \neq 0\rangle\) and \(\langle q \neq 0\rangle\)
have proj2-Col ?pp ?pq ?pr and proj2-Col ?pp ?pq ?ps
by (rule \(S\)-intersections-Col)+
with \(\langle ? p p \neq ? p q\rangle\) and \(\langle p r o j 2-i n c i d e n t ? p p l\rangle\) and \(\langle p r o j 2-i n c i d e n t ? p q l\rangle\)
and proj2-incident-iff-Col
show proj2-incident ?pr \(l\) and proj2-incident ?ps \(l\) by fast+ qed
lemma K2-line-intersect-twice:
assumes \(a \in K 2\) and \(a \neq r\)
shows \(\exists s u . s \neq u \wedge s \in S \wedge u \in S \wedge\) proj2-Col ars proj2-Col ar \(u\) proof -
let ? \(a^{\prime}=\) proj2-rep \(a\)
let \(? r^{\prime}=\) proj2-rep \(r\)
from proj2-rep-non-zero have \(? a^{\prime} \neq 0\) and \(? r^{\prime} \neq 0\) by simp-all
from \(\left\langle ? a^{\prime} \neq 0\right\rangle\) and K2-imp-M-neg and proj2-abs-rep and \(\langle a \in K 2\rangle\)
have \(? a^{\prime} \cdot\left(M * v ? a^{\prime}\right)<0\) by simp
from \(\langle a \neq r\rangle\) have proj2-abs \(? a^{\prime} \neq\) proj2-abs \(? r^{\prime}\) by (simp add: proj2-abs-rep)
from \(\langle a \in K 2\rangle\) have proj2-abs \(? a^{\prime} \in K 2\) by (simp add: proj2-abs-rep)
with \(\left\langle ? a^{\prime} \neq 0\right\rangle\) and \(\left\langle ? r^{\prime} \neq 0\right\rangle\) and \(\left\langle p r o j 2-a b s ? a^{\prime} \neq \operatorname{proj} 2-a b s ? r^{\prime}\right\rangle\)
have \(S\)-intersection1 \(? a^{\prime} ? r^{\prime} \neq S\)-intersection2 \(? a^{\prime} ? r^{\prime}(\) is \(? s \neq ? u)\)
by (rule \(S\)-intersections-distinct)
from \(\left\langle ? a^{\prime} \neq 0\right\rangle\) and \(\left\langle ? r^{\prime} \neq 0\right\rangle\) and \(\left\langle p r o j 2-a b s ? a^{\prime} \neq \operatorname{proj} 2-a b s ? r^{\prime}\right\rangle\)
and 〈proj2-abs \(\left.? a^{\prime} \in K 2\right\rangle\)
have ?s \(\in S\) and \(? u \in S\) by (rule \(S\)-intersections-in- \(S\) ) +
from \(\left\langle ? a^{\prime} \neq 0\right\rangle\) and \(\left\langle ? r^{\prime} \neq 0\right\rangle\)
have proj2-Col (proj2-abs ?a') (proj2-abs ?r') ?s
and proj2-Col (proj2-abs ?a') (proj2-abs ? \(r^{\prime}\) ) ?u
by (rule \(S\)-intersections-Col) +
hence proj2-Col a r ?s and proj2-Col a r ? u
by (simp-all add: proj2-abs-rep)
with \(\langle ? s \neq ? u\rangle\) and \(\langle ? s \in S\rangle\) and \(\langle ? u \in S\rangle\)
show \(\exists s u . s \neq u \wedge s \in S \wedge u \in S \wedge\) proj2-Col a r \(s \wedge\) proj2-Col a r \(u\)
by auto
qed
lemma point-in-S-polar-is-tangent:
assumes \(p \in S\) and \(q \in S\) and proj2-incident \(q\) (polar \(p\) )
shows \(q=p\)
proof -
from \(\langle p \in S\rangle\) have proj2-incident \(p\) (polar \(p\) )
by (subst incident-own-polar-in-S)
from line-incident-point-not-in-S
obtain \(r\) where \(r \notin S\) and proj2-incident \(r\) (polar \(p\) ) by auto
let \(? u=\) proj2-rep \(r\)
let \(? v=\) proj2-rep \(p\)
from \(\langle r \notin S\rangle\) and \(\langle p \in S\rangle\) and \(\langle q \in S\rangle\) have \(r \neq p\) and \(q \neq r\) by auto
with 〈proj2－incident \(p\)（polar \(p\) ）〉
and \(\langle\) proj2－incident \(q\)（polar \(p\) ）〉
and \(\langle\) projo－incident \(r\)（polar \(p\) ）〉
and proj2－incident－iff［of r p polar \(p q\) ］
obtain \(k\) where \(q=\) proj2－abs \(\left(k *_{R} ? u+? v\right)\) by auto
with \(\langle r \neq p\rangle\) and \(\langle q \in S\rangle\) and \(S\)－quadratic
have ？\(u \cdot(M * v ? u) * k^{2}+? u \cdot(M * v ? v) * 2 * k+? v \cdot(M * v ? v)=0\)
by \(\operatorname{simp}\)
moreover from \(\langle p \in S\rangle\) have ？\(v \cdot(M * v\) ？v）\(=0\) by（unfold \(S\)－alt－def）
moreover from 〈proj2－incident \(r\)（polar \(p\) ）〉
have ？\(u \cdot(M * v ? v)=0\) by（unfold incident－polar）
moreover from \(\langle r \notin S\rangle\) have ？\(u \cdot(M * v ? u) \neq 0\) by（unfold \(S\)－alt－def）
ultimately have \(k=0\) by simp
with \(\left\langle q=\right.\) projo－abs \(\left.\left(k *_{R} ? u+? v\right)\right\rangle\)
show \(q=p\) by（simp add：proj2－abs－rep）
qed
lemma line－through－K2－intersect－S－twice：
assumes \(p \in K 2\) and proj2－incident \(p l\)
shows \(\exists q r . q \neq r \wedge q \in S \wedge r \in S \wedge\) proj2－incident \(q l \wedge\) proj2－incident \(r l\)
proof－
from proj2－another－point－on－line
obtain \(s\) where \(s \neq p\) and proj2－incident \(s l\) by auto
from \(\langle p \in K 2\rangle\) and \(\langle s \neq p\rangle\) and K2－line－intersect－twice［of \(p s\) ］
obtain \(q\) and \(r\) where \(q \neq r\) and \(q \in S\) and \(r \in S\)
and proj2－Col p s \(q\) and proj2－Col p s \(r\)
by auto
with \(\langle s \neq p\rangle\) and \(\langle p r o j 2\)－incident \(p l\rangle\) and \(\langle p r o j 2-i n c i d e n t s l\rangle\)
and proj2－incident－iff－Col［of ps］
have proj2－incident \(q l\) and proj2－incident \(r l\) by fast +
with \(\langle q \neq r\rangle\) and \(\langle q \in S\rangle\) and \(\langle r \in S\rangle\)
show \(\exists q r . q \neq r \wedge q \in S \wedge r \in S \wedge\) proj2－incident \(q l \wedge\) proj2－incident \(r l\) by auto
qed
lemma line－through－K2－intersect－S－again：
assumes \(p \in K 2\) and proj2－incident \(p l\)
shows \(\exists r . r \neq q \wedge r \in S \wedge\) proj2－incident \(r l\)
proof－
from \(\langle p \in K 2\rangle\) and \(\langle p r o j 2-i n c i d e n t ~ p l\rangle\)
and line－through－K2－intersect－S－twice［of \(p l\) ］
obtain \(s\) and \(t\) where \(s \neq t\) and \(s \in S\) and \(t \in S\)
and proj2－incident s \(l\) and proj2－incident \(t l\)
by auto
show \(\exists r . r \neq q \wedge r \in S \wedge\) proj2－incident \(r l\)
proof cases
assume \(t=q\)
with \(\langle s \neq t\rangle\) and \(\langle s \in S\rangle\) and \(\langle\) proj2－incident \(s l\rangle\)
have \(s \neq q \wedge s \in S \wedge\) proj2－incident s \(l\) by simp
```

 thus \existsr.r\not=q\wedger\inS\wedge proj2-incident r l ..
 next
 assume t\not=q
 with }\langlet\inS\rangle\mathrm{ and <proj2-incident t l>
 have }t\not=q\wedget\inS\wedge proj2-incident t l by simp
 thus \existsr.r\not=q\wedger\inS\wedge proj2-incident r l ..
 qed
 qed
lemma line-through-K2-intersect-S:
assumes p}\inK2 and proj2-incident p l
shows }\existsr.r\inS\wedge proj2-incident r
proof -
from assms
have \existsr.r\not=p^r\inS^ proj2-incident r l
by (rule line-through-K2-intersect-S-again)
thus \exists r.r G S^ proj2-incident rl by auto
qed
lemma line-intersect-S-at-most-twice:
\exists p q.}\forallr\inS.proj2-incident rl\longrightarrowr=p\veer=
proof -
from line-incident-point-not-in-S
obtain s where s\not\inS and proj2-incident s l by auto
let ?v = proj2-rep s
from proj2-another-point-on-line
obtain t where t\not=s and proj2-incident t l by auto
let ?w = proj2-rep t
have }?v\not=0\mathrm{ and }?w\not=0\mathrm{ by (rule proj2-rep-non-zero)+
let ?a = ?v • (M*v?v)
let ?b =2*(?v • (M*v?w))
let ?c = ? w \cdot (M*v?w)
from <s\not\inS` have ?a\not=0
unfolding S-def and conic-sgn-def
by auto
let ?j = (-?b + sqrt (discrim ?a ?b ?c)) / (2 * ?a)
let ?k = (-?b - sqrt (discrim ?a ?b ?c)) / (2 * ?a)
let ?p = proj2-abs (?j *R ?v + ?w)
let ?q = proj2-abs (?k ** ?v + ?w)
have }\forallr\inS.proj2-incident rl\longrightarrowr=?p\veer=?
proof
fix r
assume r GS
with }\langles\not\inS\rangle\mathrm{ have }r\not=s\mathrm{ by auto
{ assume proj2-incident rl
with }\langlet\not=s\rangle\mathrm{ and }\langler\not=s\rangle\mathrm{ and 〈proj2-incident s l> and <proj2-incident t l>
and proj2-incident-iff [of st l r]
obtain i}\mathrm{ where r= proj2-abs (i**R ?v + ?w) by auto

```
```

 with }\langler\inS\rangle\mathrm{ and }\langlet\not=s\rangle\mathrm{ and S-quadratic
 have ?a* i
 with \langle?a\not=0\rangle and discriminant-iff have i=?j \vee i=?k by simp
 with <r= proj2-abs (i**R ?v + ?w)\rangle have r=?p \vee
 thus proj2-incident rl\longrightarrowr=?p}\veer=?q.
 qed
 thus \exists pq.\forallr\inS. proj2-incident rl\longrightarrowr=p\veer=q by auto
 qed
lemma card-line-intersect-S:
assumes T\subseteqS and proj2-set-Col T
shows card T\leq2
proof -
from <proj2-set-Col T>
obtain l where }\forallp\inT. proj2-incident p l unfolding proj2-set-Col-def ..
from line-intersect-S-at-most-twice [of l]
obtain b and c where }\foralla\inS.proj2-incident a l \longrightarrowa=b\vee a=c by aut
with }\forall \forall\mp@code{T. proj2-incident pl> and <T\subseteqS〉
have T\subseteq{b,c} by auto
hence card T \leq card {b,c} by (simp add: card-mono)
also from card-suc-ge-insert [of b {c}] have ... \leq2 by simp
finally show card T\leq2.
qed
lemma line-S-two-intersections-only:
assumes }p\not=q\mathrm{ and }p\inS\mathrm{ and q}\inS\mathrm{ and }r\in
and proj2-incident pl and proj2-incident q l and proj2-incident r l
shows r=p\veer=q
proof -
from }\langlep\not=q\rangle\mathrm{ have card {p,q}=2 by simp
from }\langlep\inS\rangle\mathrm{ and }\langleq\inS\rangle\mathrm{ and }\langler\inS\rangle\mathrm{ have {r,p,q}}\subseteqS\mathrm{ by simp-all
from <proj2-incident pl> and \langleproj2-incident q l> and \langleproj2-incident r l>
have proj2-set-Col {r,p,q}
by (unfold proj2-set-Col-def) (simp add: exI [of-l])
with }{{r,p,q}\subseteqS\rangle\mathrm{ have card {r,p,q} < 2 by (rule card-line-intersect-S)
show r=p\veer=q
proof (rule ccontr)
assume }\neg(r=p\veer=q
hence r}\not\in{p,q} by sim
with <card {p,q} = 2` and card-insert-disjoint [of {p,q} r]
have card {r,p,q}=3 by simp
with <card {r,p,q}\leq2\rangle show False by simp
qed
qed
lemma line-through-K2-intersect-S-exactly-twice:

```
```

 assumes p}\inK2 and proj2-incident p
 shows \existsqr.q\not=r\wedgeq\inS\wedger\inS^ proj2-incident ql\wedge proj2-incident r l
 \wedge(\foralls\inS. proj2-incident s l\longrightarrows=q\vees=r)
 proof -
from <p\inK2\rangle and <proj2-incident pl>
and line-through-K2-intersect-S-twice [of p l]
obtain q}\mathrm{ and r where q}=r\mathrm{ and }q\inS\mathrm{ and r}\in
and proj2-incident q l and proj2-incident r l
by auto
with line-S-two-intersections-only
show \existsqr.q\not=r\wedgeq\inS\wedger\inS^ proj2-incident ql^ proj2-incident r l
\wedge (\forall s \in S . p r o j 2 - i n c i d e n t ~ s l \longrightarrow s = q \vee s = r)
by blast
qed
lemma tangent-not-through-K2:
assumes }p\inS\mathrm{ and q}\inK
shows \neg proj2-incident q(polar p)
proof
assume proj2-incident q (polar p)
with }\langleq\inK2\rangle\mathrm{ and line-through-K2-intersect-S-again [of q polar p p]
obtain r where r\not=p and r \inS and proj2-incident r (polar p) by auto
from }\langlep\inS\rangle\mathrm{ and }\langler\inS\rangle\mathrm{ and <proj2-incident r (polar p)>
have }r=p\mathrm{ by (rule point-in-S-polar-is-tangent)
with }\langler\not=p\rangle\mathrm{ show False ..
qed
lemma outside-exists-line-not-intersect-S:
assumes conic-sgn p=1
shows \existsl.proj2-incident pl\wedge(\forallq. proj2-incident q l \longrightarrowq\not\inS)
proof -
let ?r = proj2-intersection (polar p) z-zero
have proj2-incident ?r (polar p) and proj2-incident ?r z-zero
by (rule proj2-intersection-incident)+
from <proj2-incident ?r z-zero>
have conic-sgn ?r = 1 by (rule z-zero-conic-sgn-1)
with <conic-sgn p = 1>
have proj2-rep p • (M *v proj2-rep p)>0
and proj2-rep ?r • (M*v proj2-rep ?r) > 0
by (unfold conic-sgn-def) (simp-all add: sgn-1-pos)
from <proj2-incident ?r (polar p)>
have proj2-incident p (polar ?r) by (rule incident-polar-swap)
hence proj2-rep p • (M*v proj2-rep ?r) = 0 by (simp add: incident-polar)
have p\not=?r
proof
assume p=?r
with <proj2-incident ?r (polar p)> have proj2-incident p (polar p) by simp

```
```

 hence proj2-rep p • (M*v proj2-rep p)=0 by (simp add: incident-polar)
 with <proj2-rep p • (M*v proj2-rep p)>0\rangle show False by simp
 qed
let ?l = proj2-line-through p ?r
have proj2-incident p ?l and proj2-incident ?r ?l
by (rule proj2-line-through-incident)+
have }\forall q. proj2-incident q ?l \longrightarrowq\not\in
proof
fix q
show proj2-incident q ?l }\longrightarrowq\not\in
proof
assume proj2-incident q?l
with }\langlep\not=?r\rangle\mathrm{ and 〈proj2-incident p ?l> and <proj2-incident ?r ?l>
have q=p\vee(\exists k.q= proj2-abs (k*R proj2-rep p + proj2-rep ?r))
by (simp add: proj2-incident-iff [of p ?r ?l q])
show q}\not\in
proof cases
assume q=p
with \conic-sgn p=1` show q}\not\inS\mathrm{ by (unfold S-def) simp
next
assume q}=
with }\langleq=p\vee(\exists k.q= proj2-abs (k\mp@subsup{*}{R}{}\mathrm{ proj2-rep p + proj2-rep ?r))>
obtain k where q = proj2-abs (}k\mp@subsup{*}{R}{}\mathrm{ proj2-rep p + proj2-rep ?r)
by auto
from <proj2-rep p • (M*v proj2-rep p)>0>
have proj2-rep p • (M*v proj2-rep p)* k
by simp
with <proj2-rep p • (M*v proj2-rep ?r) = 0>
and \proj2-rep ?r • (M *v proj2-rep ?r) > 0>
have proj2-rep p • (M*v proj2-rep p)* k
+ proj2-rep p • (M*v proj2-rep ?r)*2*k
+ proj2-rep ?r • (M *v proj2-rep ?r)
> 0
by simp
with }\langlep\not=? ?r\rangle and \langleq= proj2-abs (k*R proj2-rep p + proj2-rep ?r)
show q}\not\inS\mathrm{ by (simp add: S-quadratic)
qed
qed
qed
with <proj2-incident p ?l>
show \existsl. proj2-incident pl\wedge(\forall q. proj2-incident ql\longrightarrowq}\longrightarrow\not<S
by (simp add: exI [of - ?l])
qed
lemma lines-through-intersect-S-twice-in-K2:
assumes }\foralll.proj2-incident p

```
\(\longrightarrow(\exists q r . q \neq r \wedge q \in S \wedge r \in S \wedge\) proj2－incident \(q l \wedge\) proj2－incident \(r l)\) shows \(p \in K\) 2 proof（rule ccontr）
assume \(p \notin K 2\)
hence conic－sgn \(p \geq 0\) by（unfold K2－def）simp
have \(\neg(\forall l\). proj2－incident \(p l \longrightarrow(\exists q r\) ． \(q \neq r \wedge q \in S \wedge r \in S \wedge\) proj2－incident \(q l \wedge\) proj2－incident \(r l))\)
proof cases
assume conic－sgn \(p=0\)
hence \(p \in S\) unfolding \(S\)－def ．．
hence proj2－incident \(p\)（polar \(p\) ）by（simp add：incident－own－polar－in－S）
let ？l＝polar \(p\)
have \(\neg(\exists q r\) ．
\(q \neq r \wedge q \in S \wedge r \in S \wedge\) proj2－incident \(q\) ？l \(\wedge\) proj2－incident \(r\) ？l）
proof
assume \(\exists q r\) ．
\(q \neq r \wedge q \in S \wedge r \in S \wedge\) proj2－incident \(q ? l \wedge\) proj2－incident \(r\) ？l
then obtain \(q\) and \(r\) where \(q \neq r\) and \(q \in S\) and \(r \in S\)
and proj2－incident \(q\) ？l and proj2－incident \(r\) ？l
by auto
from \(\langle p \in S\rangle\) and \(\langle q \in S\rangle\) and \(\langle p r o j 2-i n c i d e n t ~ q ? l\rangle\)
and \(\langle r \in S\rangle\) and \(\langle p r o j 2-i n c i d e n t r e l\rangle\)
have \(q=p\) and \(r=p\) by（simp add：point－in－S－polar－is－tangent）+
with \(\langle q \neq r\rangle\) show False by simp
qed
with 〈proj2－incident p ？l＞
show \(\neg(\forall\) l．proj2－incident \(p l \longrightarrow(\exists q r\) ．
\(q \neq r \wedge q \in S \wedge r \in S \wedge\) proj2－incident \(q l \wedge\) proj2－incident \(r l))\)
by auto
next
assume conic－sgn \(p \neq 0\)
with 〈conic－sgn \(p \geq 0\rangle\) have conic－sgn \(p>0\) by simp
hence \(\operatorname{sgn}(\) conic－sgn \(p)=1\) by simp
hence conic－sgn \(p=1\) by（simp add：sgn－conic－sgn）
with outside－exists－line－not－intersect－S
obtain \(l\) where proj2－incident \(p l\) and \(\forall q\) ．proj2－incident \(q l \longrightarrow q \notin S\)
by auto
have \(\neg(\exists q r\) ．
\(q \neq r \wedge q \in S \wedge r \in S \wedge\) proj2－incident \(q l \wedge\) proj2－incident \(r l)\)
proof
assume \(\exists q r\) ．
\(q \neq r \wedge q \in S \wedge r \in S \wedge\) proj2－incident \(q l \wedge\) proj2－incident \(r l\)
then obtain \(q\) where \(q \in S\) and proj2－incident \(q l\) by auto
from 〈proj2－incident \(q l\rangle\) and \(\langle\forall q\) ．proj2－incident \(q l \longrightarrow q \notin S\rangle\)
have \(q \notin S\) by simp
with \(\langle q \in S\rangle\) show False by simp
qed
with 〈proj2－incident \(p l\rangle\)
```

 show }\neg(\foralll. proj2-incident pl\longrightarrow(\existsqr
 q\not=r\wedgeq\inS\wedger\inS^ proj2-incident q l ^ proj2-incident r l))
 by auto
 qed
 with }\forall l. proj2-incident pl\longrightarrow(\existsqr
 q\not=r\wedgeq\inS \ r GS^ proj2-incident ql^ proj2-incident r l)>
 show False by simp
 qed
lemma line-through-hyp2-pole-not-in-hyp2:
assumes a \in hyp2 and proj2-incident a l
shows pole l \& hyp2
proof -
from assms and line-through-K2-intersect-S
obtain p where p\inS and proj2-incident pl by auto
from <proj2-incident pl>
have proj2-incident (pole l) (polar p) by (rule incident-pole-polar)
with \langlep\inS\rangle
show pole l \& hyp2
by (auto simp add: tangent-not-through-K2)
qed
lemma statement60-one-way:
assumes is-K2-isometry J and p\inK2
shows apply-cltn2 p J \inK2 (is ? p ' \inK2)
proof -
let ? J' = cltn2-inverse J
have }\forall\mp@subsup{l}{}{\prime}\mathrm{ . proj2-incident ? p}\mp@subsup{p}{}{\prime}\mp@subsup{l}{}{\prime}\longrightarrow(\exists\mp@subsup{q}{}{\prime}\mp@subsup{r}{}{\prime}
q
proof
fix l }\mp@subsup{l}{}{\prime
let ?l = apply-cltn2-line l' ? J'
show proj2-incident ? }\mp@subsup{p}{}{\prime}\mp@subsup{l}{}{\prime}\longrightarrow(\exists\mp@subsup{q}{}{\prime}\mp@subsup{r}{}{\prime}
q
proof
assume proj2-incident ?p' l'
hence proj2-incident p ?l
by (simp add: apply-cltn2-incident [of p l' ?J]
cltn2.inv-inv [simplified])
with }\langlep\inK2\rangle and line-through-K2-intersect-S-twice [of p ?l]
obtain q}\mathrm{ and }r\mathrm{ where }q\not=r\mathrm{ and }q\inS\mathrm{ and }r\in
and proj2-incident q ?l and proj2-incident r ?l
by auto
let ? }\mp@subsup{q}{}{\prime}=apply-cltn2 q J
let ? }\mp@subsup{r}{}{\prime}=\mathrm{ apply-cltn2 r J
from }\langleq\not=r\rangle\mathrm{ and apply-cltn2-injective [of qJr] have ? ? '}\not==?\mp@subsup{r}{}{\prime}\mathrm{ by auto

```
```

 from }\langleq\inS\rangle\mathrm{ and }\langler\inS\rangle\mathrm{ and <is-K2-isometry J>
 have ? }\mp@subsup{q}{}{\prime}\inS\mathrm{ and ?r r}\inS by (unfold is-K2-isometry-def) simp-all
 from 〈proj2-incident q ?l\rangle and <proj2-incident r ?l>
 have proj2-incident ? q' l' and proj2-incident ?r' l'
 by (simp-all add: apply-cltn2-incident [of - l' ?J]
 cltn2.inv-inv [simplified])
 with }\langle?\mp@subsup{q}{}{\prime}\not=?r\mp@subsup{r}{}{\prime}\rangle\mathrm{ and }\langle?\mp@subsup{q}{}{\prime}\inS\rangle\mathrm{ and }\langle?r\mp@subsup{r}{}{\prime}\inS
 show }\exists\mp@subsup{q}{}{\prime}\mp@subsup{r}{}{\prime}\mathrm{ .
 q
 by auto
 qed
 qed
    ```

```

qed
lemma is-K2-isometry-hyp2-S:
assumes p G hyp2 \cupS and is-K2-isometry J
shows apply-cltn2 p J G hyp2 \cupS
proof cases
assume p\in hyp2
with \is-K2-isometry J〉
have apply-cltn2 p J G hyp2 by (rule statement60-one-way)
thus apply-cltn2 p J G hyp2 \cupS ..
next
assume p\not\inhyp2
with }\langlep\inhyp2\cupS\rangle\mathrm{ have }p\inS\mathrm{ by simp
with \is-K2-isometry J\rangle
have apply-cltn2 p J \inS by (unfold is-K2-isometry-def) simp
thus apply-cltn2 p J hyp2 \cupS ..
qed
lemma is-K2-isometry-z-non-zero:
assumes p G hyp2 \cupS and is-K2-isometry J
shows z-non-zero (apply-cltn2 p J)
proof -
from }\langlep\inhyp2\cupS\rangle\mathrm{ and \is-K2-isometry J>
have apply-cltn2 p J G hyp2 \cupS by (rule is-K2-isometry-hyp2-S)
thus z-non-zero (apply-cltn2 p J) by (rule hyp2-S-z-non-zero)
qed
lemma cart2-append1-apply-cltn2:
assumes p G hyp2 \cupS and is-K2-isometry J
shows \existsk. k\not=0
^cart2-append1 p v* cltn2-rep J =k*R cart2-append1 (apply-cltn2 p J)
proof -
have cart2-append1 p v* cltn2-rep J
=(1 / (proj2-rep p)\$3)** (proj2-rep p v* cltn2-rep J)
by (unfold cart2-append1-def) (simp add: scalar-vector-matrix-assoc)

```
```

from $\langle p \in h y p 2 \cup S\rangle$ have (proj2-rep p) $\$ 3 \neq 0$ by (rule hyp2-S-z-non-zero)
from apply-cltn2-imp-mult $\left[\begin{array}{ll}\text { of } p & J\end{array}\right]$
obtain j where $j \neq 0$
and proj2-rep p $v *$ cltn2-rep $J=j *_{R}$ proj2-rep (apply-cltn2 p J)
by auto
from $\langle p \in h y p 2 \cup S\rangle$ and $\langle i s$-K2-isometry $J\rangle$
have z-non-zero (apply-cltn2 p J) by (rule is-K2-isometry-z-non-zero)
hence proj2-rep (apply-cltn2 p J)
$=($ proj2-rep $($ apply-cltn2 $p J)) \$ 3 *_{R}$ cart2-append1 (apply-cltn2 p J)
by (rule proj2-rep-cart2-append1)
let ? $k=1 /($ proj2-rep $p) \$ 3 * j *($ proj2-rep $($ apply-cltn2 $p J)) \$ 3$
from $\langle($ proj2-rep p) $\$ 3 \neq 0\rangle$ and $\langle j \neq 0\rangle$
and 〈(proj2-rep $($ apply-cltn2 $p J)) \$ 3 \neq 0\rangle$
have $? k \neq 0$ by simp
from 〈cart2-append1 $p v *$ cltn2-rep J
$=\left(1 /\left(\right.\right.$ proj2-rep p)\$3) $*_{R}($ proj2-rep p $v *$ cltn2-rep $J)$)
and 〈proj2-rep p $v *$ cltn2-rep $J=j *_{R}$ proj2-rep (apply-cltn2 p J) >
have cart2-append1 p v* cltn2-rep J
$=\left(1 /\left(\right.\right.$ proj2-rep p)\$ 3*j) $*_{R}$ proj2-rep (apply-cltn2 p J)
by simp
from <proj2-rep (apply-cltn2 p J)
$=($ proj2-rep $($ apply-cltn2 $p J)) \$ 3 *_{R}$ cart2-append1 (apply-cltn2 p J) \rangle
have $(1 /($ proj2-rep $p) \$ 3 * j) *_{R}$ proj2-rep (apply-cltn2 $\left.p J\right)$
$=(1 /($ proj2-rep p $) \$ 3 * j) *_{R}(($ proj2-rep $($ apply-cltn2 p J) $) \$ 3$
$*_{R}$ cart2-append1 (apply-cltn2 $\left.p J\right)$)
by simp
with 〈cart2-append1 p v* cltn2-rep J
$=(1 /($ proj2-rep p)\$3*j)*R proj2-rep $($ apply-cltn2 p J) \rangle
have cart2-append1 p $v *$ cltn2-rep $J=? k *_{R}$ cart2-append1 (apply-cltn2 p J)
by simp
with 〈? $k \neq 0$ 〉
show $\exists k . k \neq 0$
\wedge cart2-append1 p v* cltn2-rep $J=k *_{R}$ cart2-append1 (apply-cltn2 p J)
by (simp add: exI [of - ? $k]$)
qed

```

\section*{9．5 The \(K\)－isometries form a group action}
lemma hyp2－cltn2－id［simp］：hyp2－cltn2 \(p\) cltn2－id \(=p\)
by（unfold hyp2－cltn2－def）（simp add：Rep－hyp2－inverse）
lemma apply－cltn2－Rep－hyp2：
assumes is－K2－isometry \(J\)
```

 shows apply-cltn2 (Rep-hyp2 p) J \in hyp2
 proof -
from <is-K2-isometry J` and Rep-hyp2 [of p]
show apply-cltn2 (Rep-hyp2 p) J G K2 by (rule statement60-one-way)
qed
lemma Rep-hyp2-cltn2:
assumes is-K2-isometry J
shows Rep-hyp2 (hyp2-cltn2 p J) = apply-cltn2 (Rep-hyp2 p) J
proof -
from \is-K2-isometry J\rangle
have apply-cltn2 (Rep-hyp2 p) J G hyp2 by (rule apply-cltn2-Rep-hyp2)
thus Rep-hyp2 (hyp2-cltn2 p J) = apply-cltn2 (Rep-hyp2 p) J
by (unfold hyp2-cltn2-def) (rule Abs-hyp2-inverse)
qed
lemma hyp2-cltn2-compose:
assumes is-K2-isometry H
shows hyp2-cltn2 (hyp2-cltn2 p H) J= hyp2-cltn2 p (cltn2-compose H J)
proof -
from 〈is-K2-isometry H\rangle
have apply-cltn2 (Rep-hyp2 p) H \in hyp2 by (rule apply-cltn2-Rep-hyp2)
thus hyp2-cltn2 (hyp2-cltn2 p H) J = hyp2-cltn2 p (cltn2-compose H J)
by (unfold hyp2-cltn2-def) (simp add: Abs-hyp2-inverse apply-cltn2-compose)
qed
interpretation K2-isometry: action
(|carrier = Collect is-K2-isometry, mult = cltn2-compose, one = cltn2-id |)
hyp2-cltn2
proof
let ?G =
(|carrier = Collect is-K2-isometry, mult = cltn2-compose, one = cltn2-id |)
fix p
show hyp2-cltn2 p 1?G}=
by (unfold hyp2-cltn2-def) (simp add: Rep-hyp2-inverse)
fix H J
show }H\in\mathrm{ carrier ? G }\wedgeJ\in\mathrm{ carrier ?G
\longrightarrow ~ h y p 2 - c l t n 2 ~ (h y p 2 - c l t n 2 ~ p ~ H) ~ J ~ = ~ h y p 2 - c l t n 2 ~ p ~ (H \otimes ? G ~ J) ~
by (simp add: hyp2-cltn2-compose)
qed

```

\subsection*{9.6 The Klein-Beltrami model satisfies Tarski's first three axioms}
lemma three-in-S-tangent-intersection-no-3-Col:
assumes \(p \in S\) and \(q \in S\) and \(r \in S\)
and \(p \neq q\) and \(r \notin\{p, q\}\)
shows proj2-no-3-Col \{proj2-intersection (polar \(p\) ) (polar \(q\) ), r, \(p, q\}\)
(is proj2-no-3-Col \(\{? s, r, p, q\}\) )
```

proof -
let ?T = {?s,r,p,q}
from }\langlep\not=q\rangle\mathrm{ have card {p,q} = 2 by simp
with <r\not\in{p,q}` have card {r,p,q} = 3 by simp from}\langlep\inS\rangle\mathrm{ and }\langleq\inS\rangle\mathrm{ and }\langler\inS\rangle\mathrm{ have }{r,p,q}\subseteqS\mathrm{ by simp have proj2-incident ?s (polar p) and proj2-incident ?s (polar q) by (rule proj2-intersection-incident)+ have ?s & S proof assume ?s }\in with }\langlep\inS\rangle\mathrm{ and <proj2-incident ?s (polar p)> and }\langleq\inS\rangle\mathrm{ and <proj2-incident ?s (polar q)> have ?s = p and ?s = q by (simp-all add: point-in-S-polar-is-tangent) hence }p=q\mathrm{ by simp with }\langlep\not=q\rangle\mathrm{ show False .. qed with }\langle{r,p,q}\subseteqS\rangle\mathrm{ have ?s }\not\in{r,p,q} by aut with <card {r,p,q} = 3` have card {?s,r,p,q} = 4 by simp
have }\forallt\in?T.\neg projQ-set-Col (?T - {t}
proof standard+
fix }
assume t\in?T
assume proj2-set-Col (?T - {t})
then obtain l where }\foralla\in(?T-{t}). proj2-incident a l
unfolding proj2-set-Col-def ..
from 〈proj2-set-Col (?T - {t})>
have proj2-set-Col (S\cap(?T - {t}))
by (simp add: proj2-subset-Col [of (S\cap(?T - {t}))?T - {t}])
hence card (S\cap(?T - {t}))\leq2 by (simp add: card-line-intersect-S)
show False
proof cases
assume t=?s
with <?s \not\in{r,p,q}` have ?T - {t} = {r,p,q} by simp with }\langle{r,p,q}\subseteqS\rangle\mathrm{ have }S\cap(?T-{t})={r,p,q} by sim with <card {r,p,q} = 3> and <card (S\cap (?T - {t})) \leq 2` show False by
simp
next
assume t t= ?s
hence ?s }\in?T-{t}\mathrm{ by simp
with \&\forall a (?T - {t}). proj2-incident a l> have proj2-incident ?s l ..
from }\langlep\not=q\rangle\mathrm{ have }{p,q}\cap??T-{t}\not={} by aut

```
then obtain \(d\) where \(d \in\{p, q\}\) and \(d \in ? T-\{t\}\) by auto from \(\langle d \in ? T-\{t\}\rangle\) and \(\langle\forall a \in(? T-\{t\})\) ．proj2－incident \(a l\rangle\)
have proj2－incident \(d l\) by simp
from \(\langle d \in\{p, q\}\rangle\)
and 〈proj2－incident？s（polar p）〉
and 〈proj2－incident？s（polar q）〉
have proj2－incident ？s（polar d）by auto
from \(\langle d \in\{p, q\}\rangle\) and \(\langle\{r, p, q\} \subseteq S\rangle\) have \(d \in S\) by auto
hence proj2－incident \(d\)（polar d）by（unfold incident－own－polar－in－S）
from \(\langle d \in S\rangle\) and \(\langle ? s \notin S\rangle\) have \(d \neq ? s\) by auto
with 〈proj2－incident？s l〉
and \(\langle\) proj2－incident \(d l\rangle\)
and 〈proj2－incident ？s（polar d）〉
and \(\langle p r o j 2-i n c i d e n t d\)（polar d）\(\rangle\)
and proj2－incident－unique
have \(l=\) polar \(d\) by auto
with \(\langle d \in S\rangle\) and point－in－S－polar－is－tangent
have \(\forall a \in S\) ．proj2－incident a \(l \longrightarrow a=d\) by simp
with \(\forall \forall a \in(? T-\{t\})\) ．proj2－incident \(a l>\)
have \(S \cap(? T-\{t\}) \subseteq\{d\}\) by auto
with card－mono \([\) of \(\{d\}]\) have card \((S \cap(? T-\{t\})) \leq 1\) by simp
hence card \(((S \cap ? T)-\{t\}) \leq 1\) by（simp add：Int－Diff）
have \(S \cap ? T \subseteq\) insert \(t((S \cap ? T)-\{t\})\) by auto
with card－suc－ge－insert［of \(t(S \cap ? T)-\{t\}]\)
and card－mono［of insert \(t((S \cap ? T)-\{t\}) S \cap ? T]\)
have \(\operatorname{card}(S \cap ? T) \leq \operatorname{card}((S \cap ? T)-\{t\})+1\) by simp
with \(\langle\operatorname{card}((S \cap ? T)-\{t\}) \leq 1\rangle\) have \(\operatorname{card}(S \cap ? T) \leq 2\) by simp
from \(\langle\{r, p, q\} \subseteq S\rangle\) have \(\{r, p, q\} \subseteq S \cap ? T\) by \(\operatorname{simp}\)
with \(\langle\) card \(\{r, p, q\}=3\rangle\) and card－mono \([\) of \(S \cap ? T\{r, p, q\}\) ］
have card \((S \cap ? T) \geq 3\) by simp
with \(\langle\) card \((S \cap ? T) \leq 2\) ）show False by simp
qed
qed
with 〈card ？T＝4〉 show proj2－no－3－Col ？T unfolding proj2－no－3－Col－def ．．
qed
lemma statement65－special－case：
assumes \(p \in S\) and \(q \in S\) and \(r \in S\) and \(p \neq q\) and \(r \notin\{p, q\}\)
shows \(\exists\) J．is－K2－isometry \(J\)
\(\wedge\) apply－cltn2 east \(J=p\)
\(\wedge\) apply－cltn2 west \(J=q\)
\(\wedge\) apply－cltn2 north \(J=r\)
\(\wedge\) apply－cltn2 far－north \(J=\) proj2－intersection（polar \(p\) ）（polar q）
proof－
```

let ?s = proj2-intersection (polar p) (polar q)

```
let ?t \(=\) vector \([\) vector \([? s, r, p, q]\), vector \([\) far-north, north, east, west \(]]\)
    :: proj2^4^2
have range \((\) op \(\$(?+\$ 1))=\{? s, r, p, q\}\)
    unfolding image-def
    by (auto simp add: UNIV-4 vector-4)
with \(\langle p \in S\rangle\) and \(\langle q \in S\rangle\) and \(\langle r \in S\rangle\) and \(\langle p \neq q\rangle\) and \(\langle r \notin\{p, q\}\rangle\)
have proj2-no-3-Col (range (op \$ (?t \$1)))
    by (simp add: three-in-S-tangent-intersection-no-3-Col)
moreover have range (op \(\$(? t \$ 2))=\{\) far-north, north, east, west \(\}\)
    unfolding image-def
    by (auto simp add: UNIV-4 vector-4)
    with compass-in-S and east-west-distinct and north-not-east-or-west
    and east-west-tangents-far-north
    and three-in-S-tangent-intersection-no-3-Col [of east west north]
have proj2-no-3-Col (range (op \$ (?t\$2))) by simp
ultimately have \(\forall\) i. proj2-no-3-Col (range (op \$ (?t\$i)))
    by (simp add: forall-2)
hence \(\exists J . \forall j\). apply-cltn2 \((? t \$ 0 \$ j) J=? t \$ 1 \$ j\)
    by (rule statement53-existence)
moreover have \(0=(2:: 2)\) by \(\operatorname{simp}\)
ultimately obtain \(J\) where \(\forall j\). apply-cltn2 (?t \(\$ 2 \$ j) J=? t \$ 1 \$ j\) by auto
hence apply-cltn2 (?t\$2\$1) \(J=? t \$ 1 \$ 1\)
    and apply-cltn2 (? 2 \$2\$2) \(J=?+\$ 1 \$ 2\)
    and apply-cltn2 (?t\$2\$3) \(J=? t \$ 1 \$ 3\)
    and apply-cltn2 \((?+\$ 2 \$ 4) J=? t \$ 1 \$ 4\)
    by simp-all
hence apply-cltn2 east \(J=p\)
    and apply-cltn2 west \(J=q\)
    and apply-cltn2 north \(J=r\)
    and apply-cltn2 far-north \(J=\) ?s
    by (simp-all add: vector-2 vector-4)
with compass-non-zero
have \(p=\) proj2-abs (vector \([1,0,1] v *\) cltn2-rep \(J\) )
    and \(q=\) proj2-abs (vector \([-1,0,1] v *\) cltn2-rep \(J\) )
    and \(r=\) proj2-abs (vector \([0,1,1] v *\) cltn2-rep \(J\) )
    and \(? s=\) proj2-abs \((\) vector \([0,1,0] \quad v *\) cltn2-rep \(J)\)
    unfolding compass-defs and far-north-def
    by (simp-all add: apply-cltn2-left-abs)
let ? \(N=\) cltn2-rep \(J * * M * *\) transpose (cltn2-rep \(J\) )
from M-symmatrix have symmatrix ? \(N\) by (rule symmatrix-preserve)
hence \(? N \$ 2 \$ 1=? N \$ 1 \$ 2\) and \(? N \$ 3 \$ 1=? N \$ 1 \$ 3\) and \(? N \$ 3 \$ 2=? N \$ 2 \$ 3\)
    unfolding symmatrix-def and transpose-def
    by (simp-all add: vec-eq-iff)
from compass-non-zero and 〈apply-cltn2 east \(J=p\rangle\) and \(\langle p \in S\rangle\)
    and apply-cltn2-abs-in-S [of vector \([1,0,1] J]\)
have (vector \([1,0,1]::\) real^ 3\() \cdot(? N * v\) vector \([1,0,1])=0\)
```

 unfolding east-def
 by simp
 hence ? \(N \$ 1 \$ 1+? N \$ 1 \$ 3+? N \$ 3 \$ 1+? N \$ 3 \$ 3=0\)
 unfolding inner-vec-def and matrix-vector-mult-def
 by (simp add: setsum-3 vector-3)
 with \(\langle ? N \$ 3 \$ 1=? N \$ 1 \$ 3\rangle\) have ? \(N \$ 1 \$ 1+2 *(? N \$ 1 \$ 3)+? N \$ 3 \$ 3=0\) by
 simp

```
    from compass-non-zero and 〈apply-cltn2 west \(J=q\rangle\) and \(\langle q \in S\rangle\)
    and apply-cltn2-abs-in-S [of vector \([-1,0,1] J]\)
    have (vector \([-1,0,1]::\) real 3\() \cdot(? N * v\) vector \([-1,0,1])=0\)
    unfolding west-def
    by simp
    hence ? \(N \$ 1 \$ 1-? N \$ 1 \$ 3-? N \$ 3 \$ 1+? N \$ 3 \$ 3=0\)
    unfolding inner-vec-def and matrix-vector-mult-def
    by (simp add: setsum-3 vector-3)
    with \(\langle ? N \$ 3 \$ 1=? N \$ 1 \$ 3\rangle\) have ? \(N \$ 1 \$ 1-2 *(? N \$ 1 \$ 3)+? N \$ 3 \$ 3=0\) by
simp
    with \(\langle ? N \$ 1 \$ 1+2 *(? N \$ 1 \$ 3)+? N \$ 3 \$ 3=0\rangle\)
    have ? \(N \$ 1 \$ 1+2 *(? N \$ 1 \$ 3)+? N \$ 3 \$ 3=? N \$ 1 \$ 1-2 *(? N \$ 1 \$ 3)+\)
? N\$3\$3
    by simp
    hence ? \(N \$ 1 \$ 3=0\) by simp
    with \(\langle ? N \$ 1 \$ 1+2 *(? N \$ 1 \$ 3)+? N \$ 3 \$ 3=0\rangle\) have \(? N \$ 3 \$ 3=-(? N \$ 1 \$ 1)\)
by \(\operatorname{simp}\)
    from compass-non-zero and \(\langle a p p l y\)-cltn2 north \(J=r\rangle\) and \(\langle r \in S\rangle\)
    and apply-cltn2-abs-in-S [of vector \([0,1,1] J]\)
    have (vector \([0,1,1]::\) real \(\left.{ }^{\wedge} 3\right) \cdot(? N * v\) vector \([0,1,1])=0\)
    unfolding north-def
    by simp
    hence ? \(N \$ 2 \$ 2+? N \$ 2 \$ 3+? N \$ 3 \$ 2+? N \$ 3 \$ 3=0\)
    unfolding inner-vec-def and matrix-vector-mult-def
    by (simp add: setsum-3 vector-3)
    with «? \(N \$ 3 \$ 2=? N \$ 2 \$ 3\) 〉 have ? \(N \$ 2 \$ 2+2 *(? N \$ 2 \$ 3)+? N \$ 3 \$ 3=0\) by
simp
have proj2-incident ?s (polar p) and proj2-incident ?s (polar q)
    by (rule proj2-intersection-incident)+
    from compass-non-zero
    have vector \([1,0,1] \quad v *\) cltn2-rep \(J \neq 0\)
    and vector \([-1,0,1] \quad v *\) cltn2-rep \(J \neq 0\)
    and vector \([0,1,0] v *\) cltn2-rep \(J \neq 0\)
    by (simp-all add: non-zero-mult-rep-non-zero)
    from \(\langle\) vector \([1,0,1] v *\) cltn2-rep \(J \neq 0\rangle\)
    and 〈vector \([-1,0,1] \quad v *\) cltn2-rep \(J \neq 0\) 〉
    and \(\langle p=\) proj2-abs (vector \([1,0,1]\) v* cltn2-rep \(J\) ) \(\rangle\)
    and \(\langle q=\) proj2-abs (vector \([-1,0,1]\) v* cltn2-rep \(J\) ) 〉
```

 have polar p = proj2-line-abs (M*v (vector [1,0,1] v* cltn2-rep J))
 and polar q = proj2-line-abs (M*v (vector [-1,0,1] v* cltn2-rep J))
 by (simp-all add: polar-abs)
 from <vector [1,0,1] v* cltn2-rep J = 0>
 and <vector [-1,0,1] v* cltn2-rep J F 0>
 and M-invertible
 have M*v(vector [1,0,1] v* cltn2-rep J)}\not=
and M*v (vector [-1,0,1] v* cltn2-rep J) }=
by (simp-all add: invertible-times-non-zero)
with <vector [0,1,0] v* cltn2-rep J = 0>
and <polar p = proj2-line-abs (M*v (vector [1,0,1] v* cltn2-rep J))>
and <polar q = proj2-line-abs (M*v (vector [-1,0,1] v* cltn2-rep J))>
and 〈?s = proj2-abs (vector [0,1,0] v* cltn2-rep J)>
have proj2-incident ?s (polar p)
\longleftrightarrow (vector [0,1,0] v* cltn2-rep J)
- (M*v (vector [1,0,1] v* cltn2-rep J)) = 0
and proj2-incident ?s (polar q)
\longleftrightarrow vector [0,1,0] v* cltn2-rep J)
- (M*v (vector [-1,0,1] v* cltn2-rep J)) = 0
by (simp-all add: proj2-incident-abs)
with \proj2-incident ?s (polar p)> and \proj2-incident ?s (polar q)>
have (vector [0,1,0] v* cltn2-rep J)
- (M*v (vector [1,0,1] v* cltn2-rep J)) = 0
and (vector [0,1,0] v* cltn2-rep J)
- (M*v (vector [-1,0,1] v* cltn2-rep J)) = 0
by simp-all
hence vector [0,1,0] \cdot (?N *v vector [1,0,1]) =0
and vector [0,1,0] \cdot(?N*v vector [-1,0,1])=0
by (simp-all add:dot-lmul-matrix matrix-vector-mul-assoc [symmetric])
hence ?N\$2\$1 + ?N\$2\$3 = 0 and -(?N\$2\$1) + ?N\$2\$3 = 0
unfolding inner-vec-def and matrix-vector-mult-def
by (simp-all add: setsum-3 vector-3)
hence ?N\$2\$1 + ?N\$2\$3 = - ? N N 2\$1) + ?N\$2\$3 by simp
hence ? N\$2\$1=0 by simp
with <?N\$2\$1 + ?N\$2\$3 = 0> have ? N\$2\$3 = 0 by simp
with <?N\$2\$2 + 2 * (?N\$2\$3) + ?N\$3\$3 = 0` and <?N\$3\$3 = - (?N\$1\$1)>
have ?N\$2\$2 = ?N\$1\$1 by simp
with <? N\$1\$3 = 0\rangle and <?N\$2\$1 = ?N\$1\$2\rangle and \langle?N\$1\$3 = 0\rangle
and \langle?N\$2\$1 = 0\rangle and <?N\$2\$2 = ?N\$1\$1> and <? N\$2\$3 = 0\rangle
and \langle?N\$3\$1 = ?N\$1\$3> and \?N\$3\$2 = ?N\$2\$3> and \?N\$3\$3 =
-(?N\$1\$1)>
have ?N = (?N\$1\$1) *R M
unfolding M-def
by (simp add: vec-eq-iff vector-3 forall-3)
have invertible (cltn2-rep J) by (rule cltn2-rep-invertible)
with M-invertible
have invertible ?N by (simp add: invertible-mult transpose-invertible)

```
```

 hence ? \(N \neq 0\) by (auto simp add: zero-not-invertible)
 with \(\left\langle ? N=(? N \$ 1 \$ 1) *_{R} M\right\rangle\) have \(? N \$ 1 \$ 1 \neq 0\) by auto
 with \(\left\langle ? N=(? N \$ 1 \$ 1) *_{R} M\right\rangle\)
 have is-K2-isometry (cltn2-abs (cltn2-rep J))
 by (simp add: J-M-J-transpose-K2-isometry)
 hence is-K2-isometry \(J\) by (simp add: cltn2-abs-rep)
 with 〈apply-cltn2 east \(J=p\rangle\)
 and 〈apply-cltn2 west \(J=q\rangle\)
 and 〈apply-cltn2 north \(J=r\rangle\)
 and 〈apply-cltn2 far-north \(J=\) ?s \(\rangle\)
 show \(\exists J\). is-K2-isometry \(J\)
 \(\wedge\) apply-cltn2 east \(J=p\)
 \(\wedge\) apply-cltn2 west \(J=q\)
 \(\wedge\) apply-cltn2 north \(J=r\)
 \(\wedge\) apply-cltn2 far-north \(J=\) ?s
 by auto
 qed
lemma statement66-existence:
assumes $a 1 \in K 2$ and $a 2 \in K 2$ and $p 1 \in S$ and $p 2 \in S$
shows $\exists J$. is-K2-isometry $J \wedge$ apply-cltn2 a1 $J=a 2 \wedge$ apply-cltn2 $p 1 J=p 2$
proof -
let $? a=$ vector $[a 1, a 2]:: p r o j 2^{\wedge}$ ²
from $\langle a 1 \in K 2\rangle$ and $\langle a 2 \in K 2\rangle$ have $\forall i . ? a \$ i \in K 2$ by (simp add: forall-2)
let $? p=$ vector $[p 1, p 2]::$ proj2^2
from $\langle p 1 \in S\rangle$ and $\langle p 2 \in S\rangle$ have $\forall i . ? p \$ i \in S$ by (simp add: forall-2)
let ?l $=\chi$ i. proj2-line-through $(? a \$ i)(? p \$ i)$
have \forall i. proj2-incident $(? a \$ i)(? 1 \$ i)$
by (simp add: proj2-line-through-incident)
hence proj2-incident (?a\$1) (?1\$1) and proj2-incident (?a\$2) (?1\$2)
by fast +
have $\forall i$. proj2-incident $(? p \$ i)(? 1 \$ i)$
by (simp add: proj2-line-through-incident)
hence proj2-incident (?p\$1) (?1\$1) and proj2-incident (?p\$2) (?1\$2)
by fast +
let $? q=\chi$ i. ϵ qi. $q i \neq ? p \$ i \wedge q i \in S \wedge p r o j 2-i n c i d e n t ~ q i(? l \$ i)$
have $\forall i$. ? $q \$ i \neq ? p \$ i \wedge ? q \$ i \in S \wedge$ proj2-incident $(? q \$ i)(? 1 \$ i)$
proof
fix i
from $\langle\forall i$. ? $a \$ i \in K 2\rangle$ have ? $a \$ i \in K 2$..
from $\langle\forall$ i. proj2-incident (?a\$i) (?l\$i)〉
have projo-incident (?a\$i) (?l\$i) ..
with 〈? $a \$ i \in K 2$ 〉
have $\exists q i . q i \neq ? p \$ i \wedge q i \in S \wedge$ proj2-incident $q i(? 1 \$ i)$

```
by（rule line－through－K2－intersect－S－again）
with someI－ex \([\) of \(\lambda q i . q i \neq ? p \$ i \wedge q i \in S \wedge \operatorname{proj} 2-i n c i d e n t ~ q i(? l \$ i)]\) show \(? q \$ i \neq ? p \$ i \wedge ? q \$ i \in S \wedge\) proj2－incident \((? q \$ i)(? l \$ i)\) by simp
qed
hence \(? q \$ 1 \neq ? p \$ 1\) and proj2-incident \((? q \$ 1)(? 1 \$ 1)\)
    and proj2-incident (?q\$2) (?1\$2)
    by fast+
let ?r \(=\chi\) i. proj2-intersection (polar (?q\$i)) (polar (?p\$i))
let \(? m=\chi\) i. projo-line-through (?a\$i) (?r\$i)
have \(\forall i\). proj2-incident (?a\$i) (?m\$i)
    by (simp add: proj2-line-through-incident)
hence proj2-incident (?a\$1) (?m\$1) and proj2-incident (?a\$2) (?m\$2)
    by fast+
have \(\forall i\). proj2-incident (?r\$i) (?m\$i)
    by (simp add: proj2-line-through-incident)
hence proj2-incident (? \(\$\) 1) (?m\$1) and proj2-incident (?r\$2) (?m\$2)
    by fast+
let ?s \(=\chi i . \epsilon\) si. si \(\neq ? r \$ i \wedge\) si \(\in S \wedge\) proj2-incident si \((? m \$ i)\)
have \(\forall i . ? s \$ i \neq ? r \$ i \wedge\) ?s \(\$ i \in S \wedge\) proj2-incident \((? s \$ i)(? m \$ i)\)
proof
    fix \(i\)
    from \(\langle\forall i\). ? \(a \$ i \in K 2\) ) have ? \(a \$ i \in K 2\)..
    from 〈 \(\forall\) i. proj2-incident (?a\$i) (?m\$i)〉
    have proj2-incident (?a\$i) (?m\$i) ..
    with 〈? \(a \$ i \in K 2\) 〉
    have \(\exists\) si. si \(\neq ?\) ? \(\$ \$ \wedge\) si \(\in S \wedge\) proj2-incident si \((? m \$ i)\)
        by (rule line-through-K2-intersect-S-again)
    with someI-ex \([\) of \(\lambda\) si. si \(\neq ? r \$ i \wedge\) si \(\in S \wedge\) proj2-incident si \((? m \$ i)]\)
    show ?s \(\$ i \neq ? r \$ i \wedge ? s \$ i \in S \wedge\) proj2-incident (?s\$i) (?m\$i) by simp
qed
hence ?s \(\$ 1 \neq ? r \$ 1\) and proj2-incident \((? s \$ 1)(? m \$ 1)\)
    and proj2-incident (?s\$2) (?m\$2)
    by fast +
```

have $\forall i . \forall u$ proj2-incident $u(? m \$ i) \longrightarrow \neg(u=? p \$ i \vee u=? q \$ i)$
proof standard +
fix $i:: 2$
fix u :: proj2
assume proj2-incident u (?m\$i)
assume $u=? p \$ i \vee u=? q \$ i$
from $\langle\forall i . ? p \$ i \in S\rangle$ have ? $p \$ i \in S$..
from $\langle\forall i . ? q \$ i \neq ? p \$ i \wedge ? q \$ i \in S \wedge$ proj2-incident $(? q \$ i)(? l \$ i)\rangle$
have $? q \$ i \neq ? p \$ i$ and $? q \$ i \in S$

```
```

 by simp-all
 from \?p$i }\S\rangle\mathrm{ and \?q$i }\S\rangle\mathrm{ and }\langleu=?p$i\veeu=?q$i
have u\inS by auto
hence proj2-incident u (polar u)
by (simp add: incident-own-polar-in-S)
have proj2-incident (?r$i) (polar (?p$i))
and proj2-incident (?r$i) (polar (?q$i))
by (simp-all add: proj2-intersection-incident)
with <u =?p$i\vee
have proj2-incident (?r$i) (polar u) by auto
from <\forall i. projD-incident (?r$i) (?m$i)>
have proj2-incident (?r$i) (?m$i) ..
from <\forall i. proj2-incident (?a$i) (?m$i)>
have proj2-incident (?a$i) (?m$i) ..
from «\forall i. ?a$i\inK2> have ?a$i\inK2 ..
have u\not= ?r$i
proof
 assume u=?r$i
with <proj2-incident (?r$i) (polar (?p$i))>
and <proj2-incident (?r$i) (polar (?q$i))>
have proj2-incident u (polar (?p$i))
 and proj2-incident u (polar (?q$i))
by simp-all
with }\langleu\inS\rangle\mathrm{ and 〈?p$i GS> and <?q$i }\S

 have }u=?p$i\mathrm{ and }u=?q$$
 by (simp-all add: point-in-S-polar-is-tangent)
 with <?q$i # ? p$i` show False by simp
 qed
with <proj2-incident (u) (polar u)>
and 〈proj2-incident (?r$i) (polar u)\rangle
 and <proj2-incident u (?m$i)>
and <proj2-incident (?r$i) (?m$i)\rangle
and proj2-incident-unique
have ?m$i = polar u by auto
with <proj2-incident (?a$i) (?m$i)>
have proj2-incident (?a$i) (polar u) by simp
with }\langleu\inS\rangle\mathrm{ and \?a$i G K2` and tangent-not-through-K2
show False by simp
qed
let ?H=\chi i.\epsilon Hi. is-K2-isometry Hi
 ^ apply-cltn2 east Hi=?q$i
^ apply-cltn2 west Hi = ?p\$i

```
```

 ^ apply-cltn2 north Hi = ?s$i
 \wedge apply-cltn2 far-north Hi=?r$i
 have }\forall\mathrm{ i. is-K2-isometry (?H$i)
 ^ apply-cltn2 east (?H$i) =?q$i
 ^ apply-cltn2 west (?H$i) = ?p$i
 ^ apply-cltn2 north (?H$i) = ?s$i
 ^ apply-cltn2 far-north (?H$i)=?r$i
proof
 fix i :: 2
 from \\forall i. ?p$i }\inS\rangle\mathrm{ have ? p$i }\\mathrm{ S ..
 from <\forall i. ?q$i\not=?p$i\wedge?q$i\inS ^ proj2-incident (?q$i) (?l$i)>
have ?q$i\not=?p$i and ?q$i\inS
 by simp-all
 from \\forall i. ?s$i\not=?r$i\wedge ?s$i\inS\wedge proj2-incident (?s$i) (?m$i)>
have ?s$i }\inS\mathrm{ and proj2-incident (?s$i) (?m$i) by simp-all
 from <proj2-incident (?s$i) (?m$i)>
 and \\forall i.\forallu. proj2-incident u(?m$i)\longrightarrow\neg(u=?p$i\veeu=?q$i)>

 have ?s$i }\not={?q$$i,?p$i} by fas
 with \langle?q$i\inS\rangle and \langle? p$i\inS\rangle and \langle?s$i\inS\rangle and \langle?q$i\not= ?p$i\rangle
 have \exists Hi. is-K2-isometry Hi
 ^ apply-cltn2 east Hi = ?q$i
 ^ apply-cltn2 west Hi = ?p$i
 \apply-cltn2 north Hi=?s$i
 ^ apply-cltn2 far-north Hi=?r$i
 by (simp add: statement65-special-case)
 with someI-ex [of \lambda Hi. is-K2-isometry Hi
 \ apply-cltn2 east Hi=?q$i
 ^ apply-cltn2 west Hi=?p$i
 ^ apply-cltn2 north Hi = ?s$i
 ^ apply-cltn2 far-north Hi=?r$i]
 show is-K2-isometry (?H$i)
 ^apply-cltn2 east (?H$i) =?q$i
 \wedge ~ a p p l y - c l t n 2 ~ w e s t ~ (? H \$ i) = ? p \$ i
 ^ apply-cltn2 north (?H$i) =?s$i
 ^ apply-cltn2 far-north (?H$i)=?r$i
 by simp
 qed
hence is-K2-isometry (?H\$1)
and apply-cltn2 east (?H\$1) =?q\$1
and apply-cltn2 west (?H\$1) =?p\$1
and apply-cltn2 north (?H\$1) =?s\$1
and apply-cltn2 far-north (?H\$1) =?r\$1
and is-K2-isometry (?H\$2)
and apply-cltn2 east (?H\$2) =?q\$2
and apply-cltn2 west (?H\$2) = ?p\$2
and apply-cltn2 north (?H\$2) = ?s\$2
and apply-cltn2 far-north (?H\$2) = ?r\$2

```
```

 by fast+
 let ?J = cltn2-compose (cltn2-inverse (?H\$1)) (?H\$2)
from <is-K2-isometry (?H\$1)> and <is-K2-isometry (?H\$2)>
have is-K2-isometry ?J
by (simp only: cltn2-inverse-is-K2-isometry cltn2-compose-is-K2-isometry)
from <apply-cltn2 west (?H\$1) = ?p\$1\rangle
have apply-cltn2 p1 (cltn2-inverse (?H\$1)) = west
by (simp add: cltn2.act-inv-iff [simplified])
with <apply-cltn2 west (?H\$2) = ?p\$2>
have apply-cltn2 p1 ?J = p2
by (simp add: cltn2.act-act [simplified, symmetric])
from 〈apply-cltn2 east (?H\$1) = ?q\$1>
have apply-cltn2 (?q\$1) (cltn2-inverse (?H\$1)) = east
by (simp add: cltn2.act-inv-iff [simplified])
with 〈apply-cltn2 east (?H\$2) = ?q\$2` have apply-cltn2 (?q$1) ?J = ?q$2 by (simp add: cltn2.act-act [simplified, symmetric]) with 〈?q$1 = ?p$1> and <apply-cltn2 p1 ?J = p2\rangle and <proj2-incident (?p$1) (?l$1)> and <proj2-incident (?q$1) (?l$1)> and <proj2-incident (?p$2) (?1$2)> and <proj2-incident (?q$2) (?1$2)> have apply-cltn2-line (?1$1) ?J = (?1$2) by (simp add: apply-cltn2-line-unique) moreover from <proj2-incident (?a$1) (?1$1)> have proj2-incident (apply-cltn2 (?a$1) ?J) (apply-cltn2-line (?l$1) ?J) by simp ultimately have proj2-incident (apply-cltn2 (?a$1) ?J) (?l$2) by simp from <apply-cltn2 north (?H$1) = ?s$1> have apply-cltn2 (?s$1) (cltn2-inverse (?H$1)) = north by (simp add: cltn2.act-inv-iff [simplified]) with \apply-cltn2 north (?H$2) = ?s$2`
have apply-cltn2 (?s\$1) ?J = ?s\$2
by (simp add: cltn2.act-act [simplified, symmetric])
from \apply-cltn2 far-north (?H\$1) = ?r\$1>
have apply-cltn2 (?r\$1) (cltn2-inverse (?H\$1)) = far-north
by (simp add: cltn2.act-inv-iff [simplified])
with \apply-cltn2 far-north (?H\$2) = ?r\$2>
have apply-cltn2 (?r\$1) ?J = ?r\$2
by (simp add: cltn2.act-act [simplified, symmetric])
with <?s\$1\not=?r\$1> and <apply-cltn2 (?s\$1) ?J = (?s\$2)>
and <proj2-incident (?r\$1)(?m\$1)>
and <proj2-incident (?s\$1) (?m\$1)>
and <proj2-incident (?r\$2) (?m\$2)>

```
```

 and <proj2-incident (?s$2) (?m$2)>
 have apply-cltn2-line (?m$1)?J = (?m$2)
 by (simp add: apply-cltn2-line-unique)
 moreover from <proj2-incident (?a$1) (?m$1)>
 have proj2-incident (apply-cltn2 (?a$1) ?J) (apply-cltn2-line (?m$1) ?J)
 by simp
 ultimately have proj2-incident (apply-cltn2 (?a$1) ?J) (?m$2) by simp
 from &\forall i. \forall u. proj2-incident u (?m$i)\longrightarrow\neg(u=?p$i\veeu=?q$i)>
 have \neg proj2-incident (?p$2) (?m$2) by fast
 with <proj2-incident (?p$2) (?1$2)> have ?m$2 F ? ?$2 by auto
 with <proj2-incident (?a$2) (?1$2)>
 and <proj2-incident (?a$2) (?m$2)>
 and <proj2-incident (apply-cltn2 (?a$1) ?J) (?1$2)>
 and 〈proj2-incident (apply-cltn2 (?a$1)?J) (?m$2)>
 and proj2-incident-unique
 have apply-cltn2 a1 ?J = a2 by auto
 with 〈is-K2-isometry ?J\rangle and <apply-cltn2 p1 ?J = p2\rangle
 show \existsJ. is-K2-isometry J ^ apply-cltn2 a1 J=a2 ^ apply-cltn2 p1 J=p2
 by auto
 qed
lemma K2－isometry－swap：
assumes a h hyp2 and b h hyp2
shows \exists J. is-K2-isometry J ^ apply-cltn2 a J = b ^ apply-cltn2 b J =a
proof -
from \langlea\inhyp2\rangle and \langleb\in hyp2\rangle
have }a\inK2\mathrm{ and b}E\mathrm{ K2 by simp-all
let ?l = proj2-line-through a b
have proj2-incident a ?l and proj2-incident b ?l
by (rule proj2-line-through-incident)+
from \langlea\inK2\rangle and <proj2-incident a ?l>
and line-through-K2-intersect-S-exactly-twice [of a ?l]
obtain p and q where p\not=q
and}p\inS\mathrm{ and q}\in
and proj2-incident p ?l and proj2-incident q ?l
and }\forallr\inS.proj2-incident r ?l \longrightarrowr=p\veer=
by auto
from }\langlea\inK2\rangle\mathrm{ and }\langleb\inK2\rangle\mathrm{ and }\langlep\inS\rangle\mathrm{ and }\langleq\inS
and statement66-existence [of a b p q]
obtain }J\mathrm{ where is-K2-isometry }J\mathrm{ and apply-cltn2 a }J=
and apply-cltn2 p J =q
by auto
from <apply-cltn2 a J = b\rangle and <apply-cltn2 p J=q>
and 〈projQ-incident b ?l> and <projQ-incident q ?l>
have proj2-incident (apply-cltn2 a J) ?l
and proj2-incident (apply-cltn2 p J) ?l
by simp-all

```
```

from }\langlea\inK2\rangle and <p\inS\rangle have a\not=
unfolding S-def and K2-def
by auto
with <proj2-incident a ?l>
and <proj2-incident p?l>
and 〈proj2-incident (apply-cltn2 a J) ?l` and <proj2-incident (apply-cltn2 p J) ?l> have apply-cltn2-line ?l J = ?l by (simp add: apply-cltn2-line-unique) with <proj2-incident q ?l` and apply-cltn2-preserve-incident [of q J ?l]
have proj2-incident (apply-cltn2 q J) ?l by simp
from }\langleq\inS\rangle\mathrm{ and \is-K2-isometry J>
have apply-cltn2 q J \inS by (unfold is-K2-isometry-def) simp
with <proj2-incident (apply-cltn2 q J) ?l>
and «\forall r\inS. proj2-incident r ?l \longrightarrowr=p\veer=q>
have apply-cltn2 q J = p\vee apply-cltn2 q J =q by simp
have apply-cltn2 q J\not=q
proof
assume apply-cltn2 q }J=
with \apply-cltn2 p J = q>
have apply-cltn2 p J =apply-cltn2 q J by simp
hence }p=q\mathrm{ by (rule apply-cltn2-injective [of p J q])
with }\langlep\not=q\rangle\mathrm{ show False ..
qed
with <apply-cltn2 q J = p\vee apply-cltn2 q J = q>
have apply-cltn2 q J = p by simp
with }\langlep\not=q
and 〈apply-cltn2 p J =q>
and <proj2-incident p ?l>
and <proj2-incident q ?l>
and <proj2-incident a ?l>
and statement55
have apply-cltn2 (apply-cltn2 a J) J=a by simp
with <apply-cltn2 a }J=b\rangle\mathrm{ have apply-cltn2 b J=a by simp
with \langleis-K2-isometry J\rangle and <apply-cltn2 a J=b\rangle
show \existsJ. is-K2-isometry J ^ apply-cltn2 a J = b ^ apply-cltn2 b J =a
by (simp add: exI [of - J])
qed
theorem hyp2-axiom1: }\forallab.ab\equiv\mp@subsup{\equiv}{K}{}b
proof standard+
fix ab
let ? a' = Rep-hyp2 a
let ? }\mp@subsup{b}{}{\prime}=\mathrm{ Rep-hyp2 b
from Rep-hyp2 and K2-isometry-swap [of ?a' ?b]
obtain }J\mathrm{ where is-K2-isometry }J\mathrm{ and apply-cltn2 ?a' }J=?\mp@subsup{b}{}{\prime
and apply-cltn2 ?b'}J=?\mp@subsup{a}{}{\prime

```
```

 by auto
 from 〈apply-cltn2 ? a' J = ?b'` and <apply-cltn2 ? b' J = ?a'`
 have hyp2-cltn2 a }J=b\mathrm{ and hyp2-cltn2 b J =a
 unfolding hyp2-cltn2-def by (simp-all add: Rep-hyp2-inverse)
 with 〈is-K2-isometry J\rangle
 show ab \equiv
 by (unfold real-hyp2-C-def) (simp add: exI [of - J])
 qed
theorem hyp2-axiom2: }\forallabpqrs.ab\equiv\mp@subsup{\equiv}{K}{}pq\wedgeab\mp@subsup{\equiv}{K}{}rs\longrightarrowpq\mp@subsup{\equiv}{K}{}r
proof standard+
fix abpqrs

```

```

 then obtain G and H where is-K2-isometry G and is-K2-isometry H
 and hyp2-cltn2 a G=p and hyp2-cltn2 b G = q
 and hyp2-cltn2 a H=r and hyp2-cltn2 b H=s
 by (unfold real-hyp2-C-def) auto
 let ?J = cltn2-compose (cltn2-inverse G) H
 from <is-K2-isometry G` have is-K2-isometry (cltn2-inverse G)
 by (rule cltn2-inverse-is-K2-isometry)
 with \is-K2-isometry H>
 have is-K2-isometry ?J by (simp only: cltn2-compose-is-K2-isometry)
 from 〈is-K2-isometry G\rangle and 〈hyp2-cltn2 a G=p` and 〈hyp2-cltn2 b G=q`
 and K2-isometry.act-inv-iff
 have hyp2-cltn2 p (cltn2-inverse G)=a
 and hyp2-cltn2 q (cltn2-inverse G)=b
 by simp-all
 with 〈hyp2-cltn2 a }H=r\mathrm{ \ and <hyp2-cltn2 b H}=s\mathrm{ s
 and 〈is-K2-isometry (cltn2-inverse G)\rangle and <is-K2-isometry H>
 and K2-isometry.act-act [symmetric]
 have hyp2-cltn2 p ?J = r and hyp2-cltn2 q ?J = s by simp-all
 with <is-K2-isometry ?J`
 show pq\equiv\mp@subsup{\equiv}{K}{}rs
 by (unfold real-hyp2-C-def) (simp add: exI [of - ?J])
 qed
theorem hyp2-axiom3: }\forall\mathrm{ abc. a b 三}\mp@subsup{\}{K}{}cc\longrightarrow\longrightarrowa=
proof standard+
fix abc
assume ab \equiv
then obtain J where is-K2-isometry J
and hyp2-cltn2 a J=c and hyp2-cltn2 b J = c
by (unfold real-hyp2-C-def) auto
from 〈hyp2-cltn2 a J =c` and \hyp2-cltn2 b J = c`
have hyp2-cltn2 a J = hyp2-cltn2 b J by simp
from \is-K2-isometry J\rangle

```
```

 have apply-cltn2 (Rep-hyp2 a) J G hyp2
 and apply-cltn2 (Rep-hyp2 b) J G hyp2
 by (rule apply-cltn2-Rep-hyp2)+
 with 〈hyp2-cltn2 a J = hyp2-cltn2 b J >
 have apply-cltn2 (Rep-hyp2 a) J = apply-cltn2 (Rep-hyp2 b) J
 by (unfold hyp2-cltn2-def) (simp add: Abs-hyp2-inject)
 hence Rep-hyp2 a = Rep-hyp2 b by (rule apply-cltn2-injective)
 thus }a=b\mathrm{ by (simp add: Rep-hyp2-inject)
 qed
interpretation hyp2: tarski-first3 real-hyp2-C
using hyp2-axiom1 and hyp2-axiom2 and hyp2-axiom3
by unfold-locales

```

\section*{9．7 Some lemmas about betweenness}
```

lemma S-at-edge:
assumes $p \in S$ and $q \in h y p 2 \cup S$ and $r \in h y p 2 \cup S$ and proj2-Col $p q r$
shows $B_{\mathbb{R}}$ (cart2-pt p) (cart2-pt q) (cart2-pt r)
$\vee B_{\mathbb{R}}($ cart2-pt p) (cart2-pt r) (cart2-pt q)
(is $B_{\mathbb{R}}$?cp ? $c q$? $c r \vee-$)
proof -
from $\langle p \in S\rangle$ and $\langle q \in h y p 2 \cup S\rangle$ and $\langle r \in h y p 2 \cup S\rangle$
have z-non-zero p and z-non-zero q and z-non-zero r
by (simp-all add: hyp2-S-z-non-zero)
with 〈proj2-Col p q r〉
have real-euclid.Col ?cp ?cq ?cr by (simp add: proj2-Col-iff-euclid-cart2)
with $\langle z$-non-zero $p\rangle$ and $\langle z$-non-zero $q\rangle$ and $\langle z$-non-zero $r\rangle$
have proj2-pt ? $c p=p$ and proj2-pt $? c q=q$ and proj2-pt $? c r=r$
by (simp-all add: proj2-cart2)
from $\langle p r o j 2-p t ? c p=p\rangle$ and $\langle p \in S\rangle$
have norm ?cp $=1$ by (simp add: norm-eq-1-iff-in-S
from \langle proj2-pt $? c q=q\rangle$ and $\langle p r o j 2-p t ? c r=r\rangle$
and $\langle q \in h y p 2 \cup S\rangle$ and $\langle r \in h y p 2 \cup S\rangle$
have norm? $c q \leq 1$ and norm ? cr ≤ 1
by (simp-all add: norm-le-1-iff-in-hyp2-S)
show $B_{\mathbb{R}}$? $c p$? $c q$? $c r \vee B_{\mathbb{R}}$? $c p$? $c r ? c q$
proof cases
assume $B_{\mathbb{R}}$?cr ? $c p$? $c q$
then obtain k where $k \geq 0$ and $k \leq 1$
and ? $c p-? c r=k *_{R}(? c q-? c r)$
by (unfold real-euclid-B-def) auto
from 〈? $\left.c p-? c r=k *_{R}(? c q-? c r)\right\rangle$
have ? $c p=k *_{R}$? $c q+(1-k) *_{R}$? cr by (simp add: algebra-simps)
with $\left\langle\right.$ norm ? cp $=1$ 〉 have $\operatorname{norm}\left(k *_{R}\right.$? $c q+(1-k) *_{R}$?cr $)=1$ by simp
with norm-triangle-ineq [of $k *_{R}$? $c q(1-k) *_{R}$? $\left.c r\right]$

```
```

 have \(\operatorname{norm}\left(k *_{R}\right.\) ? cq \()+\operatorname{norm}\left((1-k) *_{R}\right.\) ? cr \() \geq 1\) by simp
 from \(\langle k \geq 0\rangle\) and \(\langle k \leq 1\rangle\)
 have \(\operatorname{norm}\left(k *_{R} ? c q\right)+\operatorname{norm}\left((1-k) *_{R} ? c r\right)\)
 \(=k *\) norm ? cq \(+(1-k) *\) norm ? cr
 by simp
 with \(\left\langle\operatorname{norm}\left(k *_{R}\right.\right.\) ? cq \()+\operatorname{norm}\left((1-k) *_{R}\right.\) ? cr \() \geq 1\) 〉
 have \(k *\) norm ? cq \(+(1-k) *\) norm ? cr \(\geq 1\) by simp
 from \(\langle\) norm ? \(c q \leq 1\rangle\) and \(\langle k \geq 0\rangle\) and mult-mono [of \(k k\) norm ? \(c q\) 1]
 have \(k *\) norm ? \(c q \leq k\) by simp
 from \(\langle\) norm? ? \(\leq 1\rangle\) and \(\langle k \leq 1\rangle\)
 and mult-mono [of \(1-k 1-k\) norm ?cr 1]
 have \((1-k) *\) norm ?cr \(\leq 1-k\) by \(\operatorname{simp}\)
 with \(\langle k *\) norm ? \(c q \leq k\rangle\)
 have \(k *\) norm ? \(c q+(1-k) *\) norm ? cr \(\leq 1\) by simp
 with \(\langle k *\) norm? \(c q+(1-k) *\) norm ? \(c r \geq 1\rangle\)
 have \(k *\) norm ? cq \(+(1-k) *\) norm ? cr \(=1\) by simp
 with \(\langle k *\) norm ? \(c q \leq k\rangle\) have \((1-k) *\) norm ? \(c r \geq 1-k\) by simp
 with \(\langle(1-k) *\) norm ? cr \(\leq 1-k\rangle\) have \((1-k) *\) norm ? cr \(=1-k\) by
 simp
with $\langle k *$ norm ? $c q+(1-k) *$ norm ? $c r=1\rangle$ have $k *$ norm ? $c q=k$ by
simp

```
```

have ? $c p=? c q \vee ? c q=$? $c r \vee ? c r=$? $c p$
proof cases
assume $k=0 \vee k=1$
with $\left\langle ? c p=k *_{R} ? c q+(1-k) *_{R}\right.$? $\left.c r\right\rangle$
show ? $c p=? c q \vee ? c q=? c r \vee ? c r=? c p$ by auto
next
assume $\neg(k=0 \vee k=1)$
hence $k \neq 0$ and $k \neq 1$ by simp-all
with $\langle k *$ norm ? $c q=k\rangle$ and $\langle(1-k) *$ norm ? cr $=1-k\rangle$
have norm $? c q=1$ and norm ? $c r=1$ by simp-all
with \langle proj2-pt $? c q=q\rangle$ and $\langle p r o j 2-p t ? c r=r\rangle$
have $q \in S$ and $r \in S$ by (simp-all add: norm-eq-1-iff-in-S)
with $\langle p \in S\rangle$ have $\{p, q, r\} \subseteq S$ by simp
from 〈proj2-Col p q r〉
have proj2-set-Col $\{p, q, r\}$ by (simp add: proj2-Col-iff-set-Col)
with $\langle\{p, q, r\} \subseteq S\rangle$ have card $\{p, q, r\} \leq 2$ by (rule card-line-intersect-S)
have $p=q \vee q=r \vee r=p$
proof (rule ccontr)
assume $\neg(p=q \vee q=r \vee r=p)$
hence $p \neq q$ and $q \neq r$ and $r \neq p$ by simp-all
from $\langle q \neq r\rangle$ have card $\{q, r\}=2$ by simp
with $\langle p \neq q\rangle$ and $\langle r \neq p\rangle$ have card $\{p, q, r\}=3$ by simp

```
```

 with <card {p,q,r}\leq2` show False by simp
 qed
 thus ?cp=?cq\vee ?cq=?cr \vee ?cr=? cp by auto
 qed
 thus }\mp@subsup{B}{\mathbb{R}}{}??cp?cq?cr\vee 怔
 by (auto simp add: real-euclid.th3-1 real-euclid.th3-2)
 next
 assume }\neg\mp@subsup{B}{\mathbb{R}}{}\mathrm{ ?cr ?cp ?cq
 with \real-euclid.Col ?cp ?cq ?cr`
 show }\mp@subsup{B}{\mathbb{R}}{}\mathrm{ ?cp ?cq ?cr }\vee\mp@subsup{B}{\mathbb{R}}{}\mathrm{ ?cp ?cr ?cq
 unfolding real-euclid.Col-def
 by (auto simp add: real-euclid.th3-1 real-euclid.th3-2)
 qed
 qed
lemma hyp2-in-middle:
assumes p}\inS\mathrm{ and q}\inS\mathrm{ and r hyp2 }\cupS\mathrm{ and proj2-Col p qr
and p\not=q

```

```

proof (rule ccontr)
assume }\neg\mp@subsup{B}{\mathbb{R}}{}\mathrm{ ?cp ?ccr ?cq
hence}\neg\mp@subsup{B}{\mathbb{R}}{}\mathrm{ ?cq ?cr ?cp
by (auto simp add: real-euclid.th3-2 [of ?cq ?cr ?cp])
from }\langlep\inS\rangle\mathrm{ and }\langleq\inS\rangle\mathrm{ and }\langler\inhyp2 \cupS\rangle and \langleproj2-Col p q r>
have }\mp@subsup{B}{\mathbb{R}}{}\mathrm{ ?cp ?cq ?cr }\vee\mp@subsup{B}{\mathbb{R}}{}\mathrm{ ?cp ?cr ?cq by (simp add: S-at-edge)
with}\neg\neg\mp@subsup{B}{\mathbb{R}}{}\mathrm{ ?cp ?cr ?cq> have }\mp@subsup{B}{\mathbb{R}}{}\mathrm{ ?cp ?cq ?cr by simp
from \langleproj2-Col p q r` and proj2-Col-permute have proj2-Col q p r by fast
with }\langleq\inS\rangle\mathrm{ and }\langlep\inS\rangle\mathrm{ and }\langler\inhyp2 \cupS
have }\mp@subsup{B}{\mathbb{R}}{}\mathrm{ ?cq ?cp ?cr }\vee\mp@subsup{B}{\mathbb{R}}{}\mathrm{ ?cq ?cr ?cp by (simp add: S-at-edge)
with }\neg\mp@subsup{B}{\mathbb{R}}{}\mathrm{ ?cq ?cr ?cp> have }\mp@subsup{B}{\mathbb{R}}{}\mathrm{ ?.cq ?cp ?cr by simp
with <\mp@subsup{B}{\mathbb{R}}{}\mathrm{ ?cp ?cq ?cr> have ?cp = ?cq by (rule real-euclid.th3-4)}
hence proj2-pt ?cp = proj2-pt ?cq by simp
from }\langlep\inS\rangle\mathrm{ and }\langleq\inS
have z-non-zero p and z-non-zero q by (simp-all add: hyp2-S-z-non-zero)
hence proj2-pt ?cp = p and proj2-pt ?cq = q by (simp-all add: proj2-cart2)
with <proj2-pt ?cp= proj2-pt ?cq\rangle have p=q by simp
with }\langlep\not=q\rangle\mathrm{ show False ..
qed
lemma hyp2-incident-in-middle:
assumes p\not=q and p\inS and q\inS and a\inhyp2 \cupS
and proj2-incident pl and proj2-incident q l and proj2-incident a l
shows }\mp@subsup{B}{\mathbb{R}}{}(cart2-pt p)(cart2-pt a) (cart2-pt q)
proof -
from \langleproj2-incident pl> and \langleproj2-incident q l> and \langleproj2-incident a l>
have proj2-Col p q a by (rule proj2-incident-Col)

```
```

 from }\langlep\inS\rangle\mathrm{ and }\langleq\inS\rangle\mathrm{ and }\langlea\inhyp2\cupS\rangle\mathrm{ and this and }\langlep\not=q
 show }\mp@subsup{B}{\mathbb{R}}{}\mathrm{ (cart2-pt p) (cart2-pt a) (cart2-pt q)
 by (rule hyp2-in-middle)
 qed
lemma extend-to-S:
assumes }p\inhyp2\cupS\mathrm{ and }q\inhyp2\cup
shows }\existsr\inS.\mp@subsup{B}{\mathbb{R}}{}(cart2-pt p) (cart2-pt q) (cart2-pt r
(is }\existsr\inS.\mp@subsup{B}{\mathbb{R}}{}\mathrm{ ?cp ??cq (cart2-pt r))
proof cases
assume q}\in
have }\mp@subsup{B}{\mathbb{R}}{}\mathrm{ ?cp ?cq ?cq by (rule real-euclid.th3-1)
with }\langleq\inS\rangle\mathrm{ show }\existsr\inS.\mp@subsup{B}{\mathbb{R}}{}\mathrm{ ?cp ?cq (cart2-pt r) by auto
next
assume q}\not\in
with }\langleq\inhyp2\cupS\rangle\mathrm{ have q}q\inK2 by sim
let ?l = proj2-line-through p q
have proj2-incident p ?l and proj2-incident q ?l
by (rule proj2-line-through-incident)+
from }\langleq\inK2\rangle and \langleproj2-incident q ?l>
and line-through-K2-intersect-S-twice [of q ?l]
obtain s}\mathrm{ and }t\mathrm{ where }s\not=t\mathrm{ and }s\inS\mathrm{ and }t\in
and proj2-incident s?l and proj2-incident t ?l
by auto
let ?cs = cart2-pt s
let ?ct = cart2-pt t
from <proj2-incident s ?l>
and <projQ-incident t?l>
and <proj2-incident p ?l>
and <proj2-incident q ?l>
have proj2-Col s p q and proj2-Col t p q and proj2-Col s t q
by (simp-all add: proj2-incident-Col)
from 〈proj2-Col s p q\rangle and \proj2-Col t p q\rangle
and }\langles\inS\rangle\mathrm{ and }\langlet\inS\rangle\mathrm{ and }\langlep\inhyp2\cupS\rangle\mathrm{ and }\langleq\inhyp2\cupS

```

```

 by (simp-all add:S-at-edge)
 with real-euclid.th3-2
have }\mp@subsup{B}{\mathbb{R}}{}\mathrm{ ?cq ?cp ?cs }\vee\mp@subsup{B}{\mathbb{R}}{}\mathrm{ ?cp ?cq ?cs and }\mp@subsup{B}{\mathbb{R}}{}\mathrm{ ?cq ?cp ?ct }\vee\mp@subsup{B}{\mathbb{R}}{}\mathrm{ ?cp ?cq ?ct
by fast+
from }\langles\inS\rangle\mathrm{ and }\langlet\inS\rangle\mathrm{ and }\langleq\inhyp2\cupS\rangle\mathrm{ and \proj2-Col s t q> and }\langles\not=t
have }\mp@subsup{B}{\mathbb{R}}{}\mathrm{ ?cs ?.cq ?ct by (rule hyp2-in-middle)
hence }\mp@subsup{B}{\mathbb{R}}{}\mathrm{ ?ct ?cq ?cs by (rule real-euclid.th3-2)
have }\mp@subsup{B}{\mathbb{R}}{}\mathrm{ ?cpp ?cq ?cs }\vee\mp@subsup{B}{\mathbb{R}}{}\mathrm{ ?cp ?cq ?ct
proof (rule ccontr)

```
```

 assume}\neg(\mp@subsup{B}{\mathbb{R}}{}\mathrm{ ?cp ?cq ?cs }\vee\mp@subsup{B}{\mathbb{R}}{}\mathrm{ ?cpp ?cq ?ct)
 hence}\neg\mp@subsup{B}{\mathbb{R}}{}\mathrm{ ?cp ?cq ?cs and }\neg\mp@subsup{B}{\mathbb{R}}{}\mathrm{ ?cp ?cq ?ct by simp-all
 with \\mp@subsup{B}{\mathbb{R}}{}\mathrm{ ?cq ?cp ?cs }\vee\mp@subsup{B}{\mathbb{R}}{}\mathrm{ ?cp ?cq ?cs>}
 and }\langle\mp@subsup{B}{\mathbb{R}}{}\mathrm{ ?cq ?cp ?ct }\vee\mp@subsup{B}{\mathbb{R}}{}\mathrm{ ?cp ?cq ?ct>
 have }\mp@subsup{B}{\mathbb{R}}{}\mathrm{ ?cq ?cp ?cs and }\mp@subsup{B}{\mathbb{R}}{}\mathrm{ ?cq ?cp ?ct by simp-all
 from }\neg\neg\mp@subsup{B}{\mathbb{R}}{}?cpp?cq ?cs\rangle and \langle\mp@subsup{B}{\mathbb{R}}{}\mathrm{ ? cq ?cp ?cs> have ?cp}\not=?\mathrm{ ?cq by auto
 with }\langle\mp@subsup{B}{\mathbb{R}}{}\mathrm{ ?cq ?cp ?cs> and }\langle\mp@subsup{B}{\mathbb{R}}{}\mathrm{ ? cq ?cp ?ct>
 have }\mp@subsup{B}{\mathbb{R}}{}\mathrm{ ?cq ?cs ?ct }\vee\mp@subsup{B}{\mathbb{R}}{}\mathrm{ ?cq ?ct ?cs
 by (simp add: real-euclid-th5-1 [of ?cq ?cp ?cs ?ct])
    ```

```

 have ?cq = ?cs \vee ?cq = ?ct by (auto simp add: real-euclid.th3-4)
 with }\langleq\inhyp2\cupS\rangle\mathrm{ and }\langles\inS\rangle\mathrm{ and }\langlet\inS
 have q=s\veeq=t by (auto simp add: hyp2-S-cart2-inj)
 with }\langles\inS\rangle\mathrm{ and }\langlet\inS\rangle\mathrm{ have }q\inS\mathrm{ by auto
 with }\langleq\not\inS\rangle\mathrm{ show False ..
 qed
with }\langles\inS\rangle\mathrm{ and }\langlet\inS\rangle\mathrm{ show }\existsr\inS.\mp@subsup{B}{\mathbb{R}}{}
qed
definition endpoint-in-S :: proj2 }=>\mathrm{ proj2 }=>\mathrm{ proj2 where
endpoint-in-S a b
\triangleq\epsilon p.p\inS\wedge B
lemma endpoint-in-S:
assumes a\inhyp2 \cupS and b\inhyp2 \cupS
shows endpoint-in-S a b GS (is ?p }\inS\mathrm{)
and }\mp@subsup{B}{\mathbb{R}}{}(cart2-pt a) (cart2-pt b) (cart2-pt (endpoint-in-S a b))
(is }\mp@subsup{B}{\mathbb{R}}{}\mp@subsup{}{}{?}ca?cb?cp
proof -
from }\langlea\inhyp2\cupS\rangle\mathrm{ and }\langleb\inhyp2 \cupS\rangle and extend-to-S
have }\existsp.p\inS\wedge \mp@subsup{B}{\mathbb{R}}{}\mathrm{ ?ca ?cb (cart2-pt p) by auto
hence ?p }\inS\wedge\mp@subsup{B}{\mathbb{R}}{}\mathrm{ ?ca ?cb ?cp
by (unfold endpoint-in-S-def) (rule someI-ex)
thus ?p}\inS\mathrm{ and }\mp@subsup{B}{\mathbb{R}}{}\mathrm{ ?ca ?cb ?cp by simp-all
qed
lemma endpoint-in-S-swap:
assumes }a\not=b\mathrm{ and }a\in\mathrm{ hyp2 }\cupS\mathrm{ and }b\inhyp2\cup
shows endpoint-in-S a b}=\mathrm{ endpoint-in-S b a (is ?p }\not==?q
proof
let ?ca = cart2-pt a
let ?cb = cart2-pt b
let ?cp = cart2-pt ?p
let ?cq = cart2-pt ?q
from }\langlea\not=b\rangle\mathrm{ and }\langlea\inhyp2\cupS\rangle\mathrm{ and }\langleb\inhyp2\cupS
have }\mp@subsup{B}{\mathbb{R}}{}\mathrm{ ?ca?cb ?cp and }\mp@subsup{B}{\mathbb{R}}{}\mathrm{ ?cb ?ca?cq
by (simp-all add: endpoint-in-S)
assume ?p = ?q

```
```

 with <\mp@subsup{B}{\mathbb{R}}{}\mathrm{ ?cb ?ca ?cq> have }\mp@subsup{B}{\mathbb{R}}{}\mathrm{ ?cb ?ca ?cp by simp}
 with \langle\mp@subsup{B}{\mathbb{R}}{}}\mathrm{ ?ca ?cb ?cp> have ?ca = ?cb by (rule real-euclid.th3-4)
 with }\langlea\inhyp\mathcal{Q}\cupS\rangle\mathrm{ and }\langleb\inhyp2\cupS\rangle have a=b by (rule hyp2-S-cart2-inj)
 with }\langlea\not=b\rangle\mathrm{ show False ..
 qed
lemma endpoint-in-S-incident:
assumes }a\not=b\mathrm{ and }a\inhyp2\cupS\mathrm{ and }b\inhyp\mathscr{L}\cup
and proj2-incident a l and proj2-incident b l
shows proj2-incident (endpoint-in-S a b) l (is proj2-incident ?p l)
proof -
from }\langlea\inhyp2\cupS\rangle\mathrm{ and }\langleb\inhyp2\cupS
have ?p \inS and B}\mp@subsup{\mathbb{R}}{\mathbb{R}}{}(cart2-pt a) (cart2-pt b) (cart2-pt ?p
(is }\mp@subsup{B}{\mathbb{R}}{}?ca?cb?cp
by (rule endpoint-in-S)+
from }\langlea\inhyp2\cupS\rangle\mathrm{ and }\langleb\inhyp2\cupS\rangle\mathrm{ and }\langle?pp\inS
have z-non-zero a and z-non-zero b and z-non-zero ?p
by (simp-all add: hyp2-S-z-non-zero)
from \langle\mp@subsup{B}{\mathbb{R}}{}\mathrm{ ?ca ?cb ?cp>}
have real-euclid.Col ?ca ?cb ?cp unfolding real-euclid.Col-def ..
with \langlez-non-zero a\rangle and \langlez-non-zero b\rangle and \langlez-non-zero ?p\rangle and }\langlea\not=b
and \langleprojQ-incident a l> and <proj2-incident b l>
show proj2-incident ?p l by (rule euclid-Col-cart2-incident)
qed
lemma endpoints-in-S-incident-unique:
assumes }a\not=b\mathrm{ and }a\inhyp\mathcal{Z}\cupS\mathrm{ and }b\inhyp\mathscr{Z}\cupS\mathrm{ and }p\in
and proj\mathcal{Lincident a l and projQ-incident bl and projQ-incident p l}
shows p = endpoint-in-S a b \vee p = endpoint-in-S b a
(is p=?q\veep=?r)
proof -
from }\langlea\not=b\rangle\mathrm{ and }\langlea\inhyp2\cupS\rangle\mathrm{ and }\langleb\inhyp2\cupS
have ? q}\not=\mathrm{ ?r by (rule endpoint-in-S-swap)
from }\langlea\inhyp2\cupS\rangle\mathrm{ and }\langleb\inhyp2 \cupS
have ?q}\inS\mathrm{ and ?r }\inS\mathrm{ by (simp-all add: endpoint-in-S)
from }\langlea\not=b\rangle\mathrm{ and }\langlea\inhyp2\cupS\rangle\mathrm{ and }\langleb\inhyp2\cupS
and \langleproj2-incident a l\rangle and \langleproj2-incident b l>
have proj2-incident ?q l and proj2-incident ?r l
by (simp-all add: endpoint-in-S-incident)
with }\langle?q\not=?r\rangle\mathrm{ and }\langle?q\inS\rangle\mathrm{ and }\langle?r\inS\rangle\mathrm{ and }\langlep\inS\rangle\mathrm{ and <proj2-incident p l>
show p=?q\vee p=?r by (simp add: line-S-two-intersections-only)
qed
lemma endpoint-in-S-unique:
assumes }a\not=b\mathrm{ and }a\inhyp2\cupS\mathrm{ and }b\inhyp2\cupS\mathrm{ and }p\in

```

```

 shows p= endpoint-in-S a b (is p=?q)
 proof (rule ccontr)
from \langlea\in hyp2 \cupS\rangle and \langleb G hyp2 \cupS\rangle and \langlep\inS\rangle
have z-non-zero a and z-non-zero b and z-non-zero p
by (simp-all add: hyp2-S-z-non-zero)

```

```

 obtain l where
 proj2-incident a l and proj2-incident bl and proj2-incident p l
 by auto
 with }\langlea\not=b\rangle\mathrm{ and }\langlea\inhyp2\cupS\rangle\mathrm{ and }\langleb\inhyp2\cupS\rangle and \p\inS
 have p=?q\vee p= endpoint-in-S b a (is p=?q\vee p=?r)
 by (rule endpoints-in-S-incident-unique)
 assume p\not=?q
 with }\langlep=??q\veep=?r> have p=?r by sim
 with }\langleb\inhyp2\cupS\rangle\mathrm{ and }\langlea\inhyp2\cupS
 have }\mp@subsup{B}{\mathbb{R}}{}\mathrm{ ?cb ?ca ?cp by (simp add: endpoint-in-S)
 with}\langle\mp@subsup{B}{\mathbb{R}}{}\mathrm{ ?ca ?cb ?cp> have ?ca=?cb by (rule real-euclid.th3-4)
 with }\langlea\inhyp2\cupS\rangle\mathrm{ and }\langleb\inhyp2\cupS\rangle have a=b by (rule hyp2-S-cart2-inj)
 with }\langlea\not=b\rangle\mathrm{ show False ..
 qed
lemma between-hyp2-S:
assumes p hyp2 \cupS and r\inhyp2 \cupS and k\geq0 and k\leq1
shows proj2-pt (k *R (cart2-pt r) + (1 - k) *R (cart2-pt p)) \in hyp2 \cupS
(is proj2-pt ?cq \in -)
proof -
let ?cp = cart2-pt p
let ?cr = cart2-pt r
let ?q = proj2-pt ?cq
from \langlep\in hyp2 \cupS\rangle and \langler G hyp2 US\rangle
have z-non-zero p and z-non-zero r by (simp-all add: hyp2-S-z-non-zero)
hence proj2-pt ?cp = p and proj2-pt ?cr =r by (simp-all add: proj2-cart2)
with }\langlep\inhyp2\cupS\rangle\mathrm{ and }\langler\inhyp2\cupS
have norm?cp \leq 1 and norm ?cr \leq 1
by (simp-all add: norm-le-1-iff-in-hyp2-S)
from }\langlek\geq0\rangle\mathrm{ and }\langlek\leq1
and norm-triangle-ineq [of k**R ?cr (1-k) *RR ?cp]
have norm? cq \leqk* norm ?cr + (1-k)* norm ?cp by simp
from \langlek\geq0\rangle}\mathrm{ and <norm ?cr }\leq1\rangle\mathrm{ and mult-mono [of k k norm ?cr 1]
have k* norm? ?cr \leqk by simp
from \langlek\leq1\rangle and <norm? cp \leq 1\rangle
and mult-mono [of 1-k1-k norm ?cp 1]
have (1-k)* norm? ?cp\leq1-k by simp
with\norm??cq \leqk* norm ?cr + (1-k)* norm ?cp〉 and <k* norm ?cr \leq

```
```

k>
have norm ?cq}\leq1\mathrm{ by simp
thus ?q}\in hyp2\cupS by (simp add: norm-le-1-iff-in-hyp2-S
qed

```

\section*{9．8 The Klein－Beltrami model satisfies axiom 4}
```

definition expansion-factor :: proj2 \Rightarrow cltn2 \Rightarrow real where
expansion-factor $p J \triangleq$ (cart2-append1 p $v *$ cltn2-rep J) $\$ 3$
lemma expansion-factor:
assumes $p \in$ hyp $2 \cup S$ and is-K2-isometry J
shows expansion-factor $p J \neq 0$
and cart2-append1 p v* cltn2-rep J
$=$ expansion-factor $p J *_{R}$ cart2-append1 (apply-cltn2 $p J$)
proof -
from $\langle p \in$ hyp2 $\cup S\rangle$ and $\langle i s$-K2-isometry $J\rangle$
have z-non-zero (apply-cltn2 $p J$) by (rule is-K2-isometry-z-non-zero)
from $\langle p \in$ hyp $2 \cup S\rangle$ and $\langle i s$-K2-isometry $J\rangle$
and cart2-append1-apply-cltn2
obtain k where $k \neq 0$
and cart2-append1 p v* cltn2-rep $J=k *_{R}$ cart2-append1 (apply-cltn2 p J)
by auto
from 〈cart2-append1 p v* cltn2-rep $J=k *_{R}$ cart2-append1 (apply-cltn2 p J) 〉
and 〈z-non-zero (apply-cltn2 $p J$)〉
have expansion-factor $p J=k$
by (unfold expansion-factor-def) (simp add: cart2-append1-z)
with $\langle k \neq 0$ 〉
and 〈cart2-append1 p $v *$ cltn2-rep $J=k *_{R}$ cart2-append1 (apply-cltn2 p J) 〉
show expansion-factor p $J \neq 0$
and cart2-append1 p $v *$ cltn2-rep J
$=$ expansion-factor $p J *_{R}$ cart2-append1 (apply-cltn2 $p J$)
by simp-all
qed
lemma expansion-factor-linear-apply-cltn2:
assumes $p \in h y p 2 \cup S$ and $q \in h y p 2 \cup S$ and $r \in h y p 2 \cup S$
and is-K2-isometry J
and cart2-pt $r=k *_{R}$ cart2-pt $p+(1-k) *_{R}$ cart2-pt q
shows expansion-factor $r J *_{R}$ cart2-append1 (apply-cltn2 $r J$)
$=(k *$ expansion-factor $p J) *_{R}$ cart2-append1 (apply-cltn2 $\left.p J\right)$
$+((1-k) *$ expansion-factor $q J) *_{R}$ cart2-append1 (apply-cltn2 $\left.q J\right)$
(is ?er $\left.*_{R}-=(k * ? e p) *_{R}-+((1-k) * ? e q) *_{R}-\right)$
proof -
let $? c p=$ cart2- $p t p$
let ? $c q=$ cart2- $p t q$
let ? $c r=$ cart2-pt r
let ?cp1 = cart2-append1 p

```
```

 let ?cq1 = cart2-append1 q
 let ?cr1 = cart2-append1 r
 let ?repJ = cltn2-rep J
 from }\langlep\inhyp2\cupS\rangle\mathrm{ and }\langleq\inhyp2\cupS\rangle\mathrm{ and }\langler\inhyp2\cupS
 have z-non-zero p and z-non-zero q and z-non-zero r
 by (simp-all add: hyp2-S-z-non-zero)
 from <?cr =k *R ?cp + (1-k)**R ?cq>
 have vector2-append1 ?cr
 =k *R vector2-append1 ?cp + (1-k) *R
 by (unfold vector2-append1-def vector-def) (simp add: vec-eq-iff)
 with \langlez-non-zero p\rangle and \langlez-non-zero q\rangle and \langlez-non-zero r\rangle
 have ?cr1 = k *R
 hence ?cr1 v* ?repJ =k**}(?,cp1v* ?repJ) + (1-k)** (?cq1 v* ?repJ)
 by (simp add: vector-matrix-left-distrib
 scalar-vector-matrix-assoc [symmetric])
 with }\langlep\inhyp2\cupS\rangle\mathrm{ and }\langleq\inhyp2\cupS\rangle\mathrm{ and }\langler\inhyp2\cupS
 and <is-K2-isometry J>
 show ?er *R cart2-append1 (apply-cltn2 r J)
 =(k*?ep)*R cart2-append1 (apply-cltn2 p J)
 +((1-k)*?eq)*R cart2-append1 (apply-cltn2 q J)
 by (simp add: expansion-factor)
 qed
lemma expansion-factor-linear:
assumes p\inhyp2 \cupS and q\in hyp2 \cupS and r\inhyp2 \cupS
and is-K2-isometry J
and cart2-pt r = k *R cart2-pt p + (1-k) *R cart2-pt q
shows expansion-factor r J
=k* expansion-factor p J +(1-k)* expansion-factor q J
(is ?er = k*?ep+(1-k)*?eq)
proof -
from }\langlep\inhyp2\cupS\rangle\mathrm{ and }\langleq\inhyp2\cupS\rangle\mathrm{ and }\langler\inhyp\mathcal{Q}\cupS
and <is-K2-isometry J〉
have z-non-zero (apply-cltn2 p J)
and z-non-zero (apply-cltn2 q J)
and z-non-zero (apply-cltn2 r J)
by (simp-all add: is-K2-isometry-z-non-zero)
from }\langlep\inhyp2\cupS\rangle\mathrm{ and }\langleq\inhyp2\cupS\rangle\mathrm{ and }\langler\inhyp2\cupS
and <is-K2-isometry J\rangle
and <cart2-pt r = k *R cart2-pt p + (1 - k) *R cart2-pt q\rangle
have ?er *}\mp@subsup{*}{R}{}\mathrm{ cart2-append1 (apply-cltn2 r J)
=(k*?ep)*R cart2-append1 (apply-cltn2 p J)
+((1-k)*?eq)** cart2-append1 (apply-cltn2 q J)
by (rule expansion-factor-linear-apply-cltn2)
hence (?er **R cart2-append1 (apply-cltn2 r J))\$3
=((k*?ep)*R cart2-append1 (apply-cltn2 p J)
+((1-k)* ?eq)*R cart2-append1 (apply-cltn2 q J))\$3

```
```

 by simp
 with <z-non-zero (apply-cltn2 p J)>
 and 〈z-non-zero (apply-cltn2 q J)\rangle
 and 〈z-non-zero (apply-cltn2 r J)\rangle
 show ?er =k*?ep+(1-k)*?eq by (simp add: cart2-append1-z)
 qed

```
lemma expansion－factor－sgn－invariant：
    assumes \(p \in h y p 2 \cup S\) and \(q \in\) hyp \(2 \cup S\) and is-K2-isometry \(J\)
    shows sgn (expansion-factor \(p J)=\operatorname{sgn}(\) expansion-factor \(q J)\)
    (is \(s g n\) ? \(e p=s g n\) ? \(e q\) )
proof (rule ccontr)
    assume sgn ?ep \(\neq \operatorname{sgn} ?\) ? \(q\)
    from \(\langle p \in\) hyp \(2 \cup S\rangle\) and \(\langle q \in\) hyp \(2 \cup S\rangle\) and \(\langle i s\)-K2-isometry \(J\rangle\)
    have \(? e p \neq 0\) and \(? e q \neq 0\) by (simp-all add: expansion-factor)
    hence sgn ? ep \(\in\{-1,1\}\) and \(\operatorname{sgn} ? e q \in\{-1,1\}\)
    by (simp-all add: sgn-real-def)
    with \(\langle s g n ? e p \neq s g n ? e q\rangle\) have \(s g n ? e p=-s g n ? e q\) by auto
    hence sgn?ep \(=\operatorname{sgn}(-? e q)\) by (subst sgn-minus)
    with sgn-plus [of ?ep -?eq]
    have sgn \((? e p-? e q)=s g n\) ? ep by (simp add: algebra-simps)
    with \(\langle\) sgn \(? e p \in\{-1,1\}\rangle\) have \(? e p-? e q \neq 0\) by (auto simp add: sgn-real-def)
    let \(? k=-\) ? eq \(/(? e p-? e q)\)
    from \(\langle\operatorname{sgn}(? e p-? e q)=\operatorname{sgn} ? e p\rangle\) and \(\langle s g n ? e p=\operatorname{sgn}(-? e q)\rangle\)
    have \(\operatorname{sgn}(? e p-? e q)=\operatorname{sgn}(-? e q)\) by \(\operatorname{simp}\)
    with \(\langle ? e p-? e q \neq 0\) ) and sgn-div \([o f ? e p-? e q-? e q]\)
    have ? \(k>0\) by \(\operatorname{simp}\)
    from 〈? \(e p-? e q \neq 0\rangle\)
    have \(1-? k=? e p /(? e p-? e q)\) by (simp add: field-simps)
    with \(\langle\operatorname{sgn}(? e p-? e q)=\operatorname{sgn} ? e p\rangle\) and \(\langle ? e p-? e q \neq 0\rangle\)
    have \(1-? k>0\) by (simp add: sgn-div)
    hence \(? k<1\) by simp
    let ? \(c p=\) cart2-pt \(p\)
    let ? \(c q=\) cart2- \(p t q\)
    let ? \(c r=? k *_{R} ? c p+(1-? k) *_{R} ? c q\)
    let ? \(\mathrm{r}=\) proj2-pt \(? \mathrm{cr}\)
    let ? er \(=\) expansion-factor ? ? \(J\)
    have cart2-pt ?r \(=\) ?cr by (rule cart2-proj2)
    from \(\langle p \in h y p 2 \cup S\rangle\) and \(\langle q \in h y p 2 \cup S\rangle\) and \(\langle ? k>0\rangle\) and \(\langle ? k<1\rangle\)
    and between-hyp2-S [of q \(p\) ? \(k\) ]
have \(? r \in h y p 2 \cup S\) by \(\operatorname{simp}\)
with \(\langle p \in\) hyp2 \(\cup S\rangle\) and \(\langle q \in\) hyp \(2 \cup S\rangle\) and \(\langle i s\)-K2-isometry \(J\rangle\)
    and \(\langle c a r t 2-p t ? r=\) ? \(c r\rangle\)
    and expansion-factor-linear \(\left[\begin{array}{lll}\text { of } p & q \text { ? } r ~ & J\end{array}\right.\) ?k]
```

 have ?er = ?k * ?ep + (1 - ?k) * ?eq by simp
 with «?ep - ?eq = 0` have ?er = 0 by (simp add: field-simps)
 with 〈?r < hyp2 \cupS\rangle and 〈is-K2-isometry J\rangle
 show False by (simp add: expansion-factor)
 qed
lemma statement-63:
assumes }p\inhyp2\cupS\mathrm{ and }q\inhyp2\cupS\mathrm{ and }r\inhyp2\cup
and is-K2-isometry J and }\mp@subsup{B}{\mathbb{R}}{}\mathrm{ (cart2-pt p) (cart2-pt q) (cart2-pt r)
shows }\mp@subsup{B}{\mathbb{R}}{
(cart2-pt (apply-cltn2 p J))
(cart2-pt (apply-cltn2 q J))
(cart2-pt (apply-cltn2 r J))
proof -
let ?cp = cart2-pt p
let ?cq = cart2-pt q
let ?cr = cart2-pt r
let ?ep = expansion-factor p J
let ?eq = expansion-factor q J
let ?er = expansion-factor r J
from }\langleq\inhyp2\cupS\rangle\mathrm{ and <is-K2-isometry }J
have ?eq }=0\mathrm{ by (rule expansion-factor)
from }\langlep\inhyp2\cupS\rangle\mathrm{ and }\langleq\inhyp2\cupS\rangle\mathrm{ and }\langler\in hyp2\cupS
and \langleis-K2-isometry J\rangle and expansion-factor-sgn-invariant
have sgn ?ep = sgn ?eq and sgn ?er = sgn?eq by fast+
with 〈?eq = 0 \
have ?ep / ?eq > 0 and ?er / ?eq > 0 by (simp-all add: sgn-div)
from }\langle\mp@subsup{B}{\mathbb{R}}{}\mathrm{ ?cp ?cq ?cr>

```

```

 by (unfold real-euclid-B-def) (auto simp add: algebra-simps)
 let ?c =k*?er / ?eq
 from \langlek\geq0\rangle and <?er / ?eq > 0\rangle and mult-nonneg-nonneg [of k ?er / ?eq]
 have ?c}\geq0\mathrm{ by simp
 from }\langler\inhyp2\cupS\rangle\mathrm{ and }\langlep\inhyp2\cupS\rangle and \langleq\inhyp2\cupS
 and \langleis-K2-isometry J\rangle and \?cqq = k * R
 have ?eq =k*?er + (1-k)*?ep by (rule expansion-factor-linear)
 with \langle?eq \not=0\rangle have 1-?c=(1-k)*?ep / ?eq by (simp add: field-simps)
 with \langlek\leq 1> and <?ep / ?eq > 0\rangle
 and mult-nonneg-nonneg [of 1-k ?ep / ?eq]
 have ?c}\leq1\mathrm{ by simp
 let ?pJ = apply-cltn2 p J
 let ?qJ = apply-cltn2 q J
 let ?rJ = apply-cltn2 r J
 let ?cpJ = cart2-pt ?pJ
    ```
```

 let \({ }^{2} c q J=\) cart2-pt \(? q J\)
 let ? crJ \(=\) cart2-pt ? \(r J\)
 let ?cpJ1 = cart2-append1 ? pJ
 let ?cqJ1 = cart2-append1 ? qJ
 let ?crJ1 = cart2-append1 ? rJ
 from \(\langle p \in h y p 2 \cup S\rangle\) and \(\langle q \in h y p 2 \cup S\rangle\) and \(\langle r \in h y p 2 \cup S\rangle\)
 and 〈is-K2-isometry \(J\rangle\)
 have \(z\)-non-zero ?pJ and \(z\)-non-zero ? \(q J\) and \(z\)-non-zero ?rJ
 by (simp-all add: is-K2-isometry-z-non-zero)
 from \(\langle r \in h y p 2 \cup S\rangle\) and \(\langle p \in h y p 2 \cup S\rangle\) and \(\langle q \in\) hyp2 \(\cup S\rangle\)
 and \(\langle i s\)-K2-isometry \(J\rangle\) and \(\left\langle ? c q=k *_{R}\right.\) ? \(\left.c r+(1-k) *_{R}{ }^{?} c p\right\rangle\)
 have ? eq $*_{R}$? cqJ1 $=(k * ? e r) *_{R} ? c r J 1+((1-k) * ? e p) *_{R} ? c p J 1$
by (rule expansion-factor-linear-apply-cltn2)
hence $(1 / ? e q) *_{R}\left(? e q *_{R}\right.$?cqJ1)
$=(1 /$? eq $) *_{R}\left((k * ? e r) *_{R}\right.$? crJ1 $+((1-k) *$?ep $) *_{R}$? cp J1) by simp
with $\langle 1-? c=(1-k) * ? e p / ? e q\rangle$ and $\langle ? e q \neq 0\rangle$
have ?cqJ1 $=?$? $c *_{R}$?crJ1 $+(1-? c) *_{R}$?cpJ1
by (simp add: scaleR-right-distrib)
with 〈z-non-zero ?pJ〉 and 〈z-non-zero ?qJ〉 and 〈z-non-zero ?r $J\rangle$
have vector2-append1 ?cqJ
$=? c *_{R}$ vector2-append1 ?crJ $+(1-? c) *_{R}$ vector2-append1 ?cpJ
by (simp add: cart2-append1)
hence ? $c q J=? c *_{R}$?cr $J+(1-? c) *_{R}$? $c p J$
unfolding vector2-append1-def and vector-def
by (simp add: vec-eq-iff forall-2 forall-3)
with $\langle ? c \geq 0\rangle$ and $\langle ? c \leq 1\rangle$
show $B_{\mathbb{R}}$? $c p J$?cqJ ? $c r J$
by (unfold real-euclid-B-def) (simp add: algebra-simps exI $[$ of - ?c $]$)
qed
theorem hyp2-axiom4: $\forall q$ abc. $\exists x . B_{K} q a x \wedge a x \equiv_{K} b c$
proof (rule allI)+
fix q a b $c::$ hyp2
let ? $p q=$ Rep-hyp2 q
let ? $p a=$ Rep-hyp2 a
let $? p b=$ Rep-hyp2 b
let $? p c=$ Rep-hyp2 c
have $? p q \in h y p 2$ and $? p a \in h y p 2$ and $? p b \in h y p 2$ and $? p c \in h y p 2$
by (rule Rep-hyp2) +
let $? c q=$ cart2- $p t$? $p q$
let ? $c a=c a r t 2-p t$? $p a$
let $? c b=$ cart2-pt ?pb
let ? $c c=c a r t 2-p t ? p c$
let ? $p p=\epsilon p . p \in S \wedge B_{\mathbb{R}}$?cb ?cc (cart2-pt $\left.p\right)$
let ? $c p=c a r t 2-p t ? p p$
from 〈? $p b \in h y p 2\rangle$ and $\langle ? p c \in h y p 2\rangle$ and extend-to-S $[o f ? p b ? p c]$
and someI-ex $\left[o f \lambda p . p \in S \wedge B_{\mathbb{R}}\right.$?cb ?cc (cart2-pt $\left.p\right)$]
have ? $p p \in S$ and $B_{\mathbb{R}}$?cb ?cc ? $c p$ by auto

```
```

 let ?pr =\epsilon r.r\inS^ B
 let ?cr = cart2-pt ?pr
 from <?pq \in hyp2` and <?pa \in hyp2` and extend-to-S [of ?pq ?pa]
    ```

```

 have ?pr }\inS\mathrm{ and }\mp@subsup{B}{\mathbb{R}}{}\mathrm{ ?cq ?ca ?cr by auto
 from 〈?pb \inhyp2\rangle and \langle?pa \inhyp2\rangle and \?pp \inS\rangle and \langle?pr \inS\rangle
 and statement66-existence [of ?pb ?pa ?pp ?pr]
 obtain J where is-K2-isometry J
 and apply-cltn2 ?pb J = ?pa and apply-cltn2 ?pp J = ?pr
 by auto
 let ?px = apply-cltn2 ?pc J
 let ?cx = cart2-pt ?px
 let ?x = Abs-hyp2 ?px
 from <is-K2-isometry J\rangle and <?pc \in hyp2\rangle
 have ?px \in hyp2 by (rule statement60-one-way)
 hence Rep-hyp2 ?x = ?px by (rule Abs-hyp2-inverse)
 from 〈?pb \inhyp2\rangle and 〈?pc \in hyp2\rangle and \?pp \inS\rangle and \langleis-K2-isometry J\rangle
 and}\langle\mp@subsup{B}{\mathbb{R}}{}\mathrm{ ?cb ?ccc ?cp> and statement-63
 have }\mp@subsup{B}{\mathbb{R}}{}(cart2-pt (apply-cltn2 ?pb J)) ?cx (cart2-pt (apply-cltn2 ?pp J))
 by simp
 with «apply-cltn2 ?pb J = ?pa` and 〈apply-cltn2 ?pp J = ?pr`
 have }\mp@subsup{B}{\mathbb{R}}{}\mathrm{ ?ca ?cx ?cr by simp
 with <\mp@subsup{B}{\mathbb{R}}{}?cq\mathrm{ ?ca ?cr> have }\mp@subsup{B}{\mathbb{R}}{}\mathrm{ ?.cq ?ca ?cx by (rule real-euclid.th3-5-1)}
 with \Rep-hyp2 ? x = ? px>
 have }\mp@subsup{B}{K}{}q|a?
 unfolding real-hyp2-B-def and hyp2-rep-def
 by simp
 have Abs-hyp2 ?pa = a by (rule Rep-hyp2-inverse)
 with <apply-cltn2 ?pb J = ?pa>
 have hyp2-cltn2 b J =a by (unfold hyp2-cltn2-def) simp
 have hyp2-cltn2 с J =?x unfolding hyp2-cltn2-def ..
 with \langleis-K2-isometry J\rangle and <hyp2-cltn2 b J =a>
 have bc \equiv
 by (unfold real-hyp2-C-def) (simp add: exI [of - J])
 hence a? }\mp@subsup{\}{K}{}\mp@subsup{\equiv}{K}{}b\mathrm{ by (rule hyp2.th2-2)
 with \langle\mp@subsup{B}{K}{}q|a?x\rangle
 show \exists x. B K q a x ^ ax \equiv}\mp@subsup{K}{K}{}bc\mathrm{ by (simp add: exI[of - ?x])
 qed

```

\section*{9．9 More betweenness theorems}
```

lemma hyp2－S－points－fix－line：
assumes $a \in$ hyp2 and $p \in S$ and is－K2－isometry J
and apply－cltn2 $a J=a($ is ？$a J=a)$

```
and apply－cltn2 \(p J=p\)（is ？\(p J=p\) ）
and projQ－incident a \(l\) and proj2－incident \(p l\) and proj2－incident \(b l\)
shows apply－cltn2 b \(J=b\)（is ？\(b J=b\) ）
proof－
let ？lJ＝apply－cltn2－line l \(J\)
from \(\langle\) proj2－incident a \(l\rangle\) and \(\langle\) proj2－incident \(p l\rangle\)
have proj2－incident ？aJ ？lJ and proj2－incident ？pJ ？lJ by simp－all
with \(\langle ? a J=a\rangle\) and \(\langle ? p J=p\rangle\)
have proj2－incident a ？lJ and proj2－incident \(p ? l J\) by simp－all
from \(\langle a \in\) hyp2 \(\langle\) proj2－incident \(a l\rangle\) and line－through－K2－intersect－S－again［of a \(l]\)
obtain \(q\) where \(q \neq p\) and \(q \in S\) and proj2－incident \(q\) by auto let ？\(q J=\) apply－cltn2 \(q J\)
from \(\langle a \in\) hyp2 \(\rangle\) and \(\langle p \in S\rangle\) and \(\langle q \in S\rangle\)
have \(a \neq p\) and \(a \neq q\) by（simp－all add：hyp2－S－not－equal）
from \(\langle a \neq p\rangle\) and \(\langle\) proj2－incident \(a l\rangle\) and \(\langle\) proj2－incident \(p l\rangle\)
and 〈proj2－incident a ？lJ〉 and 〈proj2－incident p ？lJ〉
and proj2－incident－unique
have ？lJ \(=l\) by auto
from \(\langle p r o j 2\)－incident \(q l\rangle\) have proj2－incident ？qJ ？lJ by simp
with \(\langle ? l J=l\rangle\) have proj2－incident ？\(q J l\) by simp
from \(\langle q \in S\rangle\) and \(\langle i s\)－K2－isometry \(J\rangle\)
have ？\(q J \in S\) by（unfold is－K2－isometry－def）simp
with \(\langle q \neq p\rangle\) and \(\langle p \in S\rangle\) and \(\langle q \in S\rangle\) and \(\langle\) proj2－incident \(p l\rangle\)
and \(\langle\) proj2－incident \(q l\rangle\) and \(\langle\) proj2－incident ？\(q J l\rangle\)
and line－S－two－intersections－only
have ？\(q J=p \vee ? q J=q\) by \(\operatorname{simp}\)
have ？\(q J=q\)
proof（rule ccontr）
assume ？\(q J \neq q\)
with \(\langle ? q J=p \vee ? q J=q\rangle\) have \(? q J=p\) by \(\operatorname{simp}\)
with \(\langle ? p J=p\rangle\) have ？\(q J=\) ？\(p J\) by simp
with apply－cltn2－injective have \(q=p\) by fast
with \(\langle q \neq p\rangle\) show False ．．
qed
with \(\langle q \neq p\rangle\) and \(\langle a \neq p\rangle\) and \(\langle a \neq q\rangle\) and \(\langle p r o j\) D－incident \(p l\rangle\)
and \(\langle\) proj2－incident \(q l\rangle\) and \(\langle\) proj2－incident a \(l\rangle\)
and \(\langle ? p J=p\rangle\) and \(\langle ? a J=a\rangle\) and \(\langle\) proj2－incident \(b l\rangle\)
and cltn2－three－point－line［of p q a l J b］
show ？bJ \(=b\) by simp
qed
lemma K2－isometry－endpoint－in－S：
```

 assumes }a\not=b\mathrm{ and }a\inhyp2\cupS\mathrm{ and }b\inhyp2\cupS and is-K2-isometry J
 shows apply-cltn2 (endpoint-in-S a b) J
 = endpoint-in-S (apply-cltn2 a J) (apply-cltn2 b J)
 (is ?pJ = endpoint-in-S ?aJ ?bJ)
 proof -
let ?p = endpoint-in-S a b
from }\langlea\not=b\rangle\mathrm{ and apply-cltn2-injective have ?aJ \#=?bJ by fast
from }\langlea\inhyp2\cupS\rangle\mathrm{ and }\langleb\inhyp2 \cupS\rangle and \langleis-K2-isometry J
and is-K2-isometry-hyp2-S
have ?aJ \in hyp2 \cupS and ?bJ \in hyp2 \cupS by simp-all
let ?ca = cart2-pt a
let ?cb = cart2-pt b
let ?cp = cart2-pt ?p
from }\langlea\inhyp2\cupS\rangle\mathrm{ and }\langleb\inhyp2\cupS
have ?p}\inS\mathrm{ and }\mp@subsup{B}{\mathbb{R}}{}\mathrm{ ?ca ?cb ?cp by (rule endpoint-in-S)+
from \?pp\inS\rangle and <is-K2-isometry J\rangle
have ?pJ \inS by (unfold is-K2-isometry-def) simp
let ?caJ = cart2-pt ?aJ
let ?cbJ = cart2-pt ?bJ
let ?cpJ = cart2-pt ?pJ
from }\langlea\inhyp2\cupS\rangle\mathrm{ and }\langleb\inhyp2\cupS\rangle and \langle?p \inS\rangle and <is-K2-isometry J
and}\langle\mp@subsup{B}{\mathbb{R}}{}\mathrm{ ?ca ?cb ?cp> and statement-63
have }\mp@subsup{B}{\mathbb{R}}{}\mathrm{ ?caJ ?cbJ ?cpJ by simp
with }\langle?aJ\not=?bJ\rangle\mathrm{ and }\langle?aJ \inhyp2\cupS\rangle\mathrm{ and }\langle?bJ\inhyp2\cupS\rangle\mathrm{ and }\langle?pJ\inS
show ?pJ = endpoint-in-S ?aJ ?bJ by (rule endpoint-in-S-unique)
qed
lemma between-endpoint-in-S:
assumes }a\not=b\mathrm{ and b}=
and a\inhyp2 \cupS and b\inhyp2 \cupS and c Ghyp2 \cupS

```

```

 shows endpoint-in-S a b = endpoint-in-S b c (is ?p = ?q)
 proof -
from }\langleb\not=c\rangle\mathrm{ and }\langleb\inhyp2\cupS\rangle\mathrm{ and }\langlec\inhyp2\cupS\rangle\mathrm{ and hyp2-S-cart2-inj
have ?cb}\not=\mathrm{ ?cc by auto
let ?cq= cart2-pt ?q
from }\langleb\inhyp2\cupS\rangle\mathrm{ and }\langlec\inhyp2\cupS
have ?q}\inS\mathrm{ and }\mp@subsup{B}{\mathbb{R}}{}\mathrm{ ?cb ?cc ?cq by (rule endpoint-in-S)+
from \langle?cb}\not=??cc\rangle\mathrm{ and }\langle\mp@subsup{B}{\mathbb{R}}{}\mathrm{ ?ca ?cb ?cc> and }\langle\mp@subsup{B}{\mathbb{R}}{}?cb?,cc?cq
have }\mp@subsup{B}{\mathbb{R}}{}\mathrm{ ?ca ?cb ?cq by (rule real-euclid.th3-7-2)
with }\langlea\not=b\rangle\mathrm{ and }\langlea\inhyp2\cupS\rangle\mathrm{ and }\langleb\inhyp2\cupS\rangle\mathrm{ and }\langle?q\inS
have ?q = ?p by (rule endpoint-in-S-unique)

```
```

 thus ?p = ?q..
 qed
lemma hyp2-extend-segment-unique:
assumes }a\not=b\mathrm{ and }\mp@subsup{B}{K}{}abc\mathrm{ and }\mp@subsup{B}{K}{}abd\mathrm{ and bc 循 bd
shows c=d
proof cases
assume b=c
with }\langlebc\mp@subsup{\equiv}{K}{}bd\rangle\mathrm{ show }c=d\mathrm{ by (simp add: hyp2.A3-reversed)
next
assume b\not=c
have b}\not=
proof (rule ccontr)
assume \negb\not=d
hence b=d by simp
with <b c \equiv}\mp@subsup{K}{K}{}bd\rangle\mathrm{ have bc = K
hence b=c by (rule hyp2.A3')
with }\langleb\not=c\rangle\mathrm{ show False ..
qed
with }\langlea\not=b\rangle\mathrm{ and }\langleb\not=c
have Rep-hyp2 a }=\mathrm{ Rep-hyp2 b (is ?pa }\not=?\mathrm{ ?pb)
and Rep-hyp2 b = Rep-hyp2 c (is ?pb \# ?pc)
and Rep-hyp2 b}\not=Rep-hyp2 d (is ?pb \# ?pd
by (simp-all add: Rep-hyp2-inject)
have ?pa \in hyp2 and ?pb \in hyp2 and ?pc \in hyp2 and ?pd \in hyp2
by (rule Rep-hyp2)+
let ?pp = endpoint-in-S ?pb ?pc
let ?ca = cart2-pt ?pa
let ?cb = cart2-pt ?pb
let ?cc = cart2-pt ?pc
let ?cd = cart2-pt ?pd
let ?cp = cart2-pt ?pp
from 〈?pb \in hyp2> and 〈?pc \in hyp2>
have ?pp }\inS\mathrm{ and }\mp@subsup{B}{\mathbb{R}}{}\mathrm{ ?cb ?cc ?cp by (simp-all add: endpoint-in-S)
from <b c \equiv}\mp@subsup{}{K}{}bd
obtain J where is-K2-isometry J
and hyp2-cltn2 b J = b and hyp2-cltn2 c J = d
by (unfold real-hyp2-C-def) auto
from 〈hyp2-cltn2 b J = b and <hyp2-cltn2 c J = d`
have Rep-hyp2 (hyp2-cltn2 b J) =?pb
and Rep-hyp2 (hyp2-cltn2 c J) =?pd
by simp-all
with <is-K2-isometry J>
have apply-cltn2 ?pb J = ?pb and apply-cltn2 ?pc J = ?pd

```
```

 by (simp-all add: Rep-hyp2-cltn2)
    ```

```

 have }\mp@subsup{B}{\mathbb{R}}{}\mathrm{ ?ca ?cb ?cc and }\mp@subsup{B}{\mathbb{R}}{}\mathrm{ ?ca ?cb ?cd
 unfolding real-hyp2-B-def and hyp2-rep-def .
 from 〈?pb = ?pc\rangle and \langle?pb \inhyp2\rangle and \langle?pc \in hyp2\rangle and \langleis-K2-isometry J\rangle
 have apply-cltn2 ?pp J
 = endpoint-in-S (apply-cltn2 ?pb J) (apply-cltn2 ?pc J)
 by (simp add: K2-isometry-endpoint-in-S)
 also from 〈apply-cltn2 ?pb J = ?pb〉 and 〈apply-cltn2 ?pc J = ?pd〉
 have ... = endpoint-in-S ?pb ?pd by simp
 also from < }\langlepa\not=?,pb\rangle\mathrm{ and }\langle?pb\not=?pd
    ```

```

 have ... = endpoint-in-S ?pa ?pb by (simp add: between-endpoint-in-S)
 also from «?pa }\not=?\mathrm{ ?pb> and «?pb }\not=?\mathrm{ ?pc〉
    ```

```

 have ... = endpoint-in-S ?pb ?pc by (simp add: between-endpoint-in-S)
 finally have apply-cltn2 ?pp J = ?pp .
 from \?pb \in hyp2\rangle and \?pc \in hyp2\rangle and \?pp \inS\rangle
 have z-non-zero ?pb and z-non-zero ?pc and z-non-zero ?pp
 by (simp-all add: hyp2-S-z-non-zero)
 with}\langle\mp@subsup{B}{\mathbb{R}}{}\mathrm{ ?cb ?cc ?cp> and euclid-B-cart2-common-line [of ?pb ?pc ?pp]
 obtain l where proj2-incident ?pb l and proj2-incident ?pp l
 and proj2-incident ?pc l
 by auto
 with \langle?pb G hyp2\rangle and \langle?pp \inS\rangle and \langleis-K2-isometry J\rangle
 and 〈apply-cltn2 ?pb J = ?pb> and 〈apply-cltn2 ?pp J = ?pp>
 have apply-cltn2 ?pc J = ?pc by (rule hyp2-S-points-fix-line)
 with <apply-cltn2 ?pc J=?pd` have ?pc = ?pd by simp
 thus c=d by (subst Rep-hyp2-inject [symmetric])
 qed
lemma line-S-match-intersections:
assumes }p\not=q\mathrm{ and }r\not=s\mathrm{ and }p\inS\mathrm{ and q}\inS\mathrm{ and }r\inS\mathrm{ and s}\in
and proj2-set-Col {p,q,r,s}
shows (}p=r\wedgeq=s)\vee(q=r\wedgep=s
proof -
from 〈proj2-set-Col {p,q,r,s}>
obtain l}\mathrm{ where proj2-incident pl}\mathrm{ and proj2-incident q l
and proj2-incident r l and proj2-incident s l
by (unfold proj2-set-Col-def) auto
with }\langler\not=s\rangle\mathrm{ and }\langlep\inS\rangle\mathrm{ and }\langleq\inS\rangle\mathrm{ and }\langler\inS\rangle\mathrm{ and }\langles\inS
have }p=r\veep=s\mathrm{ and }q=r\veeq=
by (simp-all add: line-S-two-intersections-only)
show (p=r\wedgeq=s)\vee(q=r\wedgep=s)
proof cases

```
```

 assume p=r
 with }\langlep\not=q\rangle\mathrm{ and }\langleq=r\veeq=s
 show (p=r\wedgeq=s)\vee(q=r\wedgep=s) by simp
 next
 assume p\not=r
 with }\langlep=r\veep=s\rangle\mathrm{ have p=s by simp
 with }\langlep\not=q\rangle\mathrm{ and }\langleq=r\veeq=s
 show (p=r}\wedgeq=s)\vee(q=r\wedgep=s) by sim
 qed
 qed
definition are-endpoints-in-S :: [proj2, proj2, proj2, proj2] => bool where
are-endpoints-in-S p q a b
\triangleqp\not=q\wedgep\inS\wedgeq\inS\wedgea\inhyp2 ^b\inhyp2 ^ proj2-set-Col {p,q,a,b}
lemma are-endpoints-in-S':
assumes }p\not=q\mathrm{ and }a\not=b\mathrm{ and }p\inS\mathrm{ and }q\inS\mathrm{ and }a\inhyp2\cup
and b}\inhyp2\cupS and proj2-set-Col {p,q,a,b
shows (p= endpoint-in-S a b ^q= endpoint-in-S b a)
\vee (q = e n d p o i n t - i n - S ~ a ~ b ~ \wedge ~ p = e n d p o i n t - i n - S ~ b ~ a) ~
(is }(p=?r\wedgeq=?s)\vee(q=?r\wedgep=?s)
proof -
from }\langlea\not=b\rangle\mathrm{ and }\langlea\inhyp2\cupS\rangle\mathrm{ and }\langleb\inhyp2\cupS
have ?r }\not=\mathrm{ ?s by (simp add: endpoint-in-S-swap)
from <a \in hyp2 \cupS\rangle and \langleb G hyp2 \cupS\rangle
have ?r }\inS\mathrm{ and ?s }\inS\mathrm{ by (simp-all add: endpoint-in-S)
from <proj2-set-Col {p,q,a,b}>
obtain l}\mathrm{ where proj2-incident pl}\mathrm{ and proj2-incident q l
and proj2-incident a l and proj2-incident b l
by (unfold proj2-set-Col-def) auto
from }\langlea\not=b\rangle\mathrm{ and }\langlea\inhyp2\cupS\rangle\mathrm{ and }\langleb\inhyp2\cupS\rangle and \langleproj2-incident a l>
and <proj2-incident b l>
have proj2-incident ?r l and proj2-incident ?s l
by (simp-all add: endpoint-in-S-incident)
with 〈proj2-incident pl> and 〈proj2-incident q l>
have proj2-set-Col {p,q,?r,?s}
by (unfold proj2-set-Col-def) (simp add: exI [of - l])
with }\langlep\not=q\rangle\mathrm{ and }\langle?r\not=?s\rangle\mathrm{ and }\langlep\inS\rangle\mathrm{ and }\langleq\inS\rangle\mathrm{ and }\langle?r\inS\rangle\mathrm{ and }\langle?s
S>
show (}p=?\mathrm{ ? r }\wedgeq=? ?) \vee (q=?r ^ p=?s)
by (rule line-S-match-intersections)
qed
lemma are-endpoints-in-S:
assumes $a \neq b$ and are-endpoints-in-S p q a b
shows ($p=$ endpoint-in-S $a b \wedge q=$ endpoint-in-S $b a)$

```
```

 \vee (q = e n d p o i n t - i n - S ~ a ~ b ~ \wedge ~ p = e n d p o i n t - i n - S ~ b ~ a) ~
 using assms
 by (unfold are-endpoints-in-S-def) (simp add: are-endpoints-in-S')
 lemma S-intersections-endpoints-in-S:
assumes }a\not=0\mathrm{ and b}=0\mathrm{ and proj2-abs a}\not=\mathrm{ proj2-abs b (is ?pa }\not=?pb
and proj2-abs a G hyp2 and proj2-abs b G hyp2 \cupS
shows (S-intersection1 a b = endpoint-in-S ?pa ?pb
\wedgeS-intersection2 a b = endpoint-in-S ?pb ?pa)
\checkmark ~ (S - i n t e r s e c t i o n 2 ~ a ~ b ~ = ~ e n d p o i n t - i n - S ~ ? p a ~ ? p b ~
^S-intersection1 a b = endpoint-in-S ?pb ?pa)
(is (?pp = ?pr ^?pq=?ps)\vee (?pq=? pr ^ ?pp = ?ps))
proof -
from }\langlea\not=0\rangle\mathrm{ and }\langleb\not=0\rangle\mathrm{ and }\langle?pa\not=?pb\rangle\mathrm{ and }\langle?pa\in hyp2
have ?pp \not= ?pq by (simp add: S-intersections-distinct)
from }\langlea\not=0\rangle\mathrm{ and }\langleb\not=0\rangle\mathrm{ and 〈?pa }\not=?\mathrm{ ?pb> and <proj2-abs a }a\inhyp2
have ?pp\inS and ?pq\inS
by (simp-all add: S-intersections-in-S)
let ?l = proj2-line-through ?pa ?pb
have proj2-incident ?pa ?l and proj2-incident ?pb ?l
by (rule proj2-line-through-incident)+
with }\langlea\not=0\rangle\mathrm{ and }\langleb\not=0\rangle\mathrm{ and }\langle?pa\not=??pb
have proj2-incident ?pp ?l and proj2-incident ?pq ?l
by (rule S-intersections-incident)+
with 〈proj2-incident ?pa ?l` and \proj2-incident ?pb ?l`
have proj2-set-Col { ?pp,?pq,?pa,?pb}
by (unfold proj2-set-Col-def) (simp add: exI [of - ?l])
with 〈?pp \not= ?pq\rangle and \langle?pa \not=?pb\rangle and \langle?pp \inS\rangle and \langle?pq\inS\rangle and <?pa \in
hyp2>
and <?pb \in hyp2 \cupS\rangle
show (?pp = ?pr ^ ?pq = ?ps) \vee (?pq=?pr ^?pp = ?ps)
by (simp add: are-endpoints-in-S')
qed
lemma between-endpoints-in-S:
assumes }a\not=b\mathrm{ and }a\inhyp2\cupS\mathrm{ and }b\inhyp2\cup
shows }\mp@subsup{B}{\mathbb{R}}{
(cart2-pt (endpoint-in-S a b)) (cart2-pt a) (cart2-pt (endpoint-in-S b a))
(is }\mp@subsup{B}{\mathbb{R}}{}\mathrm{ ?cp ?ca ?cq)
proof -
let ?cb = cart2-pt b
from }\langleb\inhyp2\cupS\rangle\mathrm{ and }\langlea\inhyp\mathcal{Q}\cupS\rangle\mathrm{ and }\langlea\not=b
have ?cb \not=?ca by (auto simp add: hyp2-S-cart2-inj)
from <a \in hyp2 \cupS\rangle and }\langleb\inhyp2 \cupS
have }\mp@subsup{B}{\mathbb{R}}{}?ca?cb ?cp and \mp@subsup{B}{\mathbb{R}}{}\mathrm{ ?cb ?ca ?cq by (simp-all add: endpoint-in-S)

```
```

 from \\mp@subsup{B}{\mathbb{R}}{}\mathrm{ ?ca ?cb ?cp> have }\mp@subsup{B}{\mathbb{R}}{}\mathrm{ ?'cp ?cb ?ca by (rule real-euclid.th3-2)}
 with <?cb \not=?ca\rangle and \langle\mp@subsup{B}{\mathbb{R}}{}?cb ?ca?cq\rangle
 show }\mp@subsup{B}{\mathbb{R}}{}\mathrm{ ?cp ?ca ?cq by (simp add: real-euclid.th3-7-1)
 qed
lemma S-hyp2-S-cart2-append1:
assumes }p\not=q\mathrm{ and }p\inS\mathrm{ and }q\inS\mathrm{ and }a\inhyp
and proj2-incident p l and proj2-incident q l and proj2-incident a l
shows }\existsk.k>0\wedgek<
^cart2-append1 a = k *R cart2-append1 q + (1 - k) *R cart2-append1 p
proof -
from }\langlep\inS\rangle\mathrm{ and }\langleq\inS\rangle\mathrm{ and }\langlea\inhyp2
have z-non-zero p and z-non-zero q and z-non-zero a
by (simp-all add: hyp2-S-z-non-zero)
from assms

```

```

 by (simp add: hyp2-incident-in-middle)
 from }\langlep\inS\rangle\mathrm{ and }\langleq\inS\rangle\mathrm{ and }\langlea\inhyp2
 have a\not=p and a\not=q by (simp-all add: hyp2-S-not-equal)
 with \langlez-non-zero p\rangle and \langlez-non-zero a\rangle and \langlez-non-zero q\rangle
 and 〈\mp@subsup{B}{\mathbb{R}}{}\mathrm{ ?cp ?ca ?cq〉}
 show \exists k. k>0^k<1
 ^cart2-append1 }a=k\mp@subsup{*}{R}{}\mathrm{ cart2-append1 q + (1 - k) *R cart2-append1 p
 by (rule cart2-append1-between-strict)
 qed
lemma are-endpoints-in-S-swap-34:
assumes are-endpoints-in-S p q a b
shows are-endpoints-in-S pqb a
proof -
have {p,q,b,a}={p,q,a,b} by auto
with <are-endpoints-in-S p q a b>
show are-endpoints-in-S pqb a by (unfold are-endpoints-in-S-def) simp
qed
lemma proj2-set-Col-endpoints-in-S:
assumes }a\not=b\mathrm{ and }a\inhyp2\cupS\mathrm{ and }b\inhyp2\cup
shows proj2-set-Col {endpoint-in-S a b, endpoint-in-S b a,a,b}
(is proj2-set-Col {?p,?q,a,b})
proof -
let ?l = proj2-line-through a b
have proj2-incident a ?l and proj2-incident b ?l
by (rule proj2-line-through-incident)+
with }\langlea\not=b\rangle\mathrm{ and }\langlea\inhyp2\cupS\rangle\mathrm{ and }\langleb\inhyp2\cupS
have proj2-incident ?p ?l and proj2-incident ?q ?l
by (simp-all add: endpoint-in-S-incident)

```
```

 with <proj2-incident a ?l> and <proj2-incident b ?l>
 show proj2-set-Col {?p,?q,a,b}
 by (unfold proj2-set-Col-def) (simp add: exI [of - ?l])
 qed
lemma endpoints-in-S-are-endpoints-in-S:
assumes }a\not=b\mathrm{ and }a\inhyp2 and b\inhyp
shows are-endpoints-in-S (endpoint-in-S a b) (endpoint-in-S b a) a b
(is are-endpoints-in-S ?p ?q a b)
proof -
from }\langlea\not=b\rangle\mathrm{ and }\langlea\inhyp2\rangle\mathrm{ and }\langleb\inhyp2
have ?p}\not=?q\mathrm{ by (simp add: endpoint-in-S-swap)
from 〈a < hyp2\rangle and \langleb\in hyp2\rangle
have ?p}\inS\mathrm{ and ?q GS by (simp-all add: endpoint-in-S)
from assms
have proj2-set-Col {?p,?q,a,b} by (simp add: proj2-set-Col-endpoints-in-S)
with \langle?p \not= ?q\rangle and \langle?p \inS\rangle and \langle?q \inS\rangle and \langlea\inhyp2\rangle and \langleb\in hyp2\rangle
show are-endpoints-in-S ?p ?q a b by (unfold are-endpoints-in-S-def) simp
qed
lemma endpoint-in-S-S-hyp2-distinct:
assumes }p\inS\mathrm{ and }a\inhyp2\cupS\mathrm{ and }p\not=
shows endpoint-in-S p a\not=p
proof
from }\langlep\not=a\rangle\mathrm{ and }\langlep\inS\rangle\mathrm{ and }\langlea\inhyp2\cupS
have }\mp@subsup{B}{\mathbb{R}}{}(cart2-pt p) (cart2-pt a) (cart2-pt (endpoint-in-S p a))
by (simp add: endpoint-in-S)
assume endpoint-in-S pa=p
with }\langle\mp@subsup{B}{\mathbb{R}}{}(cart2-pt p) (cart2-pt a) (cart2-pt (endpoint-in-S p a))
have cart2-pt p = cart2-pt a by (simp add: real-euclid.A6')
with }\langlep\inS\rangle\mathrm{ and }\langlea\in\mathrm{ hyp2 }\cupS\rangle\mathrm{ have }p=a\mathrm{ by (simp add: hyp2-S-cart2-inj)
with }\langlep\not=a\rangle\mathrm{ show False ..
qed
lemma endpoint-in-S-S-strict-hyp2-distinct:
assumes p\inS and a\in hyp2
shows endpoint-in-S p a\not=p
proof -
from <a \in hyp2> and <p\inS\rangle
have p\not=a by (rule hyp2-S-not-equal [symmetric])
with assms
show endpoint-in-S p a\not= p by (simp add: endpoint-in-S-S-hyp2-distinct)
qed
lemma end-and-opposite-are-endpoints-in-S:
assumes a\inhyp2 and b\inhyp2 and p}\in

```
and proj2－incident a \(l\) and proj2－incident \(b l\) and proj2－incident \(p l\)
shows are－endpoints－in－S \(p\)（endpoint－in－S \(p\) b）ab
（is are－endpoints－in－S \(p\) ？\(q\) a b）
proof－
from \(\langle p \in S\rangle\) and \(\langle b \in\) hyp2〉
have \(p \neq ? q\) by（rule endpoint－in－S－S－strict－hyp2－distinct［symmetric］）
from \(\langle p \in S\rangle\) and \(\langle b \in h y p 2\rangle\) have \(? q \in S\) by（simp add：endpoint－in－\(S\) ）
from \(\langle b \in\) hyp2 \(\rangle\) and \(\langle p \in S\rangle\)
have \(p \neq b\) by（rule hyp2－S－not－equal［symmetric］）
with \(\langle p \in S\rangle\) and \(\langle b \in\) hyp2 \(\rangle\) and \(\langle\) proj2－incident \(p l\rangle\) and \(\langle p r o j 2-i n c i d e n t ~ b l\rangle\)
have proj2－incident ？\(q l\) by（simp add：endpoint－in－S－incident）
with \(\langle\) proj2－incident \(p l\rangle\) and \(\langle\) proj2－incident \(a l\rangle\) and \(\langle\) proj2－incident \(b l\rangle\)
have proj2－set－Col \(\{p, ? q, a, b\}\)
by（unfold proj2－set－Col－def）（simp add：exI［of－l］）
with \(\langle p \neq ? q\rangle\) and \(\langle p \in S\rangle\) and \(\langle ? q \in S\rangle\) and \(\langle a \in h y p 2\rangle\) and \(\langle b \in\) hyp2〉 show are－endpoints－in－S \(p\) ？q ab by（unfold are－endpoints－in－S－def）simp qed
lemma real－hyp2－B－hyp2－cltn2：
assumes is－K2－isometry \(J\) and \(B_{K} a b c\)

（is \(B_{K}\) ？aJ ？bJ ？cJ \()\)
proof－
from \(\left\langle B_{K} a b c\right\rangle\)
have \(B_{\mathbb{R}}\)（hyp2－rep a）（hyp2－rep b）（hyp2－rep c）by（unfold real－hyp2－B－def）
with 〈is－K2－isometry \(J\rangle\)
have \(B_{\mathbb{R}}(\) cart2－pt（apply－cltn2 \((\) Rep－hyp2 a）J））
（cart2－pt（apply－cltn2（Rep－hyp2 b）J））
（cart2－pt（apply－cltn2（Rep－hyp2 c）J））
by（unfold hyp2－rep－def）（simp add：Rep－hyp2 statement－63）
moreover from 〈is－K2－isometry \(J\rangle\)
have apply－cltn2（Rep－hyp2 a）\(J \in\) hyp2
and apply－cltn2（Rep－hyp2 b）\(J \in\) hyp2
and apply－cltn2（Rep－hyp2 c）\(J \in\) hyp2
by（rule apply－cltn2－Rep－hyp2）＋
ultimately show \(B_{K}(h y p 2-c l t n 2 a b)(h y p 2-c l t n 2 b J)(h y p 2-c l t n 2 ~ c ~ J) ~\)
unfolding hyp2－cltn2－def and real－hyp2－B－def and hyp2－rep－def
by（simp add：Abs－hyp2－inverse）
qed
lemma real－hyp2－C－hyp2－cltn2：
assumes is－K2－isometry \(J\)
shows \(a b \equiv_{K}(\) hyp2－cltn2 \(a J)(h y p 2-c l t n 2 ~ b J)\left(\right.\) is \(a b \equiv_{K}\) ？\(a J\) ？bJ）
using assms by（unfold real－hyp2－C－def）（simp add：exI［of－J］）

\subsection*{9.10 Perpendicularity}
```

definition M-perp :: proj2-line }=>\mathrm{ proj2-line }=>\mathrm{ bool where
M-perp l m\triangleq proj2-incident (pole l) m
lemma M-perp-sym:
assumes M-perp l m
shows M-perp ml
proof -
from 〈M-perp l m> have proj2-incident (pole l) m by (unfold M-perp-def)
hence proj2-incident (pole m) (polar (pole l)) by (rule incident-pole-polar)
hence proj2-incident (pole m) l by (simp add: polar-pole)
thus M-perp m l by (unfold M-perp-def)
qed
lemma M-perp-to-compass:
assumes M-perp l m and a \inhyp2 and proj2-incident a l
and b}\inhyp2 and proj2-incident b m
shows \exists J. is-K2-isometry J
^apply-cltn2-line equator }J=l\wedge\mathrm{ apply-cltn2-line meridian }J=
proof -
from \langlea GK2\rangle and <proj2-incident a l>
and line-through-K2-intersect-S-twice [of a l]
obtain p and q}\mathrm{ where p}\not=q\mathrm{ and }p\inS\mathrm{ and q}\in
and proj2-incident pl and proj2-incident q l
by auto

```
    have \(\exists r . r \in S \wedge r \notin\{p, q\} \wedge\) proj2-incident \(r m\)
    proof cases
    assume proj2-incident \(p m\)
    from \(\langle b \in K 2\rangle\) and \(\langle p r o j 2\)-incident \(b m\rangle\)
        and line-through-K2-intersect-S-again [of \(b \mathrm{~m}\) ]
    obtain \(r\) where \(r \in S\) and \(r \neq p\) and proj2-incident \(r m\) by auto
    have \(r \notin\{p, q\}\)
    proof
    assume \(r \in\{p, q\}\)
    with \(\langle r \neq p\rangle\) have \(r=q\) by \(\operatorname{simp}\)
    with \(\langle p r o j 2-i n c i d e n t r m\) have proj2-incident \(q\) by simp
    with \(\langle\) proj2-incident \(p l\rangle\) and \(\langle p r o j 2-i n c i d e n t ~ q l\rangle\)
            and \(\langle p r o j 2\)-incident \(p m\rangle\) and \(\langle p r o j 2-i n c i d e n t ~ q u\rangle\) and \(\langle p \neq q\rangle\)
            and proj2-incident-unique [of plqm]
            have \(l=m\) by \(\operatorname{simp}\)
            with \(\langle M\)-perp \(l m\rangle\) have \(M\)-perp \(l l\) by \(\operatorname{simp}\)
            hence proj2-incident (pole l) \(l\) (is proj2-incident ?s \(l\) )
                by (unfold M-perp-def)
    hence proj2-incident ?s (polar ?s) by (subst polar-pole)
    hence ?s \(\in S\) by (simp add: incident-own-polar-in-S)
    with \(\langle p \in S\rangle\) and \(\langle q \in S\rangle\) and \(\langle\) proj2-incident \(p l\rangle\) and \(\langle\) proj2-incident \(q l\rangle\)
and point－in－S－polar－is－tangent［of ？s］
have \(p=\) ？s and \(q=\) ？s by（auto simp add：polar－pole）
with \(\langle p \neq q\rangle\) show False by simp
qed
with \(\langle r \in S\rangle\) and \(\langle p r o j 2\)－incident \(r m\rangle\)
show \(\exists r . r \in S \wedge r \notin\{p, q\} \wedge\) proj2－incident \(r m\)
by（simp add：exI \([o f-r]\) ）
next
assume \(\neg\) proj2－incident \(p m\)
from \(\langle b \in K 2\rangle\) and \(\langle p r o j 2\)－incident \(b m\rangle\)
and line－through－K2－intersect－S－again［of \(b \mathrm{~m}\) ］
obtain \(r\) where \(r \in S\) and \(r \neq q\) and proj2－incident \(r m\) by auto
from \(\langle\neg\) proj2－incident \(p m\rangle\) and \(\langle p r o j 2\)－incident \(r m\rangle\) have \(r \neq p\) by auto
with \(\langle r \in S\rangle\) and \(\langle r \neq q\rangle\) and \(\langle p r o j 2-i n c i d e n t r m\rangle\)
show \(\exists r . r \in S \wedge r \notin\{p, q\} \wedge\) proj2－incident \(r m\)
by（simp add：exI \([o f-r]\) ）
qed
then obtain \(r\) where \(r \in S\) and \(r \notin\{p, q\}\) and proj2－incident \(r m\) by auto
from \(\langle p \in S\rangle\) and \(\langle q \in S\rangle\) and \(\langle r \in S\rangle\) and \(\langle p \neq q\rangle\) and \(\langle r \notin\{p, q\}\rangle\)
and statement65－special－case［of \(p \quad q r]\)
obtain \(J\) where is－K2－isometry \(J\) and apply－cltn2 east \(J=p\)
and apply－cltn2 west \(J=q\) and apply－cltn2 north \(J=r\)
and apply－cltn2 far－north \(J=\) proj2－intersection \((\) polar \(p)(\) polar \(q)\)
by auto
from \(\langle a p p l y-c l t n 2\) east \(J=p\rangle\) and \(\langle a p p l y-c l t n 2\) west \(J=q\rangle\)
and \(\langle\) proj2－incident \(p l\rangle\) and \(\langle\) proj2－incident \(q l\rangle\)
have proj2－incident（apply－cltn2 east \(J\) ）\(l\)
and proj2－incident（apply－cltn2 west \(J\) ）\(l\)
by simp－all
with east－west－distinct and east－west－on－equator
have apply－cltn2－line equator \(J=l\) by（rule apply－cltn2－line－unique）
from 〈apply－cltn2 north \(J=r\rangle\) and \(\langle p r o j 2-i n c i d e n t r m\rangle\)
have proj2－incident（apply－cltn2 north J）\(m\) by simp
from \(\langle p \neq q\rangle\) and polar－inj have polar \(p \neq\) polar \(q\) by fast
from \(\langle\) proj2－incident \(p l\rangle\) and \(\langle p r o j 2-i n c i d e n t ~ q l\rangle\)
have proj2－incident（pole l）（polar p）
and proj2－incident（pole l）（polar q）
by（simp－all add：incident－pole－polar）
with \(\langle\) polar \(p \neq\) polar \(q\) 〉
have pole \(l=\) projo－intersection \((\) polar \(p)(\) polar \(q)\)
by（rule proj2－intersection－unique）
with 〈apply－cltn2 far－north \(J=\) proj2－intersection（polar \(p\) ）（polar q）＞
```

 have apply-cltn2 far-north J = pole l by simp
 with 〈M-perp l m>
 have proj2-incident (apply-cltn2 far-north J) m by (unfold M-perp-def) simp
 with north-far-north-distinct and north-south-far-north-on-meridian
 and <proj2-incident (apply-cltn2 north J) m>
 have apply-cltn2-line meridian }J=m\mathrm{ by (simp add: apply-cltn2-line-unique)
 with 〈is-K2-isometry J\rangle and <apply-cltn2-line equator }J=l
 show \exists J. is-K2-isometry J
 ^ apply-cltn2-line equator }J=l\wedge apply-cltn2-line meridian J =m
 by (simp add: exI [of - J])
 qed
definition drop-perp :: proj2 => proj2-line }=>\mathrm{ proj2-line where
drop-perp pl\triangleq proj2-line-through p (pole l)
lemma drop-perp-incident: proj2-incident p (drop-perp p l)
by (unfold drop-perp-def) (rule proj2-line-through-incident)
lemma drop-perp-perp: M-perp l (drop-perp p l)
by (unfold drop-perp-def M-perp-def) (rule proj2-line-through-incident)
definition perp-foot :: proj2 => proj2-line }=>\mathrm{ proj2 where
perp-foot pl\triangleq proj2-intersection l (drop-perp pl)
lemma perp-foot-incident:
shows proj2-incident (perp-foot p l) l
and proj2-incident (perp-foot p l) (drop-perp p l)
by (unfold perp-foot-def) (rule proj2-intersection-incident)+
lemma M-perp-hyp2:
assumes M-perp lm and a\inhyp2 and proj2-incident a l and b\inhyp2
and proj2-incident b m and proj2-incident c l and proj2-incident c m
shows c < hyp2
proof -
from \langleM-perp l m> and \langlea\inhyp2\rangle and \langleproj2-incident a l> and \langleb <hyp2\rangle
and <proj2-incident b m> and M-perp-to-compass [of l mabl
obtain J where is-K2-isometry J and apply-cltn2-line equator }J=
and apply-cltn2-line meridian }J=
by auto
from 〈is-K2-isometry J\rangle and K2-centre-in-K2
have apply-cltn2 K2-centre J \in hyp2
by (rule statement60-one-way)
from 〈proj2-incident c l> and <apply-cltn2-line equator J = l>
and 〈proj2-incident c m> and 〈apply-cltn2-line meridian }J=
have proj2-incident c (apply-cltn2-line equator J)
and proj2-incident c (apply-cltn2-line meridian J)
by simp-all

```
with equator－meridian－distinct and K2－centre－on－equator－meridian have apply－cltn2 K2－centre \(J=c\) by（rule apply－cltn2－unique） with 〈apply－cltn2 K2－centre \(J \in\) hyp2〉 show \(c \in\) hyp2 by simp qed
lemma perp－foot－hyp2：
assumes \(a \in\) hyp2 and proj2－incident \(a l\) and \(b \in h y p 2\)
shows perp－foot \(b l \in\) hyp2
using drop－perp－perp［of \(l b]\) and \(\langle a \in h y p 2\rangle\) and \(\langle p r o j 2-i n c i d e n t ~ a l\rangle\)
and \(\langle b \in h y p 2\rangle\) and drop－perp－incident \(\left[\begin{array}{ll}\text { of } & b \\ l\end{array}\right]\)
and perp－foot－incident［of bll
by（rule M－perp－hyp2）
definition perp－up ：：proj2 \(\Rightarrow\) proj2－line \(\Rightarrow\) proj2 where
perp－up a \(l\)
\(\triangleq\) if proj2－incident a l then \(\epsilon\) p．p \(\in S \wedge\) proj2－incident \(p\)（drop－perp a l）
else endpoint－in－S（perp－foot a l）a
lemma perp－up－degenerate－in－S－incident：
assumes \(a \in\) hyp2 and proj2－incident a \(l\)
shows perp－up a \(l \in S\)（is ？p \(\in S\) ）
and proj2－incident（perp－up a l）（drop－perp a l）
proof－
from 〈proj2－incident al＞
have \(? p=(\epsilon \quad p . p \in S \wedge\) projo－incident \(p(\) drop－perp a \(l))\)
by（unfold perp－up－def）simp
from \(\langle a \in\) hyp2 \(\rangle\) and drop－perp－incident［of a l］
have \(\exists p . p \in S \wedge\) proj2－incident \(p(\) drop－perp a l）
by（rule line－through－K2－intersect－S）
hence ？p \(\in S \wedge\) proj2－incident ？p（drop－perp a l）
unfolding 〈？\(p=(\epsilon p . p \in S \wedge\) proj2－incident \(p(d r o p-p e r p\) a \(l))\rangle\)
by（rule someI－ex）
thus ？p \(\in S\) and proj2－incident ？p（drop－perp a l）by simp－all
qed
lemma perp－up－non－degenerate－in－S－at－end：
assumes \(a \in\) hyp2 and \(b \in\) hyp2 and proj2－incident \(b l\)
and \(\neg\) proj2－incident a \(l\)
shows perp－up a \(l \in S\)
and \(B_{\mathbb{R}}(\) cart2－pt \((\) perp－foot a l））（cart2－pt a）\((\) cart2－pt \((\) perp－up a l））
proof－
from 〈 \(\neg\) proj2－incident a l〉
have perp－up a \(l=\) endpoint－in－S（perp－foot a \(l\) ）a
by（unfold perp－up－def）simp
from \(\langle b \in\) hyp2〉 and 〈proj2－incident \(b l\rangle\) and \(\langle a \in\) hyp2〉
have perp－foot a \(l \in\) hyp2 by（rule perp－foot－hyp2）
with \(\langle a \in\) hyp 2\(\rangle\)
```

 show perp-up a l }\in
 and }\mp@subsup{B}{\mathbb{R}}{}(\mathrm{ cart2-pt (perp-foot a l)) (cart2-pt a) (cart2-pt (perp-up a l))
 unfolding <perp-up a l= endpoint-in-S (perp-foot a l) a>
 by (simp-all add: endpoint-in-S)
 qed
lemma perp-up-in-S:
assumes a hyp2 and b\inhyp2 and proj2-incident bl
shows perp-up a l }\in
proof cases
assume proj2-incident a l
with <a \in hyp2` show perp-up a l }\inS\mathrm{ by (rule perp-up-degenerate-in-S-incident) next assume \neg proj2-incident a l with assms show perp-up a l G S by (rule perp-up-non-degenerate-in-S-at-end) qed lemma perp-up-incident: assumes a\inhyp2 and b\inhyp2 and proj2-incident bl shows proj2-incident (perp-up a l) (drop-perp a l) (is proj2-incident ?p ?m) proof cases assume proj2-incident a l with <a < hyp2> show proj2-incident ?p ?m by (rule perp-up-degenerate-in-S-incident) next assume \neg proj2-incident a l hence ?p = endpoint-in-S (perp-foot a l) a (is ?p = endpoint-in-S ?c a) by (unfold perp-up-def) simp from perp-foot-incident [of a l] and }\neg\mathrm{ proj2-incident a l> have ?c}\not=a\mathrm{ by auto from 〈b\inhyp2\rangle and <proj2-incident b l> and \a\inhyp2\rangle have ?c \in hyp2 by (rule perp-foot-hyp2) with <?c }\not=a\rangle\mathrm{ and }\langlea\inhyp2\rangle and drop-perp-incident [of a l] and perp-foot-incident [of a l] show proj2-incident ?p ?m by (unfold <?p = endpoint-in-S ?c a>) (simp add: endpoint-in-S-incident) qed lemma drop-perp-same-line-pole-in-S: assumes drop-perp pl=l shows pole l }\in proof - from \drop-perp p l=l`
have l= proj2-line-through p (pole l) by (unfold drop-perp-def) simp

```
```

 with proj2-line-through-incident [of pole l p]
 have proj2-incident (pole l) l by simp
 hence projQ-incident (pole l) (polar (pole l)) by (subst polar-pole)
 thus pole l GS by (unfold incident-own-polar-in-S)
 qed
lemma hyp2-drop-perp-not-same-line:
assumes a < hyp2
shows drop-perp a l
proof
assume drop-perp a l=l
hence pole l }\S\mathrm{ by (rule drop-perp-same-line-pole-in-S)
with \a < hyp2`
have \neg proj2-incident a (polar (pole l))
by (simp add: tangent-not-through-K2)
with 〈drop-perp a l=l>
have ᄀ proj2-incident a (drop-perp a l) by (simp add: polar-pole)
with drop-perp-incident [of a l] show False by simp
qed
lemma hyp2-incident-perp-foot-same-point:
assumes a < hyp2 and proj2-incident a l
shows perp-foot a l =a
proof -
from <a \in hyp2\rangle
have drop-perp a l =l by (rule hyp2-drop-perp-not-same-line)
with perp-foot-incident [of a l] and <proj2-incident a l>
and drop-perp-incident [of a l] and proj2-incident-unique
show perp-foot a l=a by fast
qed
lemma perp-up-at-end:
assumes a hyp2 and b\inhyp2 and proj2-incident b l
shows }\mp@subsup{B}{\mathbb{R}}{}(\mathrm{ cart2-pt (perp-foot a l)) (cart2-pt a) (cart2-pt (perp-up a l))
proof cases
assume proj2-incident a l
with <a \in hyp2>
have perp-foot a l=a by (rule hyp2-incident-perp-foot-same-point)
thus }\mp@subsup{B}{\mathbb{R}}{}(\mathrm{ cart2-pt (perp-foot a l)) (cart2-pt a) (cart2-pt (perp-up a l))
by (simp add: real-euclid.th3-1 real-euclid.th3-2)
next
assume \neg proj2-incident a l
with assms
show }\mp@subsup{B}{\mathbb{R}}{}(\mathrm{ cart2-pt (perp-foot a l)) (cart2-pt a) (cart2-pt (perp-up a l))
by (rule perp-up-non-degenerate-in-S-at-end)
qed
definition perp-down :: proj2 => proj2-line => proj2 where
perp-down a l \triangleq endpoint-in-S (perp-up a l) a

```
```

lemma perp-down-in-S:
assumes a hyp2 and b\inhyp2 and proj2-incident b l
shows perp-down a }l\in
proof -
from assms have perp-up a l \inS by (rule perp-up-in-S)
with <a \in hyp2\rangle
show perp-down a l GS by (unfold perp-down-def) (simp add: endpoint-in-S)
qed
lemma perp-down-incident:
assumes a f hyp2 and b\inhyp2 and proj2-incident b l
shows proj2-incident (perp-down a l) (drop-perp a l)
proof -
from assms have perp-up a l GS by (rule perp-up-in-S)
with 〈a\in hyp2` have perp-up a l}\not=a\mathrm{ by (rule hyp2-S-not-equal [symmetric])
from assms
have proj2-incident (perp-up a l) (drop-perp a l) by (rule perp-up-incident)
with 〈perp-up a }l\not=a\rangle\mathrm{ and 〈perp-up a }l\inS\rangle\mathrm{ and 〈a < hyp2〉
and drop-perp-incident [of a l]
show proj2-incident (perp-down a l) (drop-perp a l)
by (unfold perp-down-def) (simp add: endpoint-in-S-incident)
qed
lemma perp-up-down-distinct:
assumes a\inhyp2 and b\inhyp2 and proj2-incident bl
shows perp-up a l f perp-down a l
proof -
from assms have perp-up a l GS by (rule perp-up-in-S)
with <a < hyp2>
show perp-up a l\not= perp-down a l
unfolding perp-down-def
by (simp add: endpoint-in-S-S-strict-hyp2-distinct [symmetric])
qed
lemma perp-up-down-foot-are-endpoints-in-S:
assumes a\inhyp2 and b\inhyp2 and proj2-incident bl
shows are-endpoints-in-S (perp-up a l) (perp-down a l) (perp-foot a l) a
proof -
from \langleb hyp2\rangle and <proj2-incident b l> and <a\inhyp2>
have perp-foot a l G hyp2 by (rule perp-foot-hyp2)
from assms have perp-up a l GS by (rule perp-up-in-S)
from assms
have proj2-incident (perp-up a l) (drop-perp a l) by (rule perp-up-incident)
with <perp-foot a l \in hyp2\rangle and <a\inhyp2> and <perp-up a l
and perp-foot-incident(2) [of a l] and drop-perp-incident [of a l]

```
```

 show are-endpoints-in-S (perp-up a l) (perp-down a l) (perp-foot a l) a
 by (unfold perp-down-def) (rule end-and-opposite-are-endpoints-in-S)
 qed
lemma perp-foot-opposite-endpoint-in-S:
assumes a\in hyp2 and b\in hyp2 and c\in hyp2 and a\not=b
shows
endpoint-in-S (endpoint-in-S a b) (perp-foot c (projQ-line-through a b))
= endpoint-in-S b a
(is endpoint-in-S ?p ?d = endpoint-in-S b a)
proof -
let ?q = endpoint-in-S ?p ?d
from <a < hyp2\rangle and \langleb\in hyp2> have ?p }\inS\mathrm{ by (simp add: endpoint-in-S)
let ?l = proj2-line-through a b
have proj2-incident a ?l and proj2-incident b ?l
by (rule proj2-line-through-incident)+
with }\langlea\not=b\rangle\mathrm{ and }\langlea\inhyp2\rangle and \langleb\inhyp2
have proj2-incident ?p ?l
by (simp-all add: endpoint-in-S-incident)
from \langlea\inhyp2\rangle and <proj2-incident a ?l> and \langlec\in hyp2\rangle
have ?d \in hyp2 by (rule perp-foot-hyp2)
with «?p }\inS\rangle\mathrm{ have ? q }\not=?p\mathrm{ by (rule endpoint-in-S-S-strict-hyp2-distinct)
from }\langle?p\inS\rangle\mathrm{ and \?d }
mathrm{ 'hyp2` have ?q }\inS\mathrm{ by (simp add: endpoint-in-S) from <?d \in hyp2> and <?p }\inS have ?p \not= ?d by (rule hyp2-S-not-equal [symmetric]) with 〈?p \inS\rangle and 〈?d \in hyp2\rangle and <proj2-incident ?p ?l`
and perp-foot-incident(1) [of c ?l]
have proj2-incident ?q ?l by (simp add: endpoint-in-S-incident)
with }\langlea\not=b\rangle\mathrm{ and }\langlea\inhyp2\rangle and \langleb\inhyp2\rangle and \??q\inS
and <proj2-incident a ?l> and <proj2-incident b ?l>
have ?q = ?p\vee ?q = endpoint-in-S b a
by (simp add: endpoints-in-S-incident-unique)
with }\langle?q\not=??p\rangle\mathrm{ show ?q= endpoint-in-S b a by simp
qed
lemma endpoints-in-S-perp-foot-are-endpoints-in-S:
assumes a\inhyp2 and b\inhyp2 and c\in hyp2 and a\not=b
and proj2-incident a l and proj2-incident b l
shows are-endpoints-in-S
(endpoint-in-S a b) (endpoint-in-S b a) a (perp-foot c l)
proof -
def p\triangleq endpoint-in-S a b
and q}\triangleq endpoint-in-S b a
and d}\triangleq perp-foot c

```
```

 from }\langlea\not=b\rangle\mathrm{ and }\langlea\inhyp2\rangle and <b\in hyp2
 have }p\not=q\mathrm{ by (unfold p-def q-def) (simp add: endpoint-in-S-swap)
 from \langlea\in hyp2\rangle and \langleb < hyp2\rangle
 have p}\inS\mathrm{ and q}\inS\mathrm{ by (unfold p-def q-def) (simp-all add: endpoint-in-S)
 from <a\inhyp2\rangle and <proj2-incident a l> and <c < hyp2\rangle
 have d G hyp2 by (unfold d-def) (rule perp-foot-hyp2)
 from }\langlea\not=b\rangle\mathrm{ and }\langlea\inhyp2\rangle and \langleb\inhyp2\rangle and <proj2-incident a l>
 and <proj2-incident b l>
 have proj2-incident pl and proj2-incident q l
 by (unfold p-def q-def) (simp-all add: endpoint-in-S-incident)
 with 〈proj2-incident a l` and perp-foot-incident(1) [of c l]
 have proj2-set-Col {p,q,a,d}
 by (unfold d-def proj2-set-Col-def) (simp add: exI [of - l])
 with }\langlep\not=q\rangle\mathrm{ and }\langlep\inS\rangle\mathrm{ and }\langleq\inS\rangle\mathrm{ and <a < hyp2> and }\langled\inhyp2
 show are-endpoints-in-S p qad by (unfold are-endpoints-in-S-def) simp
 qed
definition right-angle :: proj2 => proj2 }=>\mathrm{ proj2 }=>\mathrm{ bool where
right-angle p a q
\triangleq p\inS\wedgeq\inS^a\inhyp2
^M-perp (proj2-line-through p a)(proj2-line-through a q)
lemma perp-foot-up-right-angle:
assumes p\inS and a hyp2 and b\inhyp2 and proj2-incident p l
and proj2-incident bl
shows right-angle p (perp-foot a l)(perp-up a l)
proof -
def c\triangleq perp-foot a l
def q}\triangleq\mp@code{perp-up a l
from \langlea \inhyp2\rangle and \langleb \ hyp2\rangle and <proj2-incident b l>
have q\inS by (unfold q-def) (rule perp-up-in-S)
from 〈b \in hyp2\rangle and <proj2-incident b l\rangle and <a \in hyp2\rangle
have c G hyp2 by (unfold c-def) (rule perp-foot-hyp2)
with }\langlep\inS\rangle\mathrm{ and }\langleq\inS\rangle\mathrm{ have c}\not=p\mathrm{ and c}\not=
by (simp-all add: hyp2-S-not-equal)
from }\langlec\not=p\rangle[\mathrm{ symmetric] and <proj2-incident pl>
and perp-foot-incident(1)[of a l]
have l= proj2-line-through p c
by (unfold c-def) (rule proj2-line-through-unique)
def m\triangleqdrop-perp a l
from \langlea \inhyp2\rangle and \langleb \ hyp2\rangle and <proj2-incident b l>
have proj2-incident q m by (unfold q-def m-def) (rule perp-up-incident)

```
```

 with }\langlec\not=q\rangle\mathrm{ and perp-foot-incident(2) [of a l]
 have m= proj2-line-through c q
 by (unfold c-def m-def) (rule proj2-line-through-unique)
 with }\langlep\inS\rangle\mathrm{ and }\langleq\inS\rangle\mathrm{ and }\langlec\inhyp2\rangle and drop-perp-perp [of l a
 and <l = proj2-line-through p c>
 show right-angle p (perp-foot a l) (perp-up a l)
 by (unfold right-angle-def q-def c-def m-def) simp
 qed
lemma M-perp-unique:
assumes a hyp2 and b\inhyp2 and proj2-incident a l
and proj2-incident b m}\mathrm{ and proj2-incident b n and M-perp l m
and M-perp l n
shows m}=
proof -
from \langlea < hyp2\rangle and <proj2-incident a l\rangle
have pole l \& hyp2 by (rule line-through-hyp2-pole-not-in-hyp2)
with 〈b\inhyp2\rangle have b}=\mathrm{ pole l by auto
with \langleprojQ-incident b m> and \M-perp l m> and \langleprojQ-incident b n>
and 〈M-perp l n\rangle and proj2-incident-unique
show m=n by (unfold M-perp-def) auto
qed
lemma perp-foot-eq-implies-drop-perp-eq:
assumes a hyp2 and b\inhyp2 and proj2-incident a l
and perp-foot bl= perp-foot c l
shows drop-perp b l = drop-perp c l
proof -
from 〈a < hyp2\rangle and <proj2-incident a l> and \langleb\inhyp2\rangle
have perp-foot b l hyp2 by (rule perp-foot-hyp2)
from <perp-foot b l = perp-foot c l>
have proj2-incident (perp-foot b l) (drop-perp c l)
by (simp add: perp-foot-incident)
with \langlea\inhyp2\rangle and \langleperp-foot bl hyp2\rangle and <proj2-incident a l>
and perp-foot-incident(2) [of bl] and drop-perp-perp [of l]
show drop-perp b l = drop-perp c l by (simp add: M-perp-unique)
qed
lemma right-angle-to-compass:
assumes right-angle p aq
shows \exists J. is-K2-isometry J ^ apply-cltn2 p J =east
^ apply-cltn2 a J = K2-centre ^ apply-cltn2 q J = north
proof -
from 〈right-angle p a q>
have }p\inS\mathrm{ and }q\inS\mathrm{ and }a\inhyp
and M-perp (proj2-line-through p a)(proj2-line-through a q)
(is M-perp ?l ?m)
by (unfold right-angle-def) simp-all

```
have proj2－incident \(p\) ？l and proj2－incident a ？l and proj2－incident \(q\) ？\(m\) and proj2－incident a？m by（rule proj2－line－through－incident）＋
from 〈M－perp ？l ？\(m\rangle\) and \(\langle a \in\) hyp2〉 and 〈proj2－incident \(a\) ？l〉 and 〈proj2－incident \(a\) ？\(m\) 〉 and \(M\)－perp－to－compass \(\left[\begin{array}{lll}o f & ? l & ? m \\ a & a\end{array}\right]\)
obtain \(J^{\prime \prime} i\) where is－K2－isometry \(J^{\prime \prime} i\)
and apply－cltn2－line equator \(J^{\prime \prime} i=\) ？l
and apply－cltn2－line meridian \(J^{\prime \prime} i=? m\)
by auto
let ？\(J^{\prime \prime}=\) cltn2－inverse \(J^{\prime \prime} i\)
from 〈apply－cltn2－line equator \(J^{\prime \prime} i=\) ？\(\rangle\)
and 〈apply－cltn2－line meridian \(J^{\prime \prime} i=\) ？\(m\) 〉
and 〈proj2－incident \(p\) ？l〉 and 〈proj2－incident a ？l〉
and 〈proj2－incident \(q\) ？\(m\) 〉 and 〈proj2－incident a ？m＞
have proj2－incident（apply－cltn2 \(p\) ？\(J^{\prime \prime}\) ）equator
and proj2－incident（apply－cltn2 a ？\(J^{\prime \prime}\) ）equator
and proj2－incident（apply－cltn2 \(q\) ？\(J^{\prime \prime}\) ）meridian
and proj2－incident（apply－cltn2 a ？\(J^{\prime \prime}\) ）meridian
by（simp－all add：apply－cltn2－incident［symmetric］）
from 〈proj2－incident（apply－cltn2 a ？\(J^{\prime \prime}\) ）equator〉
and «proj2－incident（apply－cltn2 a ？\(J^{\prime \prime}\) ）meridian»
have apply－cltn2 a ？\(J^{\prime \prime}=\) K2－centre
by（rule on－equator－meridian－is－K2－centre）
from \(\left\langle i s\right.\)－K2－isometry \(\left.J^{\prime \prime} i\right\rangle\)
have is－K2－isometry ？\(J^{\prime \prime}\) by（rule cltn2－inverse－is－K2－isometry）
with \(\langle p \in S\rangle\) and \(\langle q \in S\rangle\)
have apply－cltn2 \(p ? J^{\prime \prime} \in S\) and apply－cltn2 \(q\) ？\(J^{\prime \prime} \in S\)
by（unfold is－K2－isometry－def）simp－all
with east－west－distinct and north－south－distinct and compass－in－S and east－west－on－equator and north－south－far－north－on－meridian and 〈proj2－incident（apply－cltn2 \(p\) ？\(J^{\prime \prime}\) ）equator〉
and 〈proj2－incident（apply－cltn2 \(q\) ？\(J^{\prime \prime}\) ）meridians
have apply－cltn2 \(p ? J^{\prime \prime}=\) east \(\vee\) apply－cltn2 \(p ? J^{\prime \prime}=\) west
and apply－cltn2 \(q\) ？\(J^{\prime \prime}=\) north \(\vee\) apply－cltn2 \(q\) ？\(J^{\prime \prime}=\) south
by（simp－all add：line－S－two－intersections－only）
have \(\exists J^{\prime}\) ．is－K2－isometry \(J^{\prime} \wedge\) apply－cltn2 \(p J^{\prime}=\) east
\(\wedge\) apply－cltn2 a \(J^{\prime}=\) K2－centre
\(\wedge\left(\right.\) apply－cltn2 \(q J^{\prime}=\) north \(\vee\) apply－cltn2 \(q J^{\prime}=\) south \()\)
proof cases
assume apply－cltn2 \(p ? J^{\prime \prime}=\) east
with 〈is－K2－isometry ？\(\left.J^{\prime \prime}\right\rangle\) and 〈apply－cltn2 a ？\(J^{\prime \prime}=\) K2－centre〉
and 〈apply－cltn2 \(q\) ？\(J^{\prime \prime}=\) north \(\vee\) apply－cltn2 \(q\) ？\(J^{\prime \prime}=\) south〉
show \(\exists J^{\prime}\) ．is－K2－isometry \(J^{\prime} \wedge\) apply－cltn2 \(p J^{\prime}=\) east
```

 ^ apply-cltn2 a J'=K2-centre
 ^(apply-cltn2 q J J'= north \vee apply-cltn2 q J'= south)
 by (simp add: exI [of - ? 'J'\eta)
 next
assume apply-cltn2 p ?J'"}\not=\mathrm{ east
with <apply-cltn2 p ?J'' = east \vee apply-cltn2 p ?J '" = west
have apply-cltn2 p ?J'" = west by simp

```
    let ? \(J^{\prime}=\) cltn2-compose ? \(J^{\prime \prime}\) meridian-reflect
    from 〈is-K2-isometry? \(\left.J^{\prime \prime}\right\rangle\) and meridian-reflect-K2-isometry
    have is-K2-isometry ? \(J^{\prime}\) by (rule cltn2-compose-is-K2-isometry)
    moreover
    from 〈apply-cltn2 \(p ? J^{\prime \prime}=\) west \(\rangle\) and 〈apply-cltn2 \(a ? J^{\prime \prime}=K 2\)-centre \(\rangle\)
        and 〈apply-cltn2 \(q\) ? \(J^{\prime \prime}=\) north \(\vee\) apply-cltn2 \(q ? J^{\prime \prime}=\) south \(\rangle\)
        and compass-reflect-compass
    have apply-cltn2 \(p\) ? \(J^{\prime}=\) east and apply-cltn2 a ? \(J^{\prime}=\) K2-centre
        and apply-cltn2 \(q\) ? \(J^{\prime}=\) north \(\vee\) apply-cltn2 \(q\) ? \(J^{\prime}=\) south
        by (auto simp add: cltn2.act-act [simplified, symmetric])
    ultimately
    show \(\exists J^{\prime}\). is-K2-isometry \(J^{\prime} \wedge\) apply-cltn2 \(p J^{\prime}=\) east
    \(\wedge\) apply-cltn2 a \(J^{\prime}=\) K2-centre
    \(\wedge\left(\right.\) apply-cltn2 \(q J^{\prime}=\) north \(\vee\) apply-cltn2 \(q J^{\prime}=\) south \()\)
    by (simp add: exI [of - ? J \(]\) )
qed
then obtain \(J^{\prime}\) where is-K2-isometry \(J^{\prime}\) and apply-cltn2 \(p J^{\prime}=\) east
    and apply-cltn2 a \(J^{\prime}=\) K2-centre
    and apply-cltn2 \(q J^{\prime}=\) north \(\vee\) apply-cltn2 \(q J^{\prime}=\) south
    by auto
show \(\exists J\) ．is－K2－isometry \(J \wedge\) apply－cltn2 \(p J=\) east
\(\wedge\) apply－cltn2 a \(J=\) K2－centre \(\wedge\) apply－cltn2 \(q J=\) north proof cases
assume apply－cltn2 \(q J^{\prime}=\) north
with \(\left\langle\right.\) is－K2－isometry \(\left.J^{\prime}\right\rangle\) and \(\left\langle\right.\) apply－cltn2 \(p J^{\prime}=\) east \(\rangle\) and \(\left\langle\right.\) apply－cltn2 a \(J^{\prime}=\) K2－centre \(\rangle\)
show \(\exists J\) ．is－K2－isometry \(J \wedge\) apply－cltn2 \(p J=\) east \(\wedge\) apply－cltn2 a \(J=K 2\)－centre \(\wedge\) apply－cltn2 \(q J=\) north by（simp add：exI［of－J \(]\) ）
next
assume apply－cltn2 \(q J^{\prime} \neq\) north
with 〈apply－cltn2 \(q J^{\prime}=\) north \(\vee\) apply－cltn2 \(q J^{\prime}=\) south \(\rangle\)
have apply－cltn2 \(q J^{\prime}=\) south by simp
let ？\(J=\) cltn2－compose \(J^{\prime}\) equator－reflect
from \(\left\langle i s\right.\)－K2－isometry \(\left.J^{\prime}\right\rangle\) and equator－reflect－K2－isometry
have is－K2－isometry ？\(J\) by（rule cltn2－compose－is－K2－isometry）
moreover
from 〈apply－cltn2 p \(J^{\prime}=\) east \(\rangle\) and \(\left\langle\right.\) apply－cltn2 a \(J^{\prime}=\) K2－centre \(\rangle\)
and «apply－cltn2 \(q J^{\prime}=\) south and compass－reflect－compass
```

 have apply-cltn2 p ?J = east and apply-cltn2 a ?J = K2-centre
 and apply-cltn2 q ? J = north
 by (auto simp add: cltn2.act-act [simplified, symmetric])
 ultimately
 show \exists J. is-K2-isometry J ^ apply-cltn2 p J = east
 ^apply-cltn2 a J = K2-centre ^ apply-cltn2 q J = north
 by (simp add: exI [of - ?J])
 qed
 qed
lemma right-angle-to-right-angle:
assumes right-angle p a q and right-angle r b s
shows \exists J. is-K2-isometry J
^apply-cltn2 p J = r ^ apply-cltn2 a J=b ^ apply-cltn2 q J =s
proof -
from <right-angle p a q> and right-angle-to-compass [of p a q]
obtain H where is-K2-isometry H and apply-cltn2 p H = east
and apply-cltn2 a H = K2-centre and apply-cltn2 q H = north
by auto
from <right-angle r b s> and right-angle-to-compass [[f r b s
obtain K where is-K2-isometry K and apply-cltn2 r K = east
and apply-cltn2 b K = K2-centre and apply-cltn2 s K = north
by auto
let ?Ki = cltn2-inverse K
let ?J = cltn2-compose H ?Ki
from \langleis-K2-isometry H\rangle and \langleis-K2-isometry K\rangle
have is-K2-isometry ?J
by (simp add: cltn2-inverse-is-K2-isometry cltn2-compose-is-K2-isometry)
from 〈apply-cltn2 r K =east\rangle and «apply-cltn2 b K = K2-centre〉
and <apply-cltn2 s K = north>
have apply-cltn2 east ?Ki = r and apply-cltn2 K2-centre ?Ki = b
and apply-cltn2 north ? Ki =s
by (simp-all add: cltn2.act-inv-iff [simplified])
with 〈apply-cltn2 p H =east〉 and 〈apply-cltn2 a H = K2-centre〉
and «apply-cltn2 q H = north>
have apply-cltn2 p ?J = r and apply-cltn2 a ?J = b
and apply-cltn2 q ? J =s
by (simp-all add: cltn2.act-act [simplified,symmetric])
with <is-K2-isometry ?J`
show \exists J.is-K2-isometry J
^ apply-cltn2 p J = r ^ apply-cltn2 a J = b ^apply-cltn2 q J =s
by (simp add: exI [of - ?J])
qed

```

\section*{9．11 Functions of distance}
definition exp－2dist ：：proj2 \(\Rightarrow\) proj2 \(\Rightarrow\) real where
exp－2dist ab
\(\triangleq\) if \(a=b\)
then 1
else cross－ratio（endpoint－in－S a b）（endpoint－in－S ba）ab
definition cosh－dist \(::\) proj2 \(\Rightarrow\) proj2 \(\Rightarrow\) real where
cosh－dist \(a b \triangleq(\operatorname{sqrt}(\exp -2 d i s t \quad a b)+\operatorname{sqrt}(1 /(\exp -2 d i s t a b))) / 2\)
lemma exp－2dist－formula：
assumes \(a \neq 0\) and \(b \neq 0\) and proj2－abs \(a \in\) hyp2（is \(? p a \in h y p 2)\)
and proj2－abs \(b \in\) hyp2（is ？pb \(\in\) hyp2）
shows exp－2dist（proj2－abs a）（proj2－abs b）
\[
=(a \cdot(M * v b)+\operatorname{sqrt}(\text { quarter-discrim } a b))
\]
\(/(a \cdot(M * v b)-\operatorname{sqrt}(q u a r t e r-d i s c r i m ~ a b))\)
\(\vee \exp\)－2dist（proj2－abs a）（proj2－abs b）
\(=(a \cdot(M * v b)-\operatorname{sqrt}(q u a r t e r-d i s c r i m ~ a b))\)
\(/(a \cdot(M * v b)+\operatorname{sqrt}(q u a r t e r-d i s c r i m ~ a b))\)
\((\) is \(? e 2 d=(? a M b+? s q d) /(? a M b-? s q d)\)
\(\vee ? e 2 d=(? a M b-? s q d) /(? a M b+? s q d))\)
proof cases
assume ？\(p a=? p b\)
hence \(? e 2 d=1\) by（unfold exp－2dist－def，simp）
from \(\langle ? p a=? p b\rangle\)
have quarter－discrim \(a b=0\) by（rule quarter－discrim－self－zero）
hence ？sqd \(=0\) by simp
from \(\langle\) proj2－abs \(a=\) proj2－abs \(b\rangle\) and \(\langle b \neq 0\rangle\) and proj2－abs－abs－mult obtain \(k\) where \(a=k *_{R} b\) by auto
from \(\langle b \neq 0\rangle\) and \(\langle p r o j 2-a b s b \in h y p 2\rangle\)
have \(b \cdot(M * v b)<0\) by（subst K2－abs［symmetric］）
with \(\langle a \neq 0\rangle\) and \(\left\langle a=k *_{R} b\right\rangle\) have ？\(a M b \neq 0\) by simp
with \(\langle ? e 2 d=1\rangle\) and \(\langle ? s q d=0\rangle\)
show ？\(e 2 d=(? a M b+? s q d) /(? a M b-? s q d)\)
\(\vee ? e 2 d=(? a M b-? s q d) /(? a M b+? s q d)\)
by \(\operatorname{simp}\)
next
assume \(? p a \neq ? p b\)
let ？l＝projo－line－through ？pa ？pb
have proj2－incident ？pa ？l and proj2－incident ？pb ？l
by（rule proj2－line－through－incident）+
with \(\langle a \neq 0\rangle\) and \(\langle b \neq 0\rangle\) and \(\langle ? p a \neq ? p b\rangle\)
have proj2－incident（S－intersection1 a b）？l（is proj2－incident ？Si1 ？l） and proj2－incident（S－intersection2 a b）？l（is proj2－incident ？Si2 ？l） by（rule S－intersections－incident）＋
with 〈proj2－incident ？pa ？l〉 and 〈proj2－incident ？pb ？l〉
```

have proj2-set-Col \{?pa,?pb, ?Si1, ?Si2\} by (unfold proj2-set-Col-def, auto)
have $\{? p a, ? p b, ?$ Si2,$?$ Si1 $\}=\{? p a, ? p b, ?$ Si1,$?$ Si2 $\}$ by auto
from $\langle a \neq 0\rangle$ and $\langle b \neq 0\rangle$ and $\langle ? p a \neq ? p b\rangle$ and $\langle ? p a \in h y p 2\rangle$
have ?Si1 $\in S$ and ?Si2 $\in S$
by (simp-all add: S-intersections-in-S)
with $\langle ? p a \in h y p 2\rangle$ and $\langle ? p b \in h y p 2\rangle$
have ?Si1 $\neq ? p a$ and ?Si2 $\neq ? p a$ and $?$ Si1 $\neq ? p b$ and $?$ Si2 $\neq ? p b$
by (simp-all add: hyp2-S-not-equal [symmetric])
with 〈proj2-set-Col \{?pa,?pb,?Si1,?Si2\}〉 and 〈?pa $\neq ?$?pb〉
have cross-ratio-correct ?pa ?pb ?Si1 ?Si2
and cross-ratio-correct ?pa ?pb ?Si2 ?Si1
unfolding cross-ratio-correct-def
by (simp-all add: <\{?pa,?pb,?Si2,?Si1 $\}=\{? p a, ? p b, ?$ Si1, ?Si2 $\}\rangle)$
from $\langle a \neq 0\rangle$ and $\langle b \neq 0\rangle$ and $\langle ? p a \neq ? p b\rangle$ and $\langle ? p a \in h y p 2\rangle$
have ?Si1 \neq ? Si2 by (simp add: S-intersections-distinct)
with 〈cross-ratio-correct ?pa ?pb ?Si1 ?Si2〉
and 〈cross-ratio-correct ?pa ?pb ?Si2 ?Si1〉
have cross-ratio ?Si1 ?Si2 ?pa ?pb = cross-ratio ?pa ?pb ?Si1 ?Si2
and cross-ratio ?Si2 ?Si1 ?pa ?pb = cross-ratio ?pa ?pb ?Si2 ?Si1
by (simp-all add: cross-ratio-swap-13-24)
from $\langle a \neq 0\rangle$ and 〈proj2-abs $a \in$ hyp 2\rangle
have $a \cdot(M * v a)<0$ by (subst K2-abs [symmetric])
with $\langle a \neq 0\rangle$ and $\langle b \neq 0\rangle$ and $\langle ? p a \neq ?$? $p b\rangle$ and cross-ratio-abs $\left[\begin{array}{llll}o f & a & b & 1\end{array}\right]$
have cross-ratio ?pa ?pb ?Si1 ?Si2 $=(-$? $a M b-$?sqd $) /(-$?aMb + ?sqd $)$
by (unfold S-intersections-defs S-intersection-coeffs-defs, simp)
with times-divide-times-eq $[$ of $-1-1-$?aMb - ?sqd - ? $a M b+$?sqd]
have cross-ratio ?pa ?pb ?Si1 ?Si2 $=(? a M b+$?sqd $) /(? a M b-$?sqd $)$ by $($ simp
add: ac-simps)
with 〈cross-ratio ?Si1 ?Si2 ?pa ?pb = cross-ratio ?pa ?pb ?Si1 ?Si2〉
have cross-ratio ?Si1 ?Si2 ?pa ?pb $=($?aMb + ?sqd $) /(? a M b-$?sqd $)$ by simp
from 〈cross-ratio ?pa ?pb ?Si1 ?Si2 $=($? $a M b+$?sqd $) /(? a M b-$?sqd $)\rangle$
and cross-ratio-swap-34 [of ?pa ?pb ?Si2 ?Si1]
have cross-ratio ?pa ?pb ?Si2 ?Si1 $=($?aMb - ?sqd $) /(? a M b+$?sqd $)$ by simp
with 〈cross-ratio ?Si2 ?Si1 ?pa ?pb = cross-ratio ?pa ?pb ?Si2 ?Si1〉
have cross-ratio ?Si2 ?Si1 ?pa ?pb $=($?aMb - ?sqd $) /(? a M b+$?sqd $)$ by simp
from $\langle a \neq 0\rangle$ and $\langle b \neq 0\rangle$ and $\langle ? p a \neq ? p b\rangle$ and $\langle ? p a \in h y p 2\rangle$ and $\langle ? p b \in h y p 2\rangle$
have $(? S i 1=$ endpoint-in-S ?pa?pb \wedge ?Si2 $=$ endpoint-in-S ?pb ?pa)
$\vee(? S i 2=$ endpoint-in-S ?pa ?pb \wedge ?Si1 $=$ endpoint-in-S ?pb ?pa)
by (simp add: S-intersections-endpoints-in-S)
with 〈cross-ratio ?Si1 ?Si2 ?pa ?pb $=($? aMb + ?sqd $) /($?aMb - ?sqd $)$)
and scross-ratio ?Si2 ?Si1 ?pa ?pb $=($?aMb - ?sqd $) /(? a M b+$?sqd $)\rangle$
and $\langle ? p a \neq ? p b\rangle$
show ?e2d $=(? a M b+? s q d) /(? a M b-? s q d)$

```
```

 V?e2d = (?aMb - ?sqd)/(?aMb + ?sqd)
 by (unfold exp-2dist-def, auto)
 qed
lemma cosh-dist-formula:
assumes }a\not=0\mathrm{ and b}=0\mathrm{ and proj2-abs a G hyp2 (is ?pa G hyp2)
and proj2-abs b Ghyp2 (is ?pb \inhyp2)
shows cosh-dist (proj2-abs a) (proj2-abs b)
= |a\cdot(M*vb)|/ sqrt (a\cdot(M*va)*(b • (M*vb)))
(is cosh-dist ?pa ?pb = |?aMb / sqrt (?aMa* ?bMb))
proof -
let ?qd = quarter-discrim a b
let ?sqd = sqrt ?qd
let ?e2d = exp-2dist ?pa ?pb
from assms
have ?e2d = (?aMb + ?sqd)/(?aMb - ?sqd)
\vee ? ~ ? e 2 d = (? a M b ~ - ~ ? s q d) / (? a M b ~ + ? s q d) ~
by (rule exp-2dist-formula)
hence cosh-dist ?pa ?pb
=(sqrt ((?aMb +?sqd)/(?aMb - ?sqd)}
+ sqrt ((?aMb - ?sqd) / (?aMb + ?sqd)))
/ 2
by (unfold cosh-dist-def, auto)
have ?qd }\geq
proof cases
assume ?pa = ?pb
thus ?qd \geq0 by (simp add: quarter-discrim-self-zero)
next
assume ?pa }\not=?\mathrm{ ?pb
with }\langlea\not=0\rangle\mathrm{ and }\langleb\not=0\rangle\mathrm{ and <? pa < hyp2>
have ?qd > 0 by (simp add: quarter-discrim-positive)
thus ? qd }\geq0\mathrm{ by simp
qed
with real-sqrt-pow2 [of ?qd] have ?sqd }\mp@subsup{}{}{2}=?qd by sim
hence (?aMb + ?sqd) * (?aMb - ?sqd) =?aMa*?bMb
by (unfold quarter-discrim-def, simp add: algebra-simps power2-eq-square)
from times-divide-times-eq [of
?aMb + ?sqd ?aMb + ?sqd ?aMb + ?sqd ?aMb - ?sqd]
have (?aMb + ?sqd) / (?aMb - ?sqd)
=(?aMb + ?sqd)}\mp@subsup{)}{}{2}/((?aMb +?sqd)*(?aMb - ?sqd))
by (simp add: power2-eq-square)
with «(?aMb + ?sqd) * (?aMb - ?sqd) = ?aMa * ?bMb>
have (?aMb +?sqd) / (?aMb - ?sqd) = (?aMb +?sqd)}\mp@subsup{)}{}{2}/(?aMa*?bMb) b
simp
hence sqrt ((?aMb + ?sqd) / (?aMb - ?sqd))
= |?aMb + ?sqd | / sqrt (?aMa*?bMb)
by (simp add: real-sqrt-divide)

```
```

 from times-divide-times-eq [of
 ?aMb + ?sqd ?aMb - ?sqd ?aMb - ?sqd ?aMb - ?sqd]
 have (?aMb - ?sqd) / (?aMb + ?sqd)
 =(?aMb - ?sqd)}\mp@subsup{)}{}{2}/((?aMb +?sqd)*(?aMb - ?sqd))
 by (simp add: power2-eq-square)
 with «(?aMb + ?sqd) * (?aMb - ?sqd) = ?aMa*?bMb`
 have (?aMb - ?sqd) / (?aMb + ?sqd) = (?aMb - ?sqd)
 simp
hence sqrt ((?aMb - ?sqd) / (?aMb + ?sqd))
= |?aMb - ?sqd | / sqrt (?aMa*?bMb)
by (simp add: real-sqrt-divide)
from }\langlea\not=0\rangle\mathrm{ and }\langleb\not=0\rangle\mathrm{ and <?pa < hyp2> and <?pb < hyp2〉
have ?aMa<0 and ?bMb<0
by (simp-all add: K2-imp-M-neg)
with «(?aMb + ?sqd) * (?aMb - ?sqd) = ?aMa *?bMb>
have (?aMb +?sqd) * (?aMb - ?sqd) > 0 by (simp add: mult-neg-neg)
hence ?aMb + ?sqd \not=0 and ?aMb - ?sqd \not=0 by auto
hence sgn (?aMb + ?sqd) \in{-1,1} and sgn (?aMb - ?sqd) \in{-1,1}
by (simp-all add: sgn-real-def)
from <(?aMb +?sqd)*(?aMb - ?sqd)>0\rangle
have sgn ((?aMb + ?sqd) * (?aMb - ?sqd)) = 1 by simp
hence sgn (?aMb +?sqd)* sgn (?aMb - ?sqd) = 1 by (simp add: sgn-mult)
with <sgn (?aMb + ?sqd) \in{-1,1}〉 and <sgn (?aMb - ?sqd) \in{-1,1}>
have sgn (?aMb + ?sqd) = sgn (?aMb - ?sqd) by auto
with abs-plus [of ?aMb + ?sqd ?aMb - ?sqd]
have |?aMb +?sqd | + |?aMb - ?sqd | = 2 * |?aMb | by simp
with<sqrt ((?aMb + ?sqd) / (?aMb - ?sqd))
= |?aMb + ?sqd | / sqrt (?aMa * ?bMb)>
and <sqrt ((?aMb - ?sqd) / (?aMb + ?sqd)
= |?aMb - ?sqd | / sqrt (?aMa * ?bMb)>
and add-divide-distrib [of
|?aMb + ?sqd | |?aMb - ?sqd | sqrt (?aMa * ?bMb)]
have sqrt ((?aMb + ?sqd) / (?aMb - ?sqd))
+ sqrt ((?aMb - ?sqd) / (?aMb + ?sqd))
=2* |?aMb| / sqrt (?aMa*?bMb)
by simp
with <cosh-dist ?pa ?pb
=(sqrt ((?aMb +?sqd) / (?aMb - ?sqd)}
+ sqrt ((?aMb - ?sqd) / (?aMb + ?sqd)))
/ 2>
show cosh-dist ?pa?pb = |?aMb / sqrt (?aMa* ?bMb) by simp
qed
lemma cosh-dist-perp-special-case:
assumes }|x|<1\mathrm{ and }|y|<
shows cosh-dist (proj2-abs (vector [x,0,1])) (proj2-abs (vector [0,y,1]))

```
```

 =(cosh-dist K2-centre (proj2-abs (vector [x,0,1])))
 * (cosh-dist K2-centre (proj2-abs (vector [0,y,1])))
 (is cosh-dist ?pa ?pb = (cosh-dist ?po ?pa) *(cosh-dist ?po ?pb))
 proof -
have vector }[x,0,1]\not=(0::\mathrm{ real^3) (is ?a }a\not=0
and vector [0,y,1] =(0::real^3) (is ?b}\not=0
by (unfold vector-def, simp-all add: vec-eq-iff forall-3)
have ?a\cdot(M*v ?a) = 矢 - 1 (is ? aMa= \mp@subsup{x}{}{2}-1)
and ?b}\cdot(M*v?b)=\mp@subsup{y}{}{2}-1(\mathrm{ is ?bMb = y
unfolding vector-def and M-def and inner-vec-def
and matrix-vector-mult-def
by (simp-all add: setsum-3 power2-eq-square)
with \|x|<1\rangle and \ \y|< < >
have ?aMa<0 and ?bMb<0 by (simp-all add: abs-square-less-1)
hence ?pa \in hyp2 and ?pb \in hyp2
by (simp-all add: M-neg-imp-K2)
with }\langle?a\not=0\rangle\mathrm{ and «?b }\not=0
have cosh-dist ?pa ?pb = |?a \cdot (M*v?b) | / sqrt (?aMa* ?bMb)
(is cosh-dist ?pa ?pb = |?aMb / sqrt (?aMa*?bMb))
by (rule cosh-dist-formula)
also from \?aMa = 午 - 1> and <? bMb = y 2 - 1>
have ···= |?aMb| / sqrt ((\mp@subsup{x}{}{2}-1)*(\mp@subsup{y}{}{2}-1)) by simp
finally have cosh-dist ?pa ?pb = 1/ sqrt ((1-\mp@subsup{x}{}{2})*(1-\mp@subsup{y}{}{2}))
unfolding vector-def and M-def and inner-vec-def
and matrix-vector-mult-def
by (simp add: setsum-3 algebra-simps)
let ?o = vector [0,0,1]
let ?oMa=?o • (M*v?a)
let ?oMb =?o \cdot (M*v ?b)
let ?oMo = ?o • (M*v?o)
from K2-centre-non-zero and \langle?a }=00\rangle\mathrm{ and }\langle?b\not=0
and K2-centre-in-K2 and 〈?pa \inhyp2\rangle and <?pb \inhyp2\rangle
and cosh-dist-formula [of ?o]
have cosh-dist ?po ?pa = |?oMa| / sqrt (?oMo * ?aMa)
and cosh-dist ?po ?pb = |?oMb | sqrt (?oMo * ?bMb)
by (unfold K2-centre-def, simp-all)
hence cosh-dist ?po ?pa=1 / sqrt (1- x 2)
and cosh-dist ?po ?pb = 1/ sqrt (1- y')
unfolding vector-def and M-def and inner-vec-def
and matrix-vector-mult-def
by (simp-all add: setsum-3 power2-eq-square)
with \cosh-dist ?pa ?pb = 1 / sqrt ((1-\mp@subsup{x}{}{2})*(1-\mp@subsup{y}{}{2}))\rangle
show cosh-dist ?pa ?pb = cosh-dist ?po ?pa * cosh-dist ?po ?pb
by (simp add: real-sqrt-mult)
qed

```
lemma K2－isometry－cross－ratio－endpoints－in－S：
```

 assumes a\inhyp2 and b\in hyp2 and is-K2-isometry J and a\not=b
 shows cross-ratio (apply-cltn2 (endpoint-in-S a b) J)
 (apply-cltn2 (endpoint-in-S b a) J) (apply-cltn2 a J) (apply-cltn2 b J)
 =cross-ratio (endpoint-in-S a b) (endpoint-in-S b a) a b
 (is cross-ratio ?pJ ?qJ ?aJ ?bJ = cross-ratio ?p ?q a b)
 proof -
let ?l = proj2-line-through a b
have proj2-incident a ?l and proj2-incident b ?l
by (rule proj2-line-through-incident)+
with }\langlea\not=b\rangle\mathrm{ and <a < hyp2> and <b f hyp2>
have proj2-incident ?p ?l and proj2-incident ?q ?l
by (simp-all add: endpoint-in-S-incident)
with 〈proj2-incident a ?l` and 〈proj2-incident b ?l>
have proj2-set-Col {?p,?q,a,b}
by (unfold proj2-set-Col-def) (simp add: exI [of - ?l])
from }\langlea\not=b\rangle\mathrm{ and }\langlea\inhyp2\rangle and \langleb\in hyp2
have ?p}\not=?q\mathrm{ by (simp add: endpoint-in-S-swap)
from 〈a\in hyp2\rangle and \langleb\in hyp2\rangle have ?p }\inS\mathrm{ by (simp add: endpoint-in-S)
with <a \in hyp2\rangle and \langleb G hyp2\rangle
have }a\not=?p\mathrm{ and }b\not=?p\mathrm{ by (simp-all add: hyp2-S-not-equal)
with \langleproj2-set-Col {?p,?q,a,b}\rangle and 〈?p \# ? ?q>
show cross-ratio ?pJ ?qJ ?aJ ?bJ = cross-ratio ?p ?q a b
by (rule cross-ratio-cltn2)
qed
lemma K2-isometry-exp-2dist:
assumes a\in hyp2 and b\inhyp2 and is-K2-isometry J
shows exp-2dist (apply-cltn2 a J) (apply-cltn2 b J) = exp-2dist a b
(is exp-2dist ?aJ ?bJ = -)
proof cases
assume }a=
thus exp-2dist ?aJ ?bJ = exp-2dist a b by (unfold exp-2dist-def) simp
next
assume a\not=b
with apply-cltn2-injective have ?aJ \not= ?bJ by fast
let ?p = endpoint-in-S a b
let ?q= endpoint-in-S b a
let ?aJ = apply-cltn2 a J
and ?bJ = apply-cltn2 b J
and ?pJ = apply-cltn2 ?p J
and ?qJ = apply-cltn2 ?q J
from }\langlea\not=b\rangle\mathrm{ and }\langlea\inhyp2\rangle and \langleb\inhyp2\rangle and \langleis-K2-isometry J
have endpoint-in-S ?aJ ?bJ = ?pJ and endpoint-in-S ?bJ ?aJ = ?qJ
by (simp-all add: K2-isometry-endpoint-in-S)

```
    from assms and \(\langle a \neq b\rangle\)
have cross－ratio ？pJ ？qJ ？aJ ？bJ＝cross－ratio ？p ？q a b
by（rule K2－isometry－cross－ratio－endpoints－in－S）
with 〈endpoint－in－S ？aJ ？bJ \(=\) ？\(p J\) 〉 and 〈endpoint－in－S ？bJ ？aJ \(=\) ？qJ〉
and \(\langle a \neq b\rangle\) and \(\langle ? a J \neq ? b J\rangle\)
show exp－2dist ？aJ ？bJ＝exp－2dist \(a b\) by（unfold exp－2dist－def）simp
qed
lemma K2－isometry－cosh－dist：
assumes \(a \in\) hyp2 and \(b \in\) hyp2 and is－K2－isometry \(J\)
shows cosh－dist（apply－cltn2 a J）（apply－cltn2 b J）\(=\) cosh－dist a b
using assms
by（unfold cosh－dist－def）（simp add：K2－isometry－exp－2dist）
lemma cosh－dist－perp：
assumes \(M\)－perp \(l m\) and \(a \in h y p 2\) and \(b \in h y p 2\) and \(c \in h y p 2\)
and proj2－incident a \(l\) and proj2－incident \(b l\)
and proj2－incident \(b m\) and proj2－incident c \(m\)
shows cosh－dist a \(c=\cosh\)－dist \(b a *\) cosh－dist \(b c\)
proof－
from 〈M－perp \(l m\rangle\) and \(\langle b \in h y p 2\rangle\) and \(\langle p r o j 2\)－incident \(b l\rangle\) and \(\langle\) proj2－incident \(b m\rangle\) and \(M\)－perp－to－compass［of \(l m b b]\)
obtain \(J\) where is－K2－isometry \(J\) and apply－cltn2－line equator \(J=l\)
and apply－cltn2－line meridian \(J=m\)
by auto
let ？\(J i=\) cltn2－inverse \(J\)
let ？aJi \(=\) apply－cltn2 a ？Ji
let ？bJi \(=\) apply－cltn2 \(b\) ？Ji
let ？cJi \(=\) apply－cltn2 \(c\) ？Ji
from \(\langle\) apply－cltn2－line equator \(J=l\rangle\) and \(\langle\) apply－cltn2－line meridian \(J=m\rangle\)
and \(\langle\) proj2－incident a \(l\rangle\) and \(\langle\) proj2－incident \(b l\rangle\)
and \(\langle p r o j 2-i n c i d e n t ~ b m\rangle\) and \(\langle p r o j 2-i n c i d e n t ~ c ~ m\rangle\)
have proj2－incident ？aJi equator and proj2－incident？bJi equator and proj2－incident ？bJi meridian and proj2－incident ？cJi meridian by（auto simp add：apply－cltn2－incident）
from 〈is－K2－isometry \(J\rangle\)
have is－K2－isometry ？Ji by（rule cltn2－inverse－is－K2－isometry）
with \(\langle a \in\) hyp2〉 and \(\langle c \in\) hyp2〉
have ？aJi \(\in\) hyp 2 and \(? c J i \in h y p 2\)
by（simp－all add：statement60－one－way）
from 〈？aJi \(\in\) hyp2〉 and 〈proj2－incident ？aJi equator〉
and on－equator－in－hyp2－rep
obtain \(x\) where \(|x|<1\) and ？aJi \(=\) proj2－abs（vector \([x, 0,1])\) by auto
moreover
from 〈？cJi \(\in\) hyp2〉 and 〈proj2－incident ？cJi meridian〉
and on－meridian－in－hyp2－rep
obtain \(y\) where \(|y|<1\) and ？cJi \(=\) proj2－abs \((\) vector \([0, y, 1])\) by auto
```

 moreover
 from <proj2-incident ?bJi equator> and <proj2-incident ?bJi meridian>
 have ?bJi=K2-centre by (rule on-equator-meridian-is-K2-centre)
 ultimately
 have cosh-dist ?aJi ?cJi = cosh-dist ?bJi ?aJi * cosh-dist ?bJi ?cJi
 by (simp add: cosh-dist-perp-special-case)
 with \langlea\in hyp2\rangle and \langleb\inhyp2\rangle and \langlec\in hyp2\rangle and <is-K2-isometry?Ji\rangle
 show cosh-dist a c= cosh-dist b a* cosh-dist b c
 by (simp add: K2-isometry-cosh-dist)
 qed
lemma are-endpoints-in-S-ordered-cross-ratio:
assumes are-endpoints-in-S p q a b

```

```

 shows cross-ratio p qab}\geq
 proof -
from <are-endpoints-in-S p q a b>
have }p\not=q\mathrm{ and }p\inS\mathrm{ and q}S\mathrm{ and }a\inhyp2 and b\inhyp2
and proj2-set-Col {p,q,a,b}
by (unfold are-endpoints-in-S-def) simp-all
from \langlea\inhyp2\rangle and \langleb\inhyp2\rangle and \langlep\inS\rangle and \langleq}\inS
have z-non-zero a and z-non-zero b and z-non-zero p and z-non-zero q
by (simp-all add: hyp2-S-z-non-zero)
hence proj2-abs (cart2-append1 p)=p(is proj2-abs ?cp1 = p)
and proj2-abs (cart2-append1 q) = q(is proj2-abs ?cq1 = q)
and proj2-abs (cart2-append1 a)=a (is proj2-abs ?ca1 = a)
and proj2-abs (cart2-append1 b) =b (is proj2-abs ?cb1 = b)
by (simp-all add: proj2-abs-cart2-append1)
from \langleb\in hyp2\rangle and }\langlep\inS\rangle\mathrm{ have b}=p\mathrm{ by (rule hyp2-S-not-equal)
with \langlez-non-zero a\rangle and \langlez-non-zero b\rangle and \langlez-non-zero p\rangle
and}\langle\mp@subsup{B}{\mathbb{R}}{}\mathrm{ ?ca ?cb ?cp> and cart2-append1-between-right-strict [of a b p]
obtain j where j\geq0 and j<1 and ?cb1 = j * * ? cp1 + (1-j) **R?ca1
by auto
from <proj2-set-Col {p,q,a,b}>
obtain l where proj2-incident q l and proj2-incident p l
and proj2-incident a l
by (unfold proj2-set-Col-def) auto
with }\langlep\not=q\rangle\mathrm{ and }\langleq\inS\rangle\mathrm{ and }\langlep\inS\rangle\mathrm{ and }\langlea\inhyp2
and S-hyp2-S-cart2-append1 [of q p a l]
obtain k where k>0 and k<1 and ?ca1 = k **R ?cp1 + (1-k) * *R ?cq1
by auto
from 〈z-non-zero p\rangle and \langlez-non-zero q\rangle
have ?cp1 }\not=0\mathrm{ and ?cq1 }\not=0\mathrm{ by (simp-all add:cart2-append1-non-zero)
from }\langlep\not=q\rangle\mathrm{ and \proj2-abs ?cp1 = p> and \proj2-abs ?cq1 =q>

```
have proj2－abs ？cp1 \(\neq\) proj2－abs ？cq1 by simp
from \(\langle k<1\rangle\) have \(1-k \neq 0\) by simp
with \(\langle j<1\rangle\) have \((1-j) *(1-k) \neq 0\) by simp
from \(\langle j<1\rangle\) and \(\langle k>0\rangle\) have \((1-j) * k>0\) by simp
from 〈？\({ }^{\text {cb } b 1}=j *_{R}\) ？cp1 \(+(1-j) *_{R}\) ？ca1〉
have ？\(c b 1=(j+(1-j) * k) *_{R}\) ？\(c p 1+((1-j) *(1-k)) *_{R}\) ？\(c q 1\) by（unfold «？ca1 \(=k *_{R}\) ？cp1 \(+(1-k) *_{R}\) ？cq1〉）（simp add：algebra－simps）
with 〈？\(c a 1=k *_{R} ? c p 1+(1-k) *_{R}\) ？cq1〉
have proj2－abs ？ca1 \(=\operatorname{proj2-abs}\left(k *_{R}\right.\) ？cp1 \(+(1-k) *_{R}\) ？cq1）
and proj2－abs ？cb1
\[
=\operatorname{proj2-abs}\left((j+(1-j) * k) *_{R} \text { ?cp1 }+((1-j) *(1-k)) *_{R} \text { ?cq1 }\right)
\]
by simp－all
with \(\langle\) proj2－abs ？\(c a 1=a\rangle\) and \(\langle p r o j 2-a b s ? c b 1=b\rangle\)
have \(a=\) proj2－abs \(\left(k *_{R}\right.\) ？ cp1 \(+(1-k) *_{R}\) ？cq1） and \(b=\) proj2－abs \(\left((j+(1-j) * k) *_{R}\right.\) ？cpp1 \(+((1-j) *(1-k)) *_{R}\) ？cq1 \()\)
by simp－all
with \(\langle p r o j 2-a b s\) ？\(c p 1=p\rangle\) and \(\langle p r o j 2-a b s\) ？\(c q 1=q\rangle\)
have cross－ratio \(p q a b\) \(=\) cross－ratio（proj2－abs ？cp1）（proj2－abs ？cq1） （proj2－abs \(\left(k *_{R}\right.\) ？cp1 \(+(1-k) *_{R}\) ？\(\left.\left.c q 1\right)\right)\) （projQ－abs \(\left((j+(1-j) * k) *_{R}\right.\) ？cp1 \(+((1-j) *(1-k)) *_{R}\) ？\(\left.\left.c q 1\right)\right)\)
by simp
also from \(\langle ? c p 1 \neq 0\rangle\) and \(\langle ? c q 1 \neq 0\rangle\) and \(\langle p r o j 2-a b s ? c p 1 \neq\) proj2－abs ？cq1〉 and \(\langle 1-k \neq 0\rangle\) and \(\langle(1-j) *(1-k) \neq 0\rangle\)
have \(\ldots=(1-k) *(j+(1-j) * k) /(k *((1-j) *(1-k)))\) by（rule cross－ratio－abs）
also from \(\langle 1-k \neq 0\rangle\) have \(\ldots=(j+(1-j) * k) /((1-j) * k)\) by simp
also from \(\langle j \geq 0\rangle\) and \(\langle(1-j) * k>0\rangle\) have \(\ldots \geq 1\) by simp
finally show cross－ratio p qab\(\geq 1\) ．
qed
lemma cross－ratio－S－S－hyp2－hyp2－positive：
assumes are－endpoints－in－S p q ab
shows cross－ratio p qab＞0
proof cases
assume \(B_{\mathbb{R}}(\) cart2－pt p）（cart2－pt b）（cart2－pt a）
hence \(B_{\mathbb{R}}(\) cart2－pt \(a)(c a r t 2-p t b)(c a r t 2-p t p)\)
by（rule real－euclid．th3－2）
with assms have cross－ratio \(p\) qab \(\geq 1\)
by（rule are－endpoints－in－S－ordered－cross－ratio）
thus cross－ratio p qab＞0 by simp
next
assume \(\neg B_{\mathbb{R}}(c a r t 2-p t p)(c a r t 2-p t b)(c a r t 2-p t a)\left(\right.\) is \(\neg B_{\mathbb{R}}\) ？cp ？cb ？ca）
from 〈are－endpoints－in－S pqab＞
have are－endpoints－in－S pqbaby（rule are－endpoints－in－S－swap－34）
from 〈are－endpoints－in－S pqab＞
have \(p \in S\) and \(a \in\) hyp2 and \(b \in\) hyp2 and proj2－set－Col \(\{p, q, a, b\}\)
by（unfold are－endpoints－in－S－def）simp－all
from 〈proj2－set－Col \(\{p, q, a, b\}\rangle\)
have proj2－set－Col \(\{p, a, b\}\)
by（simp add：proj2－subset－Col \([o f\{p, a, b\}\{p, q, a, b\}])\)
hence proj2－Col pab by（subst proj2－Col－iff－set－Col）
with \(\langle p \in S\rangle\) and \(\langle a \in\) hyp2 \(\rangle\) and \(\langle b \in\) hyp2 \(\rangle\)
have \(B_{\mathbb{R}}\) ？cp ？ca ？cb \(\vee B_{\mathbb{R}}\) ？cp ？cb ？ca by（simp add：\(S\)－at－edge）
with \(\neg B_{\mathbb{R}}\) ？\(c p\) ？\(c b\) ？\(\left.c a\right\rangle\) have \(B_{\mathbb{R}}\) ？\(c p\) ？\(c a\) ？\(c b\) by simp
hence \(B_{\mathbb{R}}\) ？cb ？ca ？cp by（rule real－euclid．th3－2）
with 〈are－endpoints－in－S pqba〉
have cross－ratio \(p q b a \geq 1\)
by（rule are－endpoints－in－S－ordered－cross－ratio）
thus cross－ratio pqab＞0 by（subst cross－ratio－swap－34）simp
qed
lemma cosh－dist－general：
assumes are－endpoints－in－S p q ab
shows cosh－dist ab
\(=(\) sqrt \((\) cross－ratio \(p q a b)+1 /\) sqrt \((\) cross－ratio \(p q a b)) / 2\)
proof－
from 〈are－endpoints－in－S \(p\) q a b \(\rangle\)
have \(p \neq q\) and \(p \in S\) and \(q \in S\) and \(a \in\) hyp2 and \(b \in\) hyp 2
and proj2－set－Col \(\{p, q, a, b\}\)
by（unfold are－endpoints－in－S－def）simp－all
from \(\langle a \in h y p 2\rangle\) and \(\langle b \in h y p 2\rangle\) and \(\langle p \in S\rangle\) and \(\langle q \in S\rangle\)
have \(a \neq p\) and \(a \neq q\) and \(b \neq p\) and \(b \neq q\)
by（simp－all add：hyp2－S－not－equal）
show cosh－dist \(a b\)
\(=(\) sqrt \((\) cross－ratio \(p q a b)+1 / s q r t(\) cross－ratio \(p q a b)) / 2\)
proof cases
assume \(a=b\)
hence cosh－dist a \(b=1\) by（unfold cosh－dist－def exp－2dist－def）simp
from 〈proj2－set－Col \(\{p, q, a, b\}\rangle\)
have proj2－Col p q a by（unfold \(\langle a=b\rangle\) ）（simp add：proj2－Col－iff－set－Col）
with \(\langle p \neq q\rangle\) and \(\langle a \neq p\rangle\) and \(\langle a \neq q\rangle\)
have cross－ratio p q a b＝1 by（simp add：\(\langle a=b\rangle\) cross－ratio－equal－ 1 ）
hence（sqrt（cross－ratio p q a b）＋1／sqrt（cross－ratio p q a b））／2
\(=1\)
by \(\operatorname{simp}\)
with 〈cosh－dist ab＝1〉
show cosh－dist \(a b\)
\(=(\) sqrt \((\) cross－ratio \(p q a b)+1 / s q r t(\) cross－ratio \(p q a b)) / 2\)
by \(\operatorname{simp}\)
```

next
assume a\not=b
let ?r = endpoint-in-S a b
let ?s = endpoint-in-S b a
from <a\not=b\rangle
have exp-2dist a b = cross-ratio ?r ?s a b by (unfold exp-2dist-def) simp
from }\langlea\not=b\rangle\mathrm{ and <are-endpoints-in-S p qa b>
have (p=?r}\wedgeq=?s)\vee(q=?r \wedge p=?s) by (rule are-endpoints-in-S
show cosh-dist a b
=(sqrt (cross-ratio p q a b) +1/ sqrt (cross-ratio p qab))/2
proof cases
assume p=?r ^q=?s
with <exp-2dist a b = cross-ratio ?r ?s a b>
have exp-2dist a b= cross-ratio pqab by simp
thus cosh-dist a b
=(sqrt (cross-ratio p qab) +1/sqrt (cross-ratio p q a b))/2
by (unfold cosh-dist-def) (simp add: real-sqrt-divide)
next
assume }\neg(p=?r\wedgeq=?s
with <(p=?r}\wedgeq=?s)\vee(q=?r ^ p=?s)>
have q=?r and p=?s by simp-all
with <exp-2dist a b= cross-ratio ?r ?s a b>
have exp-2dist a b cross-ratio q p ab by simp
have {q,p,a,b}={p,q,a,b} by auto
with \langleproj2-set-Col {p,q,a,b}\rangle and \langlep\not=q\rangle and }\langlea\not=p\rangle\mathrm{ and }\langleb\not=p
and }\langlea\not=q\rangle\mathrm{ and }\langleb\not=q
have cross-ratio-correct pqab and cross-ratio-correct q p ab
by (unfold cross-ratio-correct-def) simp-all
hence cross-ratio q p a b=1/(cross-ratio p q a b)
by (rule cross-ratio-swap-12)
with <exp-2dist a b = cross-ratio q p ab>
have exp-2dist a b=1 /(cross-ratio p qab) by simp
thus cosh-dist a b
=(sqrt (cross-ratio p qab) + 1 / sqrt (cross-ratio p q a b)) / 2
by (unfold cosh-dist-def) (simp add: real-sqrt-divide)
qed
qed
qed
lemma exp-2dist-positive:
assumes a\inhyp2 and b\in hyp2
shows exp-2dist a b>0
proof cases
assume a=b
thus exp-2dist a b>0 by (unfold exp-2dist-def) simp

```
```

next
assume }a\not=
let ?p = endpoint-in-S a b
let ?q = endpoint-in-S b a
from }\langlea\not=b\rangle\mathrm{ and }\langlea\inhyp2\rangle and \langleb\in hyp2
have are-endpoints-in-S ?p ?q a b
by (rule endpoints-in-S-are-endpoints-in-S)
hence cross-ratio ?p ?q a b>0 by (rule cross-ratio-S-S-hyp2-hyp2-positive)
with }\langlea\not=b\rangle\mathrm{ show exp-2dist a b>0 by (unfold exp-2dist-def) simp
qed
lemma cosh-dist-at-least-1:
assumes a\in hyp2 and b\inhyp2
shows cosh-dist a b \geq1
proof -
from assms have exp-2dist a b>0 by (rule exp-2dist-positive)
with am-gm2(1) [of sqrt (exp-2dist a b) sqrt (1 / exp-2dist a b)]
show cosh-dist a b \geq 1
by (unfold cosh-dist-def) (simp add: real-sqrt-mult [symmetric])
qed
lemma cosh-dist-positive:
assumes a\inhyp2 and b\inhyp2
shows cosh-dist a b>0
proof -
from assms have cosh-dist a b \geq 1 by (rule cosh-dist-at-least-1)
thus cosh-dist a b>0 by simp
qed
lemma cosh-dist-perp-divide:
assumes M-perp l m and a Ghyp2 and b\inhyp2 and c\inhyp2
and proj2-incident a l and proj2-incident b l and proj2-incident b m
and proj2-incident c m
shows cosh-dist b c = cosh-dist a c / cosh-dist b a
proof -
from 〈b\in hyp2\rangle and <a\in hyp2\rangle
have cosh-dist b a>0 by (rule cosh-dist-positive)
from assms
have cosh-dist a c= cosh-dist b a* cosh-dist b c by (rule cosh-dist-perp)
with \cosh-dist b a>0>
show cosh-dist b c = cosh-dist a c / cosh-dist b a by simp
qed
lemma real-hyp2-C-cross-ratio-endpoints-in-S:
assumes }a\not=b\mathrm{ and }ab\mp@subsup{\equiv}{K}{}c
shows cross-ratio (endpoint-in-S (Rep-hyp2 a) (Rep-hyp2 b))
(endpoint-in-S (Rep-hyp2 b) (Rep-hyp2 a)) (Rep-hyp2 a) (Rep-hyp2 b)

```
```

 = cross-ratio (endpoint-in-S (Rep-hyp2 c) (Rep-hyp2 d))
 (endpoint-in-S (Rep-hyp2 d) (Rep-hyp2 c)) (Rep-hyp2 c) (Rep-hyp2 d)
 (is cross-ratio ?p ?q ?a' ?b'= cross-ratio ?r ?s ?c' ?d')
 proof -

```


```

 from <a b \equiv
 obtain J where is-K2-isometry J and hyp2-cltn2 a }J=
 and hyp2-cltn2 b J =d
 by (unfold real-hyp2-C-def) auto
 hence apply-cltn2 ? a' }J=?\mp@subsup{a}{}{\prime}\mathrm{ and apply-cltn2 ? b' }J=?\mp@subsup{b}{}{\prime
 by (simp-all add: Rep-hyp2-cltn2 [symmetric])
 with \langle?a'\not=? ?b\rangle}\mathrm{ and 〈is-K2-isometry J〉
 have apply-cltn2 ?p J = ?r and apply-cltn2 ?q J = ?s
 by (simp-all add: Rep-hyp2 K2-isometry-endpoint-in-S)
 from <?a' }=
 have proj2-set-Col {?p,?q,?\mp@subsup{a}{}{\prime},?\mp@subsup{b}{}{\prime}}
 by (simp add: Rep-hyp2 proj2-set-Col-endpoints-in-S)
 from <?a' }\not=?\mp@subsup{a}{}{\prime}\rangle\mathrm{ have ?p }\not=??q\mathrm{ by (simp add: Rep-hyp2 endpoint-in-S-swap)
 have ?p }\inS\mathrm{ by (simp add: Rep-hyp2 endpoint-in-S)
 hence ?a'\not= ?p and ?\mp@subsup{b}{}{\prime}}\not==?p\mathrm{ by (simp-all add: Rep-hyp2 hyp2-S-not-equal)
 with 〈proj2-set-Col {?p,?q,?a',?b}}>\mathrm{ and 〈?p #= ?q>
 have cross-ratio ?p ?q ?a' ?b'
 = cross-ratio (apply-cltn2 ?p J) (apply-cltn2 ?q J)
 (apply-cltn2 ?a' J) (apply-cltn2 ? b' J)
 by (rule cross-ratio-cltn2 [symmetric])
 with 〈apply-cltn2 ?p J = ?r\rangle and \apply-cltn2 ?q J = ?s\rangle
 and 〈apply-cltn2 ?a' }J=?,\mp@subsup{c}{}{\prime}\rangle\mathrm{ and 〈apply-cltn2 ?b' }J=? ?d`
 show cross-ratio ?p ?q ?a' ?b' = cross-ratio ?r ?s ?c' ?d' by simp
 qed
lemma real-hyp2-C-exp-2dist:
assumes a b \equiv
shows exp-2dist (Rep-hyp2 a) (Rep-hyp2 b)
= exp-2dist (Rep-hyp2 c) (Rep-hyp2 d)
(is exp-2dist ?a' ? ? ' ' = exp-2dist ?c' ? ? '
proof -
from <ab \equiv
obtain J where is-K2-isometry J and hyp2-cltn2 a }J=
and hyp2-cltn2 b J = d
by (unfold real-hyp2-C-def) auto
hence apply-cltn2 ? a' }J=?\mp@subsup{a}{}{\prime}\mathrm{ ' and apply-cltn2 ? b' }J=? ?d
by (simp-all add: Rep-hyp2-cltn2 [symmetric])
from Rep-hyp2 [of a] and Rep-hyp2 [of b] and <is-K2-isometry J>

```
```

 have exp-2dist (apply-cltn2 ?a' J) (apply-cltn2 ? b' J) = exp-2dist ?a' ? ?b
 by (rule K2-isometry-exp-2dist)
 with \apply-cltn2 ? a' J = ? c'` and \apply-cltn2 ? b' J = ? d'`
 show exp-2dist ?a' ?b' = exp-2dist ? ' ' ? 'd' by simp
 qed
lemma real-hyp2-C-cosh-dist:
assumes a b \equiv}\mp@subsup{}{K}{}c
shows cosh-dist (Rep-hyp2 a) (Rep-hyp2 b)
= cosh-dist (Rep-hyp2 c) (Rep-hyp2 d)
using assms
by (unfold cosh-dist-def) (simp add: real-hyp2-C-exp-2dist)
lemma cross-ratio-in-terms-of-cosh-dist:
assumes are-endpoints-in-S p q a b
and }\mp@subsup{B}{\mathbb{R}}{
shows cross-ratio p q a b
=2 * (cosh-dist ab)}\mp@subsup{}{2}{2}+2*\mathrm{ cosh-dist a b * sqrt ((cosh-dist a b)}\mp@subsup{)}{}{2}-1)-
(is ?pqab=2*?ab}\mp@subsup{}{2}{2}+2*?ab*\operatorname{sqrt (?ab}\mp@subsup{}{2}{-
proof -
from 〈are-endpoints-in-S p q a b〉
have ?ab = (sqrt ?pqab + 1 / sqrt ?pqab) / 2 by (rule cosh-dist-general)
hence sqrt ?pqab - 2* ?ab + 1 / sqrt ?pqab = 0 by simp
hence sqrt?pqab*(sqrt ?pqab -2 * ?ab + 1/ sqrt ?pqab) = 0 by simp
moreover from assms
have ?pqab \geq1 by (rule are-endpoints-in-S-ordered-cross-ratio)
ultimately have ?pqab - 2*?ab * (sqrt ?pqab) + 1 = 0
by (simp add: algebra-simps real-sqrt-mult [symmetric])
with <?pqab \geq1) and discriminant-iff [of 1 sqrt ?pqab - 2*?ab 1]
have sqrt ?pqab =(2*?ab + sqrt (4*?ab2 - 4))/2
\vee sqrt ?pqab = (2*?ab - sqrt (4*?ab 2 - 4)) / 2
unfolding discrim-def
by (simp add: real-sqrt-mult [symmetric] power2-eq-square)
moreover have sqrt (4*?ab}\mp@subsup{}{2}{-4
hence sqrt (4*?a\mp@subsup{b}{}{2}-4)=2*\operatorname{sqrt}(?a\mp@subsup{b}{}{2}-1)
by (unfold real-sqrt-mult) simp
ultimately have sqrt ?pqab =2*(?ab + sqrt (?ab 2 - 1))/2
\vee sqrt ?pqab =2 * (?ab - sqrt (?ab}\mp@subsup{}{2}{2}-1))/
by simp
hence sqrt ?pqab =?ab + sqrt (?ab}\mp@subsup{}{}{2}-1
v sqrt ?pqab = ?ab - sqrt (?ab}\mp@subsup{}{}{2}-1
by (simp only: nonzero-mult-divide-cancel-left [of 2])
from \are-endpoints-in-S p q a b >
have a hyp2 and b hyp2 by (unfold are-endpoints-in-S-def) simp-all
hence ?ab \geq1 by (rule cosh-dist-at-least-1)
hence ?ab }\mp@subsup{}{}{2}\geq1\mathrm{ by simp
hence sqrt (?ab 2 - 1) \geq0 by simp
hence sqrt (?ab}\mp@subsup{}{2}{2}-1)*\operatorname{sqrt}(?a\mp@subsup{b}{}{2}-1)=?a\mp@subsup{b}{}{2}-

```
```

 by (simp add: real-sqrt-mult [symmetric])
 hence }(?ab+\operatorname{sqrt}(?a\mp@subsup{b}{}{2}-1))*(?ab-\operatorname{sqrt}(?a\mp@subsup{b}{}{2}-1))=
 by (simp add: algebra-simps power2-eq-square)
 have ?ab - sqrt (?ab 2 - 1) \leq 1
 proof (rule ccontr)
 assume }\neg(?ab-\operatorname{sqrt (?ab}\mp@subsup{b}{}{2}-1)\leq1
 hence 1<?ab - sqrt (?a\mp@subsup{b}{}{2}-1) by simp
 also from <sqrt (?ab}\mp@subsup{}{2}{2}-1)\geq0
 have ... \leq?ab + sqrt (?ab 2 - 1) by simp
 finally have 1<?ab + sqrt (?ab}\mp@subsup{}{2}{-}-1)\mathrm{ by simp
 with <1 < ?ab - sqrt (?ab 2 - 1)>
 and mult-strict-mono' [of
 1?ab + sqrt (?ab 2 - 1) 1 ?ab - sqrt (?ab 2 - 1)]
 have 1< ?ab + sqrt (?ab}\mp@subsup{\mp@code{2}}{2}{-1))*(?ab-\operatorname{sqrt (?ab}\mp@subsup{}{}{2}-1)) by simp
 with 〈(?ab + sqrt (?ab 2 - 1))*(?ab - sqrt (?ab 2 - 1)) = 1>
 show False by simp
 qed
have sqrt ?pqab = ?ab + sqrt (?ab 2 - 1)
proof (rule ccontr)
assume sqrt ?pqab }\not=??ab+sqrt (?a\mp@subsup{b}{}{2}-1
with <sqrt ?pqab =?ab + sqrt (?ab2 - 1)
\vee sqrt?pqab =?ab - sqrt (?ab}\mp@subsup{}{}{2}-1)
have sqrt ?pqab = ?ab - sqrt (?ab 2 - 1) by simp
with <?ab - sqrt (?ab}\mp@subsup{}{2}{2}-1)\leq1> have sqrt ?pqab \leq 1 by sim
with <?pqab \geq 1> have sqrt ?pqab = 1 by simp
with <sqrt ?pqab = ?ab - sqrt (?ab 2 - 1)>
and <(?ab + sqrt (?ab 2 - 1)) *(?ab - sqrt (?ab}\mp@subsup{}{}{2}-1))=1
have ?ab + sqrt (?ab}\mp@subsup{b}{}{2}-1)=1\mathrm{ by simp
with <sqrt?pqab=1\rangle have sqrt ?pqab = ?ab + sqrt (?ab 2 - 1) by simp
with <sqrt ?pqab \not=? ?ab + sqrt (?ab 2 - 1)\rangle show False ..
qed
moreover from <?pqab \geq1〉 have ?pqab = (sqrt ?pqab) }\mp@subsup{}{}{2}\mathrm{ by simp
ultimately have ?pqab = (?ab + sqrt (?ab 2 - 1))}\mp@subsup{)}{}{2}\mathrm{ by simp
with <sqrt (?ab}\mp@subsup{}{}{2}-1)*\operatorname{sqrt}(?a\mp@subsup{b}{}{2}-1)=?ab\mp@subsup{b}{}{2}-1
show ?pqab =2*?ab 2 + 2*?ab* sqrt (?ab
by (simp add: power2-eq-square algebra-simps)
qed
lemma are－endpoints－in－S－cross－ratio－correct：
assumes are－endpoints－in－S p q a b
shows cross－ratio－correct p q a b
proof－
from 〈are－endpoints－in－S pqab〉
have $p \neq q$ and $p \in S$ and $q \in S$ and $a \in$ hyp2 and $b \in$ hyp2
and proj2－set－Col $\{p, q, a, b\}$
by（unfold are－endpoints－in－S－def）simp－all

```
```

 from \langlea\inhyp2\rangle and \langleb\inhyp2\rangle and }\langlep\inS\rangle\mathrm{ and }\langleq\inS
 have }a\not=p\mathrm{ and }b\not=p\mathrm{ and }a\not=q\mathrm{ by (simp-all add: hyp2-S-not-equal)
 with \langleproj2-set-Col {p,q,a,b}\rangle and \langlep\not=q\rangle
 show cross-ratio-correct p q a b by (unfold cross-ratio-correct-def) simp
 qed
lemma endpoints-in-S-cross-ratio-correct:
assumes }a\not=b\mathrm{ and }a\inhyp2 and b\inhyp
shows cross-ratio-correct (endpoint-in-S a b) (endpoint-in-S b a) a b
proof -
from assms
have are-endpoints-in-S (endpoint-in-S a b) (endpoint-in-S b a) a b
by (rule endpoints-in-S-are-endpoints-in-S)
thus cross-ratio-correct (endpoint-in-S a b) (endpoint-in-S b a) a b
by (rule are-endpoints-in-S-cross-ratio-correct)
qed
lemma endpoints-in-S-perp-foot-cross-ratio-correct:
assumes }a\inhyp2\mathrm{ and }b\inhyp2 and c\inhyp2 and a\not=
and proj2-incident a l and proj2-incident b l
shows cross-ratio-correct
(endpoint-in-S a b) (endpoint-in-S b a) a (perp-foot c l)
(is cross-ratio-correct ?p ?q a ?d)
proof -
from assms
have are-endpoints-in-S ?p ?q a ?d
by (rule endpoints-in-S-perp-foot-are-endpoints-in-S)
thus cross-ratio-correct ?p ?q a ?d
by (rule are-endpoints-in-S-cross-ratio-correct)
qed
lemma cosh-dist-unique:
assumes a hyp2 and b\inhyp2 and c\in hyp2 and p\inS
and }\mp@subsup{B}{\mathbb{R}}{}(cart2-pt a) (cart2-pt b) (cart2-pt p) (is B B 踩 ?ca ?cb ?cp)
and }\mp@subsup{B}{\mathbb{R}}{}(cart2-pt a) (cart2-pt c) (cart2-pt p) (is B B\mathbb{R}\mathrm{ ?ca ?cc ?cp)
and cosh-dist a b= cosh-dist ac (is ?ab=?ac)
shows b=c
proof -
let ?q = endpoint-in-S p a
from \langlea < hyp2\rangle and \langleb\inhyp2\rangle and \langlec\in hyp2\rangle and \langlep\inS\rangle
have z-non-zero a and z-non-zero b and z-non-zero c and z-non-zero p
by (simp-all add: hyp2-S-z-non-zero)
with \langle\mp@subsup{B}{\mathbb{R}}{}?ca?cb ?cp\rangle}\mathrm{ and }\langle\mp@subsup{B}{\mathbb{R}}{}\mathrm{ ?ca ?cc ?cp>
have \exists l. proj2-incident a l ^ proj2-incident bl^ proj2-incident pl
and \exists m. proj2-incident a m ^ proj2-incident c m ^ proj2-incident p m
by (simp-all add: euclid-B-cart2-common-line)
then obtain l and m}\mathrm{ where
proj2-incident a l and proj2-incident bl and proj2-incident p l

```
and proj2－incident a \(m\) and proj2－incident c \(m\) and proj2－incident p \(m\) by auto
from \(\langle a \in\) hyp2 \(\rangle\) and \(\langle p \in S\rangle\) have \(a \neq p\) by（rule hyp2－S－not－equal）
with 〈proj2－incident a \(l\rangle\) and \(\langle\) proj2－incident \(p l\rangle\)

have \(l=m\) by fast
with 〈proj2－incident \(c m\) 〉 have proj2－incident c \(l\) by simp
with \(\langle a \in h y p 2\rangle\) and \(\langle b \in h y p 2\rangle\) and \(\langle c \in\) hyp2 \(\rangle\) and \(\langle p \in S\rangle\)
and \(\langle\) proj2－incident \(a l\rangle\) and \(\langle\) proj2－incident \(b l\rangle\) and \(\langle\) proj2－incident \(p l\rangle\)
have are－endpoints－in－S p？q b a and are－endpoints－in－S p ？q c a
by（simp－all add：end－and－opposite－are－endpoints－in－S）
with are－endpoints－in－S－swap－34
have are－endpoints－in－S p ？q a b and are－endpoints－in－S p ？q a c by fast＋
hence cross－ratio－correct \(p\) ？\(q a b\) and cross－ratio－correct \(p\) ？\(q\) a c
by（simp－all add：are－endpoints－in－S－cross－ratio－correct）
moreover
from 〈are－endpoints－in－S p ？q a b and 〈are－endpoints－in－S p ？q a c〉 and \(\left\langle B_{\mathbb{R}}\right.\) ？\(c a\) ？\(c b\) ？\(\left.c p\right\rangle\) and \(\left\langle B_{\mathbb{R}}\right.\) ？\(c a ? c c\) ？\(\left.c p\right\rangle\)
have cross－ratio \(p\) ？\(q a b=2 * ? a b^{2}+2 * ? a b * \operatorname{sqrt}\left(? a b^{2}-1\right)-1\) and cross－ratio \(p\) ？\(q\) a \(c=2 * ? a c^{2}+2 * ? a c * \operatorname{sqrt}\left(? a c^{2}-1\right)-1\) by（simp－all add：cross－ratio－in－terms－of－cosh－dist）
with \(\langle ? a b=? a c\rangle\) have cross－ratio \(p\) ？\(q\) a \(b=\) cross－ratio \(p\) ？\(q a c\) by simp ultimately show \(b=c\) by（rule cross－ratio－unique）
qed
lemma cosh－dist－swap：
assumes \(a \in\) hyp 2 and \(b \in h y p 2\)
shows cosh－dist \(a b=\) cosh－dist \(b a\)
proof－
from assms and K2－isometry－swap
obtain \(J\) where is－K2－isometry \(J\) and apply－cltn2 a \(J=b\)
and apply－cltn2 \(b J=a\)
by auto
from \(\langle b \in\) hyp2 \(\rangle\) and \(\langle a \in\) hyp2〉 and \(\langle\) is－K2－isometry \(J\rangle\)
have cosh－dist（apply－cltn2 b J）（apply－cltn2 a J）＝cosh－dist ba
by（rule K2－isometry－cosh－dist）
with \(\langle a p p l y-c l t n 2 ~ a ~ J=b\rangle\) and \(\langle a p p l y-c l t n 2 ~ b J=a\rangle\)
show cosh－dist \(a b=\) cosh－dist \(b a\) by simp
qed
lemma exp－2dist－1－equal：
assumes \(a \in\) hyp2 and \(b \in\) hyp2 and exp－2dist \(a b=1\)
shows \(a=b\)
proof（rule ccontr）
assume \(a \neq b\)
with \(\langle a \in\) hyp 2\(\rangle\) and \(\langle b \in\) hyp2〉
have cross－ratio－correct（endpoint－in－S a b）（endpoint－in－S ba）a b
```

 (is cross-ratio-correct ?p ?q a b)
 by (simp add: endpoints-in-S-cross-ratio-correct)
 moreover
 from <a\not=b\rangle
 have exp-2dist a b = cross-ratio ?p ?q a b by (unfold exp-2dist-def) simp
 with <exp-2dist a b=1 \ have cross-ratio ?p ?q a b=1 by simp
 ultimately have a=b by (rule cross-ratio-1-equal)
 with }\langlea\not=b\rangle\mathrm{ show False ..
    ```
qed

\subsection*{9.11.1 A formula for a cross ratio involving a perpendicular foot}
```

lemma described-perp-foot-cross-ratio-formula:
assumes }a\not=b\mathrm{ and c< hyp2 and are-endpoints-in-S p q a b
and proj2-incident pl and proj2-incident q l and M-perp l m
and proj2-incident d l and proj2-incident d m and proj2-incident c m
shows cross-ratio p qd a
=(cosh-dist b c * sqrt (cross-ratio p q a b) - cosh-dist a c)
/ (cosh-dist a c * cross-ratio p q a b
- cosh-dist b c * sqrt (cross-ratio p q a b))
(is ?pqda = (?bc*sqrt ?pqab - ?ac) / (?ac * ?pqab - ?bc * sqrt ?pqab))
proof -
let ?da = cosh-dist d a
let ?db = cosh-dist d b
let ?dc = cosh-dist d c
let ?pqdb = cross-ratio pqd b
from \are-endpoints-in-S p q a b >
have }p\not=q\mathrm{ and }p\inS\mathrm{ and q}\inS\mathrm{ and }a\in\mathrm{ hyp2 and b hyp2
and proj2-set-Col {p,q,a,b}
by (unfold are-endpoints-in-S-def) simp-all
from <proj2-set-Col {p,q,a,b}>
obtain l' where proj2-incident p l'}\mathrm{ and proj2-incident q l'
and proj2-incident a l' and proj2-incident b l'
by (unfold proj2-set-Col-def) auto
from }\langlep\not=q\rangle\mathrm{ and <proj2-incident p l'> and <proj2-incident q l'>
and 〈proj2-incident pl\rangle and <proj2-incident q l> and proj2-incident-unique
have l'}=l\mathrm{ by fast
with \langleproj2-incident a l'\rangle}\mathrm{ and 〈proj2-incident b l`>
have proj2-incident a l and proj2-incident b l by simp-all
from \langleM-perp l m> and \langlea\inhyp2\rangle and \langleproj2-incident a l> and \langlec\in hyp2\rangle
and \langleproj2-incident c m> and \langleproj2-incident d l> and \langleproj2-incident d m>
have d\in hyp2 by (rule M-perp-hyp2)
with \langlea G hyp2\rangle and \langleb\inhyp2\rangle and \c \in hyp2\rangle
have ?bc>0 and ?da>0 and ?ac>0
by (simp-all add: cosh-dist-positive)

```
from \(\langle\) proj2－incident \(p l\rangle\) and \(\langle\) proj2－incident \(q l\rangle\) and \(\langle\) proj2－incident \(d l\rangle\)
and \(\langle\) proj2－incident \(a l\rangle\) and \(\langle\) proj2－incident \(b l\rangle\)
have proj2－set－Col \(\{p, q, d, a\}\) and proj2－set－Col \(\{p, q, d, b\}\)
and proj2－set－Col \(\{p, q, a, b\}\)
by（unfold proj2－set－Col－def）（simp－all add：exI［of－l］）
with \(\langle p \neq q\rangle\) and \(\langle p \in S\rangle\) and \(\langle q \in S\rangle\) and \(\langle d \in h y p 2\rangle\) and \(\langle a \in h y p 2\rangle\) and \(\langle b \in\) hyp2〉
have are－endpoints－in－S pqda and are－endpoints－in－S pqdb and are－endpoints－in－S p q ab
by（unfold are－endpoints－in－S－def）simp－all
hence ？pqda \(>0\) and ？pqdb \(>0\) and ？\(p q a b>0\)
by（simp－all add：cross－ratio－S－S－hyp2－hyp2－positive）
from \(\langle\) proj2－incident \(p l\rangle\) and \(\langle\) proj2－incident \(q l\rangle\) and \(\langle\) proj2－incident a \(l\rangle\)
have proj2－Col p q a by（rule proj2－incident－Col）
from \(\langle a \in\) hyp 2\(\rangle\) and \(\langle b \in\) hyp2〉 and \(\langle p \in S\rangle\) and \(\langle q \in S\rangle\)
have \(a \neq p\) and \(a \neq q\) and \(b \neq p\) by（simp－all add：hyp2－S－not－equal）
from \(\left\langle\right.\) proj2－Col p \(q\) a \({ }^{\downarrow}\) and \(\langle p \neq q\rangle\) and \(\langle a \neq p\rangle\) and \(\langle a \neq q\rangle\)
have ？pqdb \(=\) ？pqda \(*\) ？pqab by（rule cross－ratio－product［symmetric］）
from \(\langle M\)－perp \(l m\rangle\) and \(\langle a \in h y p 2\rangle\) and \(\langle b \in\) hyp2 \(\rangle\) and \(\langle c \in h y p 2\rangle\) and \(\langle d \in\) hyp2）
and \(\langle\) proj2－incident \(a l\rangle\) and \(\langle\) proj2－incident \(b l\rangle\) and \(\langle p r o j 2-i n c i d e n t ~ d ~ l\rangle\)
and 〈proj2－incident \(d m\rangle\) and \(\langle p r o j 2\)－incident \(c m\rangle\)
and cosh－dist－perp－divide［of \(l m-d c\) ］
have \(? d c=? a c / ? d a\) and \(? d c=? b c / ? d b\) by fast＋
hence ？\(a c / ? d a=? b c / ? d b\) by simp
with \(\langle ? b c>0\rangle\) and \(\langle ? d a>0\rangle\)
have ？\(a c / ? b c=? d a / ? d b\) by（simp add：field－simps）
also from 〈are－endpoints－in－S pqda〉 and 〈are－endpoints－in－S pqdb〉
have ．．．
\[
\begin{aligned}
& =2 *(\text { sqrt ?pqda }+1 /(\text { sqrt ?pqda })) \\
& /(2 *(\text { sqrt ?pqdb }+1 /(\text { sqrt ?pqdb })))
\end{aligned}
\]
by（simp add：cosh－dist－general）
also
have \(\ldots=(\) sqrt ？\(p q d a+1 /(\) sqrt ？pqda \()) /(\) sqrt ？pqdb \(+1 /(\) sqrt ？pqdb \())\)
by（simp only：mult－divide－mult－cancel－left－if）simp
also have ．．．
\(=s q r t\) ？\(p q d b *(s q r t\) ？pqda \(+1 /(\) sqrt ？pqda \())\)
\(/(s q r t ? p q d b *(s q r t ? p q d b+1 /(s q r t\) ？\(p q d b)))\)
by \(\operatorname{simp}\)
also from 〈？\(p q d b>0\) 〉
have \(\ldots=(s q r t(? p q d b * ? p q d a)+\operatorname{sqrt}(? p q d b / ? p q d a)) /(? p q d b+1)\)
by（simp add：real－sqrt－mult［symmetric］real－sqrt－divide algebra－simps）
also from \(\langle ? p q d b=? p q d a * ? p q a b\rangle\) and \(\langle ? p q d a>0\rangle\) and real－sqrt－pow2
have \(\ldots=(? p q d a *\) sqrt ？pqab + sqrt ？pqab \() /(\) ？pqda \(*\) ？pqab +1\()\)
```

 by (simp add: real-sqrt-mult power2-eq-square)
 finally
have ?ac / ?bc=(?pqda* sqrt ?pqab + sqrt ?pqab) / (?pqda*?pqab + 1).
from \?pqda > 0` and <?pqab > 0`
have ?pqda * ?pqab + 1>0 by (simp add: add-pos-pos)
with \?bc > 0>
and <?ac / ?bc = (?pqda*sqrt ?pqab + sqrt ?pqab) / (?pqda* ?pqab + 1)>
have ?ac* (?pqda*?pqab + 1) =?bc * (?pqda * sqrt ?pqab + sqrt ?pqab)
by (simp add: field-simps)
hence ?pqda * (?ac * ?pqab - ?bc * sqrt ?pqab) = ?bc * sqrt ?pqab - ?ac
by (simp add: algebra-simps)
from \langleproj2-set-Col {p,q,a,b}\rangle and }\langlep\not=q\rangle\mathrm{ and }\langlea\not=p\rangle\mathrm{ and }\langlea\not=q
and }\langleb\not=p
have cross-ratio-correct p q a b by (unfold cross-ratio-correct-def) simp
have ?ac * ?pqab - ?bc * sqrt ?pqab \not=0
proof
assume ?ac * ?pqab - ?bc * sqrt ?pqab = 0
with \?pqda * (?ac * ?pqab - ?bc * sqrt ?pqab) = ?bc * sqrt ?pqab - ?ac>
have ?bc * sqrt ?pqab - ?ac = 0 by simp
with \?ac * ?pqab - ?bc * sqrt ?pqab = 0\rangle and \?ac > 0\rangle
have ?pqab=1 by simp
with \cross-ratio-correct p q a b>
have }a=b\mathrm{ by (rule cross-ratio-1-equal)
with }\langlea\not=b\rangle\mathrm{ show False ..
qed
with \?pqda*(?ac * ?pqab - ?bc * sqrt ?pqab) = ?bc * sqrt ?pqab - ?ac>
show ?pqda = (?bc * sqrt ?pqab - ?ac) / (?ac * ?pqab - ?bc * sqrt ?pqab)
by (simp add: field-simps)
qed
lemma perp-foot-cross-ratio-formula:
assumes a hyp2 and b\inhyp2 and c\inhyp2 and a\not=b
shows cross-ratio (endpoint-in-S a b) (endpoint-in-S b a)
(perp-foot c (proj2-line-through a b)) a
=(cosh-dist b c * sqrt (exp-2dist a b) - cosh-dist a c)
/ (cosh-dist a c * exp-2dist a b - cosh-dist b c*sqrt (exp-2dist a b))
(is cross-ratio ?p ?q ?d a
=(?bc*sqrt ?pqab - ?ac) / (?ac*?pqab - ?bc * sqrt ?pqab))
proof -
from }\langlea\not=b\rangle\mathrm{ and }\langlea\inhyp2\rangle\mathrm{ and }\langleb\inhyp2
have are-endpoints-in-S ?p ?q a b
by (rule endpoints-in-S-are-endpoints-in-S)
let ?l = proj2-line-through a b
have proj2-incident a ?l and proj2-incident b ?l
by (rule proj2-line-through-incident)+

```
```

with \langlea\not=b\rangle and \langlea\in hyp2\rangle and \langleb\in hyp2\rangle
have proj2-incident ?p ?l and proj2-incident ?q ?l
by (simp-all add: endpoint-in-S-incident)
let ?m = drop-perp c ?l
have M-perp ?l ?m by (rule drop-perp-perp)
have proj2-incident ?d ?l and proj2-incident ?d ?m
by (rule perp-foot-incident)+
have proj2-incident c ?m by (rule drop-perp-incident)
with }\langlea\not=b\rangle\mathrm{ and <c < hyp2> and <are-endpoints-in-S ?p ?q a b>
and \langleproj2-incident ?p ?l> and \langleproj2-incident ?q ?l> and 〈M-perp ?l ?m>
and 〈proj2-incident ?d ?l` and \langleproj2-incident ?d ?m>
have cross-ratio ?p ?q ?d a
=(?bc * sqrt (cross-ratio ?p ?q a b) - ?ac)
/ (?ac * (cross-ratio ?p ?q a b) - ?bc * sqrt (cross-ratio ?p ?q a b))
by (rule described-perp-foot-cross-ratio-formula)
with \a\not=b>
show cross-ratio ?p ?q ?d a
=(?bc * sqrt ?pqab - ?ac) / (?ac * ?pqab - ?bc * sqrt ?pqab)
by (unfold exp-2dist-def) simp
qed

```

\subsection*{9.12 The Klein-Beltrami model satisfies axiom 5}
```

lemma statement69:
assumes $a b \equiv_{K} a^{\prime} b^{\prime}$ and $b c \equiv_{K} b^{\prime} c^{\prime}$ and $a c \equiv_{K} a^{\prime} c^{\prime}$
shows $\exists J$. is-K2-isometry J
\wedge hyp2-cltn2 a $J=a^{\prime} \wedge$ hyp2-cltn2 b $J=b^{\prime} \wedge$ hyp2-cltn2 c $J=c^{\prime}$
proof cases
assume $a=b$
with $\left\langle a b \equiv_{K} a^{\prime} b^{\prime}\right\rangle$ have $a^{\prime}=b^{\prime}$ by (simp add: hyp2.A3-reversed)
with $\langle a=b\rangle$ and $\left\langle b c \equiv_{K} b^{\prime} c^{\prime}\right\rangle$
show $\exists J$. is-K2-isometry J
\wedge hyp2-cltn2 a $J=a^{\prime} \wedge$ hyp2-cltn2 $b J=b^{\prime} \wedge$ hyp2-cltn2 $c J=c^{\prime}$
by (unfold real-hyp2-C-def) simp
next
assume $a \neq b$
with $\left\langle a b \equiv_{K} a^{\prime} b^{\prime}\right\rangle$
have $a^{\prime} \neq b^{\prime}$ by (auto simp add: hyp2.A3')
let ?pa = Rep-hyp2 a
and $? p b=$ Rep-hyp2 b
and $? p c=$ Rep-hyp2 c
and $? p a^{\prime}=$ Rep-hyp2 a^{\prime}
and $? p b^{\prime}=$ Rep-hyp2 b^{\prime}
and $? p c^{\prime}=R e p-h y p 2 c^{\prime}$
def $p p \triangleq$ endpoint-in-S ?pa ?pb

```
and \(p q \triangleq\) endpoint-in-S ?pb ?pa
and \(l \triangleq\) proj2-line-through ?pa ?pb
and \(p p^{\prime} \triangleq\) endpoint-in-S ?pa' ?pb \(b^{\prime}\)
and \(p q^{\prime} \triangleq\) endpoint-in-S ? \(p b^{\prime}\) ? \(p a^{\prime}\)
and \(l^{\prime} \triangleq\) proj2-line-through ?pa' ?pb \({ }^{\prime}\)
def \(p d \triangleq\) perp-foot?pc \(l\)
and \(p s \triangleq p e r p-u p\) ?pc \(l\)
and \(m \triangleq\) drop-perp ?pc \(l\)
and \(p d^{\prime} \triangleq\) perp-foot ? \(p c^{\prime} l^{\prime}\)
and \(p s^{\prime} \triangleq\) perp-up ?pc \(c^{\prime} l^{\prime}\)
and \(m^{\prime} \triangleq\) drop-perp ? \(p c^{\prime} l^{\prime}\)
have \(p p \in S\) and \(p p^{\prime} \in S\) and \(p q \in S\) and \(p q^{\prime} \in S\) unfolding \(p p\)-def and \(p p^{\prime}\)-def and \(p q\)-def and \(p q^{\prime}-d e f\) by (simp-all add: Rep-hyp2 endpoint-in-S)
from \(\langle a \neq b\rangle\) and \(\left\langle a^{\prime} \neq b^{\prime}\right\rangle\)
have \(? p a \neq ? p b\) and \(? p a^{\prime} \neq ? p b^{\prime}\) by (unfold Rep-hyp2-inject)
moreover
have proj2-incident ?pa \(l\) and proj2-incident ?pb \(l\) and proj2-incident ?pa' \(l^{\prime}\) and proj2-incident ?pb \(b^{\prime} l^{\prime}\) by (unfold l-def l'-def) (rule proj2-line-through-incident)+
ultimately have proj2-incident ppl and proj2-incident \(p p^{\prime} l^{\prime}\) and proj2-incident pq \(l\) and proj2-incident \(p q^{\prime} l^{\prime}\) unfolding \(p p\)-def and \(p p^{\prime}-d e f\) and \(p q-d e f\) and \(p q^{\prime}-d e f\) by (simp-all add: Rep-hyp2 endpoint-in-S-incident)
from \(\langle p p \in S\rangle\) and \(\left\langle p p^{\prime} \in S\right\rangle\) and \(\langle p r o j 2-i n c i d e n t ~ p p l\rangle\) and \(\left\langle p r o j 2\right.\)-incident \(\left.p p^{\prime} l^{\prime}\right\rangle\) and \(\langle\) proj2-incident ?pa \(l\rangle\)
and 〈proj2-incident? \(\left.{ }^{2} a^{\prime} l^{\prime}\right\rangle\)
have right-angle pp \(p d\) ps and right-angle \(p p^{\prime} p d^{\prime} p s^{\prime}\) unfolding \(p d-d e f\) and \(p s\)-def and \(p d^{\prime}\)-def and \(p s^{\prime}\)-def by (simp-all add: Rep-hyp2 perp-foot-up-right-angle [of pp ?pc ?pa l] perp-foot-up-right-angle \(\left[o f p p^{\prime}\right.\) ? \(p c^{\prime}\) ? \(\left.p a^{\prime} l\right\rceil\) )
with right-angle-to-right-angle [of pp pd ps \(\left.p p^{\prime} p d^{\prime} p s^{\prime}\right]\)
obtain \(J\) where is-K2-isometry \(J\) and apply-cltn2 pp \(J=p p^{\prime}\)
and apply-cltn2 pd \(J=p d^{\prime}\) and apply-cltn2 ps \(J=p s^{\prime}\)
by auto
let ?pa \(J=\) apply-cltn2 ?pa \(J\)
and ? \(p b J=\) apply-cltn2 ? \(p b J\)
and ?pc \(J=\) apply-cltn2 ? pc \(J\)
and ?pdJ = apply-cltn2 \(p d J\)
and ?ppJ = apply-cltn2 \(p p J\)
and ? \(p q J=a p p l y\)-cltn2 \(p q J\)
and ?ps \(J=\) apply-cltn2 \(p s J\)
and ?lJ = apply-cltn2-line \(l J\)
and ? \(m J=\) apply-cltn2-line \(m J\)
```

have proj2-incident pd l and proj2-incident pd' l'
and proj2-incident pd m and proj2-incident pd' m'
by (unfold pd-def pd'-def m-def m'-def) (rule perp-foot-incident)+
from \langleproj2-incident pp l\rangle and \langleproj2-incident pq l>
and \langleproj2-incident pd l\rangle and \langleproj2-incident ?pa l>
and <proj2-incident ?pb l>
have proj2-set-Col {pp,pq,pd,?pa} and proj2-set-Col {pp,pq,?pa,?pb}
by (unfold pd-def proj2-set-Col-def) (simp-all add: exI [of-l])
from 〈?pa\not=? ?pb\rangle and <? pa' }=? ?p\mp@subsup{b}{}{\prime}
have }pp\not=pq\mathrm{ and }p\mp@subsup{p}{}{\prime}\not=p\mp@subsup{q}{}{\prime
unfolding pp-def and pq-def and pp'-def and pq'-def
by (simp-all add: Rep-hyp2 endpoint-in-S-swap)
from 〈proj2-incident ?pa l> and <proj2-incident ?pa' l'\rangle
have pd \in hyp2 and pd' \in hyp2
unfolding pd-def and pd'-def
by (simp-all add: Rep-hyp2 perp-foot-hyp2 [of ?pa l ?pc]
perp-foot-hyp2 [of ?pa' l' ?pc])
from <proj2-incident ?pa l> and <proj2-incident ?pa' l'\rangle
have ps \inS and ps'}\in
unfolding ps-def and ps'-def
by (simp-all add: Rep-hyp2 perp-up-in-S [of ?pc ?pa l]
perp-up-in-S [of ?pc' ?pa' l])
from }\langlepd\inhyp2\rangle and \langlepp\inS\rangle and \langleps\inS
have }pd\not=pp\mathrm{ and }?pa\not=pp\mathrm{ and }?pb\not=pp\mathrm{ and }pd\not=p
by (simp-all add: Rep-hyp2 hyp2-S-not-equal)
from \langleis-K2-isometry J\rangle and }\langlepq\inS
have ?pqJ \inS by (unfold is-K2-isometry-def) simp
from \langlepd\not= pp\rangle and \langleproj2-incident pd l\rangle and \langleproj2-incident pp l\rangle
and \langleproj2-incident p\mp@subsup{d}{}{\prime}}\mp@subsup{l}{}{\prime}\rangle\mathrm{ and <proj2-incident pp' }\mp@subsup{l}{}{\prime}
have ?lJ = l'
unfolding \?pdJ = pd`> [symmetric] and \?pppJ = pp`> [symmetric]
by (rule apply-cltn2-line-unique)
from <proj2-incident pq l> and <proj2-incident ?pa l>
and <proj2-incident ?pb l>
have proj2-incident ?pqJ l' and proj2-incident ?paJ l'
and proj2-incident ?pbJ l'
by (unfold <?lJ = l'` [symmetric]) simp-all
from <?pa'\not=?pb>> and \langle?pqJ \inS\rangle and \langleproj2-incident ?pa' l'\rangle
and <proj2-incident ?pb}\mp@subsup{b}{}{\prime}\mp@subsup{l}{}{\prime}\rangle\mathrm{ and 〈proj2-incident ?pqJ l'>
have ?pqJ = p\mp@subsup{p}{}{\prime}\vee ?pqJ = pq'

```
unfolding \(p p^{\prime}\)－def and \(p q^{\prime}-d e f\)
by（simp add：Rep－hyp2 endpoints－in－S－incident－unique）
moreover
from \(\langle p p \neq p q\rangle\) and apply－cltn2－injective
have \(p p^{\prime} \neq\) ？pqJ by（unfold \(\left\langle ? p p J=p p^{\prime}\right.\) 〉［symmetric］）fast
ultimately have ？\(p q J=p q^{\prime}\) by simp
from \(\left\langle ? p a^{\prime} \neq ? p b^{\prime}\right\rangle\)
have cross－ratio \(p p^{\prime} p q^{\prime} p d^{\prime}\) ？\(p a^{\prime}\)
\(=\left(\right.\) cosh－dist ？pb \({ }^{\prime} ? p c^{\prime} * \operatorname{sqrt}(\) exp－2dist ？pa＇？pb＇）- cosh－dist ？pa＇？pc \()\)
／（cosh－dist ？pa＇？pc＇＊exp－2dist ？pa＇？pb \({ }^{\prime}\)
－cosh－dist ？pb＇？pc＇＊sqrt（exp－2dist ？pa＇？pb＇））
unfolding \(p p^{\prime}\)－def and \(p q^{\prime}\)－def and \(p d^{\prime}\)－def and \(l^{\prime}\)－def
by（simp add：Rep－hyp2 perp－foot－cross－ratio－formula）
also from assms
have \(\ldots=(\) cosh－dist ？pb ？pc＊sqrt（exp－2dist ？pa ？pb）－cosh－dist ？pa ？pc）
／（cosh－dist ？pa ？pc＊exp－2dist ？pa ？pb
－cosh－dist ？pb ？pc＊sqrt（exp－2dist ？pa ？pb））
by（simp add：real－hyp2－C－exp－2dist real－hyp2－C－cosh－dist）
also from 〈？\(p a \neq ? p b\rangle\)
have ．．．＝cross－ratio pp pq pd ？pa
unfolding \(p p\)－def and \(p q\)－def and \(p d\)－def and \(l\)－def
by（simp add：Rep－hyp2 perp－foot－cross－ratio－formula）
also from \(\langle p r o j 2-s e t-C o l\{p p, p q, p d, ? p a\}\rangle\) and \(\langle p p \neq p q\rangle\) and \(\langle p d \neq p p\rangle\)
and \(\langle ? p a \neq p p\rangle\)
have \(\ldots=\) cross－ratio ？ppJ ？pqJ ？pdJ ？paJ by（simp add：cross－ratio－cltn2）
also from 〈？\(\left.p p J=p p^{\prime}\right\rangle\) and \(\left\langle ? p q J=p q^{\prime}\right\rangle\) and \(\left\langle ? p d J=p d^{\prime}\right\rangle\)
have \(\ldots=\) cross－ratio \(p p^{\prime} p q^{\prime} p d^{\prime}\) ？paJ by simp
finally
have cross－ratio \(p p^{\prime} p q^{\prime} p d^{\prime}\) ？\(p a J=\) cross－ratio \(p p^{\prime} p q^{\prime} p d^{\prime}\) ？\(p a^{\prime}\) by simp
from 〈is－K2－isometry \(J\rangle\)
have ？paJ \(\in h y p 2\) and \(? p b J \in h y p 2\) and \(? p c J \in h y p 2\)
by（rule apply－cltn2－Rep－hyp2）＋
from \(\left\langle p r o j 2-i n c i d e n t ~ p p^{\prime} l^{\prime}\right\rangle\) and \(\left\langle p r o j 2-i n c i d e n t ~ p q^{\prime} l^{\prime}\right\rangle\)
and \(\left\langle p r o j 2\right.\)－incident \(\left.p d^{\prime} l^{\prime}\right\rangle\) and 〈proj2－incident ？paJ \(\left.l^{\prime}\right\rangle\)
and \(\left\langle p r o j 2-i n c i d e n t ? p a^{\prime} l^{\prime}\right\rangle\) and \(\left\langle p r o j 2\right.\)－incident ？pbJ \(\left.l^{\prime}\right\rangle\)
and 〈proj2－incident ？\(\left.p b^{\prime} l^{\prime}\right\rangle\)
have proj2－set－Col \(\left\{p p^{\prime}, p q^{\prime}, p d^{\prime}, ? p a J\right\}\) and \(\operatorname{proj2-set-Col~}\left\{p p^{\prime}, p q^{\prime}, p d^{\prime}, ? p a^{\prime}\right\}\)
and proj2－set－Col \(\left\{p p^{\prime}, p q^{\prime}, ? p a^{\prime}, ? p b J\right\}\)
and proj2－set－Col \(\left\{p p^{\prime}, p q^{\prime}\right.\) ，？\(\left.p a^{\prime}, ? p b^{\prime}\right\}\)
by（unfold projo－set－Col－def）（simp－all add：exI［of－lๆ）
with \(\left\langle p p^{\prime} \neq p q^{\prime}\right\rangle\) and \(\left\langle p p^{\prime} \in S\right\rangle\) and \(\left\langle p q^{\prime} \in S\right\rangle\) and \(\left\langle p d^{\prime} \in h y p 2\right\rangle\)
and 〈？paJ \(\in h y p 2\rangle\) and \(\langle ? p b J \in h y p 2\rangle\)
have are－endpoints－in－S \(p p^{\prime} p q^{\prime} p d^{\prime}\) ？paJ
and are－endpoints－in－S \(p p^{\prime} p q^{\prime} p d^{\prime}\) ？\(p a^{\prime}\)
and are－endpoints－in－S \(p p^{\prime} p q^{\prime}\) ？\(p a^{\prime}\) ？\(p b J\)
and are－endpoints－in－S \(p p^{\prime} p q^{\prime} ? p a^{\prime} ? p b^{\prime}\)
```

 by (unfold are-endpoints-in-S-def) (simp-all add: Rep-hyp2)
 hence cross-ratio-correct p\mp@subsup{p}{}{\prime}}p\mp@subsup{q}{}{\prime}p\mp@subsup{d}{}{\prime}\mathrm{ ? paJ
and cross-ratio-correct pp' pq' pd' ?pa'
and cross-ratio-correct pp' p\mp@subsup{q}{}{\prime}?p\mp@subsup{a}{}{\prime}?pbJ
and cross-ratio-correct pp' pq' ?pa' ?pb'
by (simp-all add: are-endpoints-in-S-cross-ratio-correct)
from \cross-ratio-correct pp' pq' pd' ?paJ\rangle
and \cross-ratio-correct pp' p\mp@subsup{q}{}{\prime}}p\mp@subsup{d}{}{\prime}\mathrm{ ? pa'` and <cross-ratio pp' pq' pd' ?paJ = cross-ratio pp' pq' pd' ?pa'> have ?paJ = ?pa' by (simp add: cross-ratio-unique) with 〈?ppJ = p\mp@subsup{p}{}{\prime}\rangle\mathrm{ and \??pqJ = pq'`}
have cross-ratio pp' pq' ?pa' ?pbJ = cross-ratio ?ppJ ?pqJ ?paJ ?pbJ by simp
also from \langleproj2-set-Col {pp,pq,?pa,?pb}\rangle and \langlepp \not= pq\rangle and \langle?pa \not=pp>
and <? pb }=ppp
have ... = cross-ratio pp pq ?pa ?pb by (rule cross-ratio-cltn2)
also from }\langlea\not=b\rangle\mathrm{ and }\langleab\mp@subsup{\equiv}{K}{}\mp@subsup{a}{}{\prime}\mp@subsup{b}{}{\prime}
have ...= cross-ratio p\mp@subsup{p}{}{\prime}}p\mp@subsup{q}{}{\prime}\mathrm{ ? pa' ?pb
unfolding pp-def pq-def }p\mp@subsup{p}{}{\prime}-\mathrm{ def }p\mp@subsup{q}{}{\prime}-de
by (rule real-hyp2-C-cross-ratio-endpoints-in-S)
finally have cross-ratio p\mp@subsup{p}{}{\prime}}p\mp@subsup{q}{}{\prime}\mathrm{ ? pa' ?pbJ = cross-ratio pp' pq' ?pa' ?pb'.
with <cross-ratio-correct p\mp@subsup{p}{}{\prime}}p\mp@subsup{q}{}{\prime}\mathrm{ ?pa' ?pbJ\
and <cross-ratio-correct pp' pq' ?pa' ?pb'>
have ?pbJ =? pb' by (rule cross-ratio-unique)
let ?cc = cart2-pt ?pc
and ?cd = cart2-pt pd
and ?cs = cart2-pt ps
and ?cc' = cart2-pt ?pc'
and ?cd' = cart2-pt pd'
and ?cs' = cart2-pt ps'
and ?ccJ = cart2-pt ?pcJ
and ?cdJ = cart2-pt ?pdJ
and ?csJ = cart2-pt ?psJ
from 〈proj2-incident ?pa l> and 〈proj2-incident ?pa' l'\rangle
have }\mp@subsup{B}{\mathbb{R}}{}\mathrm{ ?cd ?cc ?cs and }\mp@subsup{B}{\mathbb{R}}{}\mathrm{ ?cd' ?cc' ?cs'
unfolding pd-def and ps-def and pd'-def and ps'-def
by (simp-all add: Rep-hyp2 perp-up-at-end [of ?pc ?pa l]
perp-up-at-end [of ?p\mp@subsup{c}{}{\prime}?p\mp@subsup{a}{}{\prime}l}\mp@subsup{l}{}{\prime}
from }\langlepd\inhyp2\rangle and \langleps\inS\rangle and \langleis-K2-isometry J
and}\langle\mp@subsup{B}{\mathbb{R}}{}\mathrm{ ?cd?ccc ?cs>
have }\mp@subsup{B}{\mathbb{R}}{}\mathrm{ ?cdJ ?ccJ ?csJ by (simp add: Rep-hyp2 statement-63)
hence }\mp@subsup{B}{\mathbb{R}}{}\mathrm{ ?cd' ? ?ccJ ?cs' by (unfold <?pdJ = pd'〉<?psJ = ps'`)
from 〈？paJ $=$ ？pa＇〉 have cosh－dist ？pa＇？pcJ $=$ cosh－dist ？paJ ？pcJ by simp also from 〈is－K2－isometry $J\rangle$
have ．．．＝cosh－dist ？pa ？pc by（simp add：Rep－hyp2 K2－isometry－cosh－dist）

```
also from \(\left\langle a c \equiv_{K} a^{\prime} c^{\prime}\right\rangle\)
have \(\ldots=\) cosh－dist ？ \(\mathrm{pa}^{\prime}\) ？\(p c^{\prime}\) by（rule real－hyp2－C－cosh－dist）
finally have cosh－dist ？\(p a^{\prime}\) ？\(p c J=\) cosh－dist ？\(p a^{\prime}\) ？\(p c^{\prime}\) ．
have \(M\)－perp \(l^{\prime} m^{\prime}\) by（unfold \(m^{\prime}\)－def）（rule drop－perp－perp）
have proj2－incident ？pc \(m\) and proj2－incident ？pc \({ }^{\prime} m^{\prime}\)
by（unfold \(m\)－def \(m^{\prime}\)－def）（rule drop－perp－incident）+
from 〈proj2－incident ？pa \(l\rangle\) and \(\left\langle p r o j 2-i n c i d e n t\right.\) ？pa＇\(\left.l^{\prime}\right\rangle\)
have proj2－incident ps \(m\) and proj2－incident ps＇\(m^{\prime}\)
unfolding \(p s\)－def and \(m\)－def and \(p s^{\prime}-d e f\) and \(m^{\prime}\)－def
by（simp－all add：Rep－hyp2 perp－up－incident［of ？pc ？pa l］
perp－up－incident［of ？pc＇？pa＇l \(]\) ）
with \(\langle p d \neq p s\rangle\) and \(\langle p r o j 2-i n c i d e n t ~ p d ~ m\rangle\) and \(\left\langle p r o j 2-i n c i d e n t ~ p d^{\prime} m^{\prime}\right\rangle\)
have ？\(m J=m^{\prime}\)
unfolding \(\left\langle ? p d J=p d^{\prime}\right\rangle\left[\right.\) symmetric］and \(\left\langle ? p s J=p s^{\prime}\right\rangle\)［symmetric］
by（simp add：apply－cltn2－line－unique）
from（proj2－incident ？pc \(m\) 〉
have proj2－incident ？pcJ \(m^{\prime}\) by（unfold 〈？\(m J=m^{\prime}\) 〉［symmetric］）simp
with \(\left\langle M\right.\)－perp \(\left.l^{\prime} m^{\prime}\right\rangle\) and Rep－hyp2［of a］and \(\left\langle p d^{\prime} \in h y p 2\right\rangle\) and \(\langle ? p c J \in h y p 2\rangle\)
and Rep－hyp2［of c \({ }^{\prime}\) ］and 〈proj2－incident ？pa＇\(\left.l^{\prime}\right\rangle\)
and \(\left\langle p r o j 2\right.\)－incident \(\left.p d^{\prime} l^{\prime}\right\rangle\) and \(\left\langle p r o j 2-i n c i d e n t ~ p d^{\prime} m^{\prime}\right\rangle\)
and 〈projQ－incident ？\(p c^{\prime} m^{\prime}\) 〉
have cosh－dist \(p d^{\prime}\) ？\(p c J=\) cosh－dist ？\(p a^{\prime}\) ？\(p c J / \operatorname{cosh-dist~} p d^{\prime}\) ？\(p a^{\prime}\)
and cosh－dist \(p d^{\prime} ? p c^{\prime}=\) cosh－dist ？pa＇？pc＇\(/\) cosh－dist \(p d^{\prime}\) ？\(p a^{\prime}\)
by（ simp－all add：cosh－dist－perp－divide）
with 〈cosh－dist ？pa＇？pcJ＝cosh－dist ？pa＇？pc＇〉
have cosh－dist \(p d^{\prime}\) ？\(p c J=\) cosh－dist \(p d^{\prime} ? p c^{\prime}\) by simp
with \(\left\langle p d^{\prime} \in h y p 2\right\rangle\) and \(\langle ? p c J \in h y p 2\rangle\) and \(\left\langle ? p c^{\prime} \in h y p 2\right\rangle\) and \(\left\langle p s^{\prime} \in S\right\rangle\)
and \(\left\langle B_{\mathbb{R}}\right.\) ？\(c d^{\prime}\) ？\(c c J\) ？\(\left.c s^{\prime}\right\rangle\) and \(\left\langle B_{\mathbb{R}}\right.\) ？\(c d^{\prime}\) ？\(c c^{\prime}\) ？\(\left.c s^{\prime}\right\rangle\)
have ？pcJ \(=\) ？\(p c^{\prime}\) by（rule cosh－dist－unique）
with 〈？\(p a J=\) ？\(\left.p a^{\prime}\right\rangle\) and \(\left\langle ? p b J=\right.\) ？\(\left.p b^{\prime}\right\rangle\)
have hyp2－cltn2 a \(J=a^{\prime}\) and hyp2－cltn2 \(b J=b^{\prime}\) and hyp2－cltn2 \(c J=c^{\prime}\)
by（unfold hyp2－cltn2－def）（simp－all add：Rep－hyp2－inverse）
with 〈is－K2－isometry \(J\) 〉
show \(\exists\) J．is－K2－isometry J
\(\wedge\) hyp2－cltn2 a \(J=a^{\prime} \wedge\) hyp2－cltn2 b \(J=b^{\prime} \wedge\) hyp2－cltn2 \(c J=c^{\prime}\)
by（simp add：exI［of－J］）
qed
theorem hyp2－axiom5：
\(\forall a b c d a^{\prime} b^{\prime} c^{\prime} d^{\prime}\) ．
\(a \neq b \wedge B_{K} a b c \wedge B_{K} a^{\prime} b^{\prime} c^{\prime} \wedge a b \equiv_{K} a^{\prime} b^{\prime} \wedge b c \equiv_{K} b^{\prime} c^{\prime}\)
\(\wedge a d \equiv_{K} a^{\prime} d^{\prime} \wedge b d \equiv_{K} b^{\prime} d^{\prime}\)
\(\longrightarrow c d \equiv_{K} c^{\prime} d^{\prime}\)
proof standard +
fix \(a b c d a^{\prime} b^{\prime} c^{\prime} d^{\prime}\)
assume \(a \neq b \wedge B_{K} a b c \wedge B_{K} a^{\prime} b^{\prime} c^{\prime} \wedge a b \equiv_{K} a^{\prime} b^{\prime} \wedge b c \equiv_{K} b^{\prime} c^{\prime}\)
\[
\wedge a d \equiv_{K} a^{\prime} d^{\prime} \wedge b d \equiv_{K} b^{\prime} d^{\prime}
\]
hence \(a \neq b\) and \(B_{K} a b c\) and \(B_{K} a^{\prime} b^{\prime} c^{\prime}\) and \(a b \equiv_{K} a^{\prime} b^{\prime}\)
and \(b c \equiv_{K} b^{\prime} c^{\prime}\) and \(a d \equiv_{K} a^{\prime} d^{\prime}\) and \(b d \equiv_{K} b^{\prime} d^{\prime}\)
by simp－all
from \(\left\langle a b \equiv_{K} a^{\prime} b^{\prime}\right\rangle\) and \(\left\langle b d \equiv_{K} b^{\prime} d^{\prime}\right\rangle\) and \(\left\langle a d \equiv_{K} a^{\prime} d^{\prime}\right\rangle\) and statement69 \(\left[\begin{array}{lllll}o f & a & b & a^{\prime} & b^{\prime} \\ d & d\end{array} d^{\prime}\right]\)
obtain \(J\) where is－K2－isometry \(J\) and hyp2－cltn2 a \(J=a^{\prime}\)
and hyp2－cltn2 b \(J=b^{\prime}\) and hyp2－cltn2 \(d J=d^{\prime}\)
by auto
```

let ?aJ = hyp2-cltn2 a J
and ?bJ = hyp2-cltn2 b J
and ?cJ = hyp2-cltn2 c J
and ?dJ = hyp2-cltn2 d J

```
from \(\langle a \neq b\rangle\) and \(\left\langle a b \equiv_{K} a^{\prime} b^{\prime}\right\rangle\)
have \(a^{\prime} \neq b^{\prime}\) by (auto simp add: hyp2.A3')
from \(\langle i s\)-K2-isometry \(J\rangle\) and \(\left\langle B_{K} a b c\right\rangle\)
have \(B_{K}\) ?aJ ?bJ ?cJ by (rule real-hyp2-B-hyp2-cltn2)
hence \(B_{K} a^{\prime} b^{\prime} ? c J\) by (unfold \(\left\langle ? a J=a^{\prime}\right\rangle\left\langle ? b J=b^{\prime}\right.\) )
from 〈is-K2-isometry \(J\rangle\)
have \(b c \equiv_{K}\) ?bJ ?cJ by (rule real-hyp2-C-hyp2-cltn2)
hence \(b c \equiv_{K} b^{\prime}\) ? \(c J\) by (unfold \(\left\langle ? b J=b^{\prime}\right.\) )
from this and \(\left\langle b c \equiv_{K} b^{\prime} c^{\prime}\right\rangle\) have \(b^{\prime} ? c J \equiv_{K} b^{\prime} c^{\prime}\) by (rule hyp2.A2')
with \(\left\langle a^{\prime} \neq b^{\prime}\right\rangle\) and \(\left\langle B_{K} a^{\prime} b^{\prime} ? c J\right\rangle\) and \(\left\langle B_{K} a^{\prime} b^{\prime} c^{\prime}\right\rangle\)
have ? \(c J=c^{\prime}\) by (rule hyp2-extend-segment-unique)
from 〈is-K2-isometry \(J\) 〉
show \(c d \equiv_{K} c^{\prime} d^{\prime}\)
    unfolding \(\left\langle ? c J=c^{\prime}\right\rangle\) [symmetric] and \(\left\langle ? d J=d^{\prime}\right\rangle\) [symmetric]
    by (rule real-hyp2-C-hyp2-cltn2)
qed
interpretation hyp2: tarski-first5 real-hyp2-C real-hyp2-B
    using hyp2-axiom4 and hyp2-axiom5
    by unfold-locales

\section*{9．13 The Klein－Beltrami model satisfies axioms 6，7，and 11}
theorem hyp2－axiom6：\(\forall a b . B_{K} a b a \longrightarrow a=b\)
proof standard +
fix \(a b\)
let ？ca \(=\) cart2－pt \((\) Rep－hyp2 a）
and ？cb \(=\) cart2－pt \((\) Rep－hyp2 b）
assume \(B_{K}\) aba
hence \(B_{\mathbb{R}}\) ？ca ？cb ？ca by（unfold real－hyp2－B－def hyp2－rep－def）
hence ？ca \(=\) ？\(c b\) by（rule real－euclid．\(A 6^{\prime}\) ）
```

 hence Rep-hyp2 a = Rep-hyp2 b by (simp add: Rep-hyp2 hyp2-S-cart2-inj)
 thus }a=b\mathrm{ by (unfold Rep-hyp2-inject)
 qed
lemma between-inverse:
assumes }\mp@subsup{B}{\mathbb{R}}{}(\mathrm{ hyp2-rep p)v (hyp2-rep q)
shows hyp2-rep (hyp2-abs v)=v
proof -
let ?u = hyp2-rep p
let ?w = hyp2-rep q
have norm ?u < 1 and norm ?w < 1 by (rule norm-hyp2-rep-lt-1)+
from }\langle\mp@subsup{B}{\mathbb{R}}{}\mathrm{ ?uv v?w〉
obtain l where l\geq0 and l\leq1 and v-?u = l *R (?w - ?u)
by (unfold real-euclid-B-def) auto
from }\langlev-?u=l\mp@subsup{*}{R}{}(?w-?u)
have v=l**R}\mathrm{ ? w + (1-l)**R ?u by (simp add: algebra-simps)
hence norm v}\leq\operatorname{norm}(l\mp@subsup{*}{R}{}\mathrm{ ?w) + norm ((1-l)*R}\mp@subsup{*}{R}{}\mathrm{ ?u)
by (simp only: norm-triangle-ineq [of l * *R?w(1-l)*R
with <l\geq0\rangle}\mathrm{ and }\langlel\leq1
have norm v\leql *R norm?w + (1-l)*R norm ?u by simp
have norm v<1
proof cases
assume l=0
with }\langlev=l\mp@subsup{*}{R}{}\mathrm{ ? w w + (1-l)*R}\mp@subsup{*}{R}{}\mathrm{ ?u>
have v=?u by simp
with \norm? ? < 1) show norm v<1 by simp
next
assume l}=
with <norm? w < 1\rangle and }\langlel\geq0\rangle\mathrm{ have }l\mp@subsup{*}{R}{}\mathrm{ norm ? w < l by simp
with <norm ? u < 1` and <l\leq 1>
and mult-mono [of 1-l 1-l norm ?u 1]
have (1-l)** norm?u\leq1-l by simp
with <l **R norm? w < l>
have}l\mp@subsup{*}{R}{\prime}\mathrm{ norm ?w + (1-l) *R norm?u < 1 by simp
with \norm v}\leql\mp@subsup{*}{R}{}\mathrm{ norm? w + (1-l)**R norm ?u\
show norm v<1 by simp
qed
thus hyp2-rep (hyp2-abs v)=v by (rule hyp2-rep-abs)
qed
lemma between-switch:
assumes }\mp@subsup{B}{\mathbb{R}}{}(\mathrm{ hyp2-rep p)v(hyp2-rep q)
shows }\mp@subsup{B}{K}{}p\mathrm{ (hyp2-abs v) q
proof -
from assms have hyp2-rep (hyp2-abs v)=v by (rule between-inverse)
with assms show B}\mp@subsup{B}{K}{}p(hyp2-abs v) q by (unfold real-hyp2-B-def) sim

```

\section*{qed}
theorem hyp2-axiom7:
\(\forall a b c p q . B_{K} a p c \wedge B_{K} b q c \longrightarrow\left(\exists x . B_{K} p x b \wedge B_{K} q x a\right)\)
proof auto
fix \(a b c p q\)
let ?ca \(=\) hyp2-rep \(a\)
and ? \(c b=\) hyp2-rep \(b\)
and \(? c c=\) hyp2-rep \(c\)
and ? \(c p=h y p 2-r e p p\)
and \(? c q=\) hyp2-rep \(q\)
assume \(B_{K} a p c\) and \(B_{K} b q c\)
hence \(B_{\mathbb{R}}\) ?ca ?cp ?cc and \(B_{\mathbb{R}}\) ?cb ?cq ?cc by (unfold real-hyp2-B-def)
with real-euclid.A7' [of ?ca?cp ?cc ?cb ?cq]
obtain \(c x\) where \(B_{\mathbb{R}}\) ? \(c p c x\) ? \(c b\) and \(B_{\mathbb{R}}\) ? \(c q ~ c x\) ? \(c a\) by auto
hence \(B_{K} p\) (hyp2-abs \(c x\) ) \(b\) and \(B_{K} q\) (hyp2-abs \(\left.c x\right) a\)
by (simp-all add: between-switch)
thus \(\exists x . B_{K} p x b \wedge B_{K} q x a\) by (simp add: exI [of-hyp2-abs cx])
qed
theorem hyp2-axiom11:
\(\forall X Y .\left(\exists a . \forall x y . x \in X \wedge y \in Y \longrightarrow B_{K} a x y\right)\)
\(\longrightarrow\left(\exists b . \forall x y . x \in X \wedge y \in Y \longrightarrow B_{K} x b y\right)\)
proof (rule allI)+
fix \(X\) Y :: hyp2 set
show \(\left(\exists a . \forall x y . x \in X \wedge y \in Y \longrightarrow B_{K} a x y\right)\)
\(\longrightarrow\left(\exists b . \forall x y . x \in X \wedge y \in Y \longrightarrow B_{K} x b y\right)\)
proof cases
assume \(X=\{ \} \vee Y=\{ \}\)
thus \(\left(\exists a . \forall x y . x \in X \wedge y \in Y \longrightarrow B_{K} a x y\right)\)
\(\longrightarrow\left(\exists b . \forall x y . x \in X \wedge y \in Y \longrightarrow B_{K} x b y\right)\) by auto
next
assume \(\neg(X=\{ \} \vee Y=\{ \})\)
hence \(X \neq\{ \}\) and \(Y \neq\{ \}\) by simp-all
then obtain \(w\) and \(z\) where \(w \in X\) and \(z \in Y\) by auto
show \(\left(\exists a . \forall x y . x \in X \wedge y \in Y \longrightarrow B_{K} a x y\right)\)
\(\longrightarrow\left(\exists b . \forall x y . x \in X \wedge y \in Y \longrightarrow B_{K} x b y\right)\)
proof
assume \(\exists a . \forall x y . x \in X \wedge y \in Y \longrightarrow B_{K} a x y\)
then obtain \(a\) where \(\forall x y . x \in X \wedge y \in Y \longrightarrow B_{K}\) axy..
let ? \(c X=\) hyp2-rep ' \(X\)
and \({ }^{\text {? }}\) c \(Y=\) hyp2-rep' \(Y\)
and \(? c a=\) hyp2-rep \(a\)
and ?cw = hyp2-rep \(w\)
and ? \(c z=\) hyp2-rep \(z\)
from \(\left\langle\forall x y . x \in X \wedge y \in Y \longrightarrow B_{K} a x y\right\rangle\)
```

 have }\forallcx cy.cx\in?c\X\wedgecy\in?cY\longrightarrow\mp@subsup{B}{\mathbb{R}}{}?cacx c
 by (unfold real-hyp2-B-def) auto
 with real-euclid.A11'[of ?cX ?cY ?ca]
 obtain cb where }\forallcxcy.cx\in?cX\wedgecy\in?cY\longrightarrow\mp@subsup{B}{\mathbb{R}}{}cxcbcy by aut
 with }\langlew\inX\rangle\mathrm{ and }\langlez\inY\rangle\mathrm{ have }\mp@subsup{B}{\mathbb{R}}{}\mathrm{ ?cw cb ?cz by simp
 hence hyp2-rep (hyp2-abs cb) = cb (is hyp2-rep ?b = cb)
 by (rule between-inverse)
    ```

```

 have }\forallxy.x\inX\wedgey\inY\longrightarrow\mp@subsup{B}{K}{}x?b
 by (unfold real-hyp2-B-def) simp
 thus }\existsb.\forallxy.x\inX\wedgey\inY\longrightarrow\mp@subsup{B}{K}{}xby\mathrm{ by (rule exI)
 qed
 qed
 qed

```
interpretation tarski-absolute-space real-hyp2-C real-hyp2-B
    using hyp2-axiom6 and hyp2-axiom'7 and hyp2-axiom11
    by unfold-locales

\subsection*{9.14 The Klein-Beltrami model satisfies the dimension-specific axioms}
lemma hyp2-rep-abs-examples:
shows hyp2-rep (hyp2-abs 0) \(=0\) (is hyp2-rep ? \(a=\) ? ca)
and hyp2-rep (hyp2-abs (vector \([1 / 2,0])\) ) \(=\) vector \([1 / 2,0]\)
(is hyp2-rep?b \(=? c b\) )
and hyp2-rep (hyp2-abs (vector \([0,1 / 2])\) ) \(=\) vector \([0,1 / 2]\)
(is hyp2-rep?c \(=? c c\) )
and hyp2-rep (hyp2-abs (vector \([1 / 4,1 / 4]))=\operatorname{vector}[1 / 4,1 / 4]\)
(is hyp2-rep ? d \(=?\) ?cd)
and hyp2-rep (hyp2-abs (vector \([1 / 2,1 / 2])\) ) \(=\) vector \([1 / 2,1 / 2]\)
(is hyp2-rep ?t \(=? c t\) )
proof -
have norm ? ca \(<1\) and norm ? cb \(<1\) and norm ?cc \(<1\) and norm ?cd \(<1\)
and norm ? ct \(<1\)
by (unfold norm-vec-def setL2-def) (simp-all add: setsum-2 power2-eq-square)
thus hyp2-rep ? \(a=? c a\) and hyp2-rep \(? b=? c b\) and hyp2-rep \(? c=? c c\)
and hyp2-rep ?d \(=? c d\) and hyp2-rep ?t \(=? c t\)
by (simp-all add: hyp2-rep-abs)
qed
theorem hyp2-axiom8: \(\exists a b c . \neg B_{K} a b c \wedge \neg B_{K} b c a \wedge \neg B_{K} c a b\)
proof -
let ? \(c a=0\) :: real^2
and \(? c b=\) vector \([1 / 2,0]::\) real \(^{\wedge} 2\)
and \(? c c=\) vector \([0,1 / 2]::\) real \({ }^{\wedge} 2\)
let \(? a=\) hyp2-abs ?ca
and \(? b=h y p 2-a b s ? c b\)
and ?c \(=\) hyp2-abs ? \(c c\)
```

from hyp2-rep-abs-examples and non-Col-example
have ᄀ(hyp2.Col ?a ?b ?c)
by (unfold hyp2.Col-def real-euclid.Col-def real-hyp2-B-def) simp
thus \existsabc.\neg\mp@subsup{B}{K}{}abc\wedge\neg\mp@subsup{B}{K}{}bca\wedge\neg\mp@subsup{B}{K}{}cab
unfolding hyp2.Col-def
by simp (rule exI)+
qed
theorem hyp2-axiom9:
\forallpqabc. p\not=q^ap \equiv}\mp@subsup{K}{K}{}aq\wedgebp\mp@subsup{\equiv}{K}{}bq\wedgecp\mp@subsup{\equiv}{K}{}c
\longrightarrow B _ { K } a b c \vee B _ { K } b c a \vee B _ { K } c a b
proof (rule allI)+
fix pqabc
show }p\not=q\wedgeap\equiv\mp@subsup{\equiv}{K}{}aq\wedgebp\mp@subsup{\equiv}{K}{}bq\wedgecp\mp@subsup{\equiv}{K}{}c
\longrightarrow B _ { K } a b c \vee B _ { K } b c a \vee B _ { K } c a b
proof

```

```

 hence }p\not=q\mathrm{ and }ap\mp@subsup{\equiv}{K}{}aq\mathrm{ and }bp\mp@subsup{\equiv}{K}{}bq\mathrm{ and cp 洉c q by simp-all
 let ?pp = Rep-hyp2 p
 and ?pq=Rep-hyp2 q
 and ?pa = Rep-hyp2 a
 and ?pb = Rep-hyp2 b
 and ?pc = Rep-hyp2 c
 def l\triangleq proj2-line-through ?pp ?pq
 def m\triangleqdrop-perp ?pa l
 and ps\triangleq endpoint-in-S ?pp ?pq
 and pt \triangleq endpoint-in-S ?pq ?pp
 and stpq\triangleqexp-2dist ?pp ?pq
 from }\langlep\not=q\rangle\mathrm{ have ? pp #= ?pq by (simp add: Rep-hyp2-inject)
 from Rep-hyp2
 have stpq>0 by (unfold stpq-def) (simp add: exp-2dist-positive)
 hence sqrt stpq * sqrt stpq = stpq
 by (simp add: real-sqrt-mult [symmetric])
 from Rep-hyp2 and <?pp \not= ?pq>
 have stpq }=1\mathrm{ by (unfold stpq-def) (auto simp add: exp-2dist-1-equal)
 have z-non-zero ?pa and z-non-zero ?pb and z-non-zero ?pc
 by (simp-all add: Rep-hyp2 hyp2-S-z-non-zero)
 have }\forallpd\in{?pa,?pb,?pc}
 cross-ratio ps pt (perp-foot pd l)?pp = 1 / (sqrt stpq)
 proof
 fix pd
 assume pd \in{?pa,?pb,?pc}
 with Rep-hyp2 have pd G hyp2 by auto
    ```
```

def $p e \triangleq$ perp-foot $p d l$
and $x \triangleq$ cosh-dist ? pp pd
from $\langle p d \in\{? p a, ? p b, ? p c\}\rangle$ and $\left\langle a p \equiv_{K} a q\right\rangle$ and $\left\langle b p \equiv_{K} b q\right\rangle$
and $\left\langle c p \equiv_{K} c q\right\rangle$
have cosh-dist pd ? pp $=$ cosh-dist $p d ? p q$
by (auto simp add: real-hyp2-C-cosh-dist)
with $\langle p d \in$ hyp2〉 and Rep-hyp2
have $x=$ cosh-dist ?pq pd by (unfold x-def) (simp add: cosh-dist-swap)
from Rep-hyp2 [of p] and $\langle p d \in$ hyp2〉 and cosh-dist-positive $[o f$?pp pd]
have $x \neq 0$ by (unfold x-def) simp
from Rep-hyp2 and $\langle p d \in h y p 2\rangle$ and $\langle ? p p \neq ? p q\rangle$
have cross-ratio ps pt pe ?pp
$=($ cosh-dist ?pq pd $*$ sqrt stpq - cosh-dist ?pp pd $)$
/ (cosh-dist ?pp pd * stpq - cosh-dist ?pq pd * sqrt stpq)
unfolding $p s$-def and $p t$-def and pe-def and l-def and stpq-def
by (simp add: perp-foot-cross-ratio-formula)
also from x-def and $\langle x=$ cosh-dist ?pq pd〉
have $\ldots=(x *$ sqrt stpq $-x) /(x *$ stpq $-x *$ sqrt stpq $)$ by simp
also from $\langle s q r t$ stpq $*$ sqrt stpq $=$ stpq〉
have $\ldots=(x *$ sqrt stpq $-x) /((x *$ sqrt stpq $-x) *$ sqrt stpq $)$
by (simp add: algebra-simps)
also from $\langle x \neq 0\rangle$ and $\langle s t p q \neq 1\rangle$ have $\ldots=1 /$ sqrt stpq by simp
finally show cross-ratio ps pt pe ?pp $=1 /$ sqrt stpq.
qed
hence cross-ratio ps pt (perp-foot ?pa l) ?pp = $1 /$ sqrt stpq by simp
have $\forall p d \in\{? p a, ? p b, ? p c\}$. proj2-incident $p d m$
proof
fix $p d$
assume $p d \in\{? p a, ? p b, ? p c\}$
with Rep-hyp2 have $p d \in h y p 2$ by auto
with Rep-hyp2 and $\langle ? p p \neq ? p q\rangle$ and proj2-line-through-incident
have cross-ratio-correct ps pt ?pp (perp-foot pd l)
and cross-ratio-correct ps pt ?pp (perp-foot ?pa l)
unfolding $p s$-def and pt-def and l-def
by (simp-all add: endpoints-in-S-perp-foot-cross-ratio-correct)
from $\langle p d \in\{? p a, ? p b, ? p c\}\rangle$
and $\forall p d \in\{? p a, ? p b, ? p c\}$.
cross-ratio ps pt (perp-foot pd l) ?pp = $1 /($ sqrt stpq) $)$
have cross-ratio ps pt (perp-foot pd l) ?pp = 1 / sqrt stpq by auto
with 〈cross-ratio ps pt (perp-foot ?pa l) ?pp = $1 /$ sqrt stpq〉
have cross-ratio ps pt (perp-foot pd l) ?pp
$=$ cross-ratio ps pt (perp-foot ?pa l) ?pp
by simp

```
```

 hence cross-ratio ps pt ?pp (perp-foot pd l)
 = cross-ratio ps pt ?pp (perp-foot ?pa l)
 by (simp add: cross-ratio-swap-34 [of ps pt - ?pp])
 with <cross-ratio-correct ps pt ?pp (perp-foot pd l)>
 and <cross-ratio-correct ps pt ?pp (perp-foot ?pa l)>
 have perp-foot pd l = perp-foot ?pa l by (rule cross-ratio-unique)
 with Rep-hyp2 [of p] and <pd \in hyp2\rangle
 and proj2-line-through-incident [of ?pp ?pq]
 and perp-foot-eq-implies-drop-perp-eq [of ?pp pd l ?pa]
 have drop-perp pd l=m by (unfold m-def l-def) simp
 with drop-perp-incident [of pd l] show proj2-incident pd m by simp
 qed
 hence proj2-set-Col {?pa,?pb,?pc}
 by (unfold proj2-set-Col-def) (simp add: exI [of - m])
 hence proj2-Col ?pa ?pb ?pc by (simp add: proj2-Col-iff-set-Col)
 with 〈z-non-zero ?pa〉 and 〈z-non-zero ?pb\rangle and 〈z-non-zero ?pc\rangle
 have real-euclid.Col (hyp2-rep a) (hyp2-rep b) (hyp2-rep c)
 by (unfold hyp2-rep-def) (simp add: proj2-Col-iff-euclid-cart2)
 thus }\mp@subsup{B}{K}{}abc\vee\mp@subsup{B}{K}{}bca\vee\mp@subsup{B}{K}{}ca
 by (unfold real-hyp2-B-def real-euclid.Col-def)
 qed
 qed

```
interpretation hyp2: tarski-absolute real-hyp2-C real-hyp2-B
using hyp2-axiom8 and hyp2-axiom9
by unfold-locales

\section*{9．15 The Klein－Beltrami model violates the Euclidean ax－ iom}
theorem hyp2－axiom10－false：
shows \(\neg\left(\forall a b c d t . B_{K} a d t \wedge B_{K} b d c \wedge a \neq d\right.\)
\(\longrightarrow\left(\exists x y . B_{K}\right.\) abx\(\wedge B_{K}\) acy \(\left.\left.\wedge B_{K} x t y\right)\right)\)
proof
assume \(\forall a b c d t . B_{K} a d t \wedge B_{K} b d c \wedge a \neq d\) \(\longrightarrow\left(\exists x y . B_{K} a b x \wedge B_{K} a c y \wedge B_{K} x t y\right)\)
let ？\(c a=0\) ：：real \({ }^{\wedge}\) 2
and \(? c b=\) vector \([1 / 2,0]::\) real＾2 2
and \(? c c=\) vector \([0,1 / 2]::\) real＾2
and \(? c d=\) vector \([1 / 4,1 / 4]::\) real＾2
and \(? c t=\) vector \([1 / 2,1 / 2]::\) real＾2
let ？\(a=\) hyp2－abs ？\(c a\)
and \(? b=h y p 2-a b s ? c b\)
and ？c \(=\) hyp2－abs ？cc
and \(? d=h y p 2-a b s ? c d\)
and \(? t=h y p 2-a b s ? c t\)
have \(? c d=(1 / 2) *_{R} ? c t\) and \(? c d-? c b=(1 / 2) *_{R}(? c c-? c b)\)
by（unfold vector－def）（simp－all add：vec－eq－iff）
hence \(B_{\mathbb{R}}\) ？ca ？cd ？ct and \(B_{\mathbb{R}}\) ？cb ？cd ？cc
by（unfold real－euclid－B－def）（simp－all add：exI［of－1／2］）
hence \(B_{K}\) ？a ？d ？t and \(B_{K}\) ？b ？d ？c
by（unfold real－hyp2－B－def）（simp－all add：hyp2－rep－abs－examples）
have \(? a \neq ? d\)
proof
assume ？\(a=\) ？\(d\)
hence hyp2－rep ？a＝hyp2－rep ？d by simp
hence ？ca \(=\) ？cd by（simp add：hyp2－rep－abs－examples）
thus False by（simp add：vec－eq－iff forall－2）
qed
with \(\left\langle B_{K}\right.\) ？a ？d ？\(\left.t\right\rangle\) and \(\left\langle B_{K}\right.\) ？b ？d ？c \(\rangle\)
and \(\left\langle\forall a b c d t\right.\) ．\(B_{K} a d t \wedge B_{K} b d c \wedge a \neq d\)
\(\longrightarrow\left(\exists x y . B_{K}\right.\) abx \(\left.\left.x B_{K} a c y \wedge B_{K} x t y\right)\right\rangle\)
obtain \(x\) and \(y\) where \(B_{K} ? a\) ？b \(x\) and \(B_{K}\) ？a ？c \(y\) and \(B_{K} x\) ？t \(y\) by blast
let \(? c x=\) hyp2－rep \(x\)
and \(? c y=h y p 2-r e p ~ y\)
from \(\left\langle B_{K}\right.\) ？a ？b \(\left.x\right\rangle\) and \(\left\langle B_{K}\right.\) ？a ？c \(\left.y\right\rangle\) and \(\left\langle B_{K} x\right.\) ？t \(\left.y\right\rangle\)
have \(B_{\mathbb{R}}\) ？ca ？cb ？cx and \(B_{\mathbb{R}}\) ？ca ？cc ？cy and \(B_{\mathbb{R}}\) ？cx ？ct ？cy
by（unfold real－hyp2－B－def）（simp－all add：hyp2－rep－abs－examples）
from \(\left\langle B_{\mathbb{R}}\right.\) ？ca ？cb ？\(\left.c x\right\rangle\) and \(\left\langle B_{\mathbb{R}}\right.\) ？\(c a\) ？\(c c\) ？\(\left.c y\right\rangle\) and \(\left\langle B_{\mathbb{R}}\right.\) ？cx ？ct ？cy〉
obtain \(j\) and \(k\) and \(l\) where ？\(c b-? c a=j *_{R}(? c x-? c a)\)
and ？\(c c-? c a=k *_{R}(? c y-? c a)\)
and \(l \geq 0\) and \(l \leq 1\) and \(? c t-? c x=l *_{R}(? c y-? c x)\)
by（unfold real－euclid－B－def）fast
from 〈？\(\left.c b-? c a=j *_{R}(? c x-? c a)\right\rangle\) and 〈？\(\left.c c-? c a=k *_{R}(? c y-? c a)\right\rangle\)
have \(j \neq 0\) and \(k \neq 0\) by（auto simp add：vec－eq－iff forall－2）
with \(\left\langle ? c b-? c a=j *_{R}(? c x-? c a)\right\rangle\) and \(\left\langle ? c c-? c a=k *_{R}(? c y-? c a)\right\rangle\)
have \(? c x=(1 / j) *_{R}\) ？\(c b\) and \(? c y=(1 / k) *_{R}\) ？cc by simp－all
hence ？cx \(\$ 2=0\) and ？cy \(\$ 1=0\) by simp－all
from 〈？\(\left.c t-? c x=l *_{R}(? c y-? c x)\right\rangle\)
have ？ct \(=(1-l) *_{R} ? c x+l *_{R}\) ？cy by（simp add：algebra－simps）
with \(\langle ? c x \$ 2=0\rangle\) and \(\langle ? c y \$ 1=0\rangle\)
have \(? c t \$ 1=(1-l) *(? c x \$ 1)\) and \(? c t \$ 2=l *(? c y \$ 2)\) by simp－all
hence \(l *(? c y \$ 2)=1 / 2\) and \((1-l) *(? c x \$ 1)=1 / 2\) by simp－all
have ？\(c x \$ 1 \leq \mid\) ？\(c x \$ 1 \mid\) by simp
also have \(\ldots \leq\) norm ？cx by（rule component－le－norm－cart）
also have \(\ldots<1\) by（rule norm－hyp2－rep－lt－1）
finally have ？\(c x \$ 1<1\) ．
with \(\langle l \leq 1\rangle\) and mult－less－cancel－left［of \(1-l\) ？cx \(\$ 11\) ］
have \((1-l) * ? c x \$ 1 \leq 1-l\) by auto
```

 with}«(1-l)*(?cx$1)=1/2\rangle\mathrm{ have }l\leq1/2\mathrm{ by simp
 have ?cy$2 \leq|?cy$2| by simp
 also have ...\leq norm ?cy by (rule component-le-norm-cart)
 also have ...<1 by (rule norm-hyp2-rep-lt-1)
 finally have ?cy$2 < 1.
 with <l\geq0\rangle and mult-less-cancel-left [of l ?cy$2 1]
 have l*?cy$2 \leql by auto
 with }\langlel*(?cy$2)=1/2\rangle have l\geq1/2 by sim
 with <l\leq 1/2\rangle have l=1/2 by simp
 with <l* (?cy$2) = 1/2> have ?cy$2 = 1 by simp
 with <?cy$2 < 1) show False by simp
 qed
theorem hyp2-not-tarski: ᄀ (tarski real-hyp2-C real-hyp2-B)
using hyp2-axiom10-false
by (unfold tarski-def tarski-space-def tarski-space-axioms-def) simp

```
    Therefore axiom 10 is independent.
end

\section*{References}
[1] K. Borsuk and W. Szmielew. Foundations of Geometry: Euclidean and Bolyai-Lobachevskian Geometry; Projective Geometry. North-Holland Publishing Company, 1960. Translated from Polish by Erwin Marquit.
[2] T. J. M. Makarios. A mechanical verification of the independence of Tarski's Euclidean axiom. Master's thesis, Victoria University of Wellington, New Zealand, 2012. http://researcharchive.vuw.ac.nz/ handle/10063/2315.
[3] W. Schwabhäuser, W. Szmielew, and A. Tarski. Metamathematische Methoden in der Geometrie. Springer-Verlag, 1983.```

