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We present a formalization of parity games (a two-player game on directed

graphs) and a proof of their positional determinacy in Isabelle/HOL. This proof
works for both finite and infinite games. We follow the proof in [2], which is
based on [5].
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1 Introduction

Parity games are games played by two players, called EVEN and ODD, on labelled directed
graphs. Each node is labelled with their player and with a natural number, called its priority.
To call this a parity game, we only need to assume that the number of different priorities
is finite. Of course, this condition is only relevant on infinite graphs.
One reason parity games are important is that determining the winner is polynomial-time
equivalent to the model-checking problem of the modal p-calculus, a logic able to express
LTL and CTL* properties ([1]).

1.1 Formal Introduction

Formally, a parity game is G = (V, E, Vj,w), where (V, E) is a directed graph, V5 C V is the
set of EVEN nodes, and w : V' — N is a function with |f(V')] < oc.

A play is a maximal path in G. A finite play is winning for EVEN iff the last node is not in
Vb. An infinite play is winning for EVEN iff the minimum priority occurring infinitely often
on the path is even. On an infinite path at least one priority occurs infinitely often because
there is only a finite number of different priorities.

A node v is winning for a player p iff all plays starting from v are winning for p. It is
well-known that parity games are determined, that is, every node is winning for some player.

A more surprising property is that parity games are also positionally determined. This
means that for every node v winning for EVEN, there is a function o : Vj — V such that all
EVEN needs to do in order to win from v is to consult this function whenever it is his turn
(similarly if v is winning for ODD). This is also called a positional strategy for the winning
player.

We define the winning region of player p as the set of nodes from which player p has
positional winning strategies. Positional determinacy then says that the winning regions of
EvVEN and of ODD partition the graph.

See [3]| for a modern survey on positional determinacy of parity games. Their proof is
based on a proof by Zielonka [5].

1.2 Overview

Here we formalize the proof from [2| in Isabelle/HOL. This proof is similar to the proof in [3],
but we do not explicitly define so-called “o-traps”. Using o-traps could be worth exploring,
because it has the potential to simplify our formalization.

Our proof has no assumptions except those required by every parity game. In particular
the parity game

e may have arbitrary cardinality,
e may have loops,
e may have deadends, that is, nodes with no successors.

The main theorem is in section 12.4.



1.3 Technical Aspects

We use a coinductive list of nodes to represent paths in a graph because this gives us a
uniform representation for finite and infinite paths. We can then express properties such as
that a path is maximal or conforms to a given strategy directly as coinductive properties.
We use the coinductive list developed by Lochbihler in [4].

We also explored representing paths as functions nat = ’a option with the property that
the domain is an initial segment of nat (and where ‘a is the node type). However, it turned
out that coinductive lists give simpler proofs.

It is possible to represent a graph as a function ‘a = ‘a = bool, see for example in the
proof of Konig’s lemma in [4]. However, we instead go for a record which contains a set of
nodes and a set of edges explicitly. By not requiring that the set of nodes is UNIV :: 'a set
but rather a subset of UNIV :: ’a set, it becomes easier to reason about subgraphs.

Another point is that we make extensive use of locales, in particular to represent maximal
paths conforming to a specific strategy. Thus proofs often start with interpret vmc-path G
Py p o to say that P is a valid maximal path in the graph G starting in vy and conforming
to the strategy o for player p.

2 Auxiliary Lemmas for Coinductive Lists

Some lemmas to allow better reasoning with coinductive lists.

theory MoreCoinductiveList
imports

Main

../ Coinductive / Coinductive-List
begin

2.1 Iset

lemma Iset-Inth: © € lset xs = dn. Inth xs n = x

{proof)

lemma Iset-Inth-member: [ lset zs C A; enat n < llength xs | = Inth zsn € A

{(proof)

lemma [set-nth-member-inf: [ —lfinite xs; lset s C A] = Inthasn € A

{proof)

lemma [set-intersect-Inth: lset xs N A # {} = I n. enat n < llength xs A Inth zs n € A

(proof)

lemma Iset-ltake-Suc:
assumes —lnull zs Inth zs 0 = z Iset (ltake (enat n) (Itl zs)) C A
shows Iset (ltake (enat (Suc n)) zs) C insert x A

(proof)

lemma Ifinite-lset: lfinite xs = —lnull s = llast s € lset xs
(proof)



lemma [set-subset: —(lset s C A) = I n. enat n < llength xs A Inth zsn ¢ A

{(proof)

2.2 llength

lemma enat-Suc-Itl:
assumes enat (Suc n) < llength s
shows enat n < llength (It xs)

(proof)

lemma enat-ltl-Suc: enat n < llength (Itl xs) = enat (Suc n) < llength xs

{proof)

lemma infinite-small-llength [intro]: —lfinite zs = enat n < llength xs
(proof)

lemma Inull-0-llength: —lnull xs => enat 0 < llength xs

{proof)

lemma Suc-llength: enat (Suc n) < llength xs = enat n < llength xs

{(proof)

2.3 ltake

lemma ltake-Inth: ltake n s = ltake n ys = enat m < n => Inth s m = Inth ys m

{proof)

lemma Iset-ltake-prefic [simp]: n < m = lset (ltake n xs) C lset (ltake m zs)

(proof)

lemma [set-ltake: (Am. m < n = Inth zs m € A) = lset (ltake (enat n) zs) C A
(proof)

lemma llength-ltake’: enat n < llength xs = llength (ltake (enat n) zs) = enat n

{(proof)

lemma llast-ltake:
assumes enat (Suc n) < llength zs
shows llast (ltake (enat (Suc n)) zs) = Inth zs n (is llast ?A = -)

(proof)

lemma [set-ltake-1tl: Iset (ltake (enat n) (Il xs)) C lset (ltake (enat (Suc n)) xs)
(proof)

2.4 ldropn

lemma ltl-Idrop: | Azs. P zs = P (ltl xs); P s | = P (ldropn n xs)
(proof)

2.5 lfinite

lemma [finite-drop-set: lfinite xs = In. v ¢ lset (ldrop n xs)



(proof)

lemma index-infinite-set:
[ —ifinite x; Inth xm = y; Ni. Inthzi=y = (Im >i.Inthzm =y) ] = y € lset (ldropn n
z)
(proof )
2.6 Imap

lemma Inth-Imap-ldropn:
enat n < llength xs = Inth (Imap f (ldropn n xs)) 0 = Inth (Imap f xs) n

{proof)

lemma Inth-Imap-ldropn-Suc:
enat (Suc n) < llength xs = Inth (Imap f (ldropn n zs)) (Suc 0) = Inth (Imap f zs) (Suc n)

(proof)

2.7 Notation

We introduce the notation $ to denote Inth.

notation Inth (infix $ 61)

end

3 Parity Games

theory ParityGame
imports
Main
MoreCoinductiveList
begin

3.1 Basic definitions

‘a is the node type. Edges are pairs of nodes.

type-synonym ’a Edge = 'a x 'a

A path is a possibly infinite list of nodes.
type-synonym ’'a Path = 'a llist

3.2 Graphs

We define graphs as a locale over a record. The record contains nodes (AKA vertices) and
edges. The locale adds the assumption that the edges are pairs of nodes.

record 'a Graph =
verts :: 'a set (V1)
arcs :: 'a Edge set (E1)

abbreviation is-arc :: (‘a, 'b) Graph-scheme = 'a = 'a = bool (infixl —1 60) where
v =g w=(v,w) € Eg



locale Digraph =
fixes G (structure)
assumes valid-edge-set: E C V x V
begin
lemma edges-are-in-V [intro]: v—w = v € Vov—w = w € V (proof)

A node without successors is a deadend.

abbreviation deadend :: 'a = bool where deadend v = -(Jw € V. v — w)

3.3 Valid Paths

We say that a path is valid if it is empty or if it starts in V and walks along edges.

coinductive valid-path :: 'a Path = bool where
valid-path-base: valid-path LNil
| valid-path-base’: v € V. = valid-path (LCons v LNil)
| valid-path-cons: [ v € V; w € V; v—w; valid-path Ps; —lnull Ps; lhd Ps = w |
= wvalid-path (LCons v Ps)

inductive-simps valid-path-cons-simp: valid-path (LCons x xs)

lemma valid-path-1tl": valid-path (LCons v Ps) = wvalid-path Ps
{proof)

lemma valid-path-ltl: valid-path P => valid-path (Itl P)
(proof)

lemma valid-path-drop: valid-path P —> wvalid-path (ldropn n P)
(proof )

lemma valid-path-in-V: assumes valid-path P shows lset P C V (proof)
lemma wvalid-path-finite-in-V: [ valid-path P; enat n < llength P] = P $n e V
(proof)

lemma valid-path-edges’: valid-path (LCons v (LCons w Ps)) = v—w
(proof)

lemma valid-path-edges:
assumes valid-path P enat (Suc n) < llength P
shows P $n — P § Sucn

(proof)

lemma valid-path-coinduct [consumes 1, case-names base step, coinduct pred: valid-path]:
assumes major: @ P
and base: A\v P. Q (LCons v LNil) = v € V
and step: Avw P. Q (LCons v (LCons w P)) = v—w A (Q (LCons w P) V valid-path (LCons
w P))
shows wvalid-path P

(proof)

lemma valid-path-no-deadends:
[ valid-path P; enat (Suc i) < llength P | = —deadend (P $ i)
(proof)



lemma valid-path-ends-on-deadend:
[ valid-path P; enat i < llength P; deadend (P $ i) | = enat (Suc i) = llength P

(proof)

lemma valid-path-prefiz: [ valid-path P; lprefix P’ P | = valid-path P’
(proof)

lemma valid-path-lappend:
assumes valid-path P valid-path P' [ —lnull P; =lnull P’ | = llast P—Ihd P’
shows wvalid-path (lappend P P’)

(proof)
A valid path is still valid in a supergame.
lemma valid-path-supergame:
assumes valid-path P and G": Digraph G' V. C V 71 E C E

shows Digraph.valid-path G’ P
(proof)

3.4 Maximal Paths

We say that a path is mazimal if it is empty or if it ends in a deadend.

coinductive mazimal-path where
maximal-path-base: maximal-path LNil
| mazimal-path-base’: deadend v = maximal-path (LCons v LNil)
| mazimal-path-cons: —lnull Ps = mazximal-path Ps = mazimal-path (LCons v Ps)

lemma mazimal-no-deadend: mazimal-path (LCons v Ps) = —deadend v => —lnull Ps

{proof)

lemma mazimal-itl: mazimal-path P = mazximal-path (Itl P)

(proof )
lemma maximal-drop: mazimal-path P => mazimal-path (Idropn n P)

(proof)

lemma maximal-path-lappend:
assumes —lnull P’ mazimal-path P’
shows maximal-path (lappend P P’)

(proof)

lemma mazimal-ends-on-deadend:
assumes mazimal-path P Ifinite P —Inull P
shows deadend (llast P)

(proof)

lemma mazimal-ends-on-deadend”: [ Ilfinite P; deadend (llast P) | = mazximal-path P
(proof)

lemma infinite-path-is-mazimal: | valid-path P; =lfinite P | = maximal-path P

{proof)

end — locale Digraph



3.5 Parity Games

Parity games are games played by two players, called EVEN and ODD.
datatype Player = Fven | Odd

abbreviation other-player p = (if p = Even then Odd else Even)
notation other-player ((-xx) [1000] 1000)
lemma other-other-player [simp]: pxxxx = p (proof)

A parity game is tuple (V, E, Vj,w), where (V, E) is a graph, V) C V and w is a function
from V' — N with finite image.

record ’a ParityGame = 'a Graph +
player0 :: 'a set (VO1)
priority = 'a = nat (w1)

locale ParityGame = Digraph G for G :: (‘a, 'b) ParityGame-scheme (structure) +
assumes valid-player0-set: VO C 'V
and priorities-finite: finite (w ‘ V)
begin

V'V p is the set of nodes belonging to player p.

abbreviation VV :: Player = 'a set where VV p = (if p = Even then V0 else V — V0)
lemma VVp-to-V [intro]: v € VV p = v € V (proof)

lemma VV-impll: v € VV p = v ¢ VV pxx (proof)

lemma VV-impl2: v € VV pxx = v ¢ VV p (proof)

lemma VV-equivalence [iff]: v € V = v ¢ VV p +— v € VV pxx (proof)

lemma VV-cases [consumes 1]: [vE€ V ;v € VVp = P ;v € VVpxx = P ] = P (proof)

3.6 Sets of Deadends
definition deadends p = {v € VV p. deadend v}
lemma deadends-in-V: deadends p C 'V (proof)

3.7 Subgames

We define a subgame by restricting the set of nodes to a given subset.

definition subgame where
subgame V' = G(

verts =V NV’
arcs = EN (V' x V),
player0 :== Vo N V')
lemma subgame-V [simp]: Vsubgame v/ €V
and subgame-E [simp]: B ubgame v’ € E
and subgame-w: Wsubgame V' = W
(proof )
lemma

assumes V' C V

shows subgame-V' [simp]: V v’

subgame V' =

10



and subgame-E’ [simp]: E =En(V

(proof)

V/XV

subgame V' subgame subgame V /)

lemma subgame-VV [simp]: ParityGame.VV (subgame V') p = V' N VV p (proof)
corollary subgame-V'V-subset [simp]: ParityGame.VV (subgame V') p C VV p (proof)

lemma subgame-finite [simp]: finite (wsubgame vV subgame v1) (proof)

lemma subgame-w-subset [simp]: w %

(proof)

4
subgame V' subgame V'’ Cw'V

lemma subgame-Digraph: Digraph (subgame V')
(proof)

lemma subgame-ParityGame:
shows ParityGame (subgame V')

(proof)

lemma subgame-valid-path:
assumes P: valid-path P lset P C V'
shows Digraph.valid-path (subgame V') P

(proof)

lemma subgame-mazximal-path:
assumes V'’ V' C V and P: mazimal-path P lset P C V'
shows Digraph.mazimal-path (subgame V') P

(proof)

3.8 Priorities Occurring Infinitely Often

The set of priorities that occur infinitely often on a given path. We need this to define the
winning condition of parity games.

definition path-inf-priorities :: 'a Path = nat set where
path-inf-priorities P = {k. Vn. k € lset (ldropn n (Imap w P))}

Because w is image-finite, by the pigeon-hole principle every infinite path has at least one
priority that occurs infinitely often.
lemma path-inf-priorities-is-nonempty:

assumes P: valid-path P —lfinite P

shows 3k. k € path-inf-priorities P

(proof)

lemma path-inf-priorities-at-least-min-prio:
assumes P: valid-path P and a: a € path-inf-priorities P
shows Min (w ‘ V) < a

(proof)

lemma path-inf-priorities-LCons:
path-inf-priorities P = path-inf-priorities (LCons v P) (is ?A = ?B)
(proof )

11



corollary path-inf-priorities-ltl: path-inf-priorities P = path-inf-priorities (Itl P)
{proof )

3.9 Winning Condition

Let G = (V, E, Vy,w) be a parity game. An infinite path vg, v1,... in G is winning for player
EVEN (ODD) if the minimum priority occurring infinitely often is even (odd). A finite path
is winning for player p iff the last node on the path belongs to the other player.

Empty paths are irrelevant, but it is useful to assign a fixed winner to them in order to get
simpler lemmas.

abbreviation winning-priority p = (if p = Even then even else odd)

definition winning-path :: Player = 'a Path = bool where
winning-path p P =
(=lfinite P N (Fa € path-inf-priorities P.
(Vb € path-inf-priorities P. a < b) N\ winning-priority p a))
V (=lnull P A lfinite P A llast P € VV pskx)
V (inull P N p = FEven)

Every path has a unique winner.

lemma paths-are-winning-for-one-player:
assumes valid-path P
shows winning-path p P <— —winning-path pxx P

(proof)

lemma winning-path-Iti:
assumes P: winning-path p P —inull P —lnull (Itl P)
shows winning-path p (ltl P)

(proof)

corollary winning-path-drop:
assumes winning-path p P enat n < llength P
shows winning-path p (Ildropn n P)

(proof)

corollary winning-path-drop-add:
assumes valid-path P winning-path p (ldropn n P) enat n < llength P
shows winning-path p P

(proof)

lemma winning-path-LCons:
assumes P: winning-path p P —lnull P
shows winning-path p (LCons v P)

(proof)

lemma winning-path-supergame:
assumes winning-path p P
and G': ParityGame G' VV pxx C ParityGame. VV G’ pxx w = w
shows ParityGame.winning-path G’ p P

(proof)

12



end — locale ParityGame

3.10 Valid Maximal Paths

Define a locale for valid maximal paths, because we need them often.

locale vm-path = ParityGame +
fixes P v0
assumes P-not-null [simp]: —Ilnull P
and P-valid  [simp]: valid-path P
and P-mazimal [simp): mazimal-path P
and P-v0 [simp]: Thd P = v0
begin
lemma P-LCons: P = LCons v0 (ltl P) {proof)

lemma P-len [simp]: enat 0 < llength P (proof)
lemma P-0 [simp]: P $ 0 = v0 (proof)
lemma P-inth-Suc: P § Suc n = ltl P $ n (proof)
lemma P-no-deadends: enat (Suc n) < llength P = —deadend (P $ n)
(proof )
lemma P-no-deadend-v0: —inull (Itl P) = —deadend v0
(proof)
lemma P-no-deadend-v0-llength: enat (Suc n) < llength P —> —deadend v0
(proof)
lemma P-ends-on-deadend: | enat n < llength P; deadend (P $ n) | = enat (Suc n) = llength P

{proof)

lemma P-lnull-ltl-deadend-v0: Inull (Itl P) = deadend v0

(proof)

lemma P-lnull-ltl-LCons: Inull (Itl P) = P = LCons v0 LNil
(proof )

lemma P-deadend-v0-LCons: deadend v0 =—> P = LCons v0 LNil
(proof)

lemma Ptl-valid [simp]: valid-path (Itl P) (proof)
lemma Ptl-mazimal [simp]: maximal-path (Itl P) {proof)

lemma Pdrop-valid [simp]: valid-path (ldropn n P) (proof)
lemma Pdrop-mazimal [simp]: mazimal-path (ldropn n P) {(proof)

lemma prefiz-valid [simp]: valid-path (ltake n P)
{proof)

lemma extension-valid [simp]: v—v0 = valid-path (LCons v P)

(proof)

lemma extension-mazimal [simp]: maximal-path (LCons v P)
(proof)

lemma lappend-mazimal [simp]: mazimal-path (lappend P’ P)
(proof)

lemma v0-V [simp]: v0 € V (proof)

13



lemma v0-lset-P [simp]: v0 € lset P (proof)
lemma v0-VV: v0 € VV p V v0 € VV pxx (proof)
lemma [set-P-V [simp]: lset P C 'V (proof)
lemma [set-ltl-P-V [simp]: Iset (Itl P) C V (proof)

lemma finite-llast-deadend [simp]: lfinite P = deadend (llast P)

(proof)
lemma finite-llast-V [simp]: lfinite P = llast P € V

(proof)

If a path visits a deadend, it is winning for the other player.

lemma visits-deadend:
assumes Iset P N deadends p # {}
shows winning-path pxx P

(proof)

end

end

4 Positional Strategies

theory Strategy
imports
Main
ParityGame
begin

4.1 Definitions

A strategy is simply a function from nodes to nodes We only consider positional strategies.

type-synonym ’a Strategy = 'a = 'a

A walid strategy for player p is a function assigning a successor to each node in VV p.

definition (in ParityGame) strategy :: Player = 'a Strategy = bool where
strategy p 0 = Vv € VV p. ~deadend v — v—0 v

lemma (in ParityGame) strategyl [intro]:
(Av. [ v € VV p; ~deadend v | = v—0 v) = strategy p o

{proof)

4.2 Strategy-Conforming Paths

If path-conforms-with-strateqy p P o holds, then we call P a o-path. This means that P
follows o on all nodes of player p except maybe the last node on the path.

coinductive (in ParityGame) path-conforms-with-strategy
:: Player = 'a Path = 'a Strategy = bool where
path-conforms-LNil: path-conforms-with-strategy p LNil o
| path-conforms-LCons-LNil: path-conforms-with-strategy p (LCons v LNil) o

14



| path-conforms-VVp: [ v € VV p; w = o v; path-conforms-with-strategy p (LCons w Ps) o |
= path-conforms-with-strategy p (LCons v (LCons w Ps)) o

| path-conforms-VVpstar: [ v ¢ V'V p; path-conforms-with-strategy p Ps o ]
= path-conforms-with-strategy p (LCons v Ps) o

Define a locale for valid maximal paths that conform to a given strategy, because we need
this concept quite often. However, we are not yet able to add interesting lemmas to this
locale. We will do this at the end of this section, where we have more lemmas available.

locale vmc-path = vm-path +
fixes p o assumes P-conforms [simp]: path-conforms-with-strategy p P o

Similary, define a locale for valid maximal paths that conform to given strategies for both
players.

locale vmc2-path = comp?: vmc-path G P v0 px* o’ + vmc-path G P v0 p o
for GPvpoo'

4.3 An Arbitrary Strategy

context ParityGame begin

Define an arbitrary strategy. This is useful to define other strategies by overriding part of
this strategy.

definition o-arbitrary = Av. SOME w. v—w

lemma valid-arbitrary-strategy [simp]: strategy p o-arbitrary (proof)

4.4 Valid Strategies

lemma valid-strategy-updates: [ strategy p o; v0—w0 | = strategy p (o(v0 = w0))

{proof)

lemma valid-strategy-updates-set:
assumes strategy p o N\v. [ v € A; v € VV p; ~deadend v | = v—o' v
shows strategy p (override-on o o’ A)

{proof)

lemma valid-strategy-updates-set-strong:
assumes strategy p o strategy p o’
shows strategy p (override-on o o’ A)

{proof)

lemma subgame-strategy-stays-in-subgame:
assumes o: ParityGame.strategy (subgame V') p o
and v € ParityGame.VV (subgame V') p —Digraph.deadend (subgame V') v
shows 0 v € V'’

(proof)

lemma valid-strategy-supergame:
assumes o: strategy p o
and o’ ParityGame.strategy (subgame V') p o’
and G’-no-deadends: N\v. v € V' = = Digraph.deadend (subgame V') v
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shows strategy p (override-on o o’ V') (is strategy p ?0)

(proof)

lemma valid-strategy-in-V: [ strategy p o; v € VV p; =deadend v ] = cv € V
(proof )

lemma wvalid-strategy-only-in-V: [ strategy p o; Av. v € V. = o v = ¢’ v | = strategy p o’

(proof)

4.5 Conforming Strategies

lemma path-conforms-with-strategy-ltl [intro:
path-conforms-with-strategy p P 0 = path-conforms-with-strategy p (ltl P) o

{proof)

lemma path-conforms-with-strategy-drop:
path-conforms-with-strateqy p P 0 = path-conforms-with-strategy p (ldropn n P) o
(proof)

lemma path-conforms-with-strategy-prefix:
path-conforms-with-strategy p P 0 = Iprefit P’ P = path-conforms-with-strategy p P’ o

(proof)

lemma path-conforms-with-strategy-irrelevant:
assumes path-conforms-with-strategy p P o v ¢ lset P
shows path-conforms-with-strategy p P (o(v := w))
(proof)

lemma path-conforms-with-strategy-irrelevant-deadend:
assumes path-conforms-with-strateqgy p P o deadend v V v ¢ VV p valid-path P
shows path-conforms-with-strategy p P (o(v := w))

(proof)

lemma path-conforms-with-strategy-irrelevant-updates:
assumes path-conforms-with-strategy p P o N\v. v € lset P = oc v =0 v
shows path-conforms-with-strategy p P o'

(proof)

lemma path-conforms-with-strategy-irrelevant .
assumes path-conforms-with-strategy p P (o(v := w)) v ¢ lset P
shows path-conforms-with-strategy p P o

(proof)

lemma path-conforms-with-strategy-irrelevant-deadend’:
assumes path-conforms-with-strateqgy p P (o(v := w)) deadend v V v ¢ VV p valid-path P
shows path-conforms-with-strategy p P o

(proof)

lemma path-conforms-with-strategy-start:
path-conforms-with-strategy p (LCons v (LCons w P)) o = v € VVp = 0o v =w

{proof)
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lemma path-conforms-with-strategy-lappend:
assumes
P: Ilfinite P —lnull P path-conforms-with-strateqgy p P o
and P’ —lnull P’ path-conforms-with-strateqy p P’ o
and conforms: llast P € VV p = o (llast P) = lhd P’
shows path-conforms-with-strategy p (lappend P P') o

(proof)

lemma path-conforms-with-strategy-V Vpstar:
assumes Iset P C VV pxx
shows path-conforms-with-strategy p P o

(proof)

lemma subgame-path-conforms-with-strategy:
assumes V'’ V' C V and P: path-conforms-with-strategy p P o lset P C V'
shows ParityGame.path-conforms-with-strateqy (subgame V') p P o

(proof)

lemma (in vmc-path) subgame-path-vme-path:
assumes V'’ V' C V and P: lset P C V'
shows vmc-path (subgame V') P v0 p o

(proof)

4.6 Greedy Conforming Path

Given a starting point and two strategies, there exists a path conforming to both strategies.
Here we define this path. Incidentally, this also shows that the assumptions of the locales
vmce-path and vmc2-path are satisfiable.

We are only interested in proving the existence of such a path, so the definition (i.e., the
implementation) and most lemmas are private.

context begin

private primcorec greedy-conforming-path :: Player = 'a Strateqy = 'a Strategy = 'a = 'a Path
where
greedy-conforming-path p o o' v0 =
LCons v0 (if deadend v0
then LNil
else if v0 € VV p
then greedy-conforming-path p o o' (o v0)
else greedy-conforming-path p o o’ (¢ v0))

private lemma greedy-path-LNil: greedy-conforming-path p o o’ v0 # LNil
(proof) lemma greedy-path-lhd: greedy-conforming-path p o o’ v0 = LCons v P = v = v0
(proof ) lemma greedy-path-deadend-v0: greedy-conforming-path p o o’ v0 = LCons v P = P =
LNil +— deadend v0
(proof) corollary greedy-path-deadend-v:
greedy-conforming-path p o o’ v0 = LCons v P = P = LNil +— deadend v
(proof)
corollary greedy-path-deadend-v': greedy-conforming-path p o o' v0 = LCons v LNil = deadend
v
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(proof) lemma greedy-path-Itl:

assumes greedy-conforming-path p o o’ v0 = LCons v P

shows P = LNil V P = greedy-conforming-path p o o’ (¢ v0) V P = greedy-conforming-path p o
o’ (o' v0)

(proof) lemma greedy-path-itl-ex:

assumes greedy-conforming-path p o o' v0 = LCons v P

shows P = LNil V (Jv. P = greedy-conforming-path p o o’ v)

(proof) lemma greedy-path-Itl-VVp:

assumes greedy-conforming-path p o o’ v0 = LCons v0 P v0 € VV p —deadend v0

shows o v0 = lhd P

(proof) lemma greedy-path-Itl-VVpstar:

assumes greedy-conforming-path p o o’ v0 = LCons v0 P v0 € VV pxx —deadend v0

shows ¢’ v0 = lhd P

(proof) lemma greedy-conforming-path-properties:

assumes v0 € V strategy p o strategy px* o’

shows
greedy-path-not-null: —lnull (greedy-conforming-path p o o’ v0)
and greedy-path-v0: greedy-conforming-path p o o’ v0 $ 0 = v0

and greedy-path-valid: valid-path (greedy-conforming-path p o o' v0)

and greedy-path-mazimal: mazimal-path (greedy-conforming-path p o o’ v0)

and greedy-path-conforms: path-conforms-with-strategy p (greedy-conforming-path p o o’ v0) o
and greedy-path-conforms’: path-conforms-with-strategy p** (greedy-conforming-path p o o’ v0)

O.I

(proof)

corollary strategy-conforming-path-exists:
assumes v0 € V strategy p o strateqy pxx o’
obtains P where vmc2-path G P v0 p o o’

(proof)

corollary strategy-conforming-path-exists-single:
assumes v0 € V strategy p o
obtains P where vmc-path G P v0 p o

(proof)

end

end

4.7 Valid Maximal Conforming Paths

Now is the time to add some lemmas to the locale vmc-path.

context vmc-path begin
lemma Ptl-conforms [simp]: path-conforms-with-strategy p (ltl P) o

(proof)

lemma Pdrop-conforms [simp]: path-conforms-with-strategy p (ldropn n P) o
(proof )

lemma prefiz-conforms [simp]: path-conforms-with-strategy p (ltake n P) o
(proof)

lemma extension-conforms [simp]:
(v € VV p = o v’ = v0) = path-conforms-with-strategy p (LCons v’ P) o
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(proof)

lemma extension-valid-mazimal-conforming:
assumes v'—wv0v' € VVp = o v/ = vl
shows vmc-path G (LCons v’ P) v’ p o

(proof)

lemma vmc-path-ldropn:
assumes enat n < llength P
shows vmc-path G (ldropn n P) (P $n) po

{proof)

lemma conforms-to-another-strategy:
path-conforms-with-strategy p P 0’ = vmc-path G P v0 p o’
(proof )

end

lemma (in ParityGame) valid-mazimal-conforming-path-0:
assumes —lnull P valid-path P mazimal-path P path-conforms-with-strategy p P o
shows vmc-path GP (P $0) po

{proof)

4.8 Valid Maximal Conforming Paths with One Edge

We define a locale for valid maximal conforming paths that contain at least one edge. This
is equivalent to the first node being no deadend. This assumption allows us to prove much
stronger lemmas about [t/ P compared to vmc-path.

locale vmc-path-no-deadend = vme-path +
assumes v0-no-deadend [simp): —~deadend v0

begin

definition w0 = lhd (itl P)

lemma Ptl-not-null [simp]: —inull (Iitl P)

(proof)
lemma Ptl-LCons: Itl P = LCons w0 (Itl (Iitl P)) {proof)

lemma P-LCons”: P = LCons v0 (LCons w0 (Itl (Itl P))) {proof)
lemma v0-edge-w0 [simp]: v0—w0 (proof)

lemma Pt-0: Itl P $ 0 = Ihd (Itl P) (proof)
lemma P-Suc-0: P $ Suc 0 = w0 (proof)
lemma Ptl-edge [simp]: v0 — Ihd (It P) (proof)

lemma v0-conforms: v0 € VV p = o v0 = w0

{proof)

lemma w0-V [simp]: w0 € V {proof)
lemma w0-lset-P [simp]: w0 € lset P (proof)

lemma vme-path-itl [simp]: vme-path G (Itl P) w0 p o (proof)
end
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context vmc-path begin

lemma vmc-path-Inull-ltl-no-deadend:
=lnull (It P) = vmce-path-no-deadend G P v0 p o

{proof)

lemma vmc-path-conforms:
assumes enat (Suc n) < llength PP $n € VVyp
shows o (P $n) =P $ Sucn

(proof)

4.9 [set Induction Schemas for Paths

Let us define an induction schema useful for proving lset P C S.

lemma vmec-path-lset-induction [consumes 1, case-names base step]:
assumes @ P
and base: v0 € S
and step-assumption: AP v0. [ vme-path-no-deadend G P v0 p o; v0 € S; Q P |
= @ (Itl P) A (vmc-path-no-deadend. w0 P) € S
shows lset P C S

(proof)

[7Q P; v0 € 2S; AP v0. [umc-path-no-deadend G P v0 p o; v0 € ?2S; ?Q P] = ?2Q (It
P) A vme-path-no-deadend. w0 P € ?S] = Iset P C 25 without the Q predicate.

corollary vmc-path-lset-induction-simple [case-names base step]:
assumes base: v0 € S
and step: AP v0. [ vme-path-no-deadend G P v0 p o; v0 € S']
—> vmc-path-no-deadend. w0 P € S
shows lset P C S

{proof)

Another induction schema for proving Iset P C S based on closure properties.

lemma vme-path-lset-induction-closed-subset [case-names VVp VVpstar v0 disjoint]:
assumes VVp: Av. [v € S; —deadend v; v € VVp] = ocv e SUT
and VVpstar: Avw. [ v € S; —deadend v; v € VVpsx ; v—sw ]| = w e SU T
and v0: v0 € S
and disjoint: lset PN T = {}
shows lset P C S

(proof)

end

end

5 Attracting Strategies

theory AttractingStrategy
imports

Main

Strategy
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begin

Here we introduce the concept of attracting strategies.

context ParityGame begin

5.1 Paths Visiting a Set

A path that stays in A until eventually it visits W.

definition visits-via P A W = 3n. enat n < llength P AN P $ n € W A Iset (ltake (enat n) P) C
A

lemma visits-via-monotone: | visits-via P A W; A C A'| = visits-via P A’ W
(proof)

lemma visits-via-visits: visits-via P A W = lset PN W # {}

{proof)

lemma (in vmce-path) visits-via-trivial: v0 € W = visits-via P A W
(proof)

lemma visits-via-LCons:
assumes visits-via P A W
shows wisits-via (LCons v0 P) (insert v0 A) W

(proof)

lemma (in vmc-path-no-deadend) wvisits-via-ltl:
assumes visits-via P A W
and v0: v0 ¢ W
shows wvisits-via (It P) A W

(proof)

lemma (in vm-path) visits-via-deadend:
assumes visits-via P A (deadends p)
shows winning-path pxx P

(proof)

5.2 Attracting Strategy from a Single Node

All o-paths starting from v0 visit W and until then they stay in A.

definition strategy-attracts-via :: Player = 'a Strateqgy = 'a = 'a set = 'a set = bool where
strategy-attracts-via p 0 v0 A W =V P. vme-path G P v0 p 0 — visits-via P A W

lemma (in vmc-path) strategy-attracts-viaE:
assumes strategy-attracts-via p o v0 A W
shows visits-via P A W

{(proof)

lemma (in vmc-path) strategy-attracts-via-SucE:
assumes strategy-attracts-via p o v0 A W0 ¢ W
shows 3 n. enat (Suc n) < llength P N P $ Sucn € W A lset (ltake (enat (Suc n)) P) C A
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(proof)

lemma (in vmc-path) strategy-attracts-via-lset:
assumes strategy-attracts-via p o v0 A W
shows Iset P N W # {}

{proof)

lemma strategy-attracts-via-v0:
assumes o: strateqy p o strategy-attracts-via p o v0 A W
and v0: v0 € V
shows v0 € AU W
(proof)
corollary strategy-attracts-not-outside:
[v0 €V —A— W; strategy p o | = —strategy-attracts-via p o v0 A W

{proof)

lemma strategy-attracts-vial [intro]:
assumes A P. vmc-path G P v0 p 0 = visits-via P A W
shows strategy-attracts-via p o v0 A W

{proof)

lemma strategy-attracts-via-no-deadends:
assumes v € Vv € A — W strategy-attracts-viap o v A W
shows —deadend v

(proof)

lemma attractor-strategy-on-extends:
[ strategy-attracts-via p o v0 A W; A C A’ ]| = strategy-attracts-via p o v0 A’ W

(proof)

lemma strategy-attracts-via-trivial: v0 € W = strategy-attracts-via p o v0 A W
(proof)

lemma strategy-attracts-via-successor:
assumes o: strategy p o strategy-attracts-via p o v0 A W
and v0: v0 € A — W
and w0: v0—w0 v0 € VV p = o v0 = wl
shows strategy-attracts-via p o w0 A W

(proof)

lemma strategy-attracts-VVp:
assumes o: strateqy p o strategy-attracts-via p o v0 A W
and v: v0 € A — W0 € VV p ~deadend v0
shows 0 v0 € AU W

(proof)

lemma strategy-attracts-VVpstar:
assumes strategy p o strategy-attracts-via p o v0 A W
and v0 € A — Wuv0 ¢ VVpuwl eV —-—A-W
shows —v0 — w0

(proof)
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5.3 Attracting strategy from a set of nodes

All o-paths starting from A visit W and until then they stay in A.

definition strategy-attracts :: Player = ’a Strateqy = 'a set = ’a set = bool where
strategy-attracts p o A W =V v0 € A. strategy-attracts-via p o v0 A W

lemma (in vmc-path) strategy-attractsk:
assumes strategy-attracts p o A W0 € A
shows visits-via P A W

(proof)

lemma strategy-attractsl [introl:
assumes AP v. [ v € A; vme-path G P v p o | = visits-via P A W
shows strategy-attracts p o A W

(proof)

lemma (in vmc-path) strategy-attracts-lset:
assumes strategy-attracts p o A W0 € A
shows Iset P N W # {}

(proof)

lemma strategy-attracts-empty [simp]: strategy-attracts p o {} W (proof)

lemma strategy-attracts-invalid-path:
assumes P: P = LCons v (LConsw P Y)ve A— Wwé¢g AU W
shows —wisits-via P A W (is =?4)

(proof)

If A is an attractor set of W and an edge leaves A without going through W, then v belongs
to V'V p and the attractor strategy o avoids this edge. All other cases give a contradiction.

lemma strategy-attracts-does-not-leave:
assumes o: strategy-attracts p o A W strategy p o
and v: vowv €A - Wwg AU W
shows v € VVp Ao v #w

(proof)

Given an attracting strategy o, we can turn every strategy ¢’ into an attracting strategy by
overriding o’ on a suitable subset of the nodes. This also means that an attracting strategy
is still attracting if we override it outside of A — W.

lemma strategy-attracts-irrelevant-override:
assumes strategy-attracts p o A W strategy p o strategy p o’
shows strategy-attracts p (override-on o’ o (A — W)) A W

(proof)

lemma strategy-attracts-trivial [simp]: strategy-attracts p o W W

{proof)

If a o-conforming path P hits an attractor A, it will visit W.

lemma (in vmc-path) attracted-path:
assumes W C V
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and o: strategy-attracts p o A W
and P-hits-A: lset P N A # {}
shows Iset P N W # {}

(proof)

lemma attracted-strategy-step:
assumes o: strateqy p o strategy-attracts p o A W
and v0: —deadend v0 v0 € A — Wwv0 € VVp
shows 0 v0 € AU W

(proof)

lemma (in vme-path-no-deadend) attracted-path-step:
assumes o: strategy-attracts p c A W
and v0: v0 € A — W
shows w0 € AU W

(proof)
end — context ParityGame

end

6 Attractor Sets

theory Attractor
imports
Main
AttractingStrategy
begin
Here we define the p-attractor of a set of nodes.

context ParityGame begin

We define the conditions for a node to be directly attracted from a given set.

definition directly-attracted :: Player = 'a set = ’a set where
directly-attracted p S = {v € V — §. =deadend v A
(veVVp — Bw.vowAwebS))
A(ve VVprk — Vw. vsw — w € S))}

abbreviation attractor-step p WS = W U S U directly-attracted p S

The p-attractor set of W, defined as a least fixed point.

definition attractor :: Player = 'a set = 'a set where
attractor p W = Ifp (attractor-step p W)

6.1 directly-attracted

Show a few basic properties of directly-attracted.

lemma directly-attracted-disjoint — [simp]: directly-attracted p W N W = {}
and directly-attracted-empty [simp]: directly-attracted p {} = {}
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and directly-attracted- V-empty [simp]: directly-attracted p V = {}
and directly-attracted-bounded-by-V [simp]: directly-attracted p W C V
and directly-attracted-contains-no-deadends [elim]: v € directly-attracted p W —> —deadend v

(proof)

6.2 attractor-step

lemma attractor-step-empty: attractor-step p {} {} =
and attractor-step-bounded-by-V: [ W C V; S C V
(proof)

The definition of attractor uses [fp. For this to be well-defined, we need show that attractor-step
is monotone.

{
]

= attractor-step p WS C V

lemma attractor-step-mono: mono (attractor-step p W)

{proof)

6.3 Basic Properties of an Attractor

lemma attractor-unfolding: attractor p W = attractor-step p W (attractor p W)
(proof )

lemma attractor-lowerbound: attractor-step p W S C S = attractor p W C §
(proof )

lemma attractor-set-non-empty: W # {} = attractor p W # {}
and attractor-set-base: W C attractor p W
(proof )

lemma attractor-in-V: W C V = attractor p W C V

(proof)

6.4 Attractor Set Extensions

lemma attractor-set-VVp:
assumes v € VV p v—w w € attractor p W
shows v € attractor p W

(proof)

lemma attractor-set-VVpstar:
assumes —deadend v Aw. v—w = w € attractorp W
shows v € attractor p W

(proof)

6.5 Removing an Attractor

lemma removing-attractor-induces-no-deadends:
assumes v € S — attractorp Wo—ww € S Aw. [v e VVpsyvsw ] = w e S
shows Jw € S — attractor p W. v—w

(proof)

Removing the attractor sets of deadends leaves a subgame without deadends.

lemma subgame-without-deadends:
assumes V'-def: V' =V — attractor p (deadends pxx) — attractor pxx (deadends pxxxx)
(is V/=V — ?A — ?B)

and v: v € Vsubgame v’
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shows —Digraph.deadend (subgame V') v
(proof )

6.6 Attractor Set Induction

lemma mono-restriction-is-mono: mono f = mono (AS. f (S N V))

{(proof)

Here we prove a powerful induction schema for attractor. Being able to prove this is the
only reason why we do not use inductive_set to define the attractor set.

See also https://lists.cam.ac.uk/pipermail /cl-isabelle-users /2015-October /msg00123.html

lemma attractor-set-induction [consumes 1, case-names step union):
assumes W C V
and step: AS. S C V = P S = P (attractor-step p W S)
and union: AM.VSe M. SCVAPS= P (UM)
shows P (attractor p W)

(proof)

end — context ParityGame

end

7 Winning Strategies

theory WinningStrategy
imports

Main

Strategy
begin

context ParityGame begin

Here we define winning strategies.
A strategy is winning for player p from v0 if every maximal o-path starting in v0 is winning.

definition winning-strategy :: Player = 'a Strateqy = 'a = bool where
winning-strategy p o v0 =Y P. vmc-path G P v0 p 0 — winning-path p P

lemma winning-strategyl [intro:
assumes AP. vmc-path G P v0 p 0 = winning-path p P
shows winning-strategy p o v0

{proof)

lemma (in vmc-path) paths-hits-winning-strategy-is-winning:
assumes o: winning-strateqgy p o v
and v: v € lset P
shows winning-path p P
(proof)

There cannot exist winning strategies for both players for the same node.

lemma winning-strategy-only-for-one-player:
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assumes o: strateqy p o winning-strateqy p o v
and o' strategy pxx o’ winning-strategy pxx o’ v
and v: v € V

shows Fualse

(proof)

7.1 Deadends

lemma no-winning-strategy-on-deadends:
assumes v € VV p deadend v strategy p o
shows —winning-strategy p o v

(proof)

lemma winning-strategy-on-deadends:
assumes v € VV p deadend v strategy p o
shows winning-strategy px* o v

(proof)

7.2 Extension Theorems

lemma strategy-extends-VVp:
assumes v0: v0 € VV p —~deadend v0
and o: strategy p o winning-strateqy p o v0
shows winning-strategy p o (o v0)

(proof)

lemma strategy-extends-V Vpstar:
assumes v0: v0 € VV pxx v0—w0
and o: winning-strategy p o v0
shows winning-strategy p o w0

(proof)

lemma strategy-extends-backwards-V Vpstar:
assumes v0: v0 € VV pxx
and o: strategy p o \w. v0—w = winning-strategy p o w
shows winning-strategy p o v0

(proof)
lemma strategy-extends-backwards-VVp:
assumes v0: v0 € VV p o v0 = w v0—w

and o: strategy p o winning-strategy p o w
shows winning-strategy p o v0

(proof)
end — context ParityGame

end

8 Well-Ordered Strategy

theory WellOrderedStrategy
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imports
Main
Strategy

begin

Constructing a uniform strategy from a set of strategies on a set of nodes often works by
well-ordering the strategies and then choosing the minimal strategy on each node. Then
every path eventually follows one strategy because we choose the strategies along the path
to be non-increasing in the well-ordering.

The following locale formalizes this idea.

We will use this to construct uniform attractor and winning strategies.

locale WellOrderedStrategies = ParityGame +
fixes S :: 'a set
and p :: Player
— The set of good strategies on a node v
and good :: 'a = 'a Strategy set
and r :: (‘a Strategy x 'a Strategy) set
assumes S-V: S C V
— r is a wellorder on the set of all strategies which are good somewhere.
and r-wo: well-order-on {o. Jv € S. o € good v} r
— Every node has a good strategy.
and good-ex: A\v. v € S = Jo. 0 € good v
— good strategies are well-formed strategies.
and good-strategies: \v 0. o € good v = strategy p o
— A good strategy on v is also good on possible successors of v.
and strategies-continue: Nv w o. [v € S; v—w; v € VVp = o v =w; 0 € goodv | = o
€ good w
begin

The set of all strategies which are good somewhere.
abbreviation Strategies = {o. v € S. o € good v}

definition minimal-good-strategy where
minimal-good-strateqgy v o = o € good v A (Vo'. (¢/,0) € r — Id — o' ¢ good v)

no-notation binomial (infixl choose 65)

Among the good strategies on v, choose the minimum.

definition choose where
choose v = THE o. minimal-good-strategy v o

Define a strategy which uses the minimum strategy on all nodes of S. Of course, we need to
prove that this is a well-formed strategy.

definition well-ordered-strateqy where
well-ordered-strategy = override-on o-arbitrary (Av. choose v v) S

Show some simple properties of the binary relation r on the set Strategies.

lemma r-refl [simp): refl-on Strategies r
(proof)
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lemma r-total [simp]: total-on Strategies r

(proof)

lemma r-trans [simp]: trans r
(proof)

lemma r-wf [simp]: wf (r — Id)
(proof)

choose always chooses a minimal good strategy on S.

lemma choose-works:
assumes v € §
shows minimal-good-strategy v (choose v)

(proof)

corollary
assumes v € S
shows choose-good: choose v € good v
and choose-minimal: No'. (o’, choose v) € r — Id = o’ ¢ good v
and choose-strategy: strategy p (choose v)

(proof)
corollary choose-in-Strategies: v € S = choose v € Strategies {proof)

lemma well-ordered-strategy-valid: strategy p well-ordered-strategy
(proof)

8.1 Strategies on a Path

Maps a path to its strategies.

definition path-strategies = Imap choose

lemma path-strategies-in-Strategies:
assumes [set P C S
shows Iset (path-strategies P) C Strategies

(proof)

lemma path-strategies-good:
assumes [set P C S enat n < llength P
shows path-strategies P $ n € good (P $ n)

(proof)

lemma path-strategies-strategy:
assumes [set P C S enat n < llength P
shows strategy p (path-strategies P $ n)

(proof)

lemma path-strategies-monotone-Suc:
assumes P: lset P C S valid-path P path-conforms-with-strateqy p P well-ordered-strategy
enat (Suc n) < llength P
shows (path-strategies P $ Suc n, path-strategies P $ n) € r

(proof)
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lemma path-strategies-monotone:
assumes P: [set P C S valid-path P path-conforms-with-strategy p P well-ordered-strategy
n < m enat m < llength P
shows (path-strategies P $ m, path-strategies P $ n) € r

(proof)

lemma path-strategies-eventually-constant:
assumes —ifinite P lset P C S valid-path P path-conforms-with-strategy p P well-ordered-strategy
shows dn. Vm > n. path-strategies P $ n = path-strategies P $ m

(proof)

8.2 Eventually One Strategy

The key lemma: Every path that stays in S and follows well-ordered-strategy eventually
follows one strategy because the strategies are well-ordered and non-increasing along the
path.

lemma path-eventually-conforms-to-o-map-n:

assumes [set P C S valid-path P path-conforms-with-strategy p P well-ordered-strategy
shows 3 n. path-conforms-with-strategy p (Idropn n P) (path-strategies P $ n)

(proof)

end — WellOrderedStrategies

end

9 Winning Regions

theory WinningRegion
imports

Main

WinningStrategy
begin

Here we define winning regions of parity games. The winning region for player p is the set
of nodes from which p has a positional winning strategy.

context ParityGame begin
definition winning-region p = { v € V. Jo. strategy p o N\ winning-strateqgy p o v }
lemma winning-regionl [intro]:

assumes v € V strategy p o winning-strateqgy p o v

shows v € winning-region p

(proof)
lemma winning-region-in-V [simp]: winning-region p C V (proof)
lemma winning-region-deadends:

assumes v € VV p deadend v
shows v € winning-region p*x
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(proof)

9.1 Paths in Winning Regions

lemma (in vmc-path) paths-stay-in-winning-region:
assumes o': strateqy p o’ winning-strategy p o’ v0
and o: Av. v € winning-region p — o' v =0 v
shows Iset P C winning-region p

(proof)

lemma (in vmc-path) path-hits-winning-region-is-winning:
assumes o’: strategy p o’ \v. v € winning-region p = winning-strategy p o’ v
and o: Av. v € winning-region p = o' v =0 v
and P: lset P N winning-region p # {}
shows winning-path p P

(proof)

9.2 Irrelevant Updates

Updating a winning strategy outside of the winning region is irrelevant.

lemma winning-strategy-updates:
assumes o: strateqy p o winning-strategy p o v0
and v: v ¢ winning-region p v—w
shows winning-strategy p (o(v := w)) v0

(proof)

9.3 Extending Winning Regions

lemma winning-region-extends-VVp:
assumes v: v € VV p v—w and w: w € winning-region p
shows v € winning-region p

(proof)

Unfortunately, we cannot prove the corresponding theorem winning-region-extends-V Vpstar
for V'V pxx-nodes yet. First, we need to show that there exists a uniform winning strategy
on winning-region p. We will prove winning-region-extends-V Vpstar as soon as we have this.

end — context ParityGame

end

10 Uniform Strategies

Theorems about how to get a uniform strategy given strategies for each node.

theory UniformStrategy
imports

Main

AttractingStrategy WinningStrateqy WellOrderedStrategy WinningRegion
begin

context ParityGame begin
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10.1 A Uniform Attractor Strategy

lemma merge-attractor-strategies:
assumes S C V
and strategies-ex: \v. v € S = Fo. strategy p o N strategy-attracts-via p o v S W
shows Jo. strateqgy p o A strategy-attracts p o S W

(proof)

10.2 A Uniform Winning Strategy

Let S be the winning region of player p. Then there exists a uniform winning strategy on S.

lemma merge-winning-strategies:
shows Jo. strategy p o N (Vv € winning-region p. winning-strategy p o v)

(proof)

10.3 Extending Winning Regions

Now we are finally able to prove the complement of winning-region-extends-VVp for VV pxx
nodes, which was still missing.
lemma winning-region-extends-V Vpstar:

assumes v: v € VV pxx and w: Aw. v—ow = w € winning-region p

shows v € winning-region p

(proof)

It immediately follows that removing a winning region cannot create new deadends.

lemma removing-winning-region-induces-no-deadends:
assumes v € V — winning-region p —deadend v
shows Jw € V — winning-region p. v—w

(proof)
end — context ParityGame

end

11 Attractor Strategies

theory AttractorStrategy
imports

Main

Attractor UniformStrategy
begin

This section proves that every attractor set has an attractor strategy.
context ParityGame begin
lemma strategy-attracts-extends-VVp:

assumes o: strateqy p o strategy-attracts p o S W

and v0: v0 € VV p v0 € directly-attracted p S v0 ¢ S
shows Jo. strategy p o N strategy-attracts-via p o v0 (insert v0 S) W

(proof)
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lemma strategy-attracts-extends-VVpstar:
assumes o: strategy-attracts p o S W
and v0: v0 ¢ VV p v0 € directly-attracted p S
shows strategy-attracts-via p o v0 (insert v0 S) W

(proof)

lemma attractor-has-strategy-single:
assumes W C V
and v0-def: v0 € attractor p W (is - € ?A)
shows Jo. strategy p o N strategy-attracts-via p o v0 A W
(proof )

11.1 Existence

Prove that every attractor set has an attractor strategy.

theorem attractor-has-strategy:
assumes W C V
shows Jo. strategy p o A strategy-attracts p o (attractor p W) W

(proof)
end — context ParityGame

end

12 Positional Determinacy of Parity Games

theory PositionalDeterminacy
imports

Main

AttractorStrategy
begin

context ParityGame begin

12.1 Induction Step

The proof of positional determinacy is by induction over the size of the finite set w ° V, the
set of priorities. The following lemma is the induction step.

For now, we assume there are no deadends in the graph. Later we will get rid of this
assumption.

lemma positional-strategy-induction-step:
assumes v € V
and no-deadends: A\v. v € V = —deadend v
and IH: A\(G :: (‘a, 'b) ParityGame-scheme) v.
[ card (wg V) <card (w V);ve Ve
ParityGame G;
Nv. v € V o = —Digraph.deadend G v ]
= dp. v € ParityGame.winning-region G p
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shows Jp. v € winning-region p

(proof)

12.2 Positional Determinacy without Deadends

theorem positional-strategy-exists-without-deadends:
assumes v € V Av. v € V = —deadend v
shows I p. v € winning-region p
(proof)

12.3 Positional Determinacy with Deadends

Prove a stronger version of the previous theorem: Allow deadends.

theorem positional-strategy-exists:
assumes v0 € V
shows Jp. v0 € winning-region p

(proof)

12.4 The Main Theorem: Positional Determinacy

Prove the main theorem: The winning regions of player EVEN and ODD are a partition of
the set of nodes V.

theorem partition-into-winning-regions:
shows V = winning-region Even U winning-region Odd
and winning-region Even N winning-region Odd = {}

(proof)
end — context ParityGame

end

13 Defining the Attractor with inductive_set

theory AttractorInductive
imports

Main

Attractor
begin

context ParityGame begin

In section 6 we defined attractor manually via Ifp. We can also define it with inductive_set.
In this section, we do exactly this and prove that the new definition yields the same set as
the old definition.

13.1 attractor-inductive

The attractor set of a given set of nodes, defined inductively.
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inductive-set attractor-inductive :: Player = 'a set = 'a set
for p :: Player and W :: 'a set where
Base [introl]: v € W => v € attractor-inductive p W
| VVp: [v € VVp; Jw. vow A w € attractor-inductive p W |
= v € attractor-inductive p W
| VVpstar: [ v € VV pxx; ~deadend v; ¥ w. v—w — w € attractor-inductive p W |

= v € attractor-inductive p W

We show that the inductive definition and the definition via least fixed point are the same.

lemma attractor-inductive-is-attractor:
assumes W C V
shows attractor-inductive p W = attractor p W

(proof)
end

end
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