The Jordan-Hölder Theorem

Jakob von Raumer

April 17, 2016

Abstract

This submission contains theories that lead to a formalization of the proof of the Jordan-Hölder theorem about composition series of finite groups. The theories formalize the notions of isomorphism classes of groups, simple groups, normal series, composition series, maximal normal subgroups. Furthermore, they provide proofs of the second isomorphism theorem for groups, the characterization theorem for maximal normal subgroups as well as many useful lemmas about normal subgroups and factor groups. The formalization is based on the work work in my first AFP submission [vR14] while the proof of the Jordan-Hölder theorem itself is inspired by course notes of Stuart Rankin [Ran05].

Contents

1 The Second Isomorphism Theorem for Groups 2
 1.1 Preliminaries .. 2
2 Preliminary lemmas 4
3 More Facts about Subgroups 4
4 Facts about Normal Subgroups 5
5 Flattening the type of group carriers 7
6 Simple Groups .. 8
7 Facts about maximal normal subgroups 9
8 Normal series and Composition series 10
 8.1 Preliminaries 10
 8.2 Normal Series 10
 8.3 Composition Series 12
9 Isomorphism Classes of Groups 15
10 The Jordan-Hölder Theorem

theory SndIsomorphismGrp
imports
 ~~/src/HOL/Algebra/Coset
 ../Secondary-Sylow/SubgroupConjugation
begin

1 The Second Isomorphism Theorem for Groups

1.1 Preliminaries

lemma (in group) triv-subgroup:
 shows subgroup \{1\} G
⟨proof⟩

lemma (in group) triv-normal-subgroup:
 shows \{1\} \triangleleft G
⟨proof⟩

lemma (in group) normal-restrict-supergroup:
 assumes SsubG:subgroup S G
 assumes Nnormal:N \triangleleft G
 assumes N \subseteq S
 shows \(N \triangleleft (G{|carrier := S|})\)
⟨proof⟩

As this is maybe the best place this fits in: Factorizing by the trivial subgroup is an isomorphism.

lemma (in group) trivial-factor-iso:
 shows the-elem \in (G Mod \{1\}) \cong G
⟨proof⟩

And the dual theorem to the previous one: Factorizing by the group itself gives the trivial group

lemma (in group) self-factor-iso:
 shows \((\lambda X. \text{the-elem } ((\lambda x. 1) \ ' X)) \in (G Mod \{1\}) \cong G{|carrier := \{1\|}\}
⟨proof⟩

This theory provides a proof of the second isomorphism theorems for groups. The theorems consist of several facts about normal subgroups.

The first lemma states that whenever we have a subgroup \(S\) and a normal subgroup \(H\) of a group \(G\), their intersection is normal in \(G\)

locale second-isomorphism-grp = normal +
 fixes S::'a set
assumes subgrpS: subgroup S G

context second-isomorphism-grp

begin

interpretation groupS: group G (carrier := S)
⟨proof⟩

lemma normal-subgrp-intersection-normal:
 shows S ∩ H ≪ (G(carrier := S))
⟨proof⟩

lemma normal-set-mult-subgroup:
 shows subgroup (H ≤ S) G
⟨proof⟩

lemma oneH: 1 ∈ H ⟨proof⟩

lemma H-contained-in-set-mult:
 shows H ⊆ H ≤ S
⟨proof⟩

lemma S-contained-in-set-mult:
 shows S ⊆ H ≤ S
⟨proof⟩

lemma normal-intersection-hom:
 shows group-hom (G(carrier := S)) (G(carrier := H ≤ S) Mod H) (λg. H #> g)
⟨proof⟩

lemma normal-intersection-hom-kernel:
 shows kernel (G(carrier := S)) (G(carrier := H ≤ S) Mod H) (λg. H #> g) = H ∩ S
⟨proof⟩

lemma normal-intersection-hom-surj:
 shows (λg. H #> g) ` carrier (G(carrier := S)) = carrier ((G(carrier := H ≤ S) Mod H)
⟨proof⟩

Finally we can prove the actual isomorphism theorem:

theorem normal-intersection-quotient-isom:
 shows (λX. the-elem ((λg. H #> g) ` X)) ∈ ((G(carrier := S) Mod (H ∩ S)) ≃ (((G(carrier := H ≤ S)) Mod H)
⟨proof⟩

end
theory SubgroupsAndNormalSubgroups
imports
 Coset
 ../../../Secondary-Sylow/SndSylow
 SndIsomorphismGrp
begin

2 Preliminary lemmas

A group of order 1 is always the trivial group.

lemma (in group) order-one-triv-iff:
 shows (order G = 1) = (carrier G = {1})
 ⟨proof⟩

lemma (in group) finite-pos-order:
 assumes finite:finite (carrier G)
 shows 0 < order G
 ⟨proof⟩

lemma iso-order-closed:
 assumes φ ∈ G ≅ H
 shows order G = order H
 ⟨proof⟩

3 More Facts about Subgroups

lemma (in subgroup) subgroup-of-restricted-group:
 assumes subgroup U (G⇧| carrier := H)
 shows U ⊆ H
 ⟨proof⟩

lemma (in subgroup) subgroup-of-subgroup:
 assumes group G
 assumes subgroup U (G⇧| carrier := H)
 shows subgroup U G
 ⟨proof⟩

Being a subgroup is preserved by surjective homomorphisms

lemma (in subgroup) surj-hom-subgroup:
 assumes φ:group-hom G F φ
 assumes φ_surj:φ⇧| (carrier G) = carrier F
 shows subgroup (φ⇧| H) F
 ⟨proof⟩

... and thus of course by isomorphisms of groups.
lemma iso-subgroup:
 assumes groups: group G group F
 assumes H G: subgroup H G
 assumes ϕ ϕ ∈ G ≃ F
 shows subgroup (ϕ ⋅ H) F
⟨proof⟩

An isomorphism restricts to an isomorphism of subgroups.

lemma iso-restrict:
 assumes groups: group G group F
 assumes H G: subgroup H G
 assumes ϕ ϕ ∈ G ≃ F
 shows (restrict ϕ H) ∈ (G(carrier := H)) G ≃ (F(carrier := ϕ ⋅ H)) F
⟨proof⟩

The intersection of two subgroups is, again, a subgroup

lemma (in group) subgroup-intersect:
 assumes subgroup H G
 assumes subgroup H G'
 shows subgroup (H ∩ H') G
⟨proof⟩

4 Facts about Normal Subgroups

lemma (in normal) is-normal:
 shows H < G
⟨proof⟩

Being a normal subgroup is preserved by surjective homomorphisms.

lemma (in normal) surj-hom-normal-subgroup:
 assumes ϕ: group-hom G F ϕ
 assumes ϕ surj: ϕ ⋅ (carrier G) = carrier F
 shows (ϕ ⋅ H) < F
⟨proof⟩

Being a normal subgroup is preserved by group isomorphisms.

lemma iso-normal-subgroup:
 assumes groups: group G group F
 assumes H G: H < G
 assumes ϕ ϕ ∈ G G
 shows (ϕ ⋅ H) < F
⟨proof⟩

The trivial subgroup is a subgroup:

lemma (in group) triu-subgroup:
 shows subgroup {1} G
⟨proof⟩
The cardinality of the right cosets of the trivial subgroup is the cardinality of the group itself:

```latex
lemma (in group) card-rcosets-triv:
  assumes finite (carrier G)
  shows card (rcosets {1}) = order G
  ⟨proof⟩
```

The intersection of two normal subgroups is, again, a normal subgroup.

```latex
lemma (in group) normal-subgroup-intersect:
  assumes M ⊲ G and N ⊲ G
  shows M ∩ N ⊲ G
  ⟨proof⟩
```

The set product of two normal subgroups is a normal subgroup.

```latex
lemma (in group) setmult-lcos-assoc:
  [H ⊆ carrier G; K ⊆ carrier G; x ∈ carrier G]
  → (x <# H) <#> K = x <# (H <#> K)
  ⟨proof⟩
```

The following is a very basic lemma about subgroups: If restricting the carrier of a group yields a group it’s a subgroup of the group we’ve started with.

```latex
lemma (in group) restrict-group-imp-subgroup:
  assumes H ⊆ carrier G group (G ⟨carrier := H⟩)
  shows subgroup H G
  ⟨proof⟩
```

A subgroup relation survives factoring by a normal subgroup.

```latex
lemma (in group) normal-subgroup-factorize:
  assumes N ⊲ G and N ⊆ H and subgroup H G
  shows subgroup (rcosets G ⟨carrier := H⟩ N) (G Mod N)
  ⟨proof⟩
```

A normality relation survives factoring by a normal subgroup.

```latex
lemma (in group) normality-factorization:
  assumes NG:N ⊲ G and NH:N ⊆ H and HG:H ⊲ G
  shows (rcosets G ⟨carrier := H⟩ N) < (G Mod N)
  ⟨proof⟩
```

Factoring by a normal subgroups yields the trivial group iff the subgroup is the whole group.

```latex
lemma (in normal) fact-group-trivial-iff:
```
assumes finite (carrier G)
shows (carrier (G Mod H) = \{1_G \mod H\}) = (H = carrier G)
(proof)

Finite groups have finite quotients.
lemma (in normal) factgroup-finite:
 assumes finite (carrier G)
 shows finite (rcosets H)
(proof)

The union of all the cosets contained in a subgroup of a quotient group acts
as a represenation for that subgroup.
lemma (in normal) factgroup-subgroup-union-char:
 assumes subgroup A (G Mod H)
 shows (∪A) = \{x ∈ carrier G. H #> x ∈ A\}
(proof)

lemma (in normal) factgroup-subgroup-union-subgroup:
 assumes subgroup A (G Mod H)
 shows subgroup (∪A) G
(proof)

lemma (in normal) factgroup-subgroup-union-normal:
 assumes A ◁ (G Mod H)
 shows ∪A ◁ G
(proof)

lemma (in normal) factgroup-subgroup-union-factor:
 assumes subgroup A (G Mod H)
 shows A = rcosets G|carrier := ∪A| H
(proof)

5 Flattening the type of group carriers

Flattening here means to convert the type of group elements from 'a set to
'a. This is possible whenever the empty set is not an element of the group.
definition flatten where
 flatten (G::('a set, 'b) monoid-scheme) rep = (carrier=rep | (carrier G)),
 mult=(λ x y. rep ((the-inv-into (carrier G) rep x) ⊗_G (the-inv-into (carrier G) rep y))), one=rep 1_G)

lemma flatten-set-group-hom:
 assumes group:group G
 assumes inj:inj-on rep (carrier G)
 shows rep ∈ hom G (flatten G rep)
(proof)
lemma flatten-set-group:
 assumes group:group G
 assumes inj:inj-on rep (carrier G)
 shows group (flatten G rep)
⟨proof⟩

lemma (in normal) flatten-set-group-mod-inj:
 shows inj-on (λU. SOME g. g ∈ U) (carrier (G Mod H))
⟨proof⟩

lemma (in normal) flatten-set-group-mod:
 shows group (flatten (G Mod H) (λU. SOME g. g ∈ U))
⟨proof⟩

lemma (in normal) flatten-set-group-mod-iso:
 shows (λU. SOME g. g ∈ U) ∈ (G Mod H) ≃ (flatten (G Mod H) (λU. SOME g. g ∈ U))
⟨proof⟩

end

theory SimpleGroups
imports
 SubgroupsAndNormalSubgroups
 ../Secondary-Sylow/SndSylow
 SndIsomorphismGrp
begin

6 Simple Groups

locale simple-group = group +
 assumes order-gt-one:order G > 1
 assumes no-real-normal-subgroup:∀H. H ⊲ G → (H = carrier G ∨ H = {1})

lemma (in simple-group) is-simple-group: simple-group G ⟨proof⟩

Simple groups are non-trivial.

lemma (in simple-group) simple-not-triv: carrier G ≠ {1} ⟨proof⟩

Every group of prime order is simple

lemma (in group) prime-order-simple:
 assumes prime:prime (order G)
 shows simple-group G ⟨proof⟩

Being simple is a property that is preserved by isomorphisms.

lemma (in simple-group) iso-simple:
assumes H: group H
assumes iso: $\varphi \in G \cong H$
shows simple-group H
⟨proof⟩

As a corollary of this: Factorizing a group by itself does not result in a simple group!

lemma (in group) self-factor-not-simple: ¬ simple-group $(G \mod (\text{carrier } G))$
⟨proof⟩

end

theory MaximalNormalSubgroups
imports
 SubgroupsAndNormalSubgroups
 SimpleGroups
begin

7 Facts about maximal normal subgroups

A maximal normal subgroup of G is a normal subgroup which is not contained in other any proper normal subgroup of G.

locale max-normal-subgroup = normal +
 assumes proper: $H \neq \text{carrier } G$
 assumes max-normal: $\forall J. J \triangleleft G \Rightarrow J \neq H \Rightarrow J \neq \text{carrier } G \Rightarrow \neg (H \subseteq J)$

Another characterization of maximal normal subgroups: The factor group is simple.

theorem (in normal) max-normal-simple-quotient:
 assumes finite: finite (carrier G)
 shows max-normal-subgroup $H \subseteq G = \text{simple-group } (G \mod H)$
⟨proof⟩

end

theory CompositionSeries
imports
 SimpleGroups
 MaximalNormalSubgroups
begin
8 Normal series and Composition series

8.1 Preliminaries

A subgroup which is unique in cardinality is normal:

lemma (in group) unique-sizes-subgrp-normal:

- **assumes** `fin:finite (carrier G)`
- **assumes** `∃!Q. Q ∈ subgroups-of-size q`
- **shows** `(THE Q. Q ∈ subgroups-of-size q) ⊆ G`

(\textit{proof})

A group whose order is the product of two distinct primes \(p \) and \(q \) where \(p < q \) has a unique subgroup of size \(q \):

lemma (in group) pq-order-unique-subgrp:

- **assumes** `finite:finite (carrier G)`
- **assumes** `orderG:order G = q * p`
- **assumes** `primep:prime p and primeq:prime q and pq:p < q`
- **shows** `∃!Q. Q ∈ (subgroups-of-size q)`

(\textit{proof})

... And this unique subgroup is normal.

corollary (in group) pq-order-subgrp-normal:

- **assumes** `finite:finite (carrier G)`
- **assumes** `orderG:order G = q * p`
- **assumes** `primep:prime p and primeq:prime q and pq:p < q`
- **shows** `(THE Q. Q ∈ subgroups-of-size q) ⊆ G`

(\textit{proof})

The trivial subgroup is normal in every group.

lemma (in group) trivial-subgroup-is-normal:

- **shows** `{1} ⊆ G`

(\textit{proof})

8.2 Normal Series

We define a normal series as a locale which fixes one group \(G \) and a list \(S \) of subsets of \(G \)'s carrier. This list must begin with the trivial subgroup, end with the carrier of the group itself and each of the list items must be a normal subgroup of its successor.

locale normal-series = group +

- **fixes** \(S \)
- **assumes** `notempty:S ≠ []`
- **assumes** `hd:hd S = {1}`
- **assumes** `last:last S = carrier G`
- **assumes** `normal:∀i. i + 1 < length S ⇒ (S ! i) ⊆ G(|carrier := S ! (i + 1)|)`

lemma (in normal-series) is-normal-series: normal-series G S (proof)
For every group there is a "trivial" normal series consisting only of the group itself and its trivial subgroup.

Lemma (in group) trivial-normal-series:
- shows normal-series $G \left[\{1\}, \text{carrier } G \right]$
- ⟨proof⟩

We can also show that the normal series presented above is the only such with a length of two:

Lemma (in normal-series) length-two-unique:
- assumes length $\mathcal{G} = 2$
- shows $\mathcal{G} = \left[\{1\}, \text{carrier } G \right]$
- ⟨proof⟩

We can construct new normal series by expanding existing ones: If we append the carrier of a group G to a normal series for a normal subgroup $H \triangleleft G$ we receive a normal series for G.

Lemma (in group) normal-series-extend:
- assumes normal: normal-series $(G \left(\text{carrier } := H \right)) \mathcal{G}$
- assumes $HG: H \triangleleft G$
- shows normal-series $G \left(\mathcal{G} \oplus \left[\text{carrier } G \right] \right)$
- ⟨proof⟩

All entries of a normal series for G are subgroups of G.

Lemma (in normal-series) normal-series-subgroups:
- shows $i < \text{length } \mathcal{G} \implies \text{subgroup } (\mathcal{G} \oplus i) G$
- ⟨proof⟩

The second to last entry of a normal series is a normal subgroup of G.

Lemma (in normal-series) normal-series-snd-to-last:
- shows $\mathcal{G} \oplus \left(\text{length } \mathcal{G} - 2 \right) \triangleleft G$
- ⟨proof⟩

Just like the expansion of normal series, every prefix of a normal series is again a normal series.

Lemma (in normal-series) normal-series-prefix-closed:
- assumes $i \leq \text{length } \mathcal{G}$ and $0 < i$
- shows normal-series $(G \left(\text{carrier } := \mathcal{G} \oplus \left(i - 1 \right) \right))$ (take $i \mathcal{G}$)
- ⟨proof⟩

If a group’s order is the product of two distinct primes p and q, where $p < q$, we can construct a normal series using the only subgroup of size q.

Lemma (in group) pq-order-normal-series:
- assumes finite:finite (carrier G)
- assumes orderG: order $G = q \times p$
- assumes primep:prime p and primeq:prime q and $pq:p < q$
- shows normal-series $G \left[\{1\}, \left(\text{THE } H. H \in \text{subgroups-of-size } q \right), \text{carrier } G \right]$
The following defines the list of all quotient groups of the normal series:

definition (in normal-series) quotients

where quotients = map (λi. G(carrier := G ! (i + 1)) Mod G ! i) [0..<((length G) − 1)]

The list of quotient groups has one less entry than the series itself:

lemma (in normal-series) quotients-length:

shows length quotients + 1 = length G

lemma (in normal-series) last-quotient:

assumes length G > 1

shows last quotients = G Mod G ! (length G − 1 − 1)

The next lemma transports the constituting properties of a normal series along an isomorphism of groups.

lemma (in normal-series) normal-series-iso:

assumes H:group H

assumes iso:Ψ ∈ G ∼= H

shows normal-series H (map (image Ψ) G)

8.3 Composition Series

A composition series is a normal series where all consecutive factor groups are simple:

locale composition-series = normal-series +

assumes simplefact:i. i + 1 < length G ⊢ simple-group (G(carrier := G ! (i + 1)) Mod G ! i)

lemma (in composition-series) is-composition-series:

shows composition-series G G

A composition series for a group G has length one if and only if G is the trivial group.

lemma (in composition-series) composition-series-length-one:

shows (length G = 1) = (G = {[1]})

lemma (in composition-series) composition-series-triv-group:

shows (carrier G = {1}) = (G = {[1]})
The inner elements of a composition series may not consist of the trivial subgroup or the group itself.

lemma (*in composition-series*) inner-elements-not-triv:
- *assumes* \(i + 1 < \text{length} \ G \)
- *assumes* \(i > 0 \)
- *shows* \(\emptyset ! i \neq \{1\} \)
 (proof)

A composition series of a simple group always is its trivial one.

lemma (*in composition-series*) composition-series-simple-group:
- *shows* (simple-group \(G \)) = (\(G = [[1], \text{carrier} \ G] \))
 (proof)

Two consecutive elements in a composition series are distinct.

lemma (*in composition-series*) entries-distinct:
- *assumes* finite: finite (carrier \(G \))
- *assumes* \(i, i + 1 < \text{length} \ G \)
- *shows* \(\emptyset ! i \neq \emptyset ! (i + 1) \)
 (proof)

The normal series for groups of order \(p \ast q \) is even a composition series:

lemma (*in group*) pq-order-composition-series:
- *assumes* finite: finite (carrier \(G \))
- *assumes* \(\text{order} \ G = q \ast p \)
- *assumes* prime:p:prime \(p \) and prime:q:prime \(q \) and \(pq < q \)
- *shows* composition-series \(G [[1], (\text{THE} \ H. \ \ H \in \text{subgroups-of-size} \ q), \text{carrier} \ G] \)
 (proof)

Prefixes of composition series are also composition series.

lemma (*in composition-series*) composition-series-prefix-closed:
- *assumes* \(i \leq \text{length} \ G \) and \(0 < i \)
- *shows* composition-series (\(G [[\text{carrier} := \emptyset ! (i - 1)], \text{take} \ i \ \emptyset] \))
 (proof)

The second element in a composition series is simple group.

lemma (*in composition-series*) composition-series-snd-simple:
- *assumes* \(2 \leq \text{length} \ \emptyset \)
- *shows* simple-group (\(G[[\text{carrier} := \emptyset ! 1]] \))
 (proof)

As a stronger way to state the previous lemma: An entry of a composition series is simple if and only if it is the second one.

lemma (*in composition-series*) composition-snd-simple-iff:
- *assumes* \(i < \text{length} \ \emptyset \)
- *shows* (simple-group (\(G[[\text{carrier} := \emptyset ! i]] \))) = (\(i = 1 \))
 (proof)
The second to last entry of a normal series is not only a normal subgroup but actually even a *maximal* normal subgroup.

Lemma (in composition-series) snd-to-last-max-normal:
- **Assumes** finite:finite (carrier G)
- **Assumes** length:length $\mathcal{G} > 1$
- **Shows** max-normal-subgroup ($\mathcal{G} ! (\text{length } \mathcal{G} - 2) \ G$

⟨proof⟩

For the next lemma we need a few facts about removing adjacent duplicates.

Lemma remdups-adj-obtain-adjacency:
- **Assumes** $i + 1 < \text{length } \text{remdups-adj } \text{xs}$ $\text{length } \text{xs} > 0$
- **Obtains** j where $j + 1 < \text{length } \text{xs}$
 - $\text{remdups-adj } \text{xs} ! i = \text{xs} ! j$ $\text{remdups-adj } \text{xs} ! (i + 1) = \text{xs} ! (j + 1)$

⟨proof⟩

Lemma hd-remdups-adj [simp]: $\text{hd } \text{remdups-adj } \text{xs} = \text{hd } \text{xs}$

⟨proof⟩

Lemma remdups-adj-adjacent:
- $\text{Suc } i < \text{length } \text{remdups-adj } \text{xs} \implies \text{remdups-adj } \text{xs} ! i \neq \text{remdups-adj } \text{xs} ! \text{Suc } i$

⟨proof⟩

Intersecting each entry of a composition series with a normal subgroup of G and removing all adjacent duplicates yields another composition series.

Lemma (in composition-series) intersect-normal:
- **Assumes** finite:finite (carrier G)
- **Assumes** $K < G$
- **Shows** composition-series ($G | \text{carrier } := K | (\text{remdups-adj } (\text{map } (\lambda H. K \cap H) \ G))$

⟨proof⟩

Lemma (in group) composition-series-extend:
- **Assumes** composition-series ($G | \text{carrier } := H | \mathcal{H}$)
- **Assumes** simple-group ($G \ Mod \ H \ H < G$
- **Shows** composition-series $G | \mathcal{H} \ @ [\text{carrier } G]$

⟨proof⟩

Lemma (in composition-series) entries-mono:
- **Assumes** $i \leq j j < \text{length } \mathcal{G}$
- **Shows** $\mathcal{G} ! i \subseteq \mathcal{G} ! j$

⟨proof⟩

end

theory GroupIsoClasses
imports
Groups
9 Isomorphism Classes of Groups

We construct a quotient type for isomorphism classes of groups.

Typedef `a group = { G :: 'a monoid. group G}
⟨proof⟩

Definition group-iso-rel :: 'a group ⇒ 'a group ⇒ bool
where group-iso-rel G H = (∃ϕ. ϕ ∈ Rep-group G ∼= Rep-group H)

Quotient-type 'a group-iso-class = 'a group / group-iso-rel
Morphisms Rep-group-iso Abs-group-iso
⟨proof⟩

This assigns to a given group the group isomorphism class

Definition (in group) iso-class :: 'a group-iso-class
where iso-class = Abs-group-iso (Abs-group (monoid.truncate G))

Two isomorphic groups do indeed have the same isomorphism class:

Lemma iso-classes-iff:
 Assumes group G
 Assumes group H
 Shows (∃ϕ. ϕ ∈ G ∼= H) = (group.iso-class G = group.iso-class H)
⟨proof⟩

End

Theory JordanHolder
Imports
 CompositionSeries
 MaximalNormalSubgroups
 Multiset
 GroupIsoClasses
Begin

10 The Jordan-Hölder Theorem

Locale jordan-hoelder = group
 + compϕ?: composition-series G ϕ
 + compϕ$: composition-series G $ for ϕ and $
 + Assumes finite:finite (carrier G)

Before we finally start the actual proof of the theorem, one last lemma:
Cancelling the last entry of a normal series results in a normal series with quotients being all but the last of the original ones.

Lemma (in normal-series) quotients-butlast:

- **Assumes** $\text{length } G > 1$
- **Shows** $\text{butlast quotients } = \text{normal-series.quotients } (G[\text{carrier } := G \setminus \{\text{length } G - 1 - 1\}]) (\text{take } \text{length } G - 1) G$

\[\text{(proof)}\]

The main part of the Jordan H"older theorem is its statement about the uniqueness of a composition series. Here, uniqueness up to reordering and isomorphism is modelled by stating that the multisets of isomorphism classes of all quotients are equal.

Theorem jordan-hoelder-multisets:

- **Assumes** group G
- **Assumes** finite (carrier G)
- **Assumes** composition-series $G \mathfrak{S}$
- **Assumes** composition-series $G \mathfrak{H}$
- **Shows** $\text{mset } (\text{map group.iso-class } (\text{normal-series.quotients } G \mathfrak{S})) = \text{mset } (\text{map group.iso-class } (\text{normal-series.quotients } G \mathfrak{H}))$

\[\text{(proof)}\]

As a corollary, we see that the composition series of a fixed group all have the same length.

Corollary (in jordan-hoelder) jordan-hoelder-size:

- **Shows** $\text{length } G = \text{length } \mathfrak{H}$

\[\text{(proof)}\]

\[\text{end}\]

References
