Theory Algebra4

theory Algebra4
imports Algebra3 Binomial
(**       Algebra4
                            author Hidetsune Kobayashi
                                   Lingjun Chen (part of Chap 4. section 2,
                                   with revision by H. Kobayashi)
                             Group You Santo
                             Department of Mathematics
                             Nihon University
                             h_coba@math.cst.nihon-u.ac.jp
                             May 3, 2004.
                             April 6, 2007 (revised)

 chapter 3.  Group Theory. Focused on Jordan Hoelder theorem (continued)
     section 20.   abelian groups
     subsection 20-1. Homomorphism of abelian groups
     subsection 20-2  quotient abelian group
   section 21  direct product and direct sum of abelian groups,
               in general case

 chapter 4.  Ring theory
   section 1.  Definition of a ring and an ideal
   section 2.  Calculation of elements
   section 3.  ring homomorphisms
   section 4.  quotient rings
   section 5.  primary ideals, prime ideals
 **)

theory Algebra4
imports Algebra3 "~~/src/HOL/Binomial" "~~/src/HOL/Library/Zorn"
begin

section "Abelian groups"

record 'a aGroup = "'a carrier" +
  pop      :: "['a, 'a ] ⇒ 'a"  (infixl "±ı" 62)
  mop      :: "'a  ⇒ 'a"        ("(-aı _)" [64]63 )
  zero     :: "'a"               ("𝟬ı")

locale aGroup =
  fixes A (structure)
 assumes
         pop_closed: "pop A ∈ carrier A → carrier A → carrier A"
 and     aassoc : "⟦a ∈ carrier A; b ∈ carrier A; c ∈ carrier A⟧ ⟹
         (a ± b) ± c = a ± (b ± c)"
 and     pop_commute:"⟦a ∈ carrier A; b ∈ carrier A⟧ ⟹ a ± b = b ± a"
 and     mop_closed:"mop A ∈ carrier A → carrier A"
 and     l_m :"a ∈ carrier A ⟹  (-a a) ± a = 𝟬"
 and     ex_zero: "𝟬 ∈ carrier A"
 and     l_zero:"a ∈ carrier A ⟹ 𝟬 ± a = a"

definition
  b_ag :: "_  ⇒
   ⦇carrier:: 'a set, top:: ['a, 'a] ⇒ 'a , iop:: 'a ⇒ 'a, one:: 'a ⦈" where
  "b_ag A = ⦇carrier = carrier A, top = pop A, iop = mop A, one = zero A ⦈"

definition
  asubGroup :: "[_ , 'a set] ⇒ bool" where
  "asubGroup A H ⟷ (b_ag A) » H"

definition
  aqgrp :: "[_ , 'a set] ⇒
         ⦇ carrier::'a set set, pop::['a  set, 'a set] ⇒ 'a set,
           mop::'a set ⇒ 'a set, zero :: 'a set ⦈" where
  "aqgrp A H = ⦇carrier = set_rcs (b_ag A) H,
         pop = λX. λY. (c_top (b_ag A) H X Y),
         mop = λX. (c_iop (b_ag A) H X), zero = H ⦈"

definition
  ag_idmap :: "_ ⇒ ('a ⇒ 'a)"  ("(aI_)") where
  "aIA = (λx∈carrier A. x)"

abbreviation
  ASubG :: "[('a, 'more) aGroup_scheme, 'a set] => bool"   (infixl "+>" 58) where
  "A +> H == asubGroup A H"

definition
  Ag_ind :: "[_ , 'a ⇒ 'd] ⇒ 'd aGroup" where
  "Ag_ind A f = ⦇carrier = f`(carrier A),
    pop = λx ∈ f`(carrier A). λy ∈ f`(carrier A).
               f(((invfun (carrier A) (f`(carrier A)) f) x) ±A
                    ((invfun (carrier A) (f`(carrier A)) f) y)),
    mop = λx∈(f`(carrier A)). f (-aA ((invfun (carrier A) (f`(carrier A)) f) x)),
    zero = f (𝟬A)⦈"

definition
  Agii :: "[_ , 'a ⇒ 'd] ⇒ ('a ⇒ 'd)" where
  "Agii A f = (λx∈carrier A. f x)"   (** Ag_induced_isomorphism **)

lemma (in aGroup) ag_carrier_carrier:"carrier (b_ag A) = carrier A"
by (simp add:b_ag_def)

lemma (in aGroup) ag_pOp_closed:"⟦x ∈ carrier A; y ∈ carrier A⟧ ⟹
                                     pop A x y ∈ carrier A"
apply (cut_tac pop_closed)
apply (frule funcset_mem[of "op ± " "carrier A" "carrier A → carrier A" "x"],
        assumption+)
apply (rule funcset_mem[of "op ± x" "carrier A" "carrier A" "y"], assumption+)
done

lemma (in aGroup) ag_mOp_closed:"x ∈ carrier A ⟹ (-a x)  ∈ carrier A"
apply (cut_tac mop_closed)
apply (rule funcset_mem[of "mop A" "carrier A" "carrier A" "x"], assumption+)
done

lemma (in aGroup) asubg_subset:"A +> H ⟹ H ⊆ carrier A"
apply (simp add:asubGroup_def)
apply (simp add:sg_def, (erule conjE)+)
apply (simp add:ag_carrier_carrier)
done

lemma (in aGroup) ag_pOp_commute:"⟦x ∈ carrier A; y ∈ carrier A⟧  ⟹
           pop A x y = pop A y x"
by (simp add:pop_commute)

lemma (in aGroup) b_ag_group:"Group (b_ag A)"
apply (unfold Group_def)
 apply (simp add:b_ag_def)
apply (simp add:pop_closed mop_closed ex_zero)
apply (rule conjI)
 apply (rule allI, rule impI)+
 apply (simp add:aassoc)
apply (rule conjI)
 apply (rule allI, rule impI)
 apply (simp add:l_m)

 apply (rule allI, rule impI)
 apply (simp add:l_zero)
done

lemma (in aGroup) agop_gop:"top (b_ag A) = pop A" (*agpop_gtop*)
 apply (simp add:b_ag_def)
done

lemma (in aGroup) agiop_giop:"iop (b_ag A) = mop A" (*agmop_giop*)
apply (simp add:b_ag_def)
done

lemma (in aGroup) agunit_gone:"one (b_ag A) = 𝟬"
apply (simp add:b_ag_def)
done

lemma (in aGroup) ag_pOp_add_r:"⟦a ∈ carrier A; b ∈ carrier A; c ∈ carrier A;
                 a = b⟧  ⟹ a ± c =  b ± c"
apply simp
done

lemma (in aGroup) ag_add_commute:"⟦a ∈ carrier A; b ∈ carrier A⟧ ⟹
                                                  a ± b = b ± a"
by (simp add:pop_commute)

lemma (in aGroup) ag_pOp_add_l:"⟦a ∈ carrier A; b ∈ carrier A; c ∈ carrier A;
                 a = b⟧  ⟹ c ± a =  c ± b"
apply simp
done

lemma (in aGroup) asubg_pOp_closed:"⟦asubGroup A H; x ∈ H; y ∈ H⟧
                                   ⟹ pop A x y ∈ H"
apply (simp add:asubGroup_def)
 apply (cut_tac b_ag_group)
 apply (frule Group.sg_mult_closed [of "b_ag A" "H" "x" "y"], assumption+)
apply (simp only:agop_gop)
done

lemma (in aGroup) asubg_mOp_closed:"⟦asubGroup A H; x ∈ H⟧ ⟹ -a x ∈ H"
apply (simp add:asubGroup_def)
apply (cut_tac b_ag_group)
apply (frule Group.sg_i_closed[of "b_ag A" "H" "x"], assumption+)
apply (simp add:agiop_giop)
done

lemma (in aGroup) asubg_subset1:"⟦asubGroup A H; x ∈ H⟧ ⟹ x ∈ carrier A"
apply (simp add:asubGroup_def)
apply (cut_tac b_ag_group)
apply (frule Group.sg_subset_elem[of "b_ag A" "H" "x"], assumption+)
apply (simp add:ag_carrier_carrier)
done

lemma (in aGroup) asubg_inc_zero:"asubGroup A H ⟹ 𝟬 ∈ H"
apply (simp add:asubGroup_def)
apply (cut_tac b_ag_group)
apply (frule Group.sg_unit_closed[of "b_ag A" "H"], assumption)
apply (simp add:b_ag_def)
done

lemma (in aGroup) ag_inc_zero:"𝟬 ∈ carrier A"
by (simp add:ex_zero)

lemma (in aGroup) ag_l_zero:"x ∈ carrier A ⟹ 𝟬 ± x = x"
by (simp add:l_zero)

lemma (in aGroup) ag_r_zero:"x ∈ carrier A ⟹ x ± 𝟬 = x"
apply (cut_tac ex_zero)
apply (subst pop_commute, assumption+)
apply (rule ag_l_zero, assumption)
done

lemma (in aGroup) ag_l_inv1:"x ∈ carrier A ⟹ (-a x) ± x = 𝟬"
by (simp add:l_m)

lemma (in aGroup) ag_r_inv1:"x ∈ carrier A ⟹ x ± (-a x) = 𝟬"
by (frule ag_mOp_closed[of "x"],
       subst ag_pOp_commute, assumption+,
       simp add:ag_l_inv1)

lemma (in aGroup) ag_pOp_assoc:"⟦x ∈ carrier A; y ∈ carrier A; z ∈ carrier A⟧
                ⟹ (x ± y) ± z = x ± (y ± z)"
by (simp add:aassoc)

lemma (in aGroup) ag_inv_unique:"⟦x ∈ carrier A; y ∈ carrier A; x ± y = 𝟬⟧ ⟹
                                     y = -a x"
apply (frule ag_mOp_closed[of "x"],
       frule aassoc[of "-a x" "x" "y"], assumption+,
       simp add:l_m l_zero ag_r_zero)
done

lemma (in aGroup) ag_inv_inj:"⟦x ∈ carrier A; y ∈ carrier A; x ≠ y⟧ ⟹
                                          (-a x) ≠ (-a y)"
apply (rule contrapos_pp, simp+)
apply (frule ag_mOp_closed[of "y"],
       frule aassoc[of "y" "-a y" "x"], assumption+)
apply (simp only:ag_r_inv1,
       frule sym, thin_tac "-a x = -a y", simp add:l_m)
apply (simp add:l_zero ag_r_zero)
done

lemma (in aGroup) pOp_assocTr41:"⟦a ∈ carrier A; b ∈ carrier A; c ∈ carrier A;
 d ∈ carrier A⟧ ⟹ a ± b ± c ± d = a ± b ± (c ± d)"
by (frule ag_pOp_closed[of "a" "b"], assumption+,
    rule aassoc[of "a ± b" "c" "d"], assumption+)

lemma (in aGroup) pOp_assocTr42:"⟦a ∈ carrier A; b ∈ carrier A;
 c ∈ carrier A; d ∈ carrier A⟧ ⟹ a ± b ± c ± d = a ± (b ± c) ± d"
by (simp add:aassoc[THEN sym, of "a" "b" "c"])

lemma (in aGroup) pOp_assocTr43:"⟦a ∈ carrier A; b ∈ carrier A;
 c ∈ carrier A; d ∈ carrier A⟧ ⟹ a ± b ± (c ± d) = a ± (b ± c) ± d"
by (subst  pOp_assocTr41[THEN sym], assumption+,
       rule pOp_assocTr42, assumption+)

lemma (in aGroup) pOp_assoc_cancel:"⟦a ∈ carrier A; b ∈ carrier A;
 c ∈ carrier A⟧ ⟹ a ± -a b ± (b ± -a c) = a ± -a c"
apply (subst pOp_assocTr43, assumption)
apply (simp add:ag_l_inv1 ag_mOp_closed)+
apply (simp add:ag_r_zero)
done

lemma (in aGroup) ag_p_inv:"⟦x ∈ carrier A; y ∈ carrier A⟧ ⟹
                                     (-a (x ± y)) = (-a x) ± (-a y)"
apply (frule ag_mOp_closed[of "x"], frule ag_mOp_closed[of "y"],
       frule ag_pOp_closed[of "x" "y"], assumption+)
apply (frule aassoc[of "x ± y" "-a x" "-a y"], assumption+,
       simp add:pOp_assocTr43, simp add:pop_commute[of "y" "-a x"],
       simp add:aassoc[THEN sym, of "x" "-a x" "y"],
       simp add:ag_r_inv1 l_zero)
apply (frule ag_pOp_closed[of "-a x" "-a y"], assumption+,
       simp add:pOp_assocTr41,
       rule ag_inv_unique[THEN sym, of "x ± y" "-a x ± -a y"], assumption+)
done

lemma (in aGroup) gEQAddcross: "⟦l1 ∈ carrier A; l2 ∈ carrier A;
      r1 ∈ carrier A; r1 ∈ carrier A; l1 = r2; l2 = r1⟧ ⟹
                          l1 ± l2 = r1 ± r2"
  apply (simp add:ag_pOp_commute)
  done

lemma (in aGroup) ag_eq_sol1:"⟦a ∈ carrier A; x∈ carrier A; b∈ carrier A;
                               a ± x = b⟧ ⟹ x = (-a a) ± b"
apply (frule ag_mOp_closed[of "a"])
apply (frule aassoc[of "-a a" "a" "x"], assumption+)
apply (simp add:l_m l_zero)
done

lemma (in aGroup) ag_eq_sol2:"⟦a ∈ carrier A; x∈ carrier A; b∈ carrier A;
                                x ± a = b⟧ ⟹ x = b ± (-a a)"
apply (frule ag_mOp_closed[of "a"],
       frule aassoc[of "x" "a" "-a a"], assumption+,
       simp add:ag_r_inv1 ag_r_zero)
done

lemma (in aGroup) ag_add4_rel:"⟦a ∈ carrier A; b ∈ carrier A; c ∈ carrier A;
 d ∈ carrier A ⟧ ⟹ a ± b ± (c ± d) =  a ± c ± (b ± d)"
apply (simp add:pOp_assocTr43[of "a" "b" "c" "d"],
       simp add:ag_pOp_commute[of "b" "c"],
       simp add:pOp_assocTr43[THEN sym, of "a" "c" "b" "d"])
done

lemma (in aGroup) ag_inv_inv:"x ∈ carrier A ⟹ -a (-a x) = x"
by (frule ag_l_inv1[of "x"], frule ag_mOp_closed[of "x"],
       rule  ag_inv_unique[THEN sym, of "-a x" "x"], assumption+)

lemma (in aGroup) ag_inv_zero:"-a 𝟬 = 𝟬"
apply (cut_tac ex_zero)
apply (frule l_zero[of "𝟬"])
apply (rule ag_inv_unique[THEN sym], assumption+)
done

lemma (in aGroup) ag_diff_minus:"⟦a ∈ carrier A; b ∈ carrier A; c ∈ carrier A;
                   a ± (-a b) = c⟧ ⟹ b ± (-a a) = (-a c)"
apply (frule sym, thin_tac "a ± -a b = c", simp, thin_tac "c = a ± -a b")
apply (frule ag_mOp_closed[of "b"], frule ag_mOp_closed[of "a"],
       subst ag_p_inv, assumption+, subst ag_inv_inv, assumption)
apply (simp add:ag_pOp_commute)
done

lemma (in aGroup) pOp_cancel_l:"⟦a ∈ carrier A; b ∈ carrier A; c ∈ carrier A;                    c ± a =  c ± b ⟧ ⟹ a = b"
apply (frule ag_mOp_closed[of "c"],
       frule aassoc[of "-a c" "c" "a"], assumption+,
       simp only:l_m l_zero)
apply (simp only:aassoc[THEN sym, of "-a c" "c" "b"],
        simp only:l_m l_zero)
done

lemma (in aGroup) pOp_cancel_r:"⟦a ∈ carrier A; b ∈ carrier A; c ∈ carrier A;               a ± c =  b ± c ⟧ ⟹ a = b"
by (simp add:ag_pOp_commute pOp_cancel_l)

lemma (in aGroup) ag_eq_diffzero:"⟦a ∈ carrier A; b ∈ carrier A⟧ ⟹
                       (a = b) = (a ± (-a b) = 𝟬)"
apply (rule iffI)
 apply (simp add:ag_r_inv1)
 apply (frule ag_mOp_closed[of "b"])
 apply (simp add:ag_pOp_commute[of "a" "-a b"])
 apply (subst ag_inv_unique[of "-a b" "a"], assumption+,
        simp add:ag_inv_inv)
done

lemma (in aGroup) ag_eq_diffzero1:"⟦a ∈ carrier A; b ∈ carrier A⟧ ⟹
                       (a = b) = ((-a a) ± b = 𝟬)"
apply (frule ag_mOp_closed[of a],
       simp add:ag_pOp_commute)
apply (subst ag_eq_diffzero[THEN sym], assumption+)
apply (rule iffI, rule sym, assumption)
apply (rule sym, assumption)
done

lemma (in aGroup) ag_neq_diffnonzero:"⟦a ∈ carrier A; b ∈ carrier A⟧ ⟹
         (a ≠ b) = (a ± (-a b) ≠  𝟬)"
apply (rule iffI)
 apply (rule contrapos_pp, simp+)
 apply (simp add:ag_eq_diffzero[THEN sym])
apply (rule contrapos_pp, simp+)
 apply (simp add:ag_r_inv1)
done

lemma (in aGroup) ag_plus_zero:"⟦x ∈ carrier A; y ∈ carrier A⟧ ⟹
                     (x = -a y)  = (x ± y = 𝟬)"
apply (rule iffI)
 apply (simp add:ag_l_inv1)
apply (simp add:ag_pOp_commute[of "x" "y"])
apply (rule ag_inv_unique[of "y" "x"], assumption+)
done

lemma (in aGroup) asubg_nsubg:"A +> H ⟹  (b_ag A) ▹ H"
apply (cut_tac b_ag_group)
apply (simp add:asubGroup_def)
apply (rule Group.cond_nsg[of "b_ag A" "H"], assumption+)
apply (rule ballI)+
apply(simp add:agop_gop agiop_giop)
 apply (frule Group.sg_subset[of "b_ag A" "H"], assumption)
 apply (simp add:ag_carrier_carrier)
apply (frule_tac c = h in subsetD[of "H" "carrier A"], assumption+)
 apply (subst ag_pOp_commute, assumption+)
 apply (frule_tac x = a in ag_mOp_closed)
 apply (subst aassoc, assumption+, simp add:ag_r_inv1 ag_r_zero)
done

lemma (in aGroup) subg_asubg:"b_ag G » H ⟹ G +> H"
apply (simp add:asubGroup_def)
done

lemma (in aGroup) asubg_test:"⟦H ⊆ carrier A; H ≠ {};
               ∀a∈H. ∀b∈H. (a ± (-a b) ∈ H)⟧ ⟹ A +> H"
apply (simp add:asubGroup_def) apply (cut_tac b_ag_group)
apply (rule Group.sg_condition [of "b_ag A" "H"], assumption+)
 apply (simp add:ag_carrier_carrier) apply assumption
apply (rule allI)+ apply (rule impI)
apply (simp add:agop_gop agiop_giop)
done

lemma (in aGroup) asubg_zero:"A +> {𝟬}"
apply (rule asubg_test[of "{𝟬}"])
 apply (simp add:ag_inc_zero)
 apply simp
 apply (simp, cut_tac ag_inc_zero, simp add:ag_r_inv1)
done

lemma (in aGroup) asubg_whole:"A +> carrier A"
apply (rule asubg_test[of "carrier A"])
apply (simp,
       cut_tac ag_inc_zero, simp add:nonempty)
apply ((rule ballI)+,
       rule ag_pOp_closed, assumption,
       rule_tac x = b in ag_mOp_closed, assumption)
done

lemma (in aGroup) Ag_ind_carrier:"bij_to f (carrier A) (D::'d set) ⟹
               carrier (Ag_ind A f) = f ` (carrier A)"
by (simp add:Ag_ind_def)

lemma (in aGroup) Ag_ind_aGroup:"⟦f ∈ carrier A → D;
      bij_to f (carrier A) (D::'d set)⟧ ⟹ aGroup (Ag_ind A f)"
apply (simp add:bij_to_def, frule conjunct1, frule conjunct2, fold bij_to_def)
apply (simp add:aGroup_def)
 apply (rule conjI)
 apply (rule Pi_I)+
 apply (simp add:Ag_ind_carrier surj_to_def)
 apply (frule_tac b = x in invfun_mem1[of "f" "carrier A" "D"], assumption+,
        frule_tac b = xa in invfun_mem1[of "f" "carrier A" "D"], assumption+)
apply (simp add:Ag_ind_def)
 apply (rule funcset_mem[of "f" "carrier A" "D"], assumption)
 apply (simp add:ag_pOp_closed)

 apply (rule conjI)
 apply (rule allI, rule impI)+
 apply (simp add: Ag_ind_carrier surj_to_def)
 apply (frule_tac b = a in invfun_mem1[of "f" "carrier A" "D"], assumption+,
        frule_tac b = b in invfun_mem1[of "f" "carrier A" "D"], assumption+,
        frule_tac b = c in invfun_mem1[of "f" "carrier A" "D"], assumption+)
 apply (simp add:Ag_ind_def)
 apply (frule_tac x = "invfun (carrier A) D f a" and
                  y = "invfun (carrier A) D f b" in ag_pOp_closed, assumption+,
        frule_tac x = "invfun (carrier A) D f b" and
                  y = "invfun (carrier A) D f c" in ag_pOp_closed, assumption+)
 apply (simp add:Pi_def)
 apply (unfold bij_to_def, frule conjunct1, fold bij_to_def)
 apply (simp add:invfun_l)
 apply (subst injective_iff[of "f" "carrier A", THEN sym], assumption)
 apply (simp add:ag_pOp_closed)+
 apply (simp add:ag_pOp_assoc)

apply (rule conjI)
 apply (rule allI, rule impI)+
 apply (simp add:Ag_ind_def)
 apply (subst injective_iff[of "f" "carrier A", THEN sym], assumption)
 apply (frule_tac b = a in invfun_mem1[of "f" "carrier A" "D"], assumption+,
        frule_tac b = b in invfun_mem1[of "f" "carrier A" "D"], assumption+)
       apply (simp add:surj_to_def) apply (simp add:surj_to_def)

 apply (simp add:surj_to_def)
 apply (frule_tac b = b in invfun_mem1[of "f" "carrier A" "D"], assumption+)
 apply (simp add:ag_pOp_closed)

 apply (simp add:surj_to_def)
 apply (frule_tac b = a in invfun_mem1[of "f" "carrier A" "D"], assumption+,
        frule_tac b = b in invfun_mem1[of "f" "carrier A" "D"], assumption+)
       apply (simp add:ag_pOp_closed)

 apply (simp add:surj_to_def)
 apply (frule_tac b = a in invfun_mem1[of "f" "carrier A" "D"], assumption+,
        frule_tac b = b in invfun_mem1[of "f" "carrier A" "D"], assumption+)
       apply (simp add:ag_pOp_commute)

apply (rule conjI)
 apply (rule Pi_I)
 apply (simp add:Ag_ind_def surj_to_def)
 apply (rule funcset_mem[of "f" "carrier A" "D"], assumption)
 apply (frule_tac b = x in invfun_mem1[of "f" "carrier A" "D"], assumption+)
 apply (simp add:ag_mOp_closed)

apply (rule conjI)
 apply (rule allI, rule impI)
 apply (simp add:Ag_ind_def surj_to_def)
 apply (frule_tac b = a in invfun_mem1[of "f" "carrier A" "D"], assumption+)

 apply (frule_tac x = "invfun (carrier A) D f a" in ag_mOp_closed)
 apply (simp add:Pi_def)
 apply (subst injective_iff[of "f" "carrier A", THEN sym], assumption)
 apply (unfold bij_to_def, frule conjunct1, fold bij_to_def)
 apply (simp add:invfun_l)
 apply (simp add:ag_pOp_closed)
 apply (simp add:ag_inc_zero)
 apply (unfold bij_to_def, frule conjunct1, fold bij_to_def)
 apply (simp add:invfun_l l_m)

apply (rule conjI)
 apply (simp add:Ag_ind_def surj_to_def)
 apply (rule funcset_mem[of "f" "carrier A" "D"], assumption)
 apply (simp add:ag_inc_zero)

apply (rule allI, rule impI)
  apply (simp add:Ag_ind_def surj_to_def)
  apply (cut_tac ag_inc_zero, simp add:funcset_mem del:Pi_I)
  apply (unfold bij_to_def, frule conjunct1, fold bij_to_def)
  apply (simp add:invfun_l)
 apply (frule_tac b = a in invfun_mem1[of "f" "carrier A" "D"], assumption+)
 apply (simp add:l_zero)
 apply (simp add:invfun_r)
done

subsection "Homomorphism of abelian groups"

definition
  aHom :: "[('a, 'm) aGroup_scheme, ('b, 'm1) aGroup_scheme] ⇒ ('a ⇒ 'b) set" where
  "aHom A B = {f. f ∈ carrier A → carrier B ∧ f ∈ extensional (carrier A) ∧
               (∀a∈carrier A. ∀b∈carrier A. f (a ±A b) = (f a) ±B (f b))}"

definition
  compos :: "[('a, 'm) aGroup_scheme, 'b ⇒ 'c, 'a ⇒ 'b] ⇒ 'a ⇒ 'c" where
  "compos A g f = compose (carrier A) g f"

definition
  ker :: "[('a, 'm) aGroup_scheme, ('b, 'm1) aGroup_scheme] ⇒ ('a ⇒ 'b)
        ⇒ 'a set" ("(3ker_,_ _)" [82,82,83]82) where
  "kerF,G f = {a. a ∈ carrier F ∧ f a = (𝟬G)}"

definition
 injec :: "[('a, 'm) aGroup_scheme, ('b, 'm1) aGroup_scheme, 'a ⇒ 'b]
            ⇒ bool"             ("(3injec_,_ _)" [82,82,83]82) where
  "injecF,G f ⟷ f ∈ aHom F G ∧ kerF,G f = {𝟬F}"

definition
  surjec :: "[('a, 'm) aGroup_scheme, ('b, 'm1) aGroup_scheme, 'a ⇒ 'b]
            ⇒ bool"             ("(3surjec_,_ _)" [82,82,83]82) where
  "surjecF,G f ⟷ f ∈ aHom F G ∧ surj_to f (carrier F) (carrier G)"

definition
  bijec :: "[('a, 'm) aGroup_scheme, ('b, 'm1) aGroup_scheme, 'a ⇒ 'b]
            ⇒ bool"             ("(3bijec_,_ _)" [82,82,83]82) where
  "bijecF,G f ⟷ injecF,G f ∧ surjecF,G f"

definition
  ainvf :: "[('a, 'm) aGroup_scheme, ('b, 'm1) aGroup_scheme, 'a ⇒ 'b]
            ⇒ ('b ⇒ 'a)"             ("(3ainvf_,_ _)" [82,82,83]82) where
  "ainvfF,G f = invfun (carrier F) (carrier G) f"

lemma aHom_mem:"⟦aGroup F; aGroup G; f ∈ aHom F G; a ∈ carrier F⟧ ⟹
                       f a ∈ carrier G"
apply (simp add:aHom_def) apply (erule conjE)+
apply (simp add:Pi_def)
done

lemma aHom_func:"f ∈ aHom F G ⟹ f ∈ carrier F → carrier G"
by (simp add:aHom_def)

lemma aHom_add:"⟦aGroup F; aGroup G; f ∈ aHom F G; a ∈ carrier F;
 b ∈ carrier F⟧ ⟹ f (a ±F b) = (f a) ±G (f b)"
apply (simp add:aHom_def)
done

lemma aHom_0_0:"⟦aGroup F; aGroup G; f ∈ aHom F G⟧ ⟹ f (𝟬F) = 𝟬G"
apply (frule aGroup.ag_inc_zero [of "F"])
apply (subst aGroup.ag_l_zero [THEN sym, of "F" "𝟬F"], assumption+)
apply (simp add:aHom_add)
apply (frule aGroup.ag_l_zero [THEN sym, of "F" "𝟬F"], assumption+)
apply (subgoal_tac "f (𝟬F) = f (𝟬F ±F 𝟬F)") prefer 2 apply simp
apply (thin_tac "𝟬F = 𝟬F ±F 𝟬F")
apply (simp add:aHom_add) apply (frule sym)
apply (thin_tac "f 𝟬F = f 𝟬F ±G f 𝟬F")
apply (frule aHom_mem[of "F" "G" "f" "𝟬F"], assumption+)
apply (frule aGroup.ag_mOp_closed[of "G" "f 𝟬F"], assumption+)
apply (frule aGroup.aassoc[of "G" "-aG (f 𝟬F)" "f 𝟬F" "f 𝟬F"], assumption+)
apply (simp add:aGroup.l_m aGroup.l_zero)
done

lemma ker_inc_zero:"⟦aGroup F; aGroup G; f ∈ aHom F G⟧ ⟹ 𝟬F ∈ kerF,G f"
by (frule aHom_0_0[of "F" "G" "f"], assumption+,
       simp add:ker_def, simp add:aGroup.ag_inc_zero [of "F"])

lemma aHom_inv_inv:"⟦aGroup F; aGroup G; f ∈ aHom F G; a ∈ carrier F⟧ ⟹
                         f (-aF a) = -aG (f a)"
apply (frule aGroup.ag_l_inv1 [of "F" "a"], assumption+,
       frule sym, thin_tac "-aF a ±F a = 𝟬F",
       frule aHom_0_0[of "F" "G" "f"], assumption+,
       frule aGroup.ag_mOp_closed[of "F" "a"], assumption+)
 apply (simp add:aHom_add, thin_tac "𝟬F = -aF a ±F a")
 apply (frule aHom_mem[of "F" "G" "f" "-aF a"], assumption+,
        frule aHom_mem[of "F" "G" "f" "a"], assumption+,
        simp only:aGroup.ag_pOp_commute[of "G" "f (-aF a)" "f a"])
 apply (rule aGroup.ag_inv_unique[of "G"], assumption+)
done

lemma aHom_compos:"⟦aGroup L; aGroup M; aGroup N; f ∈ aHom L M; g ∈ aHom M N ⟧
  ⟹ compos L g f ∈ aHom L N"
apply (simp add:aHom_def [of "L" "N"])
apply (rule conjI)
 apply (rule Pi_I)
 apply (simp add:compos_def compose_def)
 apply (rule aHom_mem [of "M" "N" "g"], assumption+)
 apply (simp add:aHom_mem [of "L" "M" "f"])
apply (rule conjI)
 apply (simp add:compos_def compose_def extensional_def)
apply (rule ballI)+
 apply (simp add:compos_def compose_def)
 apply (simp add:aGroup.ag_pOp_closed)
 apply (simp add:aHom_add)
 apply (rule aHom_add, assumption+)
 apply (simp add:aHom_mem)+
done

lemma aHom_compos_assoc:"⟦aGroup K; aGroup L; aGroup M; aGroup N; f ∈ aHom K L;
      g ∈ aHom L M; h ∈ aHom M N ⟧  ⟹
      compos K h (compos K g f) = compos K (compos L h g) f"
apply (simp add:compos_def compose_def)
apply (rule funcset_eq[of _ "carrier K"])
apply (simp add:restrict_def extensional_def)
apply (simp add:restrict_def extensional_def)
apply (rule ballI, simp)
apply (simp add:aHom_mem)
done

lemma injec_inj_on:"⟦aGroup F; aGroup G; injecF,G f⟧ ⟹ inj_on f (carrier F)"
apply (simp add:inj_on_def)
 apply (rule ballI)+ apply (rule impI)
 apply (simp add:injec_def, erule conjE)
 apply (frule_tac a = x in aHom_mem[of "F" "G" "f"], assumption+,
        frule_tac a = x in aHom_mem[of "F" "G" "f"], assumption+)
 apply (frule_tac x = "f x" in aGroup.ag_r_inv1[of "G"], assumption+)
 apply (simp only:aHom_inv_inv[THEN sym, of "F" "G" "f"])
 apply (frule sym, thin_tac "f x = f y", simp)
 apply (frule_tac x = y in aGroup.ag_mOp_closed[of "F"], assumption+)
 apply (simp add:aHom_add[THEN sym], simp add:ker_def)
 apply (subgoal_tac "x ±F -aF y ∈ {a ∈ carrier F. f a = 𝟬G}",
        simp)
 apply (subst aGroup.ag_eq_diffzero[of "F"], assumption+)
apply (frule_tac x = x and y = "-aF y" in aGroup.ag_pOp_closed[of "F"],
           assumption+)
 apply simp apply blast
done

lemma surjec_surj_to:"surjecR,S f ⟹ surj_to f (carrier R) (carrier S)"
by (simp add:surjec_def)

lemma compos_bijec:"⟦aGroup E; aGroup F; aGroup G; bijecE,F f; bijecF,G g⟧ ⟹
                     bijecE,G (compos E g f)"
apply (simp add:bijec_def, (erule conjE)+)
apply (rule conjI)
 apply (simp add:injec_def, (erule conjE)+)
 apply (simp add:aHom_compos[of "E" "F" "G" "f" "g"])
 apply (rule equalityI, rule subsetI, simp add:ker_def, erule conjE)
 apply (simp add:compos_def compose_def)
 apply (frule_tac a = x in aHom_mem[of "E" "F" "f"], assumption+)
 apply (subgoal_tac "(f x) ∈ {a ∈ carrier F. g a = 𝟬G}", simp)
 apply (subgoal_tac "x ∈ {a ∈ carrier E. f a = 𝟬F}", simp)
 apply blast apply blast
 apply (rule subsetI, simp)
 apply (simp add:ker_def compos_def compose_def)
 apply (simp add:aGroup.ag_inc_zero) apply (simp add:aHom_0_0)

apply (simp add:surjec_def, (erule conjE)+)
 apply (simp add:aHom_compos)
 apply (simp add:aHom_def, (erule conjE)+) apply (simp add:compos_def)
 apply (rule compose_surj[of "f" "carrier E" "carrier F" "g" "carrier G"],
            assumption+)
done

lemma ainvf_aHom:"⟦aGroup F; aGroup G; bijecF,G f⟧ ⟹
                      ainvfF,G f ∈ aHom G F"
apply (subst aHom_def, simp)
 apply (simp add:ainvf_def)
 apply (simp add:bijec_def, erule conjE)
 apply (frule injec_inj_on[of "F" "G" "f"], assumption+)
 apply (simp add:surjec_def, (erule conjE)+)
 apply (simp add:aHom_def, (erule conjE)+)
 apply (frule inv_func[of "f" "carrier F" "carrier G"], assumption+, simp)
apply (rule conjI)
 apply (simp add:invfun_def)
apply (rule ballI)+
 apply (frule_tac x = a in funcset_mem[of "Ifn F G f" "carrier G" "carrier F"],
      assumption+,
      frule_tac x = b in funcset_mem[of "Ifn F G f" "carrier G" "carrier F"],
      assumption+,
      frule_tac x = a and y = b in aGroup.ag_pOp_closed[of "G"], assumption+,
      frule_tac x = "a ±G b" in funcset_mem[of "Ifn F G f" "carrier G"
       "carrier F"], assumption+)
 apply (frule_tac a = "(Ifn F G f) a" and b = "(Ifn F G f) b" in
           aHom_add[of "F" "G" "f"], assumption+, simp add:injec_def,
           assumption+,
           thin_tac "∀a∈carrier F. ∀b∈carrier F. f (a ±F b) = f a ±G f b")
 apply (simp add:invfun_r[of "f" "carrier F" "carrier G"])
 apply (frule_tac x = a and y = b in aGroup.ag_pOp_closed[of "G"], assumption+) apply (frule_tac b = "a ±G b" in invfun_r[of "f" "carrier F" "carrier G"],
           assumption+)
 apply (simp add:inj_on_def)
 apply (frule_tac x = "(Ifn F G f) a" and y = "(Ifn F G f) b" in
          aGroup.ag_pOp_closed, assumption+)
 apply (frule_tac x = "(Ifn F G f) (a ±G b)" in bspec, assumption,
        thin_tac "∀x∈carrier F. ∀y∈carrier F. f x = f y ⟶ x = y")
 apply (frule_tac x = "(Ifn F G f) a ±F (Ifn F G f) b" in bspec,
            assumption,
        thin_tac "∀y∈carrier F.
              f ((Ifn F G f) (a ±G b)) = f y ⟶ (Ifn F G f) (a ±G b) = y")
 apply simp
done

lemma ainvf_bijec:"⟦aGroup F; aGroup G; bijecF,G f⟧ ⟹ bijecG,F (ainvfF,G f)"
apply (subst bijec_def)
apply (simp add:injec_def surjec_def)
apply (simp add:ainvf_aHom)
apply (rule conjI)
 apply (rule equalityI)
 apply (rule subsetI, simp add:ker_def, erule conjE)
 apply (simp add:ainvf_def)
 apply (simp add:bijec_def,(erule conjE)+, simp add:surjec_def,
         (erule conjE)+, simp add:aHom_def, (erule conjE)+)
 apply (frule injec_inj_on[of "F" "G" "f"], assumption+)
 apply (subst invfun_r[THEN sym, of "f" "carrier F" "carrier G"], assumption+)
 apply (simp add:injec_def, (erule conjE)+, simp add:aHom_0_0)

 apply (rule subsetI, simp add:ker_def)
 apply (simp add:aGroup.ex_zero)
 apply (frule ainvf_aHom[of "F" "G" "f"], assumption+)
 apply (simp add:aHom_0_0)

apply (frule ainvf_aHom[of "F" "G" "f"], assumption+,
        simp add:aHom_def, (erule conjE)+,
       rule surj_to_test[of "ainvfF,G f" "carrier G" "carrier F"],
        assumption+)
 apply (rule ballI,
        thin_tac "∀a∈carrier G. ∀b∈carrier G.
               (ainvfF,G f) (a ±G b) = (ainvfF,G f) a ±F (ainvfF,G f) b")
 apply (simp add:bijec_def, erule conjE)
  apply (frule injec_inj_on[of "F" "G" "f"], assumption+)
  apply (simp add:surjec_def aHom_def, (erule conjE)+)
  apply (subst ainvf_def)
 apply (frule_tac a = b in invfun_l[of "f" "carrier F" "carrier G"],
                  assumption+,
        frule_tac x = b in funcset_mem[of "f" "carrier F" "carrier G"],
                  assumption+, blast)
done

lemma ainvf_l:"⟦aGroup E; aGroup F; bijecE,F f; x ∈ carrier E⟧ ⟹
                      (ainvfE,F f) (f x) = x"
apply (simp add:bijec_def, erule conjE)
apply (frule injec_inj_on[of "E" "F" "f"], assumption+)
apply (simp add:surjec_def aHom_def, (erule conjE)+)
apply (frule invfun_l[of "f" "carrier E" "carrier F" "x"], assumption+)
apply (simp add:ainvf_def)
done

lemma (in aGroup) aI_aHom:"aIA ∈ aHom A A"
by (simp add:aHom_def ag_idmap_def ag_idmap_def ag_pOp_closed)

lemma compos_aI_l:"⟦aGroup A; aGroup B; f ∈ aHom A B⟧ ⟹ compos A aIB f = f"
apply (simp add:compos_def)
apply (rule funcset_eq[of _ "carrier A"])
 apply (simp add:compose_def extensional_def)
 apply (simp add:aHom_def)
apply (rule ballI)
 apply (frule_tac a = x in aHom_mem[of "A" "B" "f"], assumption+)
 apply (simp add:compose_def ag_idmap_def)
done

lemma compos_aI_r:"⟦aGroup A; aGroup B; f ∈ aHom A B⟧ ⟹ compos A f aIA = f"
apply (simp add:compos_def)
apply (rule funcset_eq[of _ "carrier A"])
 apply (simp add:compose_def extensional_def)
 apply (simp add:aHom_def)
apply (rule ballI)
 apply (simp add:compose_def ag_idmap_def)
done

lemma compos_aI_surj:"⟦aGroup A; aGroup B; f ∈ aHom A B; g ∈ aHom B A;
                      compos A g f = aIA⟧ ⟹ surjecB,A g"
apply (simp add:surjec_def)
apply (rule surj_to_test[of "g" "carrier B" "carrier A"])
 apply (simp add:aHom_def)
apply (rule ballI)
 apply (subgoal_tac "compos A g f b = aIA b",
        thin_tac "compos A g f = aIA")
 apply (simp add:compos_def compose_def ag_idmap_def)
 apply (frule_tac a = b in aHom_mem[of "A" "B" "f"], assumption+, blast)
 apply simp
done

lemma compos_aI_inj:"⟦aGroup A; aGroup B; f ∈ aHom A B; g ∈ aHom B A;
                      compos A g f = aIA⟧ ⟹ injecA,B f"
apply (simp add:injec_def)
apply (simp add:ker_def)
apply (rule equalityI)
 apply (rule subsetI, simp, erule conjE)
 apply (subgoal_tac "compos A g f x = aIA x",
        thin_tac "compos A g f = aIA")
 apply (simp add:compos_def compose_def)
 apply (simp add:aHom_0_0 ag_idmap_def) apply simp

 apply (rule subsetI, simp)
 apply (simp add:aGroup.ag_inc_zero aHom_0_0)
done

lemma (in aGroup) Ag_ind_aHom:"⟦f ∈ carrier A → D;
      bij_to f (carrier A) (D::'d set)⟧ ⟹ Agii A f ∈ aHom A (Ag_ind A f)"
apply (simp add:aHom_def)
 apply (unfold bij_to_def, frule conjunct1, frule conjunct2, fold bij_to_def)
 apply (simp add:Ag_ind_carrier surj_to_def)
apply (rule conjI)
 apply (simp add:Agii_def Pi_def)
 apply (simp add:Agii_def)
 apply (simp add:Ag_ind_def Pi_def)
 apply (unfold bij_to_def, frule conjunct1, fold bij_to_def)
 apply (simp add:invfun_l)
 apply (simp add:ag_pOp_closed)
done

lemma (in aGroup) Agii_mem:"⟦f ∈ carrier A → D; x ∈ carrier A;
      bij_to f (carrier A) (D::'d set)⟧ ⟹ Agii A f x ∈ carrier (Ag_ind A f)"
apply (simp add:Agii_def Ag_ind_carrier)
done

lemma Ag_ind_bijec:"⟦aGroup A; f ∈ carrier A → D;
      bij_to f (carrier A) (D::'d set)⟧ ⟹ bijecA, (Ag_ind A f) (Agii A f)"
apply (frule aGroup.Ag_ind_aHom[of "A" "f" "D"], assumption+)
apply (frule aGroup.Ag_ind_aGroup[of "A" "f" "D"], assumption+)
apply (simp add:bijec_def)
 apply (rule conjI)
 apply (simp add:injec_def)
 apply (rule equalityI)
 apply (rule subsetI)
 apply (simp add:ker_def, erule conjE)
apply (frule aHom_0_0[of "A" "Ag_ind A f" "Agii A f"], assumption+)
 apply (rotate_tac -2, frule sym, thin_tac "Agii A f x = 𝟬Ag_ind A f", simp)
 apply (frule aGroup.ag_inc_zero[of "A"], simp add:Agii_def)
 apply (unfold bij_to_def, frule conjunct2, fold bij_to_def)
 apply (frule aGroup.ag_inc_zero[of "A"])
 apply (simp add:injective_iff[THEN sym, of "f" "carrier A" "𝟬A"])
 apply (rule subsetI, simp)
 apply (subst ker_def, simp)
 apply (simp add:aGroup.ag_inc_zero, simp add:aHom_0_0)

apply (subst surjec_def)
apply (unfold bij_to_def, frule conjunct1, fold bij_to_def, simp)
 apply (simp add:aGroup.Ag_ind_carrier surj_to_def Agii_def)
done

definition
  aimg :: "[('b, 'm1) aGroup_scheme, _, 'b ⇒ 'a]
            ⇒ 'a aGroup"  ("(3aimg_,_ _)" [82,82,83]82) where
  "aimgF,A f = A ⦇ carrier := f ` (carrier F), pop := pop A, mop := mop A,
                  zero := zero A⦈"

lemma ker_subg:"⟦aGroup F; aGroup G; f ∈ aHom F G ⟧ ⟹ F +> kerF,G f"
apply (rule aGroup.asubg_test, assumption+)
apply (rule subsetI)
 apply (simp add:ker_def)
apply (simp add:ker_def)
apply (frule aHom_0_0 [of "F" "G" "f"], assumption+)
apply (frule aGroup.ex_zero [of "F"]) apply blast
apply (rule ballI)+
apply (simp add:ker_def) apply (erule conjE)+
apply (frule_tac x = b in aGroup.ag_mOp_closed[of "F"], assumption+)
apply (rule conjI)
apply (rule aGroup.ag_pOp_closed, assumption+)
apply (simp add:aHom_add)
apply (simp add:aHom_inv_inv)
apply (simp add:aGroup.ag_inv_zero[of "G"])
apply (cut_tac aGroup.ex_zero[of "G"], simp add:aGroup.l_zero)
apply assumption
done

subsection "Quotient abelian group"

definition
  ar_coset :: "['a, _ , 'a set] ⇒ 'a set" (** a_rcs **)
     ("(3_ ⊎_ _)" [66,66,67]66) where
  "ar_coset a A H = H ∙(b_ag A) a"

definition
  set_ar_cos :: "[_ , 'a set] ⇒ 'a set set" where
  "set_ar_cos A I = {X. ∃a∈carrier A. X = ar_coset a A I}"

definition
  aset_sum :: "[_ , 'a set, 'a set] ⇒ 'a set" where
  "aset_sum A H K = s_top (b_ag A) H K"

abbreviation
  ASBOP1  (infix "∓ı" 60) where
  "H ∓A K == aset_sum A H K"

lemma (in aGroup) ag_a_in_ar_cos:"⟦A +> H; a ∈ carrier A⟧ ⟹ a ∈ a ⊎A H"
apply (simp add:ar_coset_def)
apply (simp add:asubGroup_def)
apply (cut_tac b_ag_group)
apply (rule Group.a_in_rcs[of "b_ag A" "H" "a"], assumption+)
apply (simp add:ag_carrier_carrier[THEN sym])
done

lemma (in aGroup) r_cos_subset:"⟦A +> H; X ∈ set_rcs (b_ag A) H⟧ ⟹
                   X ⊆ carrier A"
apply (simp add:asubGroup_def set_rcs_def)
apply (erule bexE)
apply (cut_tac  b_ag_group)
apply (frule_tac a = a in Group.rcs_subset[of "b_ag A" "H"], assumption+)
apply (simp add:ag_carrier_carrier)
done

lemma (in aGroup) asubg_costOp_commute:"⟦A +> H; x ∈ set_rcs (b_ag A) H;
       y ∈ set_rcs (b_ag A) H⟧ ⟹
             c_top (b_ag A) H x y = c_top (b_ag A) H y x"
apply (simp add:set_rcs_def, (erule bexE)+, simp)
apply (cut_tac b_ag_group)
apply (subst Group.c_top_welldef[THEN sym], assumption+,
       simp add:asubg_nsubg,
       (simp add:ag_carrier_carrier)+)
apply (subst Group.c_top_welldef[THEN sym], assumption+,
       simp add:asubg_nsubg,
       (simp add:ag_carrier_carrier)+)
apply (simp add:agop_gop)
 apply (simp add:ag_pOp_commute)
done

lemma (in aGroup) Subg_Qgroup:"A +> H ⟹ aGroup (aqgrp A H)"
apply (frule asubg_nsubg[of "H"])
apply (cut_tac b_ag_group)
apply (simp add:aGroup_def)
 apply (simp add:aqgrp_def)
 apply (simp add:Group.Qg_top [of "b_ag A" "H"])
 apply (simp add:Group.Qg_iop [of "b_ag A" "H"])
 apply (frule Group.nsg_sg[of "b_ag A" "H"], assumption+,
        simp add:Group.unit_rcs_in_set_rcs[of "b_ag A" "H"])
apply (simp add:Group.Qg_tassoc)
apply (simp add:asubg_costOp_commute)
apply (simp add:Group.Qg_i[of "b_ag A" "H"])
apply (simp add:Group.Qg_unit[of "b_ag A" "H"])
done

lemma (in aGroup) plus_subgs:"⟦A +> H1; A +> H2⟧ ⟹ A +> H1 ∓ H2"
apply (simp add:aset_sum_def)
 apply (frule asubg_nsubg[of "H2"])
 apply (simp add:asubGroup_def[of _ "H1"])
apply (cut_tac "b_ag_group")
apply (frule Group.smult_sg_nsg[of "b_ag A" "H1" "H2"], assumption+)
apply (simp add:asubGroup_def)
done

lemma (in aGroup) set_sum:"⟦H ⊆ carrier A; K ⊆ carrier A⟧ ⟹
                    H ∓ K = {x. ∃h∈H. ∃k∈K. x = h ± k}"
 apply (cut_tac b_ag_group)
apply (rule equalityI)
 apply (rule subsetI)
 apply (simp add:aset_sum_def)
 apply (simp add:agop_gop[THEN sym] s_top_def, (erule bexE)+,
        frule sym, thin_tac "xa ⋅b_ag A y = x", simp, blast)
 apply (rule subsetI, simp add:aset_sum_def, (erule bexE)+)
 apply (frule_tac c = h in subsetD[of H "carrier A"], assumption+,
        frule_tac c = k in subsetD[of K "carrier A"], assumption+)
 apply (simp add:agop_gop[THEN sym], simp add:s_top_def, blast)
done

lemma (in aGroup) mem_set_sum:"⟦H ⊆ carrier A; K ⊆ carrier A;
                  x ∈ H ∓ K ⟧ ⟹ ∃h∈H. ∃k∈K. x = h ± k"
by (simp add:set_sum)

lemma (in aGroup) mem_sum_subgs:"⟦A +> H; A +> K; h ∈ H; k ∈ K⟧ ⟹
                    h ± k ∈ H ∓ K"
apply (frule asubg_subset[of H],
       frule asubg_subset[of K],
       simp add:set_sum, blast)
done

lemma (in aGroup) aqgrp_carrier:"A +> H ⟹
                   set_rcs (b_ag A ) H = set_ar_cos A H"
apply (simp add:set_ar_cos_def)
apply (simp add:ag_carrier_carrier [THEN sym])
apply (simp add:ar_coset_def set_rcs_def)
done

lemma (in aGroup) unit_in_set_ar_cos:"A +> H ⟹ H ∈ set_ar_cos A H"
apply (simp add:aqgrp_carrier[THEN sym])
apply (cut_tac b_ag_group) apply (simp add:asubGroup_def)
apply (simp add:Group.unit_rcs_in_set_rcs[of "b_ag A" "H"])
done

lemma (in aGroup) aqgrp_pOp_maps:"⟦A +> H; a ∈ carrier A; b ∈ carrier A⟧ ⟹
      pop (aqgrp A H) (a ⊎A H) (b ⊎A H) = (a ± b) ⊎A H"
apply (simp add:aqgrp_def ar_coset_def)
apply (cut_tac b_ag_group)
apply (frule asubg_nsubg)
apply (simp add:ag_carrier_carrier [THEN sym])
apply (subst Group.c_top_welldef [THEN sym], assumption+)
apply (simp add:agop_gop)
done

lemma (in aGroup) aqgrp_mOp_maps:"⟦A +> H; a ∈ carrier A⟧ ⟹
                   mop (aqgrp A H) (a ⊎A H) = (-a a) ⊎A H"
apply (simp add:aqgrp_def ar_coset_def)
apply (cut_tac b_ag_group)
apply (frule asubg_nsubg)
apply (simp add:ag_carrier_carrier [THEN sym])
apply (subst Group.c_iop_welldef, assumption+)
apply (simp add:agiop_giop)
done

lemma (in aGroup) aqgrp_zero:"A +> H ⟹ zero (aqgrp A H) = H"
apply (simp add:aqgrp_def)
done

lemma (in aGroup) arcos_fixed:"⟦A +> H; a ∈ carrier A; h ∈ H ⟧ ⟹
                              a ⊎A H = (h ± a) ⊎A H"
 apply (cut_tac b_ag_group)
 apply (simp add:agop_gop[THEN sym])
 apply (simp add:ag_carrier_carrier[THEN sym])
 apply (simp add:ar_coset_def)
 apply (simp add:asubGroup_def)
 apply (simp add:Group.rcs_fixed1[of "b_ag A" "H"])
done

definition
  rind_hom :: "[('a, 'more) aGroup_scheme, ('b, 'more1) aGroup_scheme,
                ('a  ⇒ 'b)] ⇒ ('a set  ⇒ 'b )" where
  "rind_hom A B f = (λX∈(set_ar_cos A (kerA,B f)). f (SOME x. x ∈ X))"

abbreviation
  RIND_HOM  ("(3_°_,_)" [82,82,83]82)  where
  "f°F,G == rind_hom F G f"
                                                          (* tOp → pOp *)

section "Direct product and direct sum of abelian groups, in general case"

definition
  Un_carrier :: "['i set, 'i ⇒ ('a, 'more) aGroup_scheme] ⇒ 'a set" where
  "Un_carrier I A = ⋃{X. ∃i∈I. X = carrier (A i)}"

definition
  carr_prodag :: "['i set, 'i ⇒ ('a, 'more) aGroup_scheme] ⇒ ('i  ⇒ 'a ) set" where
  "carr_prodag I A = {f. f ∈ extensional I ∧ f ∈ I → (Un_carrier I A) ∧
                                               (∀i∈I. f i ∈ carrier (A i))}"

definition
  prod_pOp :: "['i set,  'i ⇒ ('a, 'more) aGroup_scheme] ⇒
                                 ('i ⇒ 'a) ⇒ ('i ⇒ 'a) ⇒  ('i ⇒ 'a)" where
  "prod_pOp I A = (λf∈carr_prodag I A. λg∈carr_prodag I A.
                                        λx∈I. (f x) ±(A x) (g x))"

definition
  prod_mOp :: "['i set, 'i ⇒ ('a, 'more) aGroup_scheme] ⇒
                                  ('i ⇒ 'a) ⇒ ('i ⇒ 'a)" where
  "prod_mOp I A = (λf∈carr_prodag I A. λx∈I. (-a(A x) (f x)))"

definition
  prod_zero :: "['i set,  'i  ⇒ ('a, 'more) aGroup_scheme] ⇒ ('i ⇒ 'a)" where
  "prod_zero I A = (λx∈I. 𝟬(A x))"

definition
  prodag :: "['i set, 'i ⇒ ('a, 'more) aGroup_scheme] ⇒ ('i ⇒ 'a) aGroup" where
  "prodag I A = ⦇ carrier = carr_prodag I A,
    pop = prod_pOp I A, mop = prod_mOp I A,
    zero = prod_zero I A⦈"

definition
  PRoject :: "['i set, 'i ⇒ ('a, 'more) aGroup_scheme, 'i]
                   ⇒ ('i ⇒ 'a) ⇒ 'a" ("(3π_,_,_)" [82,82,83]82) where
  "PRoject I A x = (λf ∈ carr_prodag I A. f x)"

abbreviation
  PRODag  ("(aΠ_ _)" [72,73]72) where
  "aΠI A == prodag I A"

lemma prodag_comp_i:"⟦a ∈ carr_prodag I A; i ∈ I⟧ ⟹ (a i) ∈ carrier (A i)"
by (simp add:carr_prodag_def)

lemma prod_pOp_func:"∀k∈I. aGroup (A k) ⟹
    prod_pOp I A ∈ carr_prodag I A → carr_prodag I A → carr_prodag I A"
apply (rule Pi_I)+
apply(rename_tac a b)
 apply (subst carr_prodag_def) apply (simp add:CollectI)
apply (rule conjI)
 apply (simp add:prod_pOp_def restrict_def extensional_def)
apply (rule conjI)
 apply (rule Pi_I)
 apply (simp add:prod_pOp_def)
 apply (subst Un_carrier_def) apply (simp add:CollectI)
 apply (frule_tac x = x in bspec, assumption,
        thin_tac "∀k∈I. aGroup (A k)")
 apply (simp add:carr_prodag_def) apply (erule conjE)+
 apply (thin_tac "a ∈ I → Un_carrier I A")
 apply (thin_tac "b ∈ I → Un_carrier I A")
 apply (frule_tac x = x in bspec, assumption,
        thin_tac "∀i∈I. a i ∈ carrier (A i)",
        frule_tac x = x in bspec, assumption,
        thin_tac "∀i∈I. b i ∈ carrier (A i)")
 apply (frule_tac x = "a x" and y = "b x" in aGroup.ag_pOp_closed, assumption+)
 apply blast
apply (rule ballI)
 apply (simp add:prod_pOp_def)
 apply (rule_tac A = "A i" and x = "a i" and y = "b i" in aGroup.ag_pOp_closed)
 apply simp
 apply (simp add:carr_prodag_def)+
done

lemma prod_pOp_mem:"⟦∀k∈I. aGroup (A k); X ∈ carr_prodag I A;
 Y ∈ carr_prodag I A⟧ ⟹ prod_pOp I A X Y ∈ carr_prodag I A"
apply (frule prod_pOp_func)
apply (frule funcset_mem[of "prod_pOp I A"
                        "carr_prodag I A" "carr_prodag I A → carr_prodag I A"
                         "X"], assumption+)
apply (rule funcset_mem[of "prod_pOp I A X" "carr_prodag I A"
                           "carr_prodag I A" "Y"], assumption+)
done

lemma prod_pOp_mem_i:"⟦∀k∈I. aGroup (A k); X ∈ carr_prodag I A;
 Y ∈ carr_prodag I A; i ∈ I⟧ ⟹ prod_pOp I A X Y i = (X i) ±(A i) (Y i)"
apply (simp add:prod_pOp_def)
done

lemma prod_mOp_func:"∀k∈I. aGroup (A k) ⟹
                  prod_mOp I A ∈ carr_prodag I A → carr_prodag I A"
apply (rule Pi_I)
 apply (simp add:prod_mOp_def carr_prodag_def)
 apply (erule conjE)+
apply (rule conjI)
 apply (rule Pi_I) apply simp
 apply (rename_tac f j)
 apply (frule_tac f = f and x = j in funcset_mem [of _ "I" "Un_carrier I A"],
                             assumption+)
 apply (thin_tac "f ∈ I → Un_carrier I A")
 apply (frule_tac x = j in bspec, assumption,
        thin_tac "∀k∈I. aGroup (A k)",
        frule_tac x = j in bspec, assumption,
        thin_tac "∀i∈I. f i ∈ carrier (A i)")
 apply (thin_tac "f j ∈ Un_carrier I A")
 apply (simp add:Un_carrier_def)
 apply (frule aGroup.ag_mOp_closed, assumption+)
 apply blast
apply (rule ballI)
 apply (rule_tac A = "A i" and x = "x i" in aGroup.ag_mOp_closed)
 apply simp+
done

lemma prod_mOp_mem:"⟦∀j∈I. aGroup (A j); X ∈ carr_prodag I A⟧ ⟹
                         prod_mOp I A X ∈ carr_prodag I A"
apply (frule prod_mOp_func)
apply (simp add:Pi_def)
done

lemma prod_mOp_mem_i:"⟦∀j∈I. aGroup (A j); X ∈ carr_prodag I A; i ∈ I⟧ ⟹
                         prod_mOp I A X i = -a(A i) (X i)"
apply (simp add:prod_mOp_def)
done

lemma prod_zero_func:"∀k∈I. aGroup (A k) ⟹
                           prod_zero I A ∈ carr_prodag I A"
apply (simp add:prod_zero_def prodag_def)
apply (simp add:carr_prodag_def)
apply (rule conjI)
 apply (rule Pi_I) apply simp
 apply (subgoal_tac "aGroup (A x)") prefer 2 apply simp
 apply (thin_tac "∀k∈I. aGroup (A k)")
 apply (simp add:Un_carrier_def)
 apply (frule aGroup.ex_zero)
 apply auto
apply (frule_tac x = i in bspec, assumption,
       thin_tac "∀k∈I. aGroup (A k)")
 apply (simp add:aGroup.ex_zero)
done

lemma prod_zero_i:"⟦∀k∈I. aGroup (A k); i ∈ I⟧ ⟹
                           prod_zero I A i = 𝟬(A i) "
by (simp add:prod_zero_def)

lemma carr_prodag_mem_eq:"⟦∀k∈I. aGroup (A k); X ∈ carr_prodag I A;
Y ∈ carr_prodag I A; ∀l∈I. (X l) = (Y l) ⟧ ⟹ X = Y"
apply (simp add:carr_prodag_def)
apply (erule conjE)+
apply (simp add:funcset_eq)
done

lemma prod_pOp_assoc:"⟦∀k∈I. aGroup (A k); a ∈ carr_prodag I A;
      b ∈ carr_prodag I A; c ∈ carr_prodag I A⟧ ⟹
      prod_pOp I A (prod_pOp I A a b) c =
                               prod_pOp I A a (prod_pOp I A b c)"
 apply (frule_tac X = a and Y = b in prod_pOp_mem[of "I" "A"], assumption+,
        frule_tac X = b and Y = c in prod_pOp_mem[of "I" "A"], assumption+,
        frule_tac X = "prod_pOp I A a b" and Y = c in prod_pOp_mem[of "I"
            "A"], assumption+,
        frule_tac X = a and Y = "prod_pOp I A b c" in prod_pOp_mem[of "I"
            "A"], assumption+)
 apply (rule carr_prodag_mem_eq[of "I" "A"], assumption+,
       rule ballI)
 apply (simp add:prod_pOp_mem_i)
 apply (frule_tac x = l in bspec, assumption,
        thin_tac "∀k∈I. aGroup (A k)")
 apply (rule aGroup.ag_pOp_assoc, assumption)
 apply (simp add:prodag_comp_i)+
done

lemma prod_pOp_commute:"⟦∀k∈I. aGroup (A k); a ∈ carr_prodag I A;
                           b ∈ carr_prodag I A⟧ ⟹
                           prod_pOp I A a b = prod_pOp I A b a"
apply (frule_tac X = a and Y = b in prod_pOp_mem[of "I" "A"], assumption+,
         frule_tac X = b and Y = a in prod_pOp_mem[of "I" "A"], assumption+)
apply (rule carr_prodag_mem_eq[of "I" "A"], assumption+,
        rule ballI)
 apply (simp add:prod_pOp_mem_i)
 apply (frule_tac x = l in bspec, assumption,
        thin_tac "∀k∈I. aGroup (A k)",
        rule aGroup.ag_pOp_commute, assumption)
 apply (simp add:prodag_comp_i)+
done

lemma prodag_aGroup:"∀k∈I. aGroup (A k) ⟹ aGroup (prodag I A)"
apply (simp add:aGroup_def [of "(prodag I A)"])
apply (simp add:prodag_def)
 apply (simp add:prod_pOp_func)
 apply (simp add:prod_mOp_func)
 apply (simp add:prod_zero_func)
apply (rule conjI)
 apply (rule allI, rule impI)+
 apply (simp add:prod_pOp_assoc)
apply (rule conjI)
  apply (rule allI, rule impI)+
  apply (simp add:prod_pOp_commute)
apply (rule conjI)
 apply (rule allI, rule impI)
 apply (frule_tac X = a in prod_mOp_mem [of "I" "A"], assumption+)
 apply (frule_tac X = "prod_mOp I A a" and Y = a in prod_pOp_mem[of "I" "A"],
        assumption+)
 apply (rule carr_prodag_mem_eq[of "I" "A"], assumption+)
 apply (simp add:prod_zero_func)
 apply (rule ballI)
 apply (simp add:prod_pOp_mem_i,
         simp add:prod_zero_i) apply (
         simp add:prod_mOp_mem_i)
  apply (frule_tac x = l in bspec, assumption,
         thin_tac "∀k∈I. aGroup (A k)",
         rule aGroup.l_m, assumption+, simp add:prodag_comp_i)
apply (rule allI, rule impI)
  apply (frule_tac prod_zero_func[of "I" "A"],
         frule_tac Y = a in prod_pOp_mem[of "I" "A" "prod_zero I A"],
          assumption+)
  apply (rule carr_prodag_mem_eq[of "I" "A"], assumption+)
  apply (rule ballI)
  apply (subst prod_pOp_mem_i[of "I" "A"], assumption+,
         subst prod_zero_i[of "I" "A"], assumption+)
  apply (frule_tac x = l in bspec, assumption,
         rule aGroup.l_zero, assumption+,
         simp add:prodag_comp_i)
done

lemma prodag_carrier:"∀k∈I. aGroup (A k) ⟹
            carrier (prodag I A) = carr_prodag I A"
by (simp add:prodag_def)

lemma prodag_elemfun:"⟦∀k∈I. aGroup (A k); f ∈ carrier (prodag I A)⟧ ⟹
         f ∈ extensional I"
apply (simp add:prodag_carrier)
apply (simp add:carr_prodag_def)
done

lemma prodag_component:"⟦f ∈ carrier (prodag I A); i ∈ I ⟧ ⟹
                              f i ∈ carrier (A i)"
by (simp add:prodag_def carr_prodag_def)

lemma prodag_pOp:"∀k∈I. aGroup (A k) ⟹
                  pop (prodag I A) = prod_pOp I A"
apply (simp add:prodag_def)
done

lemma prodag_iOp:"∀k∈I. aGroup (A k) ⟹
                  mop (prodag I A) = prod_mOp I A"
apply (simp add:prodag_def)
done

lemma prodag_zero:"∀k∈I. aGroup (A k) ⟹
                  zero (prodag I A) = prod_zero I A"
apply (simp add:prodag_def)
done

lemma prodag_sameTr0:"⟦∀k∈I. aGroup (A k); ∀k∈I. A k = B k⟧
                               ⟹ Un_carrier I A = Un_carrier I B"
apply (simp add:Un_carrier_def)
done

lemma prodag_sameTr1:"⟦∀k∈I. aGroup (A k); ∀k∈I. A k = B k⟧
                               ⟹ carr_prodag I A = carr_prodag I B"
apply (rule equalityI)
 apply (rule subsetI)
 apply (simp add:carr_prodag_def, (erule conjE)+)
 apply (rule Pi_I)
 apply (subst Un_carrier_def, simp, blast)

apply (rule subsetI)
 apply (simp add:carr_prodag_def, (erule conjE)+)
 apply (rule Pi_I)
 apply (subst Un_carrier_def, simp)
 apply blast
done

lemma prodag_sameTr2:"⟦∀k∈I. aGroup (A k); ∀k∈I. A k = B k⟧
                               ⟹ prod_pOp I A = prod_pOp I B"
apply (frule prodag_sameTr1 [of "I" "A" "B"], assumption+)
apply (simp add:prod_pOp_def)
apply (rule bivar_func_eq)
apply (rule ballI)+
apply (rule funcset_eq [of _ "I"])
 apply (simp add:restrict_def extensional_def)+
done

lemma prodag_sameTr3:"⟦∀k∈I. aGroup (A k); ∀k∈I. A k = B k⟧
                               ⟹ prod_mOp I A = prod_mOp I B"
apply (frule prodag_sameTr1 [of "I" "A" "B"], assumption+)
apply (simp add:prod_mOp_def)
apply (rule funcset_eq [of _ "carr_prodag I B"])
 apply (simp add:restrict_def extensional_def)
 apply (simp add:restrict_def extensional_def)
apply (rule ballI)
apply (rename_tac g) apply simp
apply (rule funcset_eq [of _ "I"])
 apply (simp add:restrict_def extensional_def)+
done

lemma prodag_sameTr4:"⟦∀k∈I. aGroup (A k); ∀k∈I. A k = B k⟧
                               ⟹ prod_zero I A = prod_zero I B"
apply (simp add:prod_zero_def)
apply (rule funcset_eq [of _ "I"])
 apply (simp add:restrict_def extensional_def)+
done

lemma prodag_same:"⟦∀k∈I. aGroup (A k); ∀k∈I. A k = B k⟧
                               ⟹ prodag I A = prodag I B"
apply (frule prodag_sameTr1, assumption+)
apply (frule prodag_sameTr2, assumption+)
apply (frule prodag_sameTr3, assumption+)
apply (frule prodag_sameTr4, assumption+)
apply (simp add:prodag_def)
done

lemma project_mem:"⟦∀k∈I. aGroup (A k); j ∈ I; x ∈ carrier (prodag I A)⟧ ⟹
                         (PRoject I A j) x  ∈ carrier (A j)"
apply (simp add:PRoject_def)
apply (simp add:prodag_def)
apply (simp add:carr_prodag_def)
done

lemma project_aHom:"⟦∀k∈I. aGroup (A k); j ∈ I⟧ ⟹
                         PRoject I A j ∈ aHom (prodag I A) (A j)"
apply (simp add:aHom_def)
apply (rule conjI)
 apply (simp add:project_mem)
apply (rule conjI)
 apply (simp add:PRoject_def restrict_def extensional_def)
 apply (rule allI, rule impI, simp add:prodag_def)
apply (rule ballI)+
 apply (simp add:prodag_def)
 apply (simp add:prod_pOp_def)
 apply (frule_tac X = a and Y = b in prod_pOp_mem[of I A], assumption+)
 apply (simp add:prod_pOp_def)
 apply (simp add:PRoject_def)
done

lemma project_aHom1:"∀k∈I. aGroup (A k) ⟹
                      ∀j ∈ I. PRoject I A j ∈ aHom (prodag I A) (A j)"
apply (rule ballI)
apply (rule project_aHom, assumption+)
done

definition
  A_to_prodag :: "[('a, 'm) aGroup_scheme, 'i set, 'i ⇒('a ⇒ 'b),
   'i  ⇒ ('b, 'm1) aGroup_scheme] ⇒ ('a ⇒ ('i ⇒'b))" where
 "A_to_prodag A I S B = (λa∈carrier A. λk∈I. S k a)"

 (* I is an index set, A is an abelian group, S: I → carrier A →
  carrier (prodag I B),   s i ∈ carrier A → B i  *)

lemma A_to_prodag_mem:"⟦aGroup A; ∀k∈I. aGroup (B k);  ∀k∈I. (S k) ∈
 aHom A (B k); x ∈ carrier A ⟧ ⟹ A_to_prodag A I S B x ∈ carr_prodag I B"
apply (simp add:carr_prodag_def)
apply (rule conjI)
apply (simp add:A_to_prodag_def extensional_def restrict_def)
apply (simp add:Pi_def restrict_def A_to_prodag_def)
apply (rule conjI)
apply (rule allI) apply (rule impI)
apply (simp add:Un_carrier_def)
 apply (rotate_tac 2,
        frule_tac x = xa in bspec, assumption,
        thin_tac "∀k∈I. S k ∈ aHom A (B k)")
 apply (simp add:aHom_def) apply (erule conjE)+
 apply (frule_tac f = "S xa" and A = "carrier A" and B = "carrier (B xa)"
           and x = x in funcset_mem, assumption+)
 apply blast
apply (rule ballI)
 apply (rotate_tac 2,
        frule_tac x = i in bspec, assumption,
        thin_tac "∀k∈I. S k ∈ aHom A (B k)")
 apply (simp add:aHom_def) apply (erule conjE)+
 apply (simp add:Pi_def)
done

lemma A_to_prodag_aHom:"⟦aGroup A; ∀k∈I. aGroup (B k); ∀k∈I. (S k) ∈
 aHom A (B k) ⟧  ⟹ A_to_prodag A I S B ∈ aHom A (aΠI B)"
apply (simp add:aHom_def [of "A" "aΠI B"])
apply (rule conjI)
 apply (simp add:prodag_def A_to_prodag_mem)

apply (rule conjI)
apply (simp add:A_to_prodag_def restrict_def extensional_def)
apply (rule ballI)+
 apply (frule_tac x = a and y = b in aGroup.ag_pOp_closed, assumption+)
 apply (frule_tac x = "a ±A b" in A_to_prodag_mem [of "A" "I" "B" "S"],
                                                       assumption+)
 apply (frule_tac x = a in A_to_prodag_mem [of "A" "I" "B" "S"],
                                                       assumption+)
 apply (frule_tac x = b in A_to_prodag_mem [of "A" "I" "B" "S"],
                                                       assumption+)
 apply (frule prodag_aGroup [of "I" "B"])
 apply (frule_tac x = a in A_to_prodag_mem[of "A" "I" "B" "S"], assumption+,
        frule_tac x = b in A_to_prodag_mem[of "A" "I" "B" "S"], assumption+,
        frule_tac x = "a ±A b" in A_to_prodag_mem[of "A" "I" "B" "S"],
                                                 assumption+)
 apply (frule prodag_aGroup[of "I" "B"],
        frule_tac x = "A_to_prodag A I S B a" and
 y = "A_to_prodag A I S B b" in aGroup.ag_pOp_closed [of "aΠI B"])
 apply (simp add:prodag_carrier)
 apply (simp add:prodag_carrier)
 apply (rule carr_prodag_mem_eq, assumption+)
 apply (simp add:prodag_carrier)
 apply (rule ballI)
 apply (simp add:A_to_prodag_def prod_pOp_def)
 apply (rotate_tac 2,
        frule_tac x = l in bspec, assumption,
        thin_tac "∀k∈I. S k ∈ aHom A (B k)")
 apply (simp add:prodag_def prod_pOp_def)
 apply (frule_tac x = l in bspec, assumption,
        thin_tac "∀k∈I. aGroup (B k)")
apply (simp add: aHom_add)
done

definition
  finiteHom :: "['i set, 'i ⇒ ('a, 'more) aGroup_scheme, 'i ⇒ 'a] ⇒ bool" where
  "finiteHom I A f ⟷ f ∈ carr_prodag I A ∧ (∃H. H ⊆ I ∧ finite H ∧ (
    ∀j ∈ (I - H). (f j) = 𝟬(A j)))"

definition
  carr_dsumag :: "['i set, 'i ⇒ ('a, 'more) aGroup_scheme] ⇒ ('i  ⇒ 'a ) set" where
  "carr_dsumag I A = {f. finiteHom I A f}"

definition
  dsumag :: "['i set, 'i ⇒ ('a, 'more) aGroup_scheme] ⇒ ('i ⇒ 'a) aGroup" where
  "dsumag I A = ⦇ carrier = carr_dsumag I A,
     pop = prod_pOp I A, mop = prod_mOp I A,
     zero = prod_zero I A⦈"

definition
  dProj :: "['i set, 'i ⇒ ('a, 'more) aGroup_scheme, 'i]
                   ⇒ ('i ⇒ 'a) ⇒ 'a" where
  "dProj I A x = (λf∈carr_dsumag I A. f x)"

abbreviation
  DSUMag  ("(a⨁_ _)" [72,73]72) where
  "a⨁I A == dsumag I A"

lemma dsum_pOp_func:"∀k∈I. aGroup (A k) ⟹
    prod_pOp I A ∈ carr_dsumag I A → carr_dsumag I A → carr_dsumag I A"
apply (rule Pi_I)+
 apply (subst carr_dsumag_def) apply (simp add:CollectI)
apply (simp add:finiteHom_def)
 apply (rule conjI)
 apply (simp add:carr_dsumag_def) apply (simp add:finiteHom_def)
 apply (erule conjE)+ apply (simp add:prod_pOp_mem)
apply (simp add:carr_dsumag_def finiteHom_def) apply (erule conjE)+
 apply ((erule exE)+, (erule conjE)+)
 apply (frule_tac F = H and G = Ha in finite_UnI, assumption+)
 apply (subgoal_tac "∀j∈I - (H ∪ Ha). prod_pOp I A x xa j = 𝟬A j")
 apply (frule_tac A = H and B = Ha in Un_least[of _ "I"], assumption+)
  apply blast

 apply (rule ballI)
 apply (simp, (erule conjE)+)
 apply (frule_tac x = j in bspec, assumption,
         thin_tac "∀k∈I. aGroup (A k)",
        frule_tac x = j in bspec, simp,
         thin_tac "∀j∈I - H. x j = 𝟬A j",
        frule_tac x = j in bspec, simp,
         thin_tac "∀j∈I - Ha. xa j = 𝟬A j")
 apply (simp add:prod_pOp_def)
 apply (rule aGroup.ag_l_zero) apply simp
 apply (rule aGroup.ex_zero) apply assumption
done

lemma dsum_pOp_mem:"⟦∀k∈I. aGroup (A k); X ∈ carr_dsumag I A;
 Y ∈ carr_dsumag I A⟧ ⟹ prod_pOp I A X Y ∈ carr_dsumag I A"
apply (frule dsum_pOp_func[of "I" "A"])
apply (frule funcset_mem[of "prod_pOp I A" "carr_dsumag I A"
              "carr_dsumag I A → carr_dsumag I A" "X"], assumption+)
apply (rule funcset_mem[of "prod_pOp I A X" "carr_dsumag I A"
            "carr_dsumag I A" "Y"], assumption+)
done

lemma dsum_iOp_func:"∀k∈I. aGroup (A k) ⟹
                  prod_mOp I A ∈ carr_dsumag I A → carr_dsumag I A"
apply (rule Pi_I)
 apply (simp add:carr_dsumag_def) apply (simp add:finiteHom_def)
 apply (erule conjE)+ apply (simp add:prod_mOp_mem)
 apply (erule exE, (erule conjE)+)
 apply (simp add:prod_mOp_def)
 apply (subgoal_tac "∀j∈I - H. -aA j (x j) = 𝟬A j")
 apply blast

apply (rule ballI)
 apply (frule_tac x = j in bspec, simp,
        thin_tac "∀k∈I. aGroup (A k)",
        frule_tac x = j in bspec, simp,
        thin_tac "∀j∈I - H. x j = 𝟬A j", simp add:aGroup.ag_inv_zero)
done

lemma dsum_iOp_mem:"⟦∀j∈I. aGroup (A j); X ∈ carr_dsumag I A⟧ ⟹
                         prod_mOp I A X ∈ carr_dsumag I A"
apply (frule dsum_iOp_func)
apply (simp add:Pi_def)
done

lemma dsum_zero_func:"∀k∈I. aGroup (A k) ⟹
                           prod_zero I A ∈ carr_dsumag I A"
apply (simp add:carr_dsumag_def) apply (simp add:finiteHom_def)
apply (rule conjI) apply (simp add:prod_zero_func)
 apply (subgoal_tac "{} ⊆ I") prefer 2 apply simp
 apply (subgoal_tac "finite {}") prefer 2 apply simp
 apply (subgoal_tac "∀j∈I - {}. prod_zero I A j = 𝟬A j")
 apply blast
 apply (rule ballI) apply simp
 apply (simp add:prod_zero_def)
done

lemma dsumag_sub_prodag:"∀k∈I. aGroup (A k) ⟹
                              carr_dsumag I A ⊆ carr_prodag I A"
by (rule subsetI,
       simp add:carr_dsumag_def finiteHom_def)

lemma carrier_dsumag:"∀k∈I. aGroup (A k) ⟹
         carrier (dsumag I A) = carr_dsumag I A"
apply (simp add:dsumag_def)
done

lemma dsumag_elemfun:"⟦∀k∈I. aGroup (A k); f ∈ carrier (dsumag I A)⟧ ⟹
         f ∈ extensional I"
apply (simp add:carrier_dsumag)
apply (simp add:carr_dsumag_def) apply (simp add:finiteHom_def)
apply (erule conjE) apply (simp add:carr_prodag_def)
done

lemma dsumag_aGroup:"∀k∈I. aGroup (A k) ⟹ aGroup (dsumag I A)"
apply (simp add:aGroup_def [of "dsumag I A"])
apply (simp add:dsumag_def)
apply (simp add:dsum_pOp_func)
apply (simp add:dsum_iOp_func)
apply (simp add:dsum_zero_func)
apply (frule dsumag_sub_prodag[of "I" "A"])

apply (rule conjI)
 apply (rule allI, rule impI)+
 apply (frule_tac X = a and Y = b in dsum_pOp_mem, assumption+)
 apply (frule_tac X = b and Y = c in dsum_pOp_mem, assumption+)
 apply (frule_tac X = "prod_pOp I A a b" and Y = c in dsum_pOp_mem,
                    assumption+)
 apply (frule_tac Y = "prod_pOp I A b c" and X = a in dsum_pOp_mem,
                    assumption+)
 apply (rule carr_prodag_mem_eq [of "I" "A"], assumption+)
 apply (simp add:subsetD) apply (simp add:subsetD)
 apply (rule ballI)
 apply (subst prod_pOp_mem_i, assumption+, (simp add:subsetD)+)
 apply (subst prod_pOp_mem_i, assumption+)
  apply (simp add:subsetD)+
 apply (subst prod_pOp_mem_i, assumption+, (simp add:subsetD)+)
 apply (subst prod_pOp_mem_i, assumption+) apply (simp add:subsetD)+
 apply (thin_tac "prod_pOp I A a b ∈ carr_dsumag I A",
        thin_tac "prod_pOp I A b c ∈ carr_dsumag I A",
        thin_tac "prod_pOp I A (prod_pOp I A a b) c ∈ carr_dsumag I A",
        thin_tac "prod_pOp I A a (prod_pOp I A b c) ∈ carr_dsumag I A",
        thin_tac "carr_dsumag I A ⊆ carr_prodag I A")

 apply (frule_tac x = l in bspec, assumption,
        thin_tac "∀k∈I. aGroup (A k)",
        simp add:carr_dsumag_def finiteHom_def, (erule conjE)+,
        simp add:carr_prodag_def, (erule conjE)+)
 apply (frule_tac x = l in bspec, assumption,
        thin_tac "∀i∈I. a i ∈ carrier (A i)",
        frule_tac x = l in bspec, assumption,
        thin_tac "∀i∈I. b i ∈ carrier (A i)",
        frule_tac x = l in bspec, assumption,
        thin_tac "∀i∈I. c i ∈ carrier (A i)")
 apply (simp add:aGroup.aassoc)

apply (rule conjI)
 apply (rule allI, rule impI)+
 apply (rule carr_prodag_mem_eq [of "I" "A"], assumption+)
  apply (frule_tac X = a and Y = b in prod_pOp_mem[of "I" "A"],
         (simp add:subsetD)+)
  apply (frule_tac X = b and Y = a in prod_pOp_mem[of "I" "A"],
         (simp add:subsetD)+)
  apply (rule ballI,
         subst prod_pOp_mem_i, assumption+, (simp add:subsetD)+)
  apply (subst prod_pOp_mem_i, assumption+, (simp add:subsetD)+)
  apply (frule_tac x = l in bspec, assumption,
         thin_tac "∀k∈I. aGroup (A k)")
  apply (frule_tac c = a in subsetD[of "carr_dsumag I A" "carr_prodag I A"],
          assumption+, thin_tac "a ∈ carr_dsumag I A",
         frule_tac c = b in subsetD[of "carr_dsumag I A" "carr_prodag I A"],
          assumption+, thin_tac "b ∈ carr_dsumag I A",
          thin_tac "carr_dsumag I A ⊆ carr_prodag I A")
  apply (simp add:carr_prodag_def, (erule conjE)+,
         simp add:aGroup.ag_pOp_commute)

apply (rule conjI)
 apply (rule allI, rule impI)
 apply (frule_tac X = a in prod_mOp_mem[of "I" "A"],
        simp add:subsetD)
 apply (frule_tac X = "prod_mOp I A a" and Y = a in prod_pOp_mem[of "I" "A"],
        simp add:subsetD, simp add:subsetD)
 apply (rule carr_prodag_mem_eq [of "I" "A"], assumption+,
        simp add:prod_zero_func)
 apply (rule ballI)
 apply (subst prod_pOp_mem_i, assumption+,
        simp add:subsetD, assumption)
 apply (subst prod_mOp_mem_i, assumption+, simp add:subsetD, assumption)
 apply (simp add:prod_zero_i)
 apply (frule_tac x = l in bspec, assumption,
         thin_tac "∀k∈I. aGroup (A k)",
         thin_tac "prod_mOp I A a ∈ carr_prodag I A",
         thin_tac "prod_pOp I A (prod_mOp I A a) a ∈ carr_prodag I A",
        frule_tac c = a in subsetD[of "carr_dsumag I A" "carr_prodag I A"],
         assumption,
        thin_tac "carr_dsumag I A ⊆ carr_prodag I A",
        simp add:carr_prodag_def, (erule conjE)+)
  apply (frule_tac x = l in bspec, assumption,
         thin_tac "∀i∈I. a i ∈ carrier (A i)")
  apply (rule aGroup.l_m, assumption+)

apply (rule allI, rule impI)
 apply (frule prod_zero_func[of "I" "A"])
 apply (frule_tac X = "prod_zero I A" and Y = a in prod_pOp_mem[of "I" "A"],
            assumption+, simp add:subsetD)
 apply (rule carr_prodag_mem_eq [of "I" "A"], assumption+,
        simp add:subsetD)
 apply (rule ballI)
 apply (subst prod_pOp_mem_i, assumption+)
        apply (simp add:subsetD, assumption)
 apply (simp add:prod_zero_i,
        frule_tac x = l in bspec, assumption,
        thin_tac "∀k∈I. aGroup (A k)",
        frule_tac c = a in subsetD[of "carr_dsumag I A" "carr_prodag I A"],
                  assumption+,
        thin_tac "carr_dsumag I A ⊆ carr_prodag I A",
        thin_tac "a ∈ carr_dsumag I A",
        thin_tac "prod_pOp I A (prod_zero I A) a ∈ carr_prodag I A")
 apply (simp add:carr_prodag_def, (erule conjE)+)
 apply (rule aGroup.l_zero, assumption)
 apply blast
done

lemma dsumag_pOp:"∀k∈I. aGroup (A k) ⟹
                  pop (dsumag I A) = prod_pOp I A"
apply (simp add:dsumag_def)
done

lemma dsumag_mOp:"∀k∈I. aGroup (A k) ⟹
                  mop (dsumag I A) = prod_mOp I A"
apply (simp add:dsumag_def)
done

lemma dsumag_zero:"∀k∈I. aGroup (A k) ⟹
                  zero (dsumag I A) = prod_zero I A"
apply (simp add:dsumag_def)
done


subsection "Characterization of a direct product"

lemma direct_prod_mem_eq:"⟦∀j∈I. aGroup (A j); f ∈ carrier (aΠI A);
       g ∈ carrier (aΠI A); ∀j∈I. (PRoject I A j) f = (PRoject I A j) g⟧ ⟹
       f = g"
apply (rule funcset_eq[of "f" "I" "g"])
 apply (thin_tac "∀j∈I. aGroup (A j)",
        thin_tac "g ∈ carrier (aΠI A)",
        thin_tac "∀j∈I. (πI,A,j) f = (πI,A,j) g",
        simp add:prodag_def carr_prodag_def)
  apply (thin_tac "∀j∈I. aGroup (A j)",
        thin_tac "f ∈ carrier (aΠI A)",
        thin_tac "∀j∈I. (πI,A,j) f = (πI,A,j) g",
        simp add:prodag_def carr_prodag_def)
 apply (simp add:PRoject_def prodag_def)
done

lemma map_family_fun:"⟦∀j∈I. aGroup (A j); aGroup S;
      ∀j∈I. ((g j) ∈ aHom S (A j)); x ∈ carrier S⟧ ⟹
         (λy ∈ carrier S. (λj∈I. (g j) y)) x ∈ carrier (aΠI A)"
apply (simp add:prodag_def carr_prodag_def)
 apply (simp add:aHom_mem)
 apply (rule Pi_I, simp add:Un_carrier_def)
 apply (frule_tac x = xa in bspec, assumption,
        thin_tac "∀j∈I. aGroup (A j)",
        frule_tac x = xa in bspec, assumption,
        thin_tac "∀j∈I. g j ∈ aHom S (A j)")
 apply (frule_tac G = "A xa" and f = "g xa" and a = x in aHom_mem[of "S"],
        assumption+, blast)
done

lemma map_family_aHom:"⟦∀j∈I. aGroup (A j); aGroup S;
      ∀j∈I. ((g j) ∈ aHom S (A j))⟧ ⟹
         (λy ∈ carrier S. (λj∈I. (g j) y)) ∈ aHom S (aΠI A)"
apply (subst aHom_def, simp)
 apply (simp add:aGroup.ag_pOp_closed)

apply (rule conjI)
 apply (rule Pi_I)
 apply (rule map_family_fun[of "I" "A" "S" "g"], assumption+)
apply (rule ballI)+
 apply (frule_tac x = a and y = b in aGroup.ag_pOp_closed[of "S"],
                   assumption+)
 apply (frule_tac x = "a ±S b" in map_family_fun[of "I" "A" "S" "g"],
          assumption+, simp)
 apply (frule_tac x = a in map_family_fun[of "I" "A" "S" "g"],
          assumption+, simp,
         frule_tac x = b in map_family_fun[of "I" "A" "S" "g"],
          assumption+, simp)
 apply (frule prodag_aGroup[of "I" "A"])
 apply (frule_tac x = "(λj∈I. g j a)" and y = "(λj∈I. g j b)" in
        aGroup.ag_pOp_closed[of "aΠI A"], assumption+)
 apply (simp only:prodag_carrier)

apply (rule carr_prodag_mem_eq, assumption+)
 apply (rule ballI)
 apply (subst prodag_def, simp add:prod_pOp_def)
 apply (simp add:aHom_add)
done

lemma map_family_triangle:"⟦∀j∈I. aGroup (A j); aGroup S;
         ∀j∈I. ((g j) ∈ aHom S (A j))⟧ ⟹ ∃!f. f ∈ aHom S (aΠI A) ∧
                  (∀j∈I. compos S (PRoject I A j) f =  (g j))"
apply (rule ex_ex1I)
apply (frule map_family_aHom[of "I" "A" "S" "g"], assumption+)
apply (subgoal_tac "∀j∈I. compos S (πI,A,j) (λy∈carrier S. λj∈I. g j y) = g j")
apply blast
apply (rule ballI)
apply (simp add:compos_def)
apply (rule funcset_eq[of _ "carrier S"])
 apply (simp add:compose_def) apply (simp add:aHom_def)
 apply (rule ballI)
 apply (frule prodag_aGroup[of "I" "A"])
 apply (frule prodag_carrier[of "I" "A"])
 apply (frule_tac f = "λy∈carrier S. λj∈I. g j y" and a = x in
        aHom_mem[of "S" "aΠI A"], assumption+)
 apply (simp add:compose_def, simp add:PRoject_def)
apply (rename_tac f f1)
 apply (erule conjE)+
 apply (rule funcset_eq[of _ "carrier S"])
 apply (simp add:aHom_def, simp add:aHom_def)
 apply (rule ballI)
 apply (frule prodag_aGroup[of "I" "A"])
 apply (frule_tac f = f and a = x in aHom_mem[of "S" "aΠI A"], assumption+,
        frule_tac f = f1 and a = x in aHom_mem[of "S" "aΠI A"], assumption+)
 apply (rule_tac f = "f x" and g = "f1 x" in direct_prod_mem_eq[of "I" "A"],
        assumption+)
 apply (rule ballI)
 apply (rotate_tac 4,
        frule_tac x = j in bspec, assumption,
        thin_tac "∀j∈I. compos S (πI,A,j) f = g j",
         frule_tac x = j in bspec, assumption,
        thin_tac "∀j∈I. compos S (πI,A,j) f1 = g j",
        simp add:compos_def compose_def)
 apply (subgoal_tac "(λx∈carrier S. (πI,A,j) (f x)) x = g j x",
        subgoal_tac "(λx∈carrier S. (πI,A,j) (f1 x)) x = g j x",
        thin_tac "(λx∈carrier S. (πI,A,j) (f x)) = g j",
        thin_tac "(λx∈carrier S. (πI,A,j) (f1 x)) = g j",
simp+)
done

lemma Ag_ind_triangle:"⟦∀j∈I. aGroup (A j); j ∈ I; f ∈ carrier (aΠI A) → B;
      bij_to f (carrier (aΠI A)) (B::'d set); j ∈ I⟧ ⟹
compos (aΠI A) (compos (Ag_ind (aΠI A) f)(PRoject I A j) (ainvf(aΠI A),
 (Ag_ind (aΠI A) f) (Agii (aΠI A) f))) (Agii (aΠI A) f) =
                                       PRoject I A j"
apply (frule prodag_aGroup[of "I" "A"])
apply (frule aGroup.Ag_ind_aGroup[of "aΠI A" "f" "B"], assumption+)
apply (simp add:compos_def)
apply (rule funcset_eq[of _ "carrier (aΠI A)"])
apply simp
apply (simp add:PRoject_def  prodag_carrier extensional_def)
apply (rule ballI)
apply (simp add:compose_def invfun_l)
apply (simp add:aGroup.Agii_mem)
apply (frule Ag_ind_bijec[of "aΠI A" "f" "B"], assumption+)
apply (frule_tac x = x in ainvf_l[of "aΠI A" "Ag_ind (aΠI A) f"
                                     "Agii (aΠI A) f"], assumption+)
apply simp
done

(** Note               f'
                 aΠI A → Ag_ind (aΠI A) f
                     \     |
                      \    |
        PRoject I A j  \   | (PRoject I A j) o (f'¯1)
                        \  |
                          A j             , where f' = Agii (aΠI A) f **)

definition
  ProjInd :: "['i set, 'i ⇒ ('a, 'm) aGroup_scheme, ('i ⇒ 'a) ⇒ 'd, 'i] ⇒
                       ('d ⇒ 'a)" where
  "ProjInd I A f j = compos (Ag_ind (aΠI A) f)(PRoject I A j) (ainvf(aΠI A), (Ag_ind (aΠI A) f) (Agii (aΠI A) f))"

(** Note               f'
                 aΠI A → Ag_ind (aΠI A) f
                     \     |
                      \    |
        PRoject I A j  \   | PRojInd I A f j
                        \  |
                          A j              **)

lemma ProjInd_aHom:"⟦∀j∈ I. aGroup (A j); j ∈ I; f ∈ carrier (aΠI A) → B;
      bij_to f (carrier (aΠI A)) (B::'d set); j ∈ I⟧ ⟹
        (ProjInd I A f j) ∈ aHom (Ag_ind (aΠI A) f) (A j)"
apply (frule prodag_aGroup[of "I" "A"])
apply (frule aGroup.Ag_ind_aGroup[of "aΠI A" "f" "B"], assumption+)
apply (frule_tac x = j in bspec, assumption)
apply (frule aGroup.Ag_ind_aHom[of "aΠI A" "f" "B"], assumption+)
apply (simp add:ProjInd_def)
apply (frule Ag_ind_bijec[of "aΠI A" "f" "B"], assumption+)
apply (frule ainvf_aHom[of "aΠI A" "Ag_ind (aΠI A) f" "Agii (aΠI A) f"],
             assumption+)
apply (frule project_aHom[of "I" "A" "j"], assumption)
apply (simp add:aHom_compos)
done

lemma ProjInd_aHom1:"⟦∀j∈ I. aGroup (A j); f ∈ carrier (aΠI A) → B;
      bij_to f (carrier (aΠI A)) (B::'d set)⟧ ⟹
        ∀j∈I. (ProjInd I A f j) ∈ aHom (Ag_ind (aΠI A) f) (A j)"
apply (rule ballI)
apply (simp add:ProjInd_aHom)
done

lemma ProjInd_mem_eq:"⟦∀j∈I. aGroup (A j); f ∈ carrier (aΠI A) → B;
      bij_to f (carrier (aΠI A)) B; aGroup S; x ∈ carrier (Ag_ind (aΠI A) f);
      y ∈ carrier (Ag_ind (aΠI A) f);
      ∀j∈I. (ProjInd I A f j x = ProjInd I A f j y)⟧ ⟹ x = y"
apply (simp add:ProjInd_def)
apply (simp add:compos_def compose_def)
apply (frule prodag_aGroup[of "I" "A"])
apply (frule aGroup.Ag_ind_aGroup[of "aΠI A" "f" "B"], assumption+)
apply (frule aGroup.Ag_ind_aHom[of "aΠI A" "f" "B"], assumption+)
apply (frule Ag_ind_bijec[of "aΠI A" "f" "B"], assumption+)
apply (frule ainvf_aHom[of "aΠI A" "Ag_ind (aΠI A) f" "Agii (aΠI A) f"],
         assumption+)
apply (frule aHom_mem[of "Ag_ind (aΠI A) f" "aΠI A" "ainvf(aΠI A),Ag_ind (aΠI A) f Agii (aΠI A) f" "x"], assumption+,
       frule aHom_mem[of "Ag_ind (aΠI A) f" "aΠI A" "ainvf(aΠI A),Ag_ind (aΠI A) f Agii (aΠI A) f" "y"], assumption+)

apply (frule direct_prod_mem_eq[of "I" "A" "(ainvf(aΠI A),Ag_ind (aΠI A) f Agii (aΠI A) f) x" "(ainvf(aΠI A),Ag_ind (aΠI A) f Agii (aΠI A) f) y"], assumption+)
apply (thin_tac "ainvf(aΠI A),Ag_ind (aΠI A) f Agii (aΠI A) f
     ∈ aHom (Ag_ind (aΠI A) f) (aΠI A)")
apply (frule ainvf_bijec[of "aΠI A" "Ag_ind (aΠI A) f" "Agii (aΠI A) f"],
                   assumption+)
apply (thin_tac "bijec(aΠI A),Ag_ind (aΠI A) f Agii (aΠI A) f")
apply (unfold bijec_def, frule conjunct1, fold bijec_def)
apply (frule injec_inj_on[of "Ag_ind (aΠI A) f" "aΠI A" "ainvf(aΠI A),Ag_ind (aΠI A) f Agii (aΠI A) f"], assumption+)
apply (simp add:injective_iff[THEN sym, of "ainvf(aΠI A),Ag_ind (aΠI A) f Agii (aΠI A) f" "carrier (Ag_ind (aΠI A) f)" "x" "y"])
done

lemma ProjInd_mem_eq1:"⟦∀j∈I. aGroup (A j); f ∈ carrier (aΠI A) → B;
      bij_to f (carrier (aΠI A)) B; aGroup S;
      h ∈ aHom (Ag_ind (aΠI A) f) (Ag_ind (aΠI A) f);
      ∀j∈I. compos (Ag_ind (aΠI A) f) (ProjInd I A f j) h = ProjInd I A f j⟧       ⟹ h = ag_idmap (Ag_ind (aΠI A) f)"
apply (rule funcset_eq[of _ "carrier (Ag_ind (aΠI A) f)"])
 apply (simp add:aHom_def)
 apply (simp add:ag_idmap_def)
apply (rule ballI)
 apply (simp add:ag_idmap_def)
 apply (frule prodag_aGroup[of "I" "A"],
        frule aGroup.Ag_ind_aGroup[of "aΠI A" "f" "B"], assumption+)
 apply (frule_tac a = x in aHom_mem[of "Ag_ind (aΠI A) f" "Ag_ind (aΠI A) f"
        "h"], assumption+)
 apply (rule_tac x = "h x" and y = x in ProjInd_mem_eq[of "I" "A" "f" "B" "S"],
        assumption+)
 apply (rotate_tac 1,
        rule ballI,
        frule_tac x = j in bspec, assumption,
        thin_tac "∀j∈I. compos (Ag_ind (aΠI A) f) (ProjInd I A f j) h =
               ProjInd I A f j")
 apply (simp add:compos_def compose_def)
 apply (subgoal_tac "(λx∈carrier (Ag_ind (aΠI A) f). ProjInd I A f j (h x)) x
                    = ProjInd I A f j x",
        thin_tac "(λx∈carrier (Ag_ind (aΠI A) f). ProjInd I A f j (h x)) =
           ProjInd I A f j")
 apply simp+
done

lemma Ag_ind_triangle1:"⟦∀j∈I. aGroup (A j); f ∈ carrier (aΠI A) → B;
      bij_to f (carrier (aΠI A)) (B::'d set); j ∈ I⟧ ⟹
      compos (aΠI A) (ProjInd I A f j) (Agii (aΠI A) f) =  PRoject I A j"
apply (simp add:ProjInd_def)
apply (simp add:Ag_ind_triangle)
done

lemma map_family_triangle1:"⟦∀j∈I. aGroup (A j); f ∈ carrier (aΠI A) → B;
      bij_to f (carrier (aΠI A)) (B::'d set); aGroup S;
     ∀j∈I. ((g j) ∈ aHom S (A j))⟧ ⟹ ∃!h. h ∈ aHom S (Ag_ind (aΠI A) f) ∧
                  (∀j∈I. compos S (ProjInd I A f j) h =  (g j))"
apply (frule prodag_aGroup[of "I" "A"])
apply (frule aGroup.Ag_ind_aGroup[of "aΠI A" "f" "B"], assumption+)
apply (frule Ag_ind_bijec[of "aΠI A" "f" "B"], assumption+)
apply (rule ex_ex1I)
apply (frule map_family_triangle[of "I" "A" "S" "g"], assumption+)
apply (frule ex1_implies_ex)
apply (erule exE)
apply (erule conjE)
apply (unfold bijec_def, frule conjunct2, fold bijec_def)
apply (unfold surjec_def, frule conjunct1, fold surjec_def)
apply (rename_tac fa,
       frule_tac f = fa in aHom_compos[of "S" "aΠI A" "Ag_ind (aΠI A) f" _
                 "Agii (aΠI A) f"], assumption+)
apply (subgoal_tac "∀j∈I. compos S (ProjInd I A f j)
                           (compos S (Agii (aΠI A) f) fa) = g j")
apply blast
apply (rule ballI)
apply (frule_tac N = "A j" and f = fa and g = "Agii (aΠI A) f" and
 h = "ProjInd I A f j" in aHom_compos_assoc[of "S" "aΠI A" "Ag_ind (aΠI A) f"],
 assumption+) apply simp apply assumption+
apply (simp add:ProjInd_aHom)
apply simp
apply (thin_tac "compos S (ProjInd I A f j) (compos S (Agii (aΠI A) f) fa) =
        compos S (compos (aΠI A) (ProjInd I A f j) (Agii (aΠI A) f)) fa")
apply (simp add:Ag_ind_triangle1)
apply (rename_tac h h1)
 apply (erule conjE)+
 apply (rule funcset_eq[of _ "carrier S"])
 apply (simp add:aHom_def, simp add:aHom_def)
 apply (rule ballI)
 apply (simp add:compos_def)

apply (frule_tac f = h and a = x in aHom_mem[of "S" "Ag_ind (aΠI A) f"],
          assumption+,
       frule_tac f = h1 and a = x in aHom_mem[of "S" "Ag_ind (aΠI A) f"],
          assumption+)
apply (rule_tac x = "h x" and y = "h1 x" in ProjInd_mem_eq[of "I" "A" "f"
       "B" "S"], assumption+)
apply (rule ballI)
apply (rotate_tac 5,
       frule_tac x = j in bspec, assumption,
       thin_tac "∀j∈I. compose (carrier S) (ProjInd I A f j) h = g j",
       frule_tac x = j in bspec, assumption,
       thin_tac "∀j∈I. compose (carrier S) (ProjInd I A f j) h1 = g j")
apply (simp add:compose_def,
       subgoal_tac "(λx∈carrier S. ProjInd I A f j (h x)) x = g j x",
       thin_tac "(λx∈carrier S. ProjInd I A f j (h x)) = g j",
       subgoal_tac "(λx∈carrier S. ProjInd I A f j (h1 x)) x = g j x",
       thin_tac "(λx∈carrier S. ProjInd I A f j (h1 x)) = g j", simp+)
done

lemma  map_family_triangle2:"⟦I ≠ {}; ∀j∈I. aGroup (A j); aGroup S;
       ∀j∈I. g j ∈ aHom S (A j); ff ∈ carrier (aΠI A) → B;
        bij_to ff (carrier (aΠI A)) B;
        h1 ∈ aHom (Ag_ind (aΠI A) ff) S;
        ∀j∈I. compos (Ag_ind (aΠI A) ff) (g j) h1 = ProjInd I A ff j;
        h2 ∈ aHom S (Ag_ind (aΠI A) ff);
        ∀j∈I. compos S (ProjInd I A ff j) h2 = g j⟧
       ⟹ ∀j∈I. compos (Ag_ind (aΠI A) ff) (ProjInd I A ff j)
                 (compos (Ag_ind (aΠI A) ff) h2 h1) =
                ProjInd I A ff j"
apply (rule ballI)
apply (frule prodag_aGroup[of "I" "A"])
apply (frule_tac f = ff in aGroup.Ag_ind_aGroup[of "aΠI A" _ "B"], assumption+)

apply (frule_tac N = "A j" and h = "ProjInd I A ff j" in aHom_compos_assoc[of "Ag_ind (aΠI A) ff" "S" "Ag_ind (aΠI A) ff" _ "h1" "h2"], assumption+)
 apply simp apply assumption+ apply (simp add:ProjInd_aHom)
apply simp
done

lemma  map_family_triangle3:"⟦∀j∈I. aGroup (A j); aGroup S; aGroup S1;
       ∀j∈I. f j ∈ aHom S (A j); ∀j∈I. g j ∈ aHom S1 (A j);
        h1 ∈ aHom S1 S; h2 ∈ aHom S S1;
        ∀j∈I. compos S (g j) h2 = f j;
        ∀j∈I. compos S1 (f j) h1 = g j⟧
       ⟹ ∀j∈I. compos S (f j) (compos S h1 h2) = f j"
apply (rule ballI)
apply (frule_tac h = "f j" and N = "A j" in aHom_compos_assoc[of "S" "S1"
                              "S" _ "h2" "h1"], assumption+)
apply simp apply assumption+ apply simp
apply simp
done

lemma map_family_triangle4:"⟦∀j∈I. aGroup (A j); aGroup S;
                ∀j∈I. f j ∈ aHom S (A j)⟧ ⟹
               ∀j∈I. compos S (f j) (ag_idmap S) = f j"
apply (rule ballI)
apply (frule_tac x = j in bspec, assumption,
       thin_tac "∀j∈I. aGroup (A j)",
       frule_tac x = j in bspec, assumption,
       thin_tac "∀j∈I. f j ∈ aHom S (A j)")
apply (simp add:compos_aI_r)
done

lemma  prod_triangle:"⟦I ≠ {}; ∀j∈I. aGroup (A j); aGroup S;
       ∀j∈I. g j ∈ aHom S (A j); ff ∈ carrier (aΠI A) → B;
        bij_to ff (carrier (aΠI A)) B;
        h1 ∈ aHom (Ag_ind (aΠI A) ff) S;
        ∀j∈I. compos (Ag_ind (aΠI A) ff) (g j) h1 = ProjInd I A ff j;
        h2 ∈ aHom S (Ag_ind (aΠI A) ff);
        ∀j∈I. compos S (ProjInd I A ff j) h2 = g j⟧
       ⟹ (compos (Ag_ind (aΠI A) ff) h2 h1) = ag_idmap (Ag_ind (aΠI A) ff)"
apply (frule map_family_triangle2[of "I" "A" "S" "g" "ff" "B" "h1" "h2"], assumption+)
apply (frule prodag_aGroup[of "I" "A"],
       frule aGroup.Ag_ind_aGroup[of "aΠI A" "ff" "B"], assumption+)
apply (frule aHom_compos[of "Ag_ind (aΠI A) ff" "S" "Ag_ind (aΠI A) ff" "h1"
                            "h2"], assumption+)
apply (rule ProjInd_mem_eq1[of "I" "A" "ff" "B" "S"
                            "compos (Ag_ind (aΠI A) ff) h2 h1"], assumption+)
done

lemma characterization_prodag:"⟦I ≠ {}; ∀j∈(I::'i set). aGroup ((A j)::
    ('a, 'm) aGroup_scheme); aGroup (S::'d aGroup);
    ∀j∈I. ((g j) ∈ aHom S (A j)); ∃ff. ff ∈ carrier (aΠI A) → (B::'d set) ∧
          bij_to ff (carrier (aΠI A)) B;
    ∀(S':: 'd aGroup). aGroup S' ⟶
        (∀g'. (∀j∈I. (g' j) ∈ aHom S' (A j) ⟶
         (∃! f. f ∈ aHom S' S ∧ (∀j∈I. compos S' (g j) f =  (g' j)))))⟧ ⟹
     ∃h. bijec(prodag I A),S h"
apply (frule prodag_aGroup[of "I" "A"])
apply (erule exE)
apply (frule_tac f = ff in aGroup.Ag_ind_aGroup[of "aΠI A" _ "B"], erule conjE,
       assumption, simp, erule conjE)
apply (frule aGroup.Ag_ind_aGroup[of "aΠI A" _ "B"], assumption+,
       frule_tac a = S in forall_spec, assumption+)
apply (rotate_tac -1,
       frule_tac x = g in spec,
       thin_tac "∀g'. ∀j∈I. g' j ∈ aHom S (A j) ⟶
              (∃!f. f ∈ aHom S S ∧ (∀j∈I. compos S (g j) f = g' j))")
apply (frule_tac a = "Ag_ind (aΠI A) ff" in forall_spec, assumption+,
       thin_tac "∀S'. aGroup S' ⟶ (∀g'. ∀j∈I. g' j ∈ aHom S' (A j) ⟶
                (∃!f. f ∈ aHom S' S ∧ (∀j∈I. compos S' (g j) f = g' j)))")
apply (frule_tac x = "ProjInd I A ff" in spec,
       thin_tac "∀g'. ∀j∈I. g' j ∈ aHom (Ag_ind (aΠI A) ff) (A j) ⟶
                     (∃!f. f ∈ aHom (Ag_ind (aΠI A) ff) S ∧
                          (∀j∈I. compos (Ag_ind (aΠI A) ff) (g j) f =
                                 g' j))")
apply (frule_tac f = ff in ProjInd_aHom1[of "I" "A" _ "B"], assumption+)
apply (simp add:nonempty_ex[of "I"],
       rotate_tac -2,
       frule ex1_implies_ex,
       thin_tac "∃!f. f ∈ aHom (Ag_ind (aΠI A) ff) S ∧
         (∀j∈I. compos (Ag_ind (aΠI A) ff) (g j) f = ProjInd I A ff j)",
       rotate_tac -1, erule exE, erule conjE)
apply (rename_tac ff h1,
       frule_tac f = ff in map_family_triangle1[of "I" "A" _  "B" "S" "g"],
           assumption+,
       rotate_tac -1,
       frule ex1_implies_ex,
       thin_tac "∃!h. h ∈ aHom S (Ag_ind (aΠI A) ff) ∧
             (∀j∈I. compos S (ProjInd I A ff j) h = g j)",
       rotate_tac -1,
       erule exE, erule conjE)
apply (rename_tac ff h1 h2)
apply (frule_tac ff = ff and ?h1.0 = h1 and ?h2.0 = h2 in prod_triangle[of "I"
        "A" "S" "g" _ "B"], assumption+,
       frule_tac ?S1.0 = "Ag_ind (aΠI A) ff" in map_family_triangle3[of "I"
                "A" "S" _ "g"],
        assumption+,
       frule_tac f = h2 and g = h1 and M =  "Ag_ind (aΠI A) ff" in
                aHom_compos[of "S" _ "S" ], assumption+)
apply (erule ex1E)
 apply (rotate_tac -1,
        frule_tac x = "compos S h1 h2" in spec,
        frule map_family_triangle4[of "I" "A" "S" "g"], assumption+,
        frule aGroup.aI_aHom[of "S"])
 apply (frule_tac x = "aIS" in spec,
   thin_tac "∀y. y ∈ aHom S S ∧ (∀j∈I. compos S (g j) y = g j) ⟶ y = f",
   simp,
   thin_tac "∀j∈I. compos S (ProjInd I A ff j) h2 = g j",
   thin_tac "∀j∈I. compos S (g j) f = g j",
   thin_tac "∀j∈I. compos (Ag_ind (aΠI A) ff) (g j) h1 = ProjInd I A ff j")
 apply (rotate_tac -1, frule sym, thin_tac "aIS = f", simp,
        frule_tac A = "Ag_ind (aΠI A) ff" and f = h1 and g = h2 in
         compos_aI_inj[of _ "S"], assumption+,
        frule_tac B = "Ag_ind (aΠI A) ff" and f = h2 and g = h1 in
         compos_aI_surj[of "S"], assumption+)
 apply (frule_tac f = ff in Ag_ind_bijec[of "aΠI A" _ "B"], assumption+,
        frule_tac F = "Ag_ind (aΠI A) ff" and f = "Agii (aΠI A) ff" and g = h1
           in compos_bijec[of "aΠI A" _ "S"], assumption+)
apply (subst bijec_def, simp)
 apply (thin_tac "bijec(aΠI A),Ag_ind (aΠI A) ff Agii (aΠI A) ff",
        thin_tac "injecAg_ind (aΠI A) ff,S h1",
        thin_tac "surjecAg_ind (aΠI A) ff,S h1")
apply (rule exI, simp)
done

(***  Note.
                                     f
                                  S' → S
                                    \   |
                                 g' j\  | g j
                                      \ |
                                        A j

       ***)



chapter "Ring theory"

section "Definition of a ring and an ideal"

record 'a Ring = "'a aGroup" +
  tp ::  "['a, 'a ] ⇒ 'a" (infixl "⋅rı" 70)
  un :: "'a"   ("1rı")

locale Ring =
 fixes R (structure)

 assumes
         pop_closed: "pop R ∈ carrier R → carrier R → carrier R"
 and     pop_aassoc : "⟦a ∈ carrier R; b ∈ carrier R; c ∈ carrier R⟧ ⟹
         (a ± b) ± c = a ± (b ± c)"
 and     pop_commute:"⟦a ∈ carrier R; b ∈ carrier R⟧ ⟹ a ± b = b ± a"
 and     mop_closed:"mop R ∈ carrier R → carrier R"
 and     l_m :"a ∈ carrier R ⟹  (-a a) ± a = 𝟬"
 and     ex_zero: "𝟬 ∈ carrier R"
 and     l_zero:"a ∈ carrier R ⟹ 𝟬 ± a = a"
 and     tp_closed: "tp R ∈ carrier R → carrier R → carrier R"
 and     tp_assoc : "⟦a ∈ carrier R; b ∈ carrier R; c ∈ carrier R⟧ ⟹
                  (a ⋅r b) ⋅r c = a ⋅r (b ⋅r c)"
 and     tp_commute: "⟦a ∈ carrier R; b ∈ carrier R⟧ ⟹ a ⋅r b = b  ⋅r a"
 and     un_closed: "(1r) ∈ carrier R"
 and     rg_distrib: "⟦a ∈ carrier R; b ∈ carrier R; c ∈ carrier R⟧ ⟹
                     a ⋅r (b ± c) = a ⋅r b  ±  a ⋅r c"
 and     rg_l_unit: "a ∈ carrier R ⟹ (1r) ⋅r a = a"

definition
  zeroring :: "('a, 'more) Ring_scheme ⇒ bool" where
  "zeroring R ⟷ Ring R ∧ carrier R = {𝟬R}"

primrec nscal ::  "('a, 'more) Ring_scheme  => 'a => nat  => 'a"
where
  nscal_0:  "nscal R x 0 = 𝟬R"
| nscal_suc:  "nscal R x (Suc n) = (nscal R x n) ±R x"

primrec npow ::  "('a, 'more) Ring_scheme  => 'a => nat  => 'a"
where
  npow_0: "npow R x 0 = 1rR"
| npow_suc: "npow R x (Suc n) = (npow R x n) ⋅rR x"

primrec nprod  :: "('a, 'more) Ring_scheme => (nat => 'a) => nat => 'a"
where
  nprod_0: "nprod R f 0 = f 0"
| nprod_suc: "nprod R f (Suc n) = (nprod R f n) ⋅rR (f (Suc n))"

primrec nsum :: "('a, 'more) aGroup_scheme => (nat => 'a) => nat => 'a"
where
  nsum_0: "nsum R f 0 = f 0"
| nsum_suc: "nsum R f (Suc n) = (nsum R f n) ±R (f (Suc n))"

abbreviation
  NSCAL :: "[nat, ('a, 'more) Ring_scheme, 'a] ⇒ 'a"
    ("(3 _ ×_ _)" [75,75,76]75) where
  "n ×R x == nscal R x n"

abbreviation
  NPOW :: "['a, ('a, 'more) Ring_scheme, nat] ⇒  'a"
    ("(3_^_ _)" [77,77,78]77) where
  "a^R n == npow R a n"

abbreviation
  SUM :: "('a, 'more) aGroup_scheme => (nat => 'a) => nat => 'a"
    ("(3Σe _ _ _)" [85,85,86]85) where
  e G f n == nsum G f n"

abbreviation
  NPROD :: "[('a, 'm) Ring_scheme, nat, nat ⇒ 'a] ⇒ 'a"
    ("(3eΠ_,_ _)" [98,98,99]98) where
  "eΠR,n f == nprod R f n"

definition
  fSum :: "[_, (nat => 'a), nat, nat] ⇒ 'a" where
  "fSum A f n m = (if n ≤ m then nsum A (cmp f (slide n))(m - n)
                       else 𝟬A)"

abbreviation
  FSUM :: "[('a, 'more) aGroup_scheme, (nat ⇒ 'a), nat, nat] ⇒ 'a"
    ("(4Σf _ _ _ _)" [85,85,85,86]85) where
  f G f n m == fSum G f n m"

lemma (in aGroup) nsum_zeroGTr:"(∀j ≤ n. f j = 𝟬) ⟶ nsum A f n = 𝟬"
apply (induct_tac n)
 apply (rule impI, simp)

apply (rule impI)
apply (cut_tac n = n in Nsetn_sub_mem1, simp)
apply (cut_tac ex_zero)
apply (simp add:l_zero[of 𝟬])
done

lemma (in aGroup) nsum_zeroA:"∀j ≤ n. f j = 𝟬 ⟹   nsum A f n = 𝟬"
apply (simp add:nsum_zeroGTr)
done

definition
  sr :: "[_ , 'a set] ⇒ bool" where
  "sr R S == S ⊆ carrier R ∧ 1rR ∈ S ∧ (∀x∈S. ∀y ∈ S. x  ±R (-aR y) ∈ S ∧
               x ⋅rR y ∈ S)"

definition
  Sr :: "[_ , 'a set] ⇒ _" where
  "Sr R S = R ⦇carrier := S, pop := λx∈S. λy∈S. x ±R y, mop := λx∈S. (-aR x),
    zero := 𝟬R, tp := λx∈S. λy∈S. x ⋅rR y, un := 1rR ⦈"

(** sr is a subring without ring structure, Sr is a subring with Ring structure
     **)


lemma (in Ring) Ring: "Ring R" ..

lemma (in Ring) ring_is_ag:"aGroup R"
apply (rule aGroup.intro,
       rule pop_closed,
       rule pop_aassoc, assumption+,
       rule pop_commute, assumption+,
       rule mop_closed,
       rule l_m, assumption,
       rule ex_zero,
       rule l_zero, assumption)
done

lemma (in Ring) ring_zero:"𝟬 ∈ carrier R"
by (simp add: ex_zero)

lemma (in Ring) ring_one:"1r ∈ carrier R"
by (simp add:un_closed)

lemma (in Ring) ring_tOp_closed:"⟦ x ∈ carrier R; y ∈ carrier R⟧ ⟹
                     x ⋅r y ∈ carrier R"
apply (cut_tac tp_closed)
 apply (frule funcset_mem[of "op ⋅r" "carrier R" "carrier R → carrier R"
            "x"], assumption+,
        thin_tac "op ⋅r ∈ carrier R → carrier R → carrier R")
 apply (rule funcset_mem[of "op ⋅r x" "carrier R" "carrier R" "y"],
              assumption+)
done

lemma (in Ring) ring_tOp_commute:"⟦x ∈ carrier R; y ∈ carrier R⟧ ⟹
                x ⋅r y = y ⋅r x"
by (simp add:tp_commute)

lemma (in Ring) ring_distrib1:"⟦x ∈ carrier R; y ∈ carrier R; z ∈ carrier R ⟧
                 ⟹ x ⋅r (y ± z) = x ⋅r y ± x ⋅r z"
by (simp add:rg_distrib)

lemma (in Ring) ring_distrib2:"⟦x ∈ carrier R; y ∈ carrier R; z ∈ carrier R ⟧
                ⟹ (y ± z) ⋅r x = y ⋅r x ±  z ⋅r x"
apply (subst tp_commute[of "y ± z" "x"])
 apply (cut_tac ring_is_ag, simp add:aGroup.ag_pOp_closed)
 apply assumption
apply (subst ring_distrib1, assumption+)
 apply (simp add:tp_commute)
done

lemma (in Ring) ring_distrib3:"⟦a ∈ carrier R; b ∈ carrier R; x ∈ carrier R;
      y ∈ carrier R ⟧ ⟹ (a ± b) ⋅r (x ± y) =
                                          a ⋅r x ± a ⋅r y ± b ⋅r x ± b ⋅r y"
apply (subst ring_distrib2)+
 apply (cut_tac ring_is_ag)
 apply (rule aGroup.ag_pOp_closed, assumption+)
 apply ((subst ring_distrib1)+, assumption+)
 apply (subst ring_distrib1, assumption+)
 apply (rule pop_aassoc [THEN sym, of "a ⋅r x ± a ⋅r y" "b ⋅r x" "b ⋅r y"])
 apply (cut_tac ring_is_ag, rule aGroup.ag_pOp_closed, assumption)
 apply (simp add:ring_tOp_closed)+
done

lemma (in Ring) rEQMulR:
  "⟦x ∈ carrier R; y ∈ carrier R; z ∈ carrier R; x = y ⟧
        ⟹ x ⋅r z = y ⋅r z"
by simp

lemma (in Ring) ring_tOp_assoc:"⟦x ∈ carrier R; y ∈ carrier R; z ∈ carrier R ⟧
 ⟹ (x ⋅r y) ⋅r z = x ⋅r (y ⋅r z)"
by (simp add:tp_assoc)

lemma (in Ring) ring_l_one:"x ∈ carrier R ⟹ 1rr x = x"
by (simp add:rg_l_unit)

lemma (in Ring) ring_r_one:"x ∈ carrier R  ⟹ x ⋅r 1r = x"
 apply (subst ring_tOp_commute, assumption+)
 apply (simp add:un_closed)
 apply (simp add:ring_l_one)
done

lemma (in Ring) ring_times_0_x:"x ∈ carrier R ⟹ 𝟬 ⋅r x = 𝟬"
apply (cut_tac ring_is_ag)
apply (cut_tac ring_zero)
apply (frule ring_distrib2 [of "x" "𝟬" "𝟬"], assumption+)
apply (simp add:aGroup.ag_l_zero [of "R" "𝟬"])
apply (frule ring_tOp_closed [of "𝟬" "x"], assumption+)
apply (frule sym, thin_tac "𝟬 ⋅r x = 𝟬 ⋅r x ± 𝟬 ⋅r x")
apply (frule aGroup.ag_eq_sol2 [of "R" "𝟬 ⋅r x" "𝟬 ⋅r x" "𝟬 ⋅r x"],
        assumption+)
apply (thin_tac "𝟬 ⋅r x ± 𝟬 ⋅r x = 𝟬 ⋅r x")
apply (simp add:aGroup.ag_r_inv1)
done

lemma (in Ring) ring_times_x_0:"x ∈ carrier R ⟹  x ⋅r 𝟬 = 𝟬"
apply (cut_tac ring_zero)
apply (subst ring_tOp_commute, assumption+, simp add:ring_zero)
apply (simp add:ring_times_0_x)
done

lemma (in Ring) rMulZeroDiv:
     "⟦ x ∈ carrier R; y ∈ carrier R; x = 𝟬 ∨ y = 𝟬 ⟧ ⟹ x  ⋅r  y = 𝟬"
apply (erule disjE, simp)
apply (rule ring_times_0_x, assumption+)
apply (simp, rule ring_times_x_0, assumption+)
done

lemma (in Ring) ring_inv1:"⟦ a ∈ carrier R; b ∈ carrier R ⟧ ⟹
      -a (a ⋅r b) = (-a a) ⋅r b ∧ -a (a ⋅r b) = a ⋅r (-a b)"
apply (cut_tac ring_is_ag)
apply (rule conjI)
apply (frule ring_distrib2 [THEN sym, of "b" "a" "-a a"], assumption+)
 apply (frule aGroup.ag_mOp_closed [of "R" "a"], assumption+)
 apply (simp add:aGroup.ag_r_inv1 [of "R" "a"])
 apply (simp add:ring_times_0_x)
 apply (frule aGroup.ag_mOp_closed [of "R" "a"], assumption+)
 apply (frule ring_tOp_closed [of "a" "b"], assumption+)
 apply (frule ring_tOp_closed [of "-a a" "b"], assumption+)
 apply (frule aGroup.ag_eq_sol1 [of "R" "a ⋅r b" "(-a a) ⋅r b" "𝟬"],
           assumption+)
 apply (rule ring_zero, assumption+)
 apply (thin_tac "a ⋅r b ± (-a a) ⋅r b = 𝟬")
 apply (frule sym) apply (thin_tac "(-a a) ⋅r b = -a (a ⋅r b) ± 𝟬")
 apply (frule aGroup.ag_mOp_closed [of "R" " a ⋅r b"], assumption+)
 apply (simp add:aGroup.ag_r_zero)
apply (frule ring_distrib1 [THEN sym, of "a" "b" "-a b"], assumption+)
 apply (simp add:aGroup.ag_mOp_closed)
  apply (simp add:aGroup.ag_r_inv1 [of "R" "b"])
  apply (simp add:ring_times_x_0)
 apply (frule aGroup.ag_mOp_closed [of "R" "b"], assumption+)
 apply (frule ring_tOp_closed [of "a" "b"], assumption+)
 apply (frule ring_tOp_closed [of "a" "-a b"], assumption+)
 apply (frule aGroup.ag_eq_sol1 [THEN sym, of "R" "a ⋅r b" "a ⋅r (-a b)" "𝟬"],
                                                      assumption+)
 apply (simp add:ring_zero) apply assumption
 apply (frule aGroup.ag_mOp_closed [of "R" " a ⋅r b"], assumption+)
  apply (simp add:aGroup.ag_r_zero)
done

lemma (in Ring) ring_inv1_1:"⟦a ∈ carrier R; b ∈ carrier R ⟧ ⟹
      -a (a ⋅r b) = (-a a) ⋅r b"
apply (simp add:ring_inv1)
done

lemma (in Ring) ring_inv1_2:"⟦ a ∈ carrier R; b ∈ carrier R ⟧ ⟹
                                -a (a ⋅r b) = a ⋅r (-a b)"
apply (frule ring_inv1 [of "a" "b"], assumption+)
apply (frule conjunct2)
apply (thin_tac "-a a ⋅r b = (-a a) ⋅r b ∧ -a (a ⋅r b) = a ⋅r (-a b)")
apply simp
done

lemma (in Ring) ring_times_minusl:"a ∈ carrier R ⟹  -a a = (-a 1r) ⋅r a"
apply (cut_tac ring_one)
apply (frule ring_inv1_1[of "1r" "a"], assumption+)
apply (simp add:ring_l_one)
done

lemma (in Ring) ring_times_minusr:"a ∈ carrier R ⟹  -a a = a ⋅r (-a 1r)"
apply (cut_tac ring_one)
apply (frule ring_inv1_2[of "a" "1r"], assumption+)
apply (simp add:ring_r_one)
done

lemma (in Ring) ring_inv1_3:"⟦a ∈ carrier R; b ∈ carrier R⟧ ⟹
                           a ⋅r b = (-a a) ⋅r (-a b)"
apply (cut_tac ring_is_ag)
apply (subst  aGroup.ag_inv_inv[THEN sym], assumption+)
apply (frule aGroup.ag_mOp_closed[of "R" "a"], assumption+)
apply (subst ring_inv1_1[THEN sym, of "-a a" "b"], assumption+)
apply (subst ring_inv1_2[of "-a a" "b"], assumption+, simp)
done

lemma (in Ring) ring_distrib4:"⟦a ∈ carrier R; b ∈ carrier R;
                                x ∈ carrier R; y ∈ carrier R ⟧ ⟹
      a ⋅r b ± (-a x ⋅r y) = a ⋅r (b ± (-a y)) ± (a ± (-a x)) ⋅r y"
apply (cut_tac ring_is_ag)
apply (subst ring_distrib1, assumption+)
apply (rule aGroup.ag_mOp_closed, assumption+)
apply (subst ring_distrib2, assumption+)
apply (rule aGroup.ag_mOp_closed, assumption+)
apply (subst aGroup.pOp_assocTr43, assumption+)
apply (rule ring_tOp_closed, assumption+)+
 apply (rule aGroup.ag_mOp_closed, assumption+)
 apply (rule ring_tOp_closed, assumption+)
 apply (rule ring_tOp_closed)
 apply (simp add:aGroup.ag_mOp_closed)+
apply (subst ring_distrib1 [THEN sym, of "a" _], assumption+)
 apply (rule aGroup.ag_mOp_closed, assumption+)
apply (simp add:aGroup.ag_l_inv1)
apply (simp add:ring_times_x_0)
apply (subst aGroup.ag_r_zero, assumption+)
apply (simp add:ring_tOp_closed)
apply (simp add: ring_inv1_1)
done

lemma (in Ring) rMulLC:
     "⟦x ∈ carrier R; y ∈ carrier R; z ∈ carrier R⟧
        ⟹ x ⋅r (y ⋅r z) = y ⋅r (x ⋅r z)"
  apply (subst ring_tOp_assoc [THEN sym], assumption+)
  apply (subst ring_tOp_commute [of "x" "y"], assumption+)
  apply (subst ring_tOp_assoc, assumption+)
  apply simp
  done

lemma (in Ring) Zero_ring:"1r = 𝟬 ⟹ zeroring R"
apply (simp add:zeroring_def)
apply (rule conjI)
 apply (rule Ring_axioms)
apply (rule equalityI)
 apply (rule subsetI)
 apply (frule_tac x = x in ring_r_one, simp add:ring_times_x_0)

 apply (simp add:ring_zero)
done

lemma (in Ring) Zero_ring1:"¬ (zeroring R) ⟹  1r ≠ 𝟬"
apply (rule contrapos_pp, simp+,
       cut_tac Zero_ring, simp+)
done

lemma (in Ring) Sr_one:"sr R S ⟹ 1r ∈ S"
apply (simp add:sr_def)
done

lemma (in Ring) Sr_zero:"sr R S ⟹ 𝟬 ∈ S"
apply (cut_tac ring_is_ag, frule Sr_one[of "S"])
apply (simp add:sr_def) apply (erule conjE)+
apply (frule_tac x = "1r" in bspec, assumption,
       thin_tac "∀x∈S. ∀y∈S. x ± -a y ∈ S ∧ x ⋅r y ∈ S",
       frule_tac x = "1r" in bspec, assumption,
       thin_tac "∀y∈S. 1r ± -a y ∈ S ∧ 1rr y ∈ S",
       erule conjE)
apply (cut_tac ring_one,
       simp add:aGroup.ag_r_inv1[of "R" "1r"])
done

lemma (in Ring) Sr_mOp_closed:"⟦sr R S; x ∈ S⟧ ⟹ -a x ∈ S"
apply (frule Sr_zero[of "S"])
apply (simp add:sr_def, (erule conjE)+)
apply (cut_tac ring_is_ag)
 apply (frule_tac x = "𝟬" in bspec, assumption,
        thin_tac "∀x∈S. ∀y∈S. x ± -a y ∈ S ∧ x ⋅r y ∈ S",
        frule_tac x = x in bspec, assumption,
        thin_tac "∀y∈S. 𝟬 ± -a y ∈ S ∧ 𝟬 ⋅r y ∈ S", erule conjE)
 apply (frule subsetD[of "S" "carrier R" "𝟬"], assumption+,
        frule subsetD[of "S" "carrier R" "x"], assumption+)
 apply (frule aGroup.ag_mOp_closed [of "R" "x"], assumption)
 apply (simp add:aGroup.ag_l_zero)
done

lemma (in Ring) Sr_pOp_closed:"⟦sr R S; x ∈ S; y ∈ S⟧ ⟹ x ± y ∈ S"
apply (frule Sr_mOp_closed[of "S" "y"], assumption+)
apply (unfold sr_def, (erule conjE)+)
 apply (frule_tac x = x in bspec, assumption,
        thin_tac "∀x∈S. ∀y∈S. x ± -a y ∈ S ∧ x ⋅r y ∈ S",
        frule_tac x = "-a y" in bspec, assumption,
        thin_tac "∀y∈S. x ± -a y ∈ S ∧ x ⋅r y ∈ S", erule conjE)

 apply (cut_tac ring_is_ag )
 apply (frule subsetD[of "S" "carrier R" "y"], assumption+)
 apply (simp add:aGroup.ag_inv_inv)
done

lemma (in Ring) Sr_tOp_closed:"⟦sr R S; x ∈ S; y ∈ S⟧ ⟹ x ⋅r y ∈ S"
by (simp add:sr_def)

lemma (in Ring) Sr_ring:"sr R S ⟹ Ring (Sr R S)"
apply (simp add:Ring_def [of "Sr R S"],
       cut_tac ring_is_ag)
 apply (rule conjI)
 apply (simp add:Sr_def Sr_pOp_closed)

apply (rule conjI)
 apply (rule allI, rule impI)+
 apply (simp add:Sr_def,
        frule_tac x = a and y = b in Sr_pOp_closed, assumption+,
        frule_tac x = b and y = c in Sr_pOp_closed, assumption+,
        simp add:Sr_def sr_def, (erule conjE)+)
 apply (frule_tac c = a in subsetD[of "S" "carrier R"], assumption+,
        frule_tac c = b in subsetD[of "S" "carrier R"], assumption+,
        frule_tac c = c in subsetD[of "S" "carrier R"], assumption+)
 apply (simp add:aGroup.ag_pOp_assoc)

apply (rule conjI)
 apply (rule allI, rule impI)+
 apply (simp add:Sr_def sr_def, (erule conjE)+,
        frule_tac c = a in subsetD[of "S" "carrier R"], assumption+,
        frule_tac c = b in subsetD[of "S" "carrier R"], assumption+)
 apply (simp add:aGroup.ag_pOp_commute)

apply (rule conjI)
  apply ((subst Sr_def)+, simp)
  apply (simp add:Sr_mOp_closed)

apply (rule conjI)
  apply (rule allI)
  apply ((subst Sr_def)+, simp add:Sr_mOp_closed, rule impI)
  apply (unfold sr_def, frule conjunct1, fold sr_def,
         frule_tac c = a in subsetD[of "S" "carrier R"], assumption+,
         simp add:aGroup.ag_l_inv1)

apply (rule conjI)
  apply (simp add:Sr_def Sr_zero)

apply (rule conjI)
  apply (rule allI, simp add:Sr_def Sr_zero)
  apply (rule impI)
  apply (unfold sr_def, frule conjunct1, fold sr_def,
         frule_tac c = a in subsetD[of "S" "carrier R"], assumption+,
         simp add:aGroup.ag_l_zero)

apply (rule conjI)
  apply (simp add:Sr_def Sr_tOp_closed)

apply (rule conjI)
  apply (rule allI, rule impI)+
  apply (simp add:Sr_def Sr_tOp_closed)
  apply (unfold sr_def, frule conjunct1, fold sr_def,
         frule_tac c = a in subsetD[of "S" "carrier R"], assumption+,
         frule_tac c = b in subsetD[of "S" "carrier R"], assumption+,
         frule_tac c = c in subsetD[of "S" "carrier R"], assumption+)
  apply (simp add:ring_tOp_assoc)

apply (rule conjI)
  apply ((rule allI, rule impI)+, simp add:Sr_def)
  apply (unfold sr_def, frule conjunct1, fold sr_def,
         frule_tac c = a in subsetD[of "S" "carrier R"], assumption+,
         frule_tac c = b in subsetD[of "S" "carrier R"], assumption+,
         simp add:ring_tOp_commute)

apply (rule conjI)
  apply (simp add:Sr_def Sr_one)

apply (rule conjI)
  apply (simp add:Sr_def Sr_pOp_closed Sr_tOp_closed)
  apply (rule allI, rule impI)+
  apply (unfold sr_def, frule conjunct1, fold sr_def,
         frule_tac c = a in subsetD[of "S" "carrier R"], assumption+,
         frule_tac c = b in subsetD[of "S" "carrier R"], assumption+,
         frule_tac c = c in subsetD[of "S" "carrier R"], assumption+)
  apply (simp add:ring_distrib1)

apply (simp add:Sr_def Sr_one)
 apply (rule allI, rule impI)
   apply (unfold sr_def, frule conjunct1, fold sr_def,
         frule_tac c = a in subsetD[of "S" "carrier R"], assumption+)
 apply (simp add:ring_l_one)
done


section "Calculation of elements"
 (** The author of this part is L. Chen, revised by H. Murao and Y.
     Santo  **)

subsection "nscale"

lemma (in Ring) ring_tOp_rel:"⟦x∈carrier R; xa∈carrier R; y∈carrier R;
ya ∈ carrier R ⟧ ⟹ (x ⋅r xa) ⋅r (y ⋅r ya) = (x ⋅r y) ⋅r (xa ⋅r ya)"
apply (frule ring_tOp_closed[of "y" "ya"], assumption+,
       simp add:ring_tOp_assoc[of "x" "xa"])
apply (simp add:ring_tOp_assoc[THEN sym, of "xa" "y" "ya"],
       simp add:ring_tOp_commute[of "xa" "y"],
       simp add:ring_tOp_assoc[of "y" "xa" "ya"])
apply (frule ring_tOp_closed[of "xa" "ya"], assumption+,
       simp add:ring_tOp_assoc[THEN sym, of "x" "y"])
done

lemma (in Ring) nsClose:
  "⋀ n. ⟦ x ∈ carrier R ⟧  ⟹ nscal R x n ∈ carrier R"
  apply (induct_tac n)
  apply (simp add:ring_zero)
  apply (cut_tac ring_is_ag, simp add:aGroup.ag_pOp_closed)
done

lemma (in Ring) nsZero:
             "nscal R 𝟬 n = 𝟬"
  apply (cut_tac ring_is_ag)
  apply (induct_tac n)
  apply simp

  apply simp
   apply (cut_tac ring_zero, simp add:aGroup.ag_l_zero)
  done

lemma (in Ring) nsZeroI: "⋀ n.  x = 𝟬  ⟹ nscal R x n = 𝟬"
  by (simp only:nsZero)

lemma (in Ring) nsEqElm:  "⟦ x ∈ carrier R; y ∈ carrier R; x = y ⟧
        ⟹ (nscal R x n) = (nscal R y n)"
  by simp

lemma (in Ring) nsDistr:  "x ∈ carrier R
        ⟹ (nscal R x n) ± (nscal R x m) = nscal R x (n + m)"
apply (cut_tac ring_is_ag)
  apply (induct_tac m)
  apply simp
  apply (frule nsClose[of "x" "n"])
  apply ( simp add:aGroup.ag_r_zero)

  apply simp
  apply (frule_tac x = x and n = n in nsClose,
         frule_tac x = x and n = na in nsClose)
  apply (subst aGroup.ag_pOp_assoc[THEN sym], assumption+, simp)
  done

lemma (in Ring) nsDistrL:  "⟦x ∈ carrier R; y ∈ carrier R ⟧
        ⟹ (nscal R x n) ± (nscal R y n) = nscal R (x ± y) n"
  apply (cut_tac ring_is_ag)
  apply (induct_tac n)
  apply simp
  apply (cut_tac ring_zero,
         simp add:aGroup.ag_l_zero)

  apply simp
  apply (frule_tac x = x and n = n in nsClose,
         frule_tac x = y and n = n in nsClose)
  apply (subst aGroup.pOp_assocTr43[of R _ x _ y], assumption+)
  apply (frule_tac x = x and y = "n ×R y" in aGroup.ag_pOp_commute[of "R"],
         assumption+)
   apply simp
   apply (subst aGroup.pOp_assocTr43[THEN sym, of R _ _ x y], assumption+)
   apply simp
done

lemma (in Ring) nsMulDistrL:"⟦ x ∈ carrier R; y ∈ carrier R ⟧
        ⟹ x ⋅r (nscal R y n) = nscal R (x ⋅r y) n"
  apply (induct_tac n)
  apply simp
  apply (simp add:ring_times_x_0)

  apply simp apply (subst ring_distrib1, assumption+)
  apply (rule nsClose, assumption+)
  apply simp
done

lemma (in Ring) nsMulDistrR:"⟦ x ∈ carrier R; y ∈ carrier R⟧
        ⟹ (nscal R y n) ⋅r x = nscal R (y ⋅r x) n"
  apply (frule_tac x = y and n = n in nsClose,
         simp add:ring_tOp_commute[of "n ×R y" "x"],
         simp add:nsMulDistrL,
         simp add:ring_tOp_commute[of "y" "x"])
done

subsection "npow"

lemma (in Ring) npClose:"x ∈ carrier R ⟹ npow R x n ∈ carrier R"
  apply (induct_tac n)
  apply simp apply (simp add:ring_one)

  apply simp
  apply (rule ring_tOp_closed, assumption+)
  done

lemma (in Ring) npMulDistr:"⋀ n m. x ∈ carrier R  ⟹
                 (npow R x n) ⋅r (npow R x m) = npow R x (n + m)"
  apply (induct_tac m)
  apply simp apply (rule ring_r_one, simp add:npClose)

  apply simp
  apply (frule_tac x = x and n = n in npClose,
         frule_tac x = x and n = na in npClose)
  apply (simp add:ring_tOp_assoc[THEN sym])
done

lemma (in Ring) npMulExp:"⋀n m. x ∈ carrier R
        ⟹  npow R (npow R x n) m = npow R x (n * m)"
apply (induct_tac m)
apply simp
apply simp
apply (simp add:npMulDistr)
apply (simp add:add.commute)
done


lemma (in Ring) npGTPowZero_sub:
  " ⋀ n. ⟦ x ∈ carrier R; npow R x m = 𝟬 ⟧
        ⟹(m ≤ n) ⟶ (npow R x n = 𝟬 )"
  apply (rule impI)
  apply (subgoal_tac "npow R x n = (npow R x (n-m)) ⋅r (npow R x m)")
  apply simp
  apply (rule ring_times_x_0) apply (simp add:npClose)
  apply (thin_tac "x^R m = 𝟬")
  apply (subst npMulDistr, assumption)
  apply simp
  done

lemma (in Ring) npGTPowZero:
  "⋀ n. ⟦ x ∈ carrier R; npow R x m = 𝟬; m ≤ n ⟧
        ⟹ npow R x n = 𝟬"
  apply (cut_tac x = x and m = m and n = n in npGTPowZero_sub, assumption+)
  apply simp
  done


lemma (in Ring) npOne: " npow R (1r) n = 1r"
  apply (induct_tac n) apply simp

  apply simp
    apply (rule ring_r_one, simp add:ring_one)
done

lemma (in Ring) npZero_sub: "0 < n ⟶ npow R 𝟬 n = 𝟬"
  apply (induct_tac "n")
  apply simp

  apply simp
    apply (cut_tac ring_zero,
           frule_tac n = n in npClose[of "𝟬"])
    apply (simp add:ring_times_x_0)
done

lemma (in Ring) npZero: "0 < n  ⟹ npow R 𝟬 n = 𝟬"
  apply (simp add:npZero_sub)
done

lemma (in Ring) npMulElmL: "⋀ n. ⟦ x ∈ carrier R; 0 ≤ n⟧
        ⟹ x ⋅r (npow R x n) = npow R x (Suc n)"
apply (simp only:npow_suc,
       frule_tac n = n and x = x in npClose,
       simp add:ring_tOp_commute)
done

lemma (in Ring) npMulEleL: "⋀ n. x ∈ carrier R
        ⟹ (npow R x n) ⋅r x =  npow R x (Suc n)"
by (simp add:npMulElmL[THEN sym])

lemma (in Ring) npMulElmR: "⋀ n. x ∈ carrier R
        ⟹ (npow R x n) ⋅r x =  npow R x (Suc n)"
  apply ( frule_tac n = n in npClose[of "x"])
   apply (simp only:ring_tOp_commute,
          subst npMulElmL, assumption, simp, simp)
  done

lemma (in Ring) np_1:"a ∈ carrier R ⟹ npow R a (Suc 0) = a"  (* Y. Santo*)
apply simp
 apply (simp add:ring_l_one)
done

subsection  "nsum and fSum"

lemma (in aGroup) nsum_memTr: "(∀j ≤ n. f j ∈ carrier A) ⟶
                                 nsum A f n ∈ carrier A"
  apply (induct_tac "n")
  apply simp
  apply (rule impI)
  apply (cut_tac n = n in Nsetn_sub_mem1, simp)
  apply (frule_tac a = "Suc n" in forall_spec, simp,
         thin_tac "∀j≤Suc n. f j ∈ carrier A")
   apply (rule ag_pOp_closed, assumption+)
   done

lemma (in aGroup) nsum_mem:"∀j ≤ n. f j ∈ carrier A ⟹
                                 nsum A f n ∈ carrier A"
apply (simp add:nsum_memTr)
done

lemma (in aGroup) nsum_eqTr:"(∀j ≤ n. f j ∈ carrier A ∧
                                      g j ∈ carrier A ∧
                                      f j = g j)
                           ⟶  nsum A f n = nsum A g n"
apply (induct_tac n)
 apply simp
apply (rule impI)
 apply (cut_tac n = n in Nsetn_sub_mem1, simp)
done

lemma (in aGroup) nsum_eq:"⟦∀j ≤ n. f j ∈ carrier A; ∀j ≤ n. g j ∈ carrier A;
                           ∀j ≤ n. f j = g j⟧ ⟹  nsum A f n = nsum A g n"
by (simp add:nsum_eqTr)

lemma (in aGroup) nsum_cmp_assoc:"⟦∀j ≤ n. f j ∈ carrier A;
       g ∈ {j. j ≤ n} → {j. j ≤ n}; h ∈ {j. j ≤ n} → {j. j ≤ n}⟧ ⟹
       nsum A (cmp (cmp f h) g) n = nsum A (cmp f (cmp h g)) n"
apply (rule nsum_eq)
apply (rule allI, rule impI, simp add:cmp_def)
apply (frule_tac x = j in funcset_mem[of g "{j. j ≤ n}" "{j. j ≤ n}"], simp,
       frule_tac x = "g j" in funcset_mem[of h "{j. j ≤ n}" "{j. j ≤ n}"],
       assumption, simp)
 apply (rule allI, rule impI, simp add:cmp_def,
       frule_tac x = j in funcset_mem[of g "{j. j ≤ n}" "{j. j ≤ n}"], simp,
       frule_tac x = "g j" in funcset_mem[of h "{j. j ≤ n}" "{j. j ≤ n}"],
       assumption, simp)
 apply (rule allI, simp add:cmp_def)
done

lemma (in aGroup) fSum_Suc:"∀j ∈ nset n (n + Suc m). f j ∈ carrier A ⟹
              fSum A f n (n + Suc m) = fSum A f n (n + m) ± f (n + Suc m)"
by (simp add:fSum_def, simp add:cmp_def slide_def)

lemma (in aGroup) fSum_eqTr:"(∀j ∈ nset n (n + m). f j ∈ carrier A ∧
         g j ∈ carrier A ∧  f j = g j)  ⟶
                       fSum A f  n (n + m) = fSum A g n (n + m)"
apply (induct_tac m)
 apply (simp add:fSum_def,
        simp add:cmp_def slide_def,
        simp add:nset_def)

apply (rule impI)
 apply (subst fSum_Suc,
        rule ballI, simp, simp)
 apply (cut_tac n = n and m = na and f = g in fSum_Suc,
        rule ballI, simp, simp,
        thin_tac f A g n (Suc (n + na)) =
                                   Σf A g n (n + na) ± g (Suc (n + na))")

 apply (cut_tac n = n and m = na in nsetnm_sub_mem, simp,
        thin_tac "∀j. j ∈ nset n (n + na) ⟶ j ∈ nset n (Suc (n + na))")
apply (frule_tac x = "Suc (n + na)" in bspec,
       simp add:nset_def, simp)
done

lemma (in aGroup) fSum_eq:"⟦ ∀j ∈ nset n (n + m). f j ∈ carrier A;
      ∀j ∈ nset n (n + m). g j ∈ carrier A; (∀j∈ nset n (n + m). f j = g j)⟧
       ⟹
         fSum A f n (n + m) = fSum A g n (n + m)"
by (simp add:fSum_eqTr)

lemma (in aGroup) fSum_eq1:"⟦n ≤ m; ∀j∈nset n m. f j ∈ carrier A;
       ∀j∈nset n m. g j ∈ carrier A;  ∀j∈nset n m. f j = g j⟧ ⟹
         fSum A f n m = fSum A g n m"
apply (cut_tac fSum_eq[of n "m - n" f g])
apply simp+
done

lemma (in aGroup) fSum_zeroTr:"(∀j ∈ nset n (n + m). f j = 𝟬)  ⟶
                       fSum A f  n (n + m) = 𝟬"
apply (induct_tac m)
 apply (simp add:fSum_def cmp_def slide_def nset_def)
 apply (rule impI)
 apply (subst fSum_Suc)
 apply (rule ballI, simp add:ag_inc_zero)
apply (frule_tac x = "n + Suc na" in bspec, simp add:nset_def,
       simp)
 apply (simp add:nset_def)
 apply (cut_tac ag_inc_zero, simp add:ag_l_zero)
done

lemma (in aGroup) fSum_zero:"∀j ∈ nset n (n + m). f j = 𝟬  ⟹
                       fSum A f  n (n + m) = 𝟬"
by (simp add:fSum_zeroTr)

lemma (in aGroup) fSum_zero1:"⟦n < m; ∀j ∈ nset (Suc n) m. f j = 𝟬⟧  ⟹
                       fSum A f  (Suc n) m = 𝟬"
apply (cut_tac fSum_zero[of "Suc n" "m - Suc n" f])
 apply simp+
done

lemma (in Ring) nsumMulEleL: "⋀ n. ⟦ ∀ i. f i ∈ carrier R; x ∈ carrier R ⟧
        ⟹ x ⋅r (nsum R f n) = nsum R (λ i. x ⋅r (f i)) n"
  apply (cut_tac ring_is_ag)
  apply (induct_tac "n")
  apply simp

  apply simp
  apply (subst ring_distrib1, assumption)
  apply (rule aGroup.nsum_mem, assumption)
 apply (rule allI, simp+)
done

lemma (in Ring) nsumMulElmL:
  "⋀ n. ⟦ ∀ i. f i ∈ carrier R; x ∈ carrier R ⟧
        ⟹ x ⋅r (nsum R f n) = nsum R (λ i. x ⋅r (f i)) n"
  apply (cut_tac ring_is_ag)
  apply (induct_tac "n")
  apply simp

  apply simp
  apply (subst ring_distrib1, assumption+)
    apply (simp add:aGroup.nsum_mem)+
  done

lemma (in aGroup) nsumTailTr:
         "(∀j≤(Suc n). f j ∈ carrier A) ⟶
          nsum A f (Suc n) = (nsum A (λ i. (f (Suc i))) n) ± (f 0)"
  apply (induct_tac "n")
  apply simp
  apply (rule impI,
         rule ag_pOp_commute)
  apply (cut_tac Nset_inc_0[of "Suc 0"],
         simp add:Pi_def,
         cut_tac n_in_Nsetn[of "Suc 0"],
         simp add:Pi_def)

  apply (rule impI)
   apply (cut_tac n = "Suc n" in Nsetn_sub_mem1, simp)
   apply (frule_tac a = 0 in forall_spec, simp,
          frule_tac a = "Suc (Suc n)" in forall_spec, simp)
    apply (cut_tac n = n in nsum_mem[of  _  "λi. f (Suc i)"],
          rule allI, rule impI,
          frule_tac a = "Suc j" in forall_spec, simp, simp,
          thin_tac "∀j≤Suc (Suc n). f j ∈ carrier A")
    apply (subst ag_pOp_assoc, assumption+)
       apply (simp add:ag_pOp_commute[of  "f 0"])
    apply (subst ag_pOp_assoc[THEN sym], assumption+)
    apply simp
  done

lemma (in aGroup) nsumTail:
      "∀j ≤ (Suc n). f j ∈ carrier A ⟹
            nsum A f (Suc n) = (nsum A (λ i. (f (Suc i))) n) ± (f 0)"
  by (cut_tac nsumTailTr[of n f], simp)

lemma (in aGroup) nsumElmTail:
  "∀i. f i ∈ carrier A
        ⟹ nsum A f (Suc n) = (nsum A (λ i. (f (Suc i))) n) ± (f 0)"
  apply (cut_tac n = n and f = f in nsumTail,
         rule allI, simp, simp)
done

lemma (in aGroup) nsum_addTr:
  "(∀j ≤ n. f j ∈ carrier A ∧ g j ∈ carrier A) ⟶
   nsum A (λ i. (f i) ± (g i)) n = (nsum A f n) ± (nsum A g n)"
  apply (induct_tac "n")
  apply simp

  apply (simp, rule impI)
  apply (cut_tac n = n in Nsetn_sub_mem1, simp)
 apply (thin_tac e A (λi. f i ± g i) n = Σe A f n ± Σe A g n")
  apply (rule aGroup.ag_add4_rel, rule aGroup_axioms)
  apply (rule aGroup.nsum_mem, rule aGroup_axioms, rule allI, simp)
  apply (rule aGroup.nsum_mem, rule aGroup_axioms, rule allI, simp)
  apply simp+
  done

lemma (in aGroup) nsum_add:
  "⟦ ∀j ≤ n. f j ∈ carrier A; ∀j ≤ n. g j ∈ carrier A⟧  ⟹
   nsum A (λ i. (f i) ± (g i)) n = (nsum A f n) ± (nsum A g n)"
by (cut_tac nsum_addTr[of n f g], simp)

lemma (in aGroup) nsumElmAdd:
  "⟦ ∀ i. f i ∈ carrier A; ∀ i. g i ∈ carrier A⟧
        ⟹ nsum A (λ i. (f i) ± (g i)) n = (nsum A f n) ± (nsum A g n)"
 apply (cut_tac nsum_add[of n f g])
 apply simp
 apply (rule allI, simp)+
 done

lemma (in aGroup) nsum_add_nmTr:
  "(∀j ≤ n. f j ∈ carrier A) ∧ (∀j ≤ m. g j ∈ carrier A) ⟶
   nsum A (jointfun n f m g) (Suc (n + m)) = (nsum A f n) ± (nsum A g m)"
apply (induct_tac m)
 apply (simp add:jointfun_def sliden_def)
 apply (rule impI)
 apply (rule ag_pOp_add_r)
 apply (rule nsum_mem, rule allI, erule conjE, rule impI, simp)
 apply (erule conjE, simp add:nsum_mem, simp)
 apply (rule nsum_eq[of n], simp+)
apply (simp add:jointfun_def)
 apply (rule impI, simp)
 apply (erule conjE, simp add:sliden_def)
 apply (thin_tac e A (λi. if i ≤ n then f i else g (sliden (Suc n) i))
        (n + na) ± g na = Σe A f n ± Σe A g na")
 apply (subst ag_pOp_assoc)
 apply (simp add:nsum_mem)
 apply (simp add:nsum_mem, simp)
 apply simp
done

lemma (in aGroup) nsum_add_nm:
"⟦∀j ≤ n. f j ∈ carrier A; ∀j ≤ m. g j ∈ carrier A⟧ ⟹
   nsum A (jointfun n f m g) (Suc (n + m)) = (nsum A f n) ± (nsum A g m)"
apply (cut_tac nsum_add_nmTr[of n f m g])
 apply simp
done

lemma (in Ring) npeSum2_sub_muly:
  "⟦ x ∈ carrier R; y ∈ carrier R ⟧ ⟹
        y ⋅r(nsum R (λi. nscal R ((npow R x (n-i)) ⋅r (npow R y i))
                                (n choose i)) n)
        = nsum R (λi. nscal R ((npow R x (n-i)) ⋅r (npow R y (i+1)))
                                (n choose i)) n"
  apply (cut_tac ring_is_ag)
  apply (subst nsumMulElmL)
    apply (rule allI)
      apply (simp only:nsClose add:ring_tOp_closed
             add:npClose)
    apply assumption
  apply (simp only:nsMulDistrL add:nsClose add:ring_tOp_closed
         add:npClose)
  apply (simp only: rMulLC [of "y"] add:npClose)

 apply (simp del:npow_suc add:ring_tOp_commute[of y])
 apply (rule aGroup.nsum_eq, assumption)
  apply (rule allI, rule impI, rule nsClose,
         rule ring_tOp_closed, simp add:npClose,
         rule ring_tOp_closed, assumption, simp add:npClose)
  apply (rule allI, rule impI, rule nsClose,
         rule ring_tOp_closed, simp add:npClose,
         rule npClose, assumption)
 apply (rule allI, rule impI)
  apply (frule_tac n = j in npClose[of y])
  apply (simp add:ring_tOp_commute[of y])
done

(********)(********)(********)(********)
lemma binomial_n0: "(Suc n choose 0) = (n choose 0)"
  by simp

lemma binomial_ngt_diff:
  "(n choose Suc n) = (Suc n choose Suc n) - (n choose n)"
  by (subst binomial_Suc_Suc, arith)


lemma binomial_ngt_0: "(n choose Suc n) = 0"
  apply (subst binomial_ngt_diff,
         (subst binomial_n_n)+)
  apply simp
  done

lemma diffLessSuc: "m ≤ n ⟹ Suc (n-m) = Suc n - m"
  by arith

lemma (in Ring) npow_suc_i:
  "⟦ x ∈ carrier R; i ≤ n ⟧
        ⟹ npow R x (Suc n - i) =  x ⋅r (npow R x (n-i))"
  apply (subst diffLessSuc [THEN sym, of "i" "n"], assumption)
  apply (frule_tac n = "n - i" in npClose,
         simp add:ring_tOp_commute[of x])
  done
(**
lemma (in Ring) nsumEqFunc_sub:
  "⟦  ⋀ i. f i ∈ carrier R; ⋀ i. g i ∈ carrier R ⟧
        ⟹ ( ∀ i. i ≤ n ⟶ f i = g i) ⟶ (nsum0 R f n = nsum0 R g n)";
  apply (induct_tac "n")
  apply simp+
  done

lemma (in Ring) nsumEqFunc:
  "⟦ ⋀ i. f i ∈ carrier R; ⋀ i. g i ∈ carrier R;
     ⋀ i. i ≤ n ⟶ f i = g i ⟧ ⟹  nsum0 R f n = nsum0 R g n"
  apply (cut_tac nsumEqFunc_sub [of "f" "g" "n"])
  apply simp+
  done          nsumEqFunc ⟶ nsum_eq       **)
(********)(********)

lemma (in Ring) npeSum2_sub_mulx: "⟦ x ∈ carrier R; y ∈ carrier R ⟧ ⟹
  x ⋅r (nsum R (λ i. nscal R ((npow R x (n-i)) ⋅r (npow R y i))
                                                        (n choose i)) n)
   = (nsum R (λi. nscal R
                          ((npow R x (Suc n - Suc i)) ⋅r (npow R y (Suc i)))
                          (n choose Suc i)) n) ±
                (nscal R ((npow R x (Suc n - 0)) ⋅r (npow R y 0))
                        (Suc n choose 0))"
  apply (cut_tac ring_is_ag)
  apply (simp only: binomial_n0)
  apply (subst aGroup.nsumElmTail [THEN sym, of R "λ i. nscal R ((npow R x (Suc n - i)) ⋅r (npow R y i)) (n choose i)"], assumption+)
  apply (rule allI)
      apply (simp only:nsClose add:ring_tOp_closed add:npClose)

  apply (simp only:nsum_suc)
  apply (subst binomial_ngt_0)
  apply (simp only:nscal_0)
  apply (subst aGroup.ag_r_zero, assumption)
    apply (simp add:aGroup.nsum_mem nsClose ring_tOp_closed npClose)
  apply (subst nsumMulElmL [of  _ "x"])
    apply (rule allI, rule nsClose, rule ring_tOp_closed, simp add:npClose,
           simp add:npClose, assumption)

  apply (simp add: nsMulDistrL [of "x"] ring_tOp_closed npClose)
  apply (simp add:ring_tOp_assoc [THEN sym, of "x"] npClose)
  apply (rule aGroup.nsum_eq, assumption)
   apply (rule allI, rule impI,
          rule nsClose, (rule ring_tOp_closed)+, assumption,
          simp add:npClose, simp add:npClose)
   apply (rule allI, rule impI,
          rule nsClose, rule ring_tOp_closed,
          simp add:npClose, simp add:npClose)
  apply (rule allI, rule impI)
  apply (frule_tac n = "n - j" in npClose[of x],
        simp add:ring_tOp_commute[of x],
        subst npow_suc[THEN sym])
  apply (simp add:Suc_diff_le)
done

lemma (in Ring) npeSum2_sub_mulx2:
  "⟦ x ∈ carrier R; y ∈ carrier R ⟧ ⟹
        x ⋅r (nsum R (λ i. nscal R ((npow R x (n-i)) ⋅r (npow R y i))
                                (n choose i)) n)
        = (nsum R  (λi. nscal R
                          ((npow R x (n - i)) ⋅r ((npow R y i) ⋅r y ))
                          (n choose Suc i)) n) ±
                (𝟬 ± ((x ⋅r (npow R x n)) ⋅r (1r)))"
apply (subst  npeSum2_sub_mulx, assumption+, simp)
apply (frule npClose[of x n])
apply (subst ring_tOp_commute[of x], assumption+)
 apply (cut_tac ring_is_ag)
 apply (cut_tac aGroup.nsum_eq[of R n
        "λi.  (n choose Suc i) ×R (x^R (n - i)r y^R (Suc i))"
        "λi.  (n choose Suc i) ×R (x^R (n - i)r (y^R ir y))"])
 apply (simp del:npow_suc)+
  apply (rule allI, rule impI,
         rule nsClose, rule ring_tOp_closed, simp add:npClose,
         simp only:npClose)
  apply (rule allI, rule impI,
         rule nsClose, rule ring_tOp_closed, simp add:npClose,
         rule ring_tOp_closed, simp add:npClose, assumption)
  apply (rule allI, rule impI)
 apply (frule_tac n = j in npClose[of y])
 apply simp
done


lemma (in Ring) npeSum2:
  "⋀ n. ⟦ x ∈ carrier R; y ∈ carrier R ⟧
        ⟹ npow R (x ± y) n =
                nsum R (λ i. nscal R ((npow R x (n-i)) ⋅r (npow R y i))
                                       ( n choose i) ) n"
  apply (cut_tac ring_is_ag)
  apply (induct_tac "n")

  (*1*)
  apply simp
    apply (cut_tac ring_one, simp add:ring_r_one, simp add:aGroup.ag_l_zero)
  (*1:done*)

  apply (subst aGroup.nsumElmTail, assumption+)
    apply (rule allI)
    apply (simp add:nsClose ring_tOp_closed npClose)

(**
thm binomial_Suc_Suc
**)
  apply (simp only:binomial_Suc_Suc)
  apply (simp only: nsDistr [THEN sym] add:npClose ring_tOp_closed)
  apply (subst aGroup.nsumElmAdd, assumption+)
    apply (rule allI,
           simp add:nsClose ring_tOp_closed npClose)
    apply (rule allI,
           simp add:nsClose add:ring_tOp_closed npClose)
  apply (subst aGroup.ag_pOp_assoc, assumption)
    apply (rule aGroup.nsum_mem, assumption,
           rule allI, rule impI,  simp add:nsClose ring_tOp_closed npClose)
    apply (rule aGroup.nsum_mem, assumption,
           rule allI, rule impI,  simp add:nsClose ring_tOp_closed npClose)
    apply (simp add:nsClose ring_tOp_closed npClose)
    apply (rule aGroup.ag_pOp_closed, assumption)
    apply (simp add:aGroup.ag_inc_zero)
    apply (rule ring_tOp_closed)+
    apply (simp add:npClose, assumption, simp add:ring_one)

  apply (subst npMulElmL [THEN sym, of "x ± y"],
         simp add:aGroup.ag_pOp_closed, simp)
   apply simp
  apply (subst ring_distrib2 [of _ "x" "y"])
  apply (rule aGroup.nsum_mem,assumption,
         rule allI, rule impI, rule nsClose, rule ring_tOp_closed,
         simp add:npClose, simp add:npClose, assumption+)
  apply (rule aGroup.gEQAddcross [THEN sym], assumption+,
         rule aGroup.nsum_mem, assumption, rule allI, rule impI, rule nsClose,
         (rule ring_tOp_closed)+, simp add:npClose,
         rule ring_tOp_closed, simp add:npClose, assumption)
    apply (rule aGroup.ag_pOp_closed, assumption)
    apply (rule aGroup.nsum_mem, assumption,
           rule allI, rule impI, rule nsClose, rule ring_tOp_closed,
          simp add:npClose, rule ring_tOp_closed, simp add:npClose, assumption)
    apply (rule aGroup.ag_pOp_closed, assumption, simp add:ring_zero)
    apply ((rule ring_tOp_closed)+,
           simp add:npClose,assumption, simp add:ring_one)
    apply (rule ring_tOp_closed, assumption,
           rule aGroup.nsum_mem, assumption, rule allI, rule impI,
           rule nsClose, rule ring_tOp_closed,
           (simp add:npClose)+)
    apply (rule ring_tOp_closed, assumption+,
           rule aGroup.nsum_mem, assumption, rule allI, rule impI,
           rule nsClose,
           rule ring_tOp_closed,
           simp add:npClose, simp add:npClose)
    apply (subst npeSum2_sub_muly [of "x" "y"], assumption+, simp)

  (* final part *)
  apply (subst npeSum2_sub_mulx2 [of x y], assumption+)
  apply (frule_tac n = na in npClose[of x],
         simp add:ring_tOp_commute[of _ x])
  done

lemma (in aGroup) nsum_zeroTr:
  "⋀ n. (∀ i. i ≤ n ⟶  f i = 𝟬) ⟶ (nsum A f n = 𝟬)"
  apply (induct_tac "n")
  apply simp

  apply (rule impI)
  apply (cut_tac n = na in Nsetn_sub_mem1, simp)
    apply (subst aGroup.ag_l_zero, rule aGroup_axioms)
    apply (simp add:ag_inc_zero)
  apply simp
  done

lemma (in Ring) npAdd:
  "⟦ x ∈ carrier R; y ∈ carrier R;
     npow R x m = 𝟬; npow R y n = 𝟬 ⟧
        ⟹ npow R (x ± y) (m + n) = 𝟬"
  apply (subst npeSum2, assumption+)

  apply (rule aGroup.nsum_zeroTr [THEN mp])
  apply (simp add:ring_is_ag)
  apply (rule allI, rule impI)
  apply (rule nsZeroI)
  apply (rule rMulZeroDiv, simp add:npClose, simp add:npClose)

  apply (case_tac "i ≤ n")

  apply (rule disjI1)
  apply (rule npGTPowZero [of "x" "m"], assumption+)
    apply arith

  apply (rule disjI2)
  apply (rule npGTPowZero [of "y" "n"], assumption+)
    apply (arith)
  done

lemma (in Ring) npInverse:
  "⋀n. x ∈ carrier R
        ⟹ npow R (-a x) n = npow R x n
            ∨ npow R (-a x) n = -a (npow R x n)"
  apply (induct_tac n)
 (* n=0 *)
  apply simp

 apply (erule disjE)
 apply simp
 apply (subst ring_inv1_2,
        simp add:npClose, assumption, simp)
 apply (cut_tac ring_is_ag)

 apply simp
 apply (subst ring_inv1_2[THEN sym, of _ x])
 apply (rule aGroup.ag_mOp_closed, assumption+,
        simp add:npClose, assumption)
 apply (thin_tac "(-a x)^R na = -a (x^R na)",
        frule_tac n = na in npClose[of x],
        frule_tac x = "x^R na" in aGroup.ag_mOp_closed[of R], simp add:npClose)
 apply (simp add: ring_inv1_1[of _ x])
 apply (simp add:aGroup.ag_inv_inv[of R])
done

lemma (in Ring) npMul:
  "⋀ n. ⟦ x ∈ carrier R; y ∈ carrier R ⟧
        ⟹ npow R (x ⋅r y) n = (npow R x n) ⋅r (npow R y n)"
  apply (induct_tac "n")
 (* n=0 *)
  apply simp
  apply (rule ring_r_one [THEN sym]) apply (simp add:ring_one)
 (* n>0 *)
  apply (simp only:npow_suc)
  apply (rule ring_tOp_rel[THEN sym])
    apply (rule npClose, assumption+)+
  done

section "Ring homomorphisms"

definition
  rHom :: "[('a, 'm) Ring_scheme, ('b, 'm1) Ring_scheme]
                      ⇒ ('a  ⇒ 'b) set" where
  "rHom A R = {f. f ∈ aHom A R ∧
    (∀x∈carrier A. ∀y∈carrier A. f ( x ⋅rA y) =  (f x) ⋅rR (f y))
    ∧ f (1rA) = (1rR)}"

definition
  rInvim :: "[('a, 'm) Ring_scheme, ('b, 'm1) Ring_scheme, 'a ⇒ 'b, 'b set]
               ⇒ 'a set" where
  "rInvim A R f K = {a. a ∈ carrier A ∧ f a ∈ K}"

definition
  rimg :: "[('a, 'm) Ring_scheme, ('b, 'm1) Ring_scheme, 'a ⇒ 'b] ⇒
            'b Ring" where
  "rimg A R f = ⦇carrier= f `(carrier A), pop = pop R, mop = mop R,
    zero = zero R, tp = tp R, un = un R ⦈"

definition
  ridmap :: "('a, 'm) Ring_scheme ⇒ ('a ⇒ 'a)" where
  "ridmap R = (λx∈carrier R. x)"

definition
  r_isom :: "[('a, 'm) Ring_scheme, ('b, 'm1) Ring_scheme] ⇒ bool"
                       (infixr "≅r" 100) where
  "r_isom R R' ⟷ (∃f∈rHom R R'. bijecR,R' f)"

definition
  Subring :: "[('a, 'm) Ring_scheme, ('a, 'm1) Ring_scheme] ⇒ bool" where
  "Subring R S == Ring S ∧ (carrier S ⊆ carrier R) ∧ (ridmap S) ∈ rHom S R"

lemma ridmap_surjec:"Ring A ⟹ surjecA,A (ridmap A)"
by(simp add:surjec_def aHom_def ridmap_def Ring.ring_is_ag aGroup.ag_pOp_closed surj_to_def)

lemma rHom_aHom:"f ∈ rHom A R ⟹ f ∈ aHom A R"
by (simp add:rHom_def)

lemma rimg_carrier:"f ∈ rHom A R ⟹ carrier (rimg A R f) = f ` (carrier A)"
by (simp add:rimg_def)

lemma rHom_mem:"⟦ f ∈ rHom A R; a ∈ carrier A ⟧ ⟹ f a ∈ carrier R"
apply (simp add:rHom_def, frule conjunct1)
 apply (thin_tac "f ∈ aHom A R ∧
     (∀x∈carrier A. ∀y∈carrier A. f (x ⋅rA y) = f x ⋅rR f y) ∧ f 1rA = 1rR")
 apply (simp add:aHom_def, frule conjunct1)
 apply (thin_tac "f ∈ carrier A → carrier R ∧
     f ∈ extensional (carrier A) ∧
     (∀a∈carrier A. ∀b∈carrier A. f (a ±A b) = f a ±R f b)")
 apply (simp add:funcset_mem)
done

lemma rHom_func:"f ∈ rHom A R ⟹ f ∈ carrier A → carrier R"
by (simp add:rHom_def aHom_def)

lemma ringhom1:"⟦ Ring A; Ring R; x ∈ carrier A; y ∈ carrier A;
                    f ∈ rHom A R ⟧ ⟹ f (x ±A y) = (f x) ±R (f y)"
apply (simp add:rHom_def) apply (erule conjE)
apply (frule Ring.ring_is_ag [of "A"])
apply (frule Ring.ring_is_ag [of "R"])
apply (rule aHom_add, assumption+)
done

lemma rHom_inv_inv:"⟦ Ring A; Ring R; x ∈ carrier A; f ∈ rHom A R ⟧
 ⟹ f (-aA x) = -aR (f x)"
apply (frule Ring.ring_is_ag [of "A"],
       frule Ring.ring_is_ag [of "R"])
apply (simp add:rHom_def, erule conjE)
apply (simp add:aHom_inv_inv)
done

lemma rHom_0_0:"⟦ Ring A; Ring R; f ∈ rHom A R ⟧  ⟹ f (𝟬A) = 𝟬R"
apply (frule Ring.ring_is_ag [of "A"], frule Ring.ring_is_ag [of "R"])
apply (simp add:rHom_def, (erule conjE)+, simp add:aHom_0_0)
done

lemma rHom_tOp:"⟦ Ring A; Ring R; x ∈ carrier A; y ∈ carrier A;
 f ∈ rHom A R ⟧ ⟹ f (x ⋅rA y) = (f x) ⋅rR (f y)"
by (simp add:rHom_def)

lemma rHom_add:"⟦f ∈ rHom A R; x ∈ carrier A; y ∈ carrier A⟧ ⟹
                   f (x ±A y) = (f x) ±R (f y)"
by (simp add:rHom_def aHom_def)

lemma rHom_one:"⟦ Ring A; Ring R;f ∈ rHom A R ⟧ ⟹ f (1rA) = (1rR)"
by (simp add:rHom_def)

lemma rHom_npow:"⟦ Ring A; Ring R; x ∈ carrier A; f ∈ rHom A R ⟧ ⟹
                    f (x^A n) = (f x)^R n"
apply (induct_tac n)
apply (simp add:rHom_one)
apply (simp,
      frule_tac n = n in Ring.npClose[of "A" "x"], assumption+,
      subst rHom_tOp[of "A" "R" _ "x" "f"], assumption+, simp)
done

lemma rHom_compos:"⟦Ring A; Ring B; Ring C; f ∈ rHom A B; g ∈ rHom B C⟧ ⟹
                   compos A g f ∈ rHom A C"
apply (subst rHom_def, simp)
apply (frule Ring.ring_is_ag[of "A"], frule Ring.ring_is_ag[of "B"],
       frule Ring.ring_is_ag[of "C"],
       frule rHom_aHom[of "f" "A" "B"], frule rHom_aHom[of "g" "B" "C"],
       simp add:aHom_compos)
apply (rule conjI)
 apply ((rule ballI)+, simp add:compos_def compose_def,
        frule_tac x = x and y = y in Ring.ring_tOp_closed[of "A"], assumption+,
        simp)
apply (simp add:rHom_tOp)
 apply (frule_tac a = x in rHom_mem[of "f" "A" "B"], assumption+,
        frule_tac a = y in rHom_mem[of "f" "A" "B"], assumption+,
         simp add:rHom_tOp)
 apply (frule Ring.ring_one[of "A"], frule Ring.ring_one[of "B"],
        simp add:compos_def compose_def, simp add:rHom_one)
done

lemma rimg_ag:"⟦Ring A; Ring R; f ∈ rHom A R⟧ ⟹ aGroup (rimg A R f)"
apply (frule Ring.ring_is_ag [of "A"],
       frule Ring.ring_is_ag [of "R"])
apply (simp add:rHom_def, (erule conjE)+)
apply (subst aGroup_def)
apply (simp add:rimg_def)
apply (rule conjI)
 apply (rule Pi_I)+
 apply (simp add:image_def)
 apply (erule bexE)+
 apply simp
 apply (subst aHom_add [THEN sym, of "A" "R" "f"], assumption+)
 apply (blast dest: aGroup.ag_pOp_closed)
apply (rule conjI)
 apply ((rule allI, rule impI)+, simp add:image_def, (erule bexE)+, simp)
 apply (frule_tac x = x and y = xa in aGroup.ag_pOp_closed, assumption+,
        frule_tac x = xa and y = xb in aGroup.ag_pOp_closed, assumption+)
 apply (simp add:aHom_add[of "A" "R" "f", THEN sym] aGroup.ag_pOp_assoc)
apply (rule conjI)
 apply ((rule allI, rule impI)+, simp add:image_def, (erule bexE)+, simp)
 apply (simp add:aHom_add[of "A" "R" "f", THEN sym] aGroup.ag_pOp_commute)
apply (rule conjI)
 apply (rule Pi_I)
 apply (simp add:image_def, erule bexE, simp)
 apply (simp add:aHom_inv_inv[THEN sym],
        frule_tac x = xa in aGroup.ag_mOp_closed[of "A"], assumption+, blast)
apply (rule conjI)
  apply (rule allI, rule impI, simp add:image_def, (erule bexE)+, simp)
   apply (simp add:aHom_inv_inv[THEN sym],
        frule_tac x = x in aGroup.ag_mOp_closed[of "A"], assumption+,
        simp add:aHom_add[of "A" "R" "f", THEN sym])
 apply (simp add:aGroup.ag_l_inv1 aHom_0_0)
apply (rule conjI)
 apply (simp add:image_def)
 apply (frule aHom_0_0[THEN sym, of "A" "R" "f"], assumption+,
        frule Ring.ring_zero[of "A"], blast)

apply (rule allI, rule impI,
       simp add:image_def, erule bexE,
       frule_tac a = x in aHom_mem[of "A" "R" "f"], assumption+, simp)
 apply (simp add:aGroup.ag_l_zero)
done

lemma rimg_ring:"⟦Ring A; Ring R; f ∈ rHom A R ⟧ ⟹ Ring (rimg A R f)"
apply (unfold Ring_def [of "rimg A R f"])
apply (frule rimg_ag[of "A" "R" "f"], assumption+)
 apply (rule conjI, simp add:aGroup_def[of "rimg A R f"])
apply(rule conjI)
 apply (rule conjI, rule allI, rule impI)
 apply (frule aGroup.ag_inc_zero[of "rimg A R f"],
        subst aGroup.ag_pOp_commute, assumption+,
        simp add:aGroup.ag_r_zero[of "rimg A R f"])

apply (rule conjI)
apply (rule Pi_I)+
apply (thin_tac "aGroup (rimg A R f)",
       simp add:rimg_def, simp add:image_def, (erule bexE)+,
       simp add:rHom_tOp[THEN sym])
 apply (blast dest:Ring.ring_tOp_closed)
 apply ((rule allI)+, (rule impI)+)
 apply (thin_tac "aGroup (rimg A R f)", simp add:rimg_def,
        simp add:image_def, (erule bexE)+, simp)
 apply (frule_tac x = x and y = xa in Ring.ring_tOp_closed, assumption+,
        frule_tac x = xa and y = xb in Ring.ring_tOp_closed, assumption+,
        simp add:rHom_tOp[THEN sym],
        simp add:Ring.ring_tOp_assoc)
apply (rule conjI, rule conjI, (rule allI)+, (rule impI)+)
 apply (thin_tac "aGroup (rimg A R f)", simp add:rimg_def,
        simp add:image_def, (erule bexE)+, simp,
        simp add:rHom_tOp[THEN sym],
        simp add:Ring.ring_tOp_commute)
  apply (thin_tac "aGroup (rimg A R f)", simp add:rimg_def,
         simp add:image_def)
  apply (subst rHom_one [THEN sym, of "A" "R" "f"], assumption+,
         frule Ring.ring_one[of "A"], blast)
apply (rule conjI, (rule allI)+, (rule impI)+)
apply (simp add:rimg_def, fold rimg_def,
       simp add:image_def, (erule bexE)+, simp)
 apply (frule rHom_aHom[of "f" "A" "R"],
        frule Ring.ring_is_ag [of "A"],
        frule Ring.ring_is_ag [of "R"],
        simp add:aHom_add[THEN sym],
        simp add:rHom_tOp[THEN sym])
 apply (frule_tac x = xa and y = xb in aGroup.ag_pOp_closed[of "A"],
          assumption+,
        frule_tac x = x and y = xa in Ring.ring_tOp_closed[of "A"],
          assumption+,
        frule_tac x = x and y = xb in Ring.ring_tOp_closed[of "A"],
          assumption+,
        simp add:aHom_add[THEN sym],
        simp add:rHom_tOp[THEN sym],
        simp add:Ring.ring_distrib1)
 apply (rule allI, rule impI,
        thin_tac "aGroup (rimg A R f)")
 apply (simp add:rimg_def,
        simp add:image_def, erule bexE, simp add:rHom_tOp[THEN sym],
        frule_tac a = x in rHom_mem[of "f" "A" "R"], assumption+,
         simp add:Ring.ring_l_one)
done

definition
  ideal :: "[_ , 'a set] ⇒ bool" where
  "ideal R I ⟷ (R +> I) ∧ (∀r∈carrier R. ∀x∈I. (r ⋅rR x ∈ I))"


lemma (in Ring) ideal_asubg:"ideal R I ⟹ R +> I"
by (simp add:ideal_def)

lemma (in Ring) ideal_pOp_closed:"⟦ideal R I; x ∈ I; y ∈ I ⟧
                                                   ⟹ x ± y ∈ I"
apply (unfold ideal_def, frule conjunct1, fold ideal_def)
apply (cut_tac ring_is_ag,
       simp add:aGroup.asubg_pOp_closed)
done

lemma (in Ring) ideal_nsum_closedTr:"ideal R I ⟹
                                      (∀j ≤ n. f j ∈ I) ⟶  nsum R f n ∈ I"
apply (induct_tac n)
 apply (rule impI)
 apply simp

 apply (rule impI)
 apply (cut_tac n = n in Nsetn_sub_mem1, simp)
 apply (rule ideal_pOp_closed, assumption+)
 apply simp
done

lemma (in Ring) ideal_nsum_closed:"⟦ideal R I; ∀j ≤ n. f j ∈ I⟧ ⟹
                                             nsum R f n ∈ I"
by (simp add:ideal_nsum_closedTr)

lemma (in Ring) ideal_subset1:"ideal R I ⟹ I ⊆ carrier R"
apply (unfold ideal_def, frule conjunct1, fold ideal_def)
  apply (simp add:asubGroup_def sg_def, (erule conjE)+)
  apply (cut_tac ring_is_ag,
         simp add:aGroup.ag_carrier_carrier)
done

lemma (in Ring) ideal_subset:"⟦ideal R I; h ∈ I⟧ ⟹ h ∈ carrier R"
by (frule ideal_subset1[of "I"],
       simp add:subsetD)

lemma (in Ring) ideal_ring_multiple:"⟦ideal R I; x ∈ I; r ∈ carrier R⟧ ⟹
       r ⋅r x ∈ I"
by (simp add:ideal_def)

lemma (in Ring) ideal_ring_multiple1:"⟦ideal R I; x ∈ I; r ∈ carrier R ⟧ ⟹
       x ⋅r r ∈ I"
apply (frule ideal_subset[of "I" "x"], assumption+)
apply (simp add:ring_tOp_commute ideal_ring_multiple)
done

lemma (in Ring) ideal_npow_closedTr:"⟦ideal R I; x ∈ I⟧ ⟹
                                        0 < n ⟶ x^R n ∈ I"
apply (induct_tac n,
       simp)
apply (rule impI)
 apply simp
 apply (case_tac "n = 0", simp)
 apply (frule ideal_subset[of "I" "x"], assumption+,
        simp add:ring_l_one)

 apply simp
apply (frule ideal_subset[of "I" "x"], assumption+,
       rule ideal_ring_multiple, assumption+,
       simp add:ideal_subset)
done

lemma (in Ring) ideal_npow_closed:"⟦ideal R I; x ∈ I; 0 < n⟧ ⟹ x^R n ∈ I"
by (simp add:ideal_npow_closedTr)

lemma (in Ring) times_modTr:"⟦a ∈ carrier R; a' ∈ carrier R; b ∈ carrier R;
 b' ∈ carrier R; ideal R I; a ± (-a b) ∈ I; a' ± (-a b') ∈ I⟧ ⟹
                           a ⋅r a' ± (-a (b ⋅r b')) ∈ I"
apply (cut_tac ring_is_ag)
apply (subgoal_tac "a ⋅r a' ± (-a (b ⋅r b')) = a ⋅r a' ± (-a (a ⋅r b'))
                       ± (a ⋅r b' ± (-a (b ⋅r b')))")
apply simp
 apply (simp add:ring_inv1_2[of "a" "b'"], simp add:ring_inv1_1[of "b" "b'"])
 apply (frule aGroup.ag_mOp_closed[of "R" "b'"], assumption+)
 apply (simp add:ring_distrib1[THEN sym, of "a" "a'" "-a b'"])
 apply (frule aGroup.ag_mOp_closed[of "R" "b"], assumption+)
 apply (frule ring_distrib2[THEN sym, of "b'" "a" "-a b" ], assumption+)
 apply simp

apply (thin_tac "a ⋅r a' ± (-a b) ⋅r b' = a ⋅r (a' ± -a b') ± (a ± -a b) ⋅r b'",
       thin_tac "a ⋅r b' ± (-a b) ⋅r b' = (a ± -a b) ⋅r b'")
 apply (frule ideal_ring_multiple[of "I" "a' ± (-a b')" "a"], assumption+,
        frule ideal_ring_multiple1[of "I" "a ± (-a b)" "b'"], assumption+)
 apply (simp add:ideal_pOp_closed)

apply (frule ring_tOp_closed[of "a" "a'"], assumption+,
       frule ring_tOp_closed[of "a" "b'"], assumption+,
       frule ring_tOp_closed[of "b" "b'"], assumption+,
       frule aGroup.ag_mOp_closed[of "R" "b ⋅r b'"], assumption+,
       frule aGroup.ag_mOp_closed[of "R" "a ⋅r b'"], assumption+)

 apply (subst aGroup.ag_pOp_assoc[of "R"], assumption+)
 apply (rule aGroup.ag_pOp_closed, assumption+)
 apply (simp add:aGroup.ag_pOp_assoc[THEN sym, of "R" "-a (a ⋅r b')" "a ⋅r b'"
                          "-a (b ⋅r b')"],
        simp add:aGroup.ag_l_inv1 aGroup.ag_l_zero)
done

lemma (in Ring) ideal_inv1_closed:"⟦ ideal R I; x ∈ I ⟧ ⟹ -a x ∈ I"
apply (cut_tac ring_is_ag)
apply (unfold ideal_def, frule conjunct1, fold ideal_def)
apply (simp add:aGroup.asubg_mOp_closed[of "R" "I"])
done

lemma (in Ring) ideal_zero:"ideal R I  ⟹ 𝟬 ∈ I"

apply (cut_tac ring_is_ag)
apply (unfold ideal_def, frule conjunct1, fold ideal_def)
apply (simp add:aGroup.asubg_inc_zero)
done

lemma (in Ring) ideal_zero_forall:"∀I. ideal R I ⟶  𝟬 ∈ I"
by (simp add:ideal_zero)

lemma (in Ring) ideal_ele_sumTr1:"⟦ ideal R I; a ∈ carrier R; b ∈ carrier R;
          a ± b ∈ I; a ∈ I ⟧ ⟹ b ∈ I"
apply (frule ideal_inv1_closed[of "I" "a"], assumption+)
apply (frule ideal_pOp_closed[of "I" "-a a" "a ± b"], assumption+)
apply (frule ideal_subset[of "I" "-a a"], assumption+)
apply (cut_tac ring_is_ag,
       simp add:aGroup.ag_pOp_assoc[THEN sym],
       simp add:aGroup.ag_l_inv1,
       simp add:aGroup.ag_l_zero)
done

lemma (in Ring) ideal_ele_sumTr2:"⟦ideal R I; a ∈ carrier R; b ∈ carrier R;
                a ± b ∈ I; b ∈ I⟧ ⟹ a ∈ I"
apply (cut_tac ring_is_ag,
       simp add:aGroup.ag_pOp_commute[of "R" "a" "b"])
apply (simp add:ideal_ele_sumTr1[of "I" "b" "a"])
done

lemma (in Ring) ideal_condition:"⟦I ⊆ carrier R; I ≠ {};
       ∀x∈I. ∀y∈I. x ± (-a y) ∈ I; ∀r∈carrier R. ∀x∈I. r ⋅r x ∈ I ⟧ ⟹
                                   ideal R I"
apply (simp add:ideal_def)
 apply (cut_tac ring_is_ag)
 apply (rule aGroup.asubg_test[of "R" "I"], assumption+)
done

lemma (in Ring) ideal_condition1:"⟦I ⊆ carrier R; I ≠ {};
  ∀x∈I. ∀y∈I. x ± y ∈ I; ∀r∈carrier R. ∀x∈I. r ⋅r x ∈ I ⟧ ⟹ ideal R I"
apply (rule ideal_condition[of "I"], assumption+)
apply (rule ballI)+
apply (cut_tac ring_is_ag,
       cut_tac ring_one,
       frule aGroup.ag_mOp_closed[of "R" "1r"], assumption+)
 apply (frule_tac x = "-a 1r " in bspec, assumption+,
        thin_tac "∀r∈carrier R. ∀x∈I. r ⋅r x ∈ I",
        rotate_tac -1,
        frule_tac x = y in bspec, assumption,
        thin_tac "∀x∈I. (-a 1r) ⋅r x ∈ I")
 apply (frule_tac c = y in subsetD[of "I" "carrier R"], assumption+,
        simp add:ring_times_minusl[THEN sym], simp add:ideal_pOp_closed)
done

lemma (in Ring) zero_ideal:"ideal R {𝟬}"
apply (cut_tac ring_is_ag)
apply (rule ideal_condition1)
 apply (simp add:ring_zero)
 apply simp
 apply simp
apply (cut_tac ring_zero, simp add:aGroup.ag_l_zero)
apply simp
 apply (rule ballI, simp add:ring_times_x_0)
done

lemma (in Ring) whole_ideal:"ideal R (carrier R)"
apply (rule ideal_condition1)
 apply simp
 apply (cut_tac ring_zero, blast)
 apply (cut_tac ring_is_ag,
        simp add:aGroup.ag_pOp_closed,
        simp add:ring_tOp_closed)
done

lemma (in Ring) ideal_inc_one:"⟦ideal R I; 1r ∈ I ⟧ ⟹ I = carrier R"
apply (rule equalityI)
apply (simp add:ideal_subset1)
apply (rule subsetI,
       frule_tac r = x in ideal_ring_multiple[of "I" "1r"], assumption+,
       simp add:ring_r_one)
done

lemma (in Ring) ideal_inc_one1:"ideal R I ⟹
                              (1r ∈ I) = (I = carrier R)"
apply (rule iffI)
 apply (simp add:ideal_inc_one)
 apply (frule sym, thin_tac "I = carrier R",
        cut_tac ring_one, simp)
done

definition
  Unit :: "_ ⇒ 'a ⇒ bool" where
  "Unit R a ⟷ a ∈ carrier R ∧ (∃b∈carrier R. a ⋅rR b = 1rR)"

lemma (in Ring) ideal_inc_unit:"⟦ideal R I; a ∈ I; Unit R a⟧ ⟹ 1r ∈ I"
by (simp add:Unit_def, erule conjE, erule bexE,
       frule_tac r = b in ideal_ring_multiple1[of "I" "a"], assumption+,
       simp)

lemma (in Ring) proper_ideal:"⟦ideal R I; 1r ∉ I⟧ ⟹ I ≠ carrier R"
apply (rule contrapos_pp, simp+)
apply (simp add: ring_one)
done

lemma (in Ring) ideal_inc_unit1:"⟦a ∈ carrier R; Unit R a; ideal R I; a ∈ I⟧
                        ⟹ I = carrier R"
apply (frule ideal_inc_unit[of "I" "a"], assumption+)
apply (rule ideal_inc_one[of "I"], assumption+)
done

lemma (in Ring) int_ideal:"⟦ideal R I; ideal R J⟧ ⟹ ideal R (I ∩ J)"
apply (rule ideal_condition1)
apply (frule ideal_subset1[of "I"], frule ideal_subset1[of "J"])
 apply blast
 apply (frule ideal_zero[of "I"], frule ideal_zero[of "J"], blast)

 apply ((rule ballI)+, simp, (erule conjE)+,
         simp add:ideal_pOp_closed)
 apply ((rule ballI)+, simp, (erule conjE)+)
 apply (simp add:ideal_ring_multiple)
done

definition
  ideal_prod::"[_, 'a set, 'a set] ⇒ 'a set" (infix "♢rı" 90 ) where
  "ideal_prod R I J == ⋂ {L. ideal R L ∧
                              {x.(∃i∈I. ∃j∈J. x = i ⋅rR j)} ⊆ L}"

lemma (in Ring) set_sum_mem:"⟦a ∈ I; b ∈ J; I ⊆ carrier R; J ⊆ carrier R⟧ ⟹
             a ± b ∈ I ∓ J"
apply (cut_tac ring_is_ag)
apply (simp add:aGroup.set_sum, blast)
done

lemma (in Ring) sum_ideals:"⟦ideal R I1; ideal R I2⟧ ⟹ ideal R (I1 ∓ I2)"
apply (cut_tac ring_is_ag)
apply (frule ideal_subset1[of "I1"], frule ideal_subset1[of "I2"])
apply (rule ideal_condition1)
 apply (rule subsetI, simp add:aGroup.set_sum, (erule bexE)+)
 apply (frule_tac h = h in ideal_subset[of "I1"], assumption+,
        frule_tac h = k in ideal_subset[of "I2"], assumption+,
        cut_tac ring_is_ag,
        simp add:aGroup.ag_pOp_closed)
 apply (frule ideal_zero[of "I1"], frule ideal_zero[of "I2"],
        frule set_sum_mem[of "𝟬" "I1" "𝟬" "I2"], assumption+, blast)
apply (rule ballI)+
 apply (simp add:aGroup.set_sum, (erule bexE)+, simp)
 apply (rename_tac x y i ia j ja)
 apply (frule_tac h = i in ideal_subset[of "I1"], assumption+,
        frule_tac h = ia in ideal_subset[of "I1"], assumption+,
        frule_tac h = j in ideal_subset[of "I2"], assumption+,
        frule_tac h = ja in ideal_subset[of "I2"], assumption+)
 apply (subst aGroup.pOp_assocTr43, assumption+)
 apply (frule_tac x = j and y = ia in aGroup.ag_pOp_commute[of "R"],
          assumption+, simp)
 apply (subst aGroup.pOp_assocTr43[THEN sym], assumption+)
 apply (frule_tac x = i and y = ia in ideal_pOp_closed[of "I1"], assumption+,
        frule_tac x = j and y = ja in ideal_pOp_closed[of "I2"], assumption+,
        blast)
apply (rule ballI)+
 apply (simp add:aGroup.set_sum, (erule bexE)+, simp)
 apply (rename_tac r x i j)
 apply (frule_tac h = i in ideal_subset[of "I1"], assumption+,
        frule_tac h = j in ideal_subset[of "I2"], assumption+)
 apply (simp add:ring_distrib1)
 apply (frule_tac x = i and r = r in ideal_ring_multiple[of "I1"], assumption+,
        frule_tac x = j and r = r in ideal_ring_multiple[of "I2"], assumption+,
        blast)
done

lemma (in Ring) sum_ideals_la1:"⟦ideal R I1; ideal R I2⟧ ⟹ I1 ⊆ (I1 ∓ I2)"
apply (cut_tac ring_is_ag)
apply (rule subsetI)
apply (frule ideal_zero[of "I2"],
       frule_tac h = x in ideal_subset[of "I1"], assumption+,
       frule_tac x = x in aGroup.ag_r_zero[of "R"], assumption+)
apply (subst aGroup.set_sum, assumption,
       simp add:ideal_subset1, simp add:ideal_subset1, simp,
       frule sym, thin_tac "x ± 𝟬 = x", blast)
done

lemma (in Ring) sum_ideals_la2:"⟦ideal R I1; ideal R I2 ⟧ ⟹ I2 ⊆ (I1 ∓ I2)"
apply (cut_tac ring_is_ag)
apply (rule subsetI)
apply (frule ideal_zero[of "I1"],
       frule_tac h = x in ideal_subset[of "I2"], assumption+,
       frule_tac x = x in aGroup.ag_l_zero[of "R"], assumption+)
apply (subst aGroup.set_sum, assumption,
       simp add:ideal_subset1, simp add:ideal_subset1, simp,
       frule sym, thin_tac "𝟬 ± x = x", blast)
done

lemma (in Ring) sum_ideals_cont:"⟦ideal R I;  A ⊆ I; B ⊆ I ⟧ ⟹ A ∓ B ⊆ I"
apply (cut_tac ring_is_ag)
apply (rule subsetI)
 apply (frule ideal_subset1[of I],
        frule subset_trans[of A I "carrier R"], assumption+,
        frule subset_trans[of B I "carrier R"], assumption+)
 apply (simp add:aGroup.set_sum[of R], (erule bexE)+, simp)
 apply (frule_tac c = h in subsetD[of "A" "I"], assumption+,
        frule_tac c = k in subsetD[of "B" "I"], assumption+)
 apply (simp add:ideal_pOp_closed)
done

lemma (in Ring) ideals_set_sum:"⟦ideal R A; ideal R B; x ∈ A ∓ B⟧ ⟹
             ∃h∈A. ∃k∈B. x = h ± k"
apply (frule ideal_subset1[of A],
       frule ideal_subset1[of B])
apply (cut_tac ring_is_ag,
       simp add:aGroup.set_sum)
done

definition
  Rxa :: "[_, 'a ] ⇒ 'a set" (infixl "♢p" 200)  where
  "Rxa R a = {x. ∃r∈carrier R. x = (r ⋅rR a)}"

lemma (in Ring) a_in_principal:"a ∈ carrier R ⟹ a ∈ Rxa R a"
apply (cut_tac ring_one,
       frule ring_l_one[THEN sym, of "a"])
apply (simp add:Rxa_def, blast)
done

lemma (in Ring) principal_ideal:"a ∈ carrier R ⟹ ideal R (Rxa R a)"
apply (rule ideal_condition1)
  apply (rule subsetI,
         simp add:Rxa_def, erule bexE, simp add:ring_tOp_closed)
apply (frule a_in_principal[of "a"], blast)
apply ((rule ballI)+,
        simp add:Rxa_def, (erule bexE)+, simp,
        subst ring_distrib2[THEN sym], assumption+,
        cut_tac ring_is_ag,
        frule_tac x = r and y = ra in aGroup.ag_pOp_closed, assumption+,
        blast)
apply ((rule ballI)+,
        simp add:Rxa_def, (erule bexE)+, simp,
        simp add:ring_tOp_assoc[THEN sym])
 apply (frule_tac x = r and y = ra in ring_tOp_closed, assumption, blast)
done

lemma (in Ring) rxa_in_Rxa:"⟦a ∈ carrier R; r ∈ carrier R⟧ ⟹
                                     r ⋅r a ∈ Rxa R a"
by (simp add:Rxa_def, blast)

lemma (in Ring) Rxa_one:"Rxa R 1r = carrier R"
apply (rule equalityI)
 apply (rule subsetI, simp add:Rxa_def, erule bexE)
 apply (simp add:ring_r_one)

 apply (rule subsetI, simp add:Rxa_def)
 apply (frule_tac t = x in ring_r_one[THEN sym], blast)
done

lemma (in Ring) Rxa_zero:"Rxa R 𝟬 = {𝟬}"
apply (rule equalityI)
apply (rule subsetI)
 apply (simp add:Rxa_def, erule bexE, simp add:ring_times_x_0)
apply (rule subsetI)
 apply (simp add:Rxa_def)
 apply (cut_tac ring_zero,
        frule ring_times_x_0[THEN sym, of "𝟬"], blast)
done

lemma (in Ring) Rxa_nonzero:"⟦a ∈ carrier R; a ≠ 𝟬⟧ ⟹ Rxa R a ≠ {𝟬}"
apply (rule contrapos_pp, simp+)
 apply (frule a_in_principal[of "a"])
 apply simp
done

lemma (in Ring) ideal_cont_Rxa:"⟦ideal R I; a ∈ I⟧ ⟹ Rxa R a ⊆ I"
apply (rule subsetI)
 apply (simp add:Rxa_def, erule bexE, simp)
 apply (simp add:ideal_ring_multiple)
done

lemma (in Ring) Rxa_mult_smaller:"⟦ a ∈ carrier R; b ∈ carrier R⟧ ⟹
                    Rxa R (a ⋅r b) ⊆ Rxa R b"
apply (frule rxa_in_Rxa[of b a], assumption,
       frule principal_ideal[of b])
apply (rule ideal_cont_Rxa[of "R ♢p b" "a ⋅r b"], assumption+)
done

lemma (in Ring) id_ideal_psub_sum:"⟦ideal R I; a ∈ carrier R; a ∉ I⟧ ⟹
                                             I ⊂ I ∓ Rxa R a"
apply (cut_tac ring_is_ag)
apply (simp add:psubset_eq)
apply (frule principal_ideal)
apply (rule conjI)
apply (rule sum_ideals_la1, assumption+)
apply (rule contrapos_pp) apply simp+
apply (frule sum_ideals_la2[of "I" "Rxa R a"], assumption+)
apply (frule a_in_principal[of "a"],
       frule subsetD[of "Rxa R a" "I ∓ Rxa R a" "a"], assumption+)
apply simp
done

lemma (in Ring) mul_two_principal_idealsTr:"⟦a ∈ carrier R; b ∈ carrier R;
         x ∈ Rxa R a; y ∈ Rxa R b⟧ ⟹ ∃r∈carrier R. x ⋅r y = r ⋅r (a ⋅r b)"
apply (simp add:Rxa_def, (erule bexE)+)
apply simp
apply (frule_tac x = ra and y = b in ring_tOp_closed, assumption+)
apply (simp add:ring_tOp_assoc)
apply (simp add:ring_tOp_assoc[THEN sym, of a _ b])
apply (simp add:ring_tOp_commute[of a], simp add:ring_tOp_assoc)
apply (frule_tac x = a and y = b in ring_tOp_closed, assumption+,
       thin_tac "ra ⋅r b ∈ carrier R",
       simp add:ring_tOp_assoc[THEN sym, of _ _ "a ⋅r b"],
       frule_tac x = r and y = ra in ring_tOp_closed, assumption+)
apply (simp add:ring_tOp_commute[of b a])
apply blast
done


primrec sum_pr_ideals::"[('a, 'm) Ring_scheme, nat ⇒ 'a, nat] ⇒ 'a set"
where
  sum_pr0: "sum_pr_ideals R f 0 = Rxa R (f 0)"
| sum_prn: "sum_pr_ideals R f (Suc n) =
                  (Rxa R (f (Suc n))) ∓R (sum_pr_ideals R f n)"

lemma (in Ring) sum_of_prideals0:
      "∀f. (∀l ≤ n. f l ∈ carrier R) ⟶ ideal R (sum_pr_ideals R f n)"
apply (induct_tac n)
apply (rule allI) apply (rule impI)
 apply simp
 apply (rule Ring.principal_ideal, rule Ring_axioms, assumption)
(** case n **)
apply (rule allI, rule impI)
 apply (frule_tac x = f in spec,
        thin_tac "∀f. (∀l ≤ n. f l ∈ carrier R) ⟶
               ideal R (sum_pr_ideals R f n)")
 apply (cut_tac n = n in Nsetn_sub_mem1, simp)
 apply (cut_tac a = "f (Suc n)" in  principal_ideal,
       simp)
 apply (rule_tac ?I1.0 = "Rxa R (f (Suc n))" and
        ?I2.0 = "sum_pr_ideals R f n" in Ring.sum_ideals, rule Ring_axioms, assumption+)
done

lemma (in Ring) sum_of_prideals:"⟦∀l ≤ n. f l ∈ carrier R⟧ ⟹
                      ideal R (sum_pr_ideals R f n)"
apply (simp add:sum_of_prideals0)
done

text {* later, we show @{text "sum_pr_ideals"} is the least ideal containing
        @{text "{f 0, f 1,…, f n}"} *}

lemma (in Ring) sum_of_prideals1:"∀f. (∀l ≤ n. f l ∈ carrier R) ⟶
                                    f ` {i. i ≤ n} ⊆ (sum_pr_ideals R f n)"
apply (induct_tac n)
 apply (rule allI, rule impI)
apply (simp, simp add:a_in_principal)

apply (rule allI, rule impI)
 apply (frule_tac a = f in forall_spec,
        thin_tac "∀f. (∀l ≤ n. f l ∈ carrier R) ⟶
               f ` {i. i ≤ n} ⊆ sum_pr_ideals R f n")
 apply (rule allI, cut_tac n = n in Nset_un, simp)

 apply (subst Nset_un)
 apply (cut_tac A = "{i. i ≤ (Suc n)}" and f = f and B = "carrier R" and
        ?A1.0 = "{i. i ≤ n}" and ?A2.0 = "{Suc n}" in im_set_un1,
        simp, rule Nset_un)
 apply (thin_tac "∀f. (∀l≤n. f l ∈ carrier R) ⟶
               f ` {i. i ≤ n} ⊆ sum_pr_ideals R f n",
        simp)
 apply (cut_tac n = n and f = f in sum_of_prideals,
        cut_tac n = n in Nsetn_sub_mem1, simp)
 apply (cut_tac a = "f (Suc n)" in principal_ideal, simp)
 apply (frule_tac ?I1.0 = "Rxa R (f (Suc n))" and ?I2.0 = "sum_pr_ideals R f n"
                 in sum_ideals_la1, assumption+,
        cut_tac a = "f (Suc n)" in a_in_principal, simp,
        frule_tac A = "R ♢p f (Suc n)" and
         B = "R ♢p f (Suc n) ∓ sum_pr_ideals R f n" and c = "f (Suc n)" in
         subsetD, simp+)
  apply (frule_tac ?I1.0 = "Rxa R (f (Suc n))" and
         ?I2.0 = "sum_pr_ideals R f n" in sum_ideals_la2, assumption+)
  apply (rule_tac A = "f ` {j. j ≤ n}" and B = "sum_pr_ideals R f n" and
         C = "Rxa R (f (Suc n)) ∓ sum_pr_ideals R f n" in subset_trans,
         assumption+)
done

lemma (in Ring) sum_of_prideals2:"∀l ≤ n. f l ∈ carrier R
               ⟹  f ` {i. i ≤ n} ⊆ (sum_pr_ideals R f n)"
apply (simp add:sum_of_prideals1)
done

lemma (in Ring) sum_of_prideals3:"ideal R I ⟹
      ∀f. (∀l ≤ n. f l ∈ carrier R) ∧ (f ` {i. i ≤ n} ⊆ I) ⟶
          (sum_pr_ideals R f n ⊆ I)"
apply (induct_tac n)
 apply (rule allI, rule impI, erule conjE)
 apply simp
 apply (rule ideal_cont_Rxa[of I], assumption+)

apply (rule allI, rule impI, erule conjE)
 apply (frule_tac a = f in forall_spec,
        thin_tac "∀f. (∀l ≤ n. f l ∈ carrier R) ∧ f `{i. i ≤ n} ⊆ I ⟶
               sum_pr_ideals R f n ⊆ I")
 apply (simp add:Nset_un)
 apply (thin_tac "∀f. (∀l ≤ n. f l ∈ carrier R) ∧ f ` {i. i ≤ n} ⊆ I ⟶
               sum_pr_ideals R f n ⊆ I")
 apply (frule_tac x = "Suc n" in spec,
        thin_tac "∀l ≤ (Suc n). f l ∈ carrier R", simp)
   apply (cut_tac a = "Suc n" and A = "{i. i ≤ Suc n}" and
          f = f in mem_in_image2, simp)
   apply (frule_tac A = "f ` {i. i ≤ Suc n}" and B = I and c = "f (Suc n)" in
          subsetD,  assumption+)
 apply (rule_tac A = "Rxa R  (f (Suc n))" and B = "sum_pr_ideals R f n" in
        sum_ideals_cont[of I], assumption)
 apply (rule ideal_cont_Rxa[of I], assumption+)
done

lemma (in Ring) sum_of_prideals4:"⟦ideal R I; ∀l ≤ n. f l ∈ carrier R;
       (f ` {i. i ≤ n} ⊆ I)⟧ ⟹ sum_pr_ideals R f n ⊆ I"
apply (simp add:sum_of_prideals3)
done

lemma ker_ideal:"⟦Ring A; Ring R; f ∈ rHom A R⟧ ⟹ ideal A (kerA,R f)"
apply (frule Ring.ring_is_ag[of "A"], frule Ring.ring_is_ag[of "R"])
apply (rule Ring.ideal_condition1, assumption+)
apply (rule subsetI,
       simp add:ker_def)
apply (simp add:rHom_def, frule conjunct1)
apply (frule ker_inc_zero[of "A" "R" "f"], assumption+, blast)

apply (rule ballI)+
 apply (simp add:ker_def, (erule conjE)+)
 apply (simp add:aGroup.ag_pOp_closed)
 apply (simp add:rHom_def, frule conjunct1,
        simp add:aHom_add,
        frule Ring.ring_zero[of "R"],
        simp add:aGroup.ag_l_zero)
apply (rule ballI)+
 apply (simp add:ker_def, (erule conjE)+)
 apply (simp add:Ring.ring_tOp_closed)
 apply (simp add:rHom_tOp)
 apply (frule_tac a = r in rHom_mem[of "f" "A" "R"], assumption+,
        simp add:Ring.ring_times_x_0)
done

subsection "Ring of integers"

definition
  Zr :: "int Ring" where
  "Zr = ⦇ carrier = Zset, pop = λn∈Zset. λm∈Zset. (m + n),
    mop = λl∈Zset. -l, zero = 0, tp = λm∈Zset. λn∈Zset. m * n, un = 1⦈"

lemma ring_of_integers:"Ring Zr"
apply (simp add:Ring_def)
apply (rule conjI)
 apply (simp add:Zr_def Zset_def)
apply (rule conjI)
 apply (simp add:Zr_def Zset_def)
apply (rule conjI)
 apply (rule allI, rule impI)+
 apply (simp add:Zr_def Zset_def)
apply (rule conjI)
 apply (simp add:Zr_def Zset_def)
apply (rule conjI,
       rule allI, rule impI, simp add:Zr_def Zset_def)
apply (rule conjI, simp add:Zr_def Zset_def)
apply (rule conjI,
       rule allI, rule impI, simp add:Zr_def Zset_def)
apply (rule conjI)
 apply (simp add:Zr_def Zset_def)
apply (rule conjI,
       (rule allI, rule impI)+, simp add:Zr_def Zset_def)
apply (rule conjI,
       (rule allI, rule impI)+, simp add:Zr_def Zset_def)
apply (rule conjI)
 apply (simp add:Zr_def Zset_def)
apply (rule conjI,
       (rule allI, rule impI)+, simp add:Zr_def Zset_def)
 apply (simp add: distrib_left)
apply (rule allI, rule impI)
  apply (simp add:Zr_def Zset_def)
done

lemma Zr_zero:"𝟬Zr = 0"
by (simp add:Zr_def)

lemma Zr_one:"1rZr = 1"
by (simp add:Zr_def)

lemma Zr_minus:"-aZr n = - n"
by (simp add:Zr_def Zset_def)

lemma Zr_add:"n ±Zr m = n + m"
by (simp add:Zr_def Zset_def)

lemma Zr_times:"n ⋅rZr m = n * m"
by (simp add:Zr_def Zset_def)

definition
  lev :: "int set ⇒ int" where
  "lev I = Zleast {n. n ∈ I ∧ 0 < n}"

lemma Zr_gen_Zleast:"⟦ideal Zr I; I ≠ {0::int}⟧ ⟹
                       Rxa Zr (lev I) = I"
 apply (cut_tac ring_of_integers)
 apply (simp add:lev_def)
 apply (subgoal_tac "{n. n ∈ I ∧ 0 < n} ≠ {}")
 apply (subgoal_tac "{n. n ∈ I ∧ 0 < n} ⊆ Zset")
 apply (subgoal_tac "LB {n. n ∈ I ∧ 0 < n} 0")
 apply (frule_tac A = "{n. n ∈ I ∧ 0 < n}" and n = 0 in Zleast, assumption+)
 apply (erule conjE)+
 apply (fold lev_def)
defer
 apply (simp add:LB_def)
 apply (simp add:Zset_def)
 apply (frule Ring.ideal_zero[of "Zr" "I"], assumption+, simp add:Zr_zero)
 apply (frule singleton_sub[of "0" "I"])
 apply (frule sets_not_eq[of "I" "{0}"], assumption+, erule bexE, simp)
 apply (case_tac "0 < a", blast)
 apply (frule Ring.ring_one[of "Zr"])
 apply (frule Ring.ring_is_ag[of "Zr"],
         frule aGroup.ag_mOp_closed[of "Zr" "1rZr"], assumption)
 apply (frule_tac x = a in Ring.ideal_ring_multiple[of "Zr" "I" _ "-aZr 1rZr"],
        assumption+)
 apply (simp add:Zr_one Zr_minus,
        thin_tac "ideal Zr I", thin_tac "Ring Zr", thin_tac "1 ∈ carrier Zr",
        thin_tac "-1 ∈ carrier Zr", thin_tac "aGroup Zr")
 apply (simp add:Zr_def Zset_def)
 apply (subgoal_tac "0 < - a", blast)
 apply arith
 apply (thin_tac "{n ∈ I. 0 < n} ≠ {}", thin_tac "{n ∈ I. 0 < n} ⊆ Zset",
        thin_tac "LB {n ∈ I. 0 < n} 0")

apply simp
 apply (erule conjE)
 apply (frule Ring.ideal_cont_Rxa[of "Zr" "I" "lev I"], assumption+)
 apply (rule equalityI, assumption,
        thin_tac "Rxa Zr (lev I) ⊆ I")
 apply (rule subsetI)
 apply (simp add:Rxa_def, simp add:Zr_times)
 apply (cut_tac a = x and b = "lev I" in zmod_zdiv_equality)
 apply (subgoal_tac "x = (x div lev I) * (lev I)",
        subgoal_tac "x div lev I ∈ carrier Zr", blast)
 apply (simp add:Zr_def Zset_def)
apply (subgoal_tac "x mod lev I = 0", simp)
 apply (subst mult.commute, assumption)
 apply (subgoal_tac "x mod lev I ∈ I")
 apply (thin_tac "x = lev I * (x div lev I) + x mod lev I")
 apply (frule_tac a = x in pos_mod_conj[of "lev I"])
 apply (rule contrapos_pp, simp+)
 apply (erule conjE)
 apply (frule_tac a = "x mod (lev I)" in forall_spec)
  apply simp apply arith
  apply (frule_tac r = "x div (lev I)" in
          Ring.ideal_ring_multiple1[of "Zr" "I" "lev I"], assumption+,
          simp add:Zr_def Zset_def)
  apply (frule sym, thin_tac "x = lev I * (x div lev I) + x mod lev I")
  apply (rule_tac a = "lev I * (x div lev I)" and b = "x mod lev I " in
         Ring.ideal_ele_sumTr1[of "Zr" "I"], assumption+)
 apply (simp add:Zr_def Zset_def)
 apply (simp add:Zr_def Zset_def)
 apply (subst Zr_add)
 apply simp
 apply (simp add:Zr_times)
done

lemma Zr_pir:"ideal Zr I ⟹ ∃n. Rxa Zr n = I" (** principal ideal ring *)
apply (case_tac "I = {(0::int)}")
 apply (subgoal_tac "Rxa Zr 0 = I") apply blast
 apply (rule equalityI)
 apply (rule subsetI) apply (simp add:Rxa_def)
 apply (simp add:Zr_def Zset_def)
 apply (rule subsetI)
 apply (simp add:Rxa_def Zr_def Zset_def)
apply (frule Zr_gen_Zleast [of "I"], assumption+)
 apply blast
done

section "Quotient rings"

lemma (in Ring) mem_set_ar_cos:"⟦ideal R I; a ∈ carrier R⟧ ⟹
                                         a ⊎R I ∈ set_ar_cos R I"
by (simp add:set_ar_cos_def, blast)

lemma (in Ring) I_in_set_ar_cos:"ideal R I ⟹ I ∈ set_ar_cos R I"
apply (cut_tac ring_is_ag,
       frule ideal_asubg[of "I"],
       rule aGroup.unit_in_set_ar_cos, assumption+)
done

lemma (in Ring) ar_coset_same1:"⟦ideal R I; a ∈ carrier R; b ∈ carrier R;
       b ± (-a a) ∈ I ⟧ ⟹ a ⊎R I = b ⊎R I"
apply (cut_tac ring_is_ag)
 apply (frule aGroup.b_ag_group[of "R"])
 apply (simp add:ideal_def asubGroup_def) apply (erule conjE)
 apply (frule aGroup.ag_carrier_carrier[THEN sym, of "R"])
 apply simp
 apply (frule Group.rcs_eq[of "b_ag R" "I" "a" "b"], assumption+)
 apply (frule aGroup.agop_gop [of "R"])
 apply (frule aGroup.agiop_giop[of "R"]) apply simp
 apply (simp add:ar_coset_def rcs_def)
done

lemma (in Ring) ar_coset_same2:"⟦ideal R I; a ∈ carrier R; b ∈ carrier R;
                                  a ⊎R I = b ⊎R I⟧ ⟹  b ± (-a a) ∈ I"
apply (cut_tac ring_is_ag)
apply (simp add:ar_coset_def)
 apply (frule aGroup.b_ag_group[of "R"])
 apply (simp add:ideal_def asubGroup_def, frule conjunct1, fold asubGroup_def,
        fold ideal_def, simp add:asubGroup_def)
 apply (subgoal_tac "a ∈ carrier (b_ag R)",
         subgoal_tac "b ∈ carrier (b_ag R)")
 apply (simp add:Group.rcs_eq[THEN sym, of "b_ag R" "I" "a" "b"])
 apply (frule aGroup.agop_gop [of "R"])
 apply (frule aGroup.agiop_giop[of "R"]) apply simp
 apply (simp add:b_ag_def)+
done

lemma (in Ring) ar_coset_same3:"⟦ideal R I; a ∈ carrier R; a ⊎R I = I⟧ ⟹
                               a∈I"
apply (cut_tac ring_is_ag)
apply (simp add:ar_coset_def)
apply (rule Group.rcs_fixed [of "b_ag R" "I" "a" ])
apply (rule aGroup.b_ag_group, assumption)
apply (simp add:ideal_def asubGroup_def)
apply (simp add:b_ag_def)
apply assumption
done

lemma (in Ring) ar_coset_same3_1:"⟦ideal R I; a ∈ carrier R; a ∉ I⟧ ⟹
                                                    a ⊎R I ≠ I"
apply (rule contrapos_pp, simp+)
apply (simp add:ar_coset_same3)
done

lemma (in Ring) ar_coset_same4:"⟦ideal R I; a ∈ I⟧ ⟹
                                     a ⊎R I = I"
apply (cut_tac ring_is_ag)
apply (frule ideal_subset[of "I" "a"], assumption+)
apply (simp add:ar_coset_def)
apply (rule Group.rcs_Unit2 [of "b_ag R" "I""a"])
apply (rule aGroup.b_ag_group, assumption)
apply (simp add:ideal_def asubGroup_def)
apply assumption
done

lemma (in Ring) ar_coset_same4_1:"⟦ideal R I; a ⊎R I ≠ I⟧ ⟹ a ∉ I"
apply (rule contrapos_pp, simp+)
apply (simp add:ar_coset_same4)
done

lemma (in Ring) belong_ar_coset1:"⟦ideal R I; a ∈ carrier R; x ∈ carrier R;
                 x ± (-a a) ∈ I⟧ ⟹  x ∈ a ⊎R I"
apply (frule ar_coset_same1 [of "I" "a" "x"], assumption+)
apply (subgoal_tac "x ∈ x ⊎R I")
 apply simp
 apply (cut_tac ring_is_ag)
 apply (subgoal_tac "carrier R = carrier (b_ag R)")
 apply (frule aGroup.agop_gop[THEN sym, of "R"])
 apply (frule aGroup.agiop_giop [THEN sym, of "R"])
 apply (simp add:ar_coset_def)
 apply (simp add:ideal_def asubGroup_def)

apply (rule Group.a_in_rcs [of "b_ag R" "I" "x"])
 apply (simp add: aGroup.b_ag_group)
 apply simp
 apply simp
 apply (simp add:b_ag_def)
done

lemma (in Ring) a_in_ar_coset:"⟦ideal R I; a ∈ carrier R⟧ ⟹ a ∈ a ⊎R I"
apply (rule belong_ar_coset1, assumption+)
apply (cut_tac ring_is_ag)
apply (simp add:aGroup.ag_r_inv1)
apply (simp add:ideal_zero)
done

lemma (in Ring) ar_coset_subsetD:"⟦ideal R I; a ∈ carrier R; x ∈ a ⊎R I ⟧ ⟹
                           x ∈ carrier R"
 apply (subgoal_tac "carrier R = carrier (b_ag R)")
 apply (cut_tac ring_is_ag)
 apply (frule aGroup.agop_gop [THEN sym, of "R"])
 apply (frule aGroup.agiop_giop [THEN sym, of "R"])
 apply (simp add:ar_coset_def)
 apply (simp add:ideal_def asubGroup_def)
apply (rule Group.rcs_subset_elem[of "b_ag R" "I" "a" "x"])
 apply (simp add:aGroup.b_ag_group)
 apply simp
 apply assumption+
 apply (simp add:b_ag_def)
done

lemma (in Ring) ar_cos_mem:"⟦ideal R I; a ∈ carrier R⟧ ⟹
                                 a ⊎R I ∈ set_rcs (b_ag R) I"
apply (cut_tac ring_is_ag)
 apply (simp add:set_rcs_def ar_coset_def)
 apply (frule aGroup.ag_carrier_carrier[THEN sym, of "R"]) apply simp
 apply blast
done

lemma (in Ring) mem_ar_coset1:"⟦ideal R I; a ∈ carrier R; x ∈ a ⊎R I⟧ ⟹
                                 ∃h∈I. h ± a = x"
 apply (cut_tac ring_is_ag)
 apply (frule aGroup.ag_carrier_carrier[THEN sym, of "R"])
 apply (frule aGroup.agop_gop [THEN sym, of "R"])
 apply (frule aGroup.agiop_giop [THEN sym, of "R"])
 apply (simp add:ar_coset_def)
 apply (simp add:ideal_def asubGroup_def)
apply (simp add:rcs_def)
done

lemma (in Ring) ar_coset_mem2:"⟦ideal R I; a ∈ carrier R; x ∈ a ⊎R I⟧ ⟹
                           ∃h∈I. x = a ± h"
apply (cut_tac ring_is_ag)
apply (frule mem_ar_coset1 [of "I" "a" "x"], assumption+)
apply (erule bexE,
       frule_tac h = h in ideal_subset[of "I"], assumption+)
apply (simp add:aGroup.ag_pOp_commute[of "R" _ "a"],
       frule sym, thin_tac "a ± h = x", blast)
done

lemma (in Ring) belong_ar_coset2:"⟦ideal R I; a ∈ carrier R; x ∈ a ⊎R I ⟧
                                    ⟹ x ± (-a a) ∈ I"
apply (cut_tac ring_is_ag)
apply (frule mem_ar_coset1, assumption+, erule bexE)
 apply (frule sym, thin_tac "h ± a = x", simp)
 apply (frule_tac h = h in ideal_subset[of "I"], assumption)
 apply (frule aGroup.ag_mOp_closed[of "R" "a"], assumption)
 apply (subst aGroup.ag_pOp_assoc, assumption+,
        simp add:aGroup.ag_r_inv1,
        simp add:aGroup.ag_r_zero)
done

lemma (in Ring) ar_c_top: "⟦ideal R I; a ∈ carrier R; b ∈ carrier R⟧
       ⟹ (c_top (b_ag R) I (a ⊎R I) (b ⊎R I)) = (a ± b) ⊎R I"
apply (cut_tac ring_is_ag, frule ideal_asubg,
       frule aGroup.asubg_nsubg[of "R" "I"], assumption,
       frule aGroup.b_ag_group[of "R"])
apply (simp add:ar_coset_def)
apply (subst Group.c_top_welldef[THEN sym], assumption+)
apply (simp add:aGroup.ag_carrier_carrier)+
apply (simp add:aGroup.agop_gop)
done

text{* Following lemma is not necessary to define a quotient ring. But
it makes clear that the binary operation2 of the quotient ring is well
defined. *}

lemma (in Ring) quotient_ring_tr1:"⟦ideal R I; a1 ∈ carrier R; a2 ∈ carrier R;
                b1 ∈ carrier R; b2 ∈ carrier R;
                a1 ⊎R I = a2 ⊎R I; b1 ⊎R I = b2 ⊎R I⟧ ⟹
                             (a1 ⋅r b1) ⊎R I = (a2 ⋅r b2) ⊎R I"
apply (rule ar_coset_same1, assumption+)
 apply (simp add: ring_tOp_closed)+
apply (frule ar_coset_same2 [of "I" "a1" "a2"], assumption+)
apply (frule ar_coset_same2 [of "I" "b1" "b2"], assumption+)
apply (frule ring_distrib4[of "a2" "b2" "a1" "b1"], assumption+)
 apply simp
 apply (rule ideal_pOp_closed[of "I"], assumption)
 apply (simp add:ideal_ring_multiple, simp add:ideal_ring_multiple1)
done

definition
  rcostOp :: "[_, 'a set] ⇒ (['a set, 'a set] ⇒ 'a set)" where
  "rcostOp R I = (λX∈(set_rcs (b_ag R) I). λY∈(set_rcs (b_ag R) I).
                {z. ∃ x ∈ X. ∃ y ∈ Y. ∃h∈I. (x ⋅rR y) ±R h = z})"

lemma (in Ring) rcostOp:"⟦ideal R I; a ∈ carrier R; b ∈ carrier R⟧ ⟹
                    rcostOp R I (a ⊎R I) (b ⊎R I) = (a ⋅r b) ⊎R I"
apply (cut_tac ring_is_ag)
 apply (frule ar_cos_mem[of "I" "a"], assumption+)
 apply (frule ar_cos_mem[of "I" "b"], assumption+)
apply (simp add:rcostOp_def)
apply (rule equalityI)
 apply (rule subsetI, simp) apply (erule bexE)+
 apply (rule belong_ar_coset1, assumption+)
 apply (simp add:ring_tOp_closed)
 apply (frule sym, thin_tac "xa ⋅r y ± h = x", simp)
 apply (rule aGroup.ag_pOp_closed, assumption)
 apply (frule_tac x = xa in ar_coset_mem2[of "I" "a"], assumption+,
        frule_tac x = y in ar_coset_mem2[of "I" "b"], assumption+,
        (erule bexE)+, simp)
 apply (rule ring_tOp_closed, rule aGroup.ag_pOp_closed, assumption+,
        simp add:ideal_subset)
 apply (rule aGroup.ag_pOp_closed, assumption+, simp add:ideal_subset,
        simp add:ideal_subset)
 apply (frule sym, thin_tac "xa ⋅r y ± h = x", simp)
 apply (frule_tac x = xa in belong_ar_coset2[of "I" "a"], assumption+,
        frule_tac x = y in belong_ar_coset2[of "I" "b"], assumption+)
 apply (frule_tac x = xa in ar_coset_subsetD[of "I" "a"], assumption+,
        frule_tac x = y in ar_coset_subsetD[of "I" "b"], assumption+)
 apply (subst aGroup.ag_pOp_commute, assumption,
        simp add:ring_tOp_closed, simp add:ideal_subset)
 apply (subst aGroup.ag_pOp_assoc, assumption,
        simp add:ideal_subset, simp add:ring_tOp_closed,
        rule aGroup.ag_mOp_closed, simp add:ring_tOp_closed,
        simp add:ring_tOp_closed)
 apply (rule ideal_pOp_closed, assumption+)
 apply (rule_tac a = xa and a' = y and b = a and b' = b in times_modTr,
        assumption+)

 apply (rule subsetI, simp)
 apply (frule_tac x = x in ar_coset_mem2[of "I" "a ⋅r b"],
        simp add:ring_tOp_closed, assumption)
 apply (erule bexE) apply simp
 apply (frule a_in_ar_coset[of "I" "a"], assumption+,
        frule a_in_ar_coset[of "I" "b"], assumption+)
 apply blast
done

definition
  qring ::  "[('a, 'm) Ring_scheme, 'a set] ⇒ ⦇ carrier :: 'a set set,
    pop :: ['a  set, 'a set] ⇒ 'a set, mop :: 'a set ⇒ 'a set,
    zero :: 'a set, tp :: ['a  set, 'a set] ⇒ 'a set, un :: 'a set ⦈" where
  "qring R I = ⦇ carrier = set_rcs (b_ag R) I,
    pop = c_top (b_ag R) I,
    mop = c_iop (b_ag R) I,
    zero = I,
    tp = rcostOp R I,
    un = 1rRR I⦈"

abbreviation
  QRING  (infixl "'/r" 200) where
  "R /r I == qring R I"

lemma (in Ring) carrier_qring:"ideal R I ⟹
                               carrier (qring R I) = set_rcs (b_ag R) I"
by (simp add:qring_def)

lemma (in Ring) carrier_qring1:"ideal R I ⟹
                                carrier (qring R I) = set_ar_cos R I"
apply (cut_tac ring_is_ag)
apply (simp add:carrier_qring set_rcs_def set_ar_cos_def)
apply (simp add:ar_coset_def aGroup.ag_carrier_carrier)
done

lemma (in Ring) qring_ring:"ideal R I ⟹ Ring (qring R I)"
apply (cut_tac ring_is_ag)
apply (frule ideal_asubg[of "I"],
        frule aGroup.asubg_nsubg[of "R" "I"], assumption,
        frule aGroup.b_ag_group[of "R"])
apply (subst Ring_def, simp)
apply (rule conjI)
 apply (rule Pi_I)+
 apply (simp add:carrier_qring, simp add:set_rcs_def, (erule bexE)+)
 apply (subst qring_def, simp)
 apply (subst Group.c_top_welldef[THEN sym, of "b_ag R" "I"], assumption+)
 apply (blast dest: Group.mult_closed[of "b_ag R"])
apply (rule conjI)
 apply (rule allI, rule impI)+
 apply (simp add:qring_def)
 apply (simp add:Group.Qg_tassoc[of "b_ag R" "I"])
apply (rule conjI)
 apply (rule allI, rule impI)+
 apply (simp add:qring_def)
 apply (simp add:set_rcs_def, (erule bexE)+, simp)
 apply (subst Group.c_top_welldef[THEN sym, of "b_ag R" "I"], assumption+)+
 apply (simp add:aGroup.agop_gop)
 apply (simp add:aGroup.ag_carrier_carrier)
 apply (simp add:aGroup.ag_pOp_commute)
apply (rule conjI)
 apply (simp add:qring_def Group.Qg_iop_closed)
apply (rule conjI)
 apply (rule allI, rule impI)
 apply (simp add:qring_def)
 apply (simp add:Group.Qg_i[of "b_ag R" "I"])
apply (rule conjI)
 apply (simp add:qring_def)
 apply (frule Group.nsg_sg[of "b_ag R" "I"], assumption)
 apply (simp add:Group.unit_rcs_in_set_rcs)
apply (rule conjI)
 apply (rule allI, rule impI)
 apply (simp add:qring_def)
 apply (simp add:Group.Qg_unit[of "b_ag R" "I"])
apply (rule conjI)
apply(rule Pi_I)+
 apply (simp add:qring_def aGroup.aqgrp_carrier)
 apply (simp add:set_ar_cos_def, (erule bexE)+, simp add:rcostOp,
        blast dest: ring_tOp_closed)
apply (rule conjI)
 apply (rule allI, rule impI)+
 apply (simp add:qring_def aGroup.aqgrp_carrier)
 apply (simp add:set_ar_cos_def, (erule bexE)+, simp add:rcostOp)
 apply (frule_tac x = aa and y = ab in ring_tOp_closed, assumption+,
        frule_tac x = ab and y = ac in ring_tOp_closed, assumption+,
        simp add:rcostOp, simp add:ring_tOp_assoc)
apply (rule conjI)
 apply (rule allI, rule impI)+
 apply (simp add:qring_def aGroup.aqgrp_carrier)
 apply (simp add:set_ar_cos_def, (erule bexE)+, simp add:rcostOp,
        simp add:ring_tOp_commute)
apply (rule conjI)
 apply (simp add:qring_def aGroup.aqgrp_carrier)
 apply (cut_tac ring_one, simp add:set_ar_cos_def, blast)
apply (rule conjI)
 apply (rule allI, rule impI)+
 apply (simp add:qring_def aGroup.aqgrp_carrier)
 apply (simp add:set_ar_cos_def, (erule bexE)+, simp)
 apply (simp add:ar_c_top rcostOp)
 apply (frule_tac x = ab and y = ac in aGroup.ag_pOp_closed,
                  assumption+,
        frule_tac x = aa and y = ab in ring_tOp_closed, assumption+ ,
        frule_tac x = aa and y = ac in ring_tOp_closed, assumption+)
 apply (simp add:ar_c_top rcostOp, simp add:ring_distrib1)
apply (rule allI, rule impI)
  apply (simp add:qring_def aGroup.aqgrp_carrier)
  apply (simp add:set_ar_cos_def, erule bexE, simp)
  apply (cut_tac ring_one)
  apply (simp add:rcostOp, simp add:ring_l_one)
done

lemma (in Ring) qring_carrier:"ideal R I ⟹
              carrier (qring R I)  = {X. ∃a∈ carrier R. a ⊎R I = X}"
apply (simp add:carrier_qring1 set_ar_cos_def)
apply (rule equalityI)
 apply (rule subsetI, simp, erule bexE, frule sym, thin_tac "x = a ⊎R I",
        blast)
apply (rule subsetI, simp, erule bexE, frule sym, thin_tac "a ⊎R I = x",
       blast)
done

lemma (in Ring) qring_mem:"⟦ideal R I; a ∈ carrier R⟧ ⟹
                                 a ⊎R I ∈ carrier (qring R I)"
apply (simp add:qring_carrier)
apply blast
done

lemma (in Ring) qring_pOp:"⟦ideal R I; a ∈ carrier R; b ∈ carrier R ⟧
 ⟹ pop (qring R I) (a ⊎R I) (b ⊎R I) = (a ± b) ⊎R I"
by (simp add:qring_def, simp add:ar_c_top)

lemma (in Ring) qring_zero:"ideal R I ⟹ zero (qring R I) = I"
apply (simp add:qring_def)
done

lemma (in Ring) qring_zero_1:"⟦a ∈ carrier R; ideal R I; a ⊎R I = I⟧ ⟹
                                    a ∈ I"
by (frule a_in_ar_coset [of "I" "a"], assumption+, simp)

lemma (in Ring) Qring_fix1:"⟦a ∈ carrier R; ideal R I; a ∈ I⟧ ⟹ a ⊎R I = I"
apply (cut_tac ring_is_ag, frule aGroup.b_ag_group)
apply (simp add:ar_coset_def)
apply (frule ideal_asubg[of "I"], simp add:asubGroup_def)
apply (simp add:Group.rcs_fixed2[of "b_ag R" "I"])
done

lemma (in Ring) ar_cos_same:"⟦a ∈ carrier R; ideal R I; x ∈ a ⊎R I⟧ ⟹
                                x ⊎R I = a ⊎R I"
apply (cut_tac ring_is_ag)
apply (rule ar_coset_same1[of "I" "x" "a"], assumption+)
apply (rule ar_coset_subsetD[of "I"], assumption+)
apply (frule ar_coset_mem2[of "I" "a" "x"], assumption+,
       erule bexE)
apply (frule_tac h = h in ideal_subset[of "I"], assumption,
      simp add:aGroup.ag_p_inv)
apply (frule_tac x = a in aGroup.ag_mOp_closed[of "R"], assumption+,
       frule_tac x = h in aGroup.ag_mOp_closed[of "R"], assumption+)
apply (simp add:aGroup.ag_pOp_assoc[THEN sym],
       simp add:aGroup.ag_r_inv1 aGroup.ag_l_zero)
apply (simp add:ideal_inv1_closed)
done

lemma (in Ring) qring_tOp:"⟦ideal R I; a ∈ carrier R; b ∈ carrier R⟧ ⟹
                tp (qring R I) (a ⊎R I) (b ⊎R I) = (a ⋅r b) ⊎R I"
by (simp add:qring_def, simp add:rcostOp)

lemma rind_hom_well_def:"⟦Ring A; Ring R; f ∈ rHom A R; a ∈ carrier A ⟧ ⟹
                                   f a = (f°A,R) (a ⊎A (kerA,R f))"
apply (frule ker_ideal[of "A" "R" "f"], assumption+)
apply (frule Ring.mem_set_ar_cos[of "A" "kerA,R f" "a"], assumption+)
apply (simp add:rind_hom_def)
 apply (rule someI2_ex)
 apply (frule Ring.a_in_ar_coset [of "A" "kerA,R f" "a"], assumption+, blast)
 apply (frule_tac x = x in Ring.ar_coset_mem2[of "A" "kerA,R f" "a"],
           assumption+, erule bexE, simp,
        frule_tac h = h in Ring.ideal_subset[of "A" "kerA,R f"], assumption+)
 apply (frule_tac Ring.ring_is_ag[of "A"],
        frule_tac Ring.ring_is_ag[of "R"],
        simp add:rHom_def, frule conjunct1, simp add:aHom_add)
 apply (simp add:ker_def)
 apply (frule aHom_mem[of "A" "R" "f" "a"], assumption+,
        simp add:aGroup.ag_r_zero)
done

lemma (in Ring) set_r_ar_cos:"ideal R I ⟹
                 set_rcs (b_ag R) I = set_ar_cos R I"
 apply (simp add:set_ar_cos_def set_rcs_def ar_coset_def)
 apply (cut_tac ring_is_ag)
 apply (simp add:aGroup.ag_carrier_carrier)
done

lemma set_r_ar_cos_ker:"⟦Ring A; Ring R; f ∈ rHom A R ⟧ ⟹
                     set_rcs (b_ag A) (kerA,R f) = set_ar_cos A (kerA,R f)"
apply (frule ker_ideal[of "A" "R" "f"], assumption+)
 apply (simp add:Ring.carrier_qring[THEN sym],
        simp add:Ring.carrier_qring1[THEN sym])
done

lemma ind_hom_rhom:"⟦Ring A; Ring R; f ∈ rHom A R⟧ ⟹
                                    (f°A,R) ∈ rHom (qring A (kerA,R f)) R"
apply (simp add:rHom_def [of "qring A (kerA,R f)" "R"])
apply (rule conjI)
 apply (simp add:aHom_def)
 apply (rule conjI)
 apply (simp add:qring_def)
apply (simp add:rind_hom_def extensional_def)
apply (rule Pi_I)
 apply (frule Ring.ring_is_ag [of "A"], frule Ring.ring_is_ag [of "R"],
        frule aGroup.b_ag_group [of "R"])
 apply (simp add:aGroup.ag_carrier_carrier [THEN sym])
 apply (simp add:set_ar_cos_def)
 apply (rule conjI)
 apply (rule impI)
 apply (erule bexE, simp)
 apply (frule ker_ideal [of "A" "R" "f"], assumption+)
 apply (frule_tac a = a in Ring.a_in_ar_coset [of "A" "kerA,R f"],
        assumption+)
 apply (rule someI2_ex, blast)
 apply (frule_tac I = "kerA,R f" and a = a and x = xa in
                   Ring.ar_coset_subsetD[of "A"], assumption+)
 apply (simp add:aGroup.ag_carrier_carrier, simp add:rHom_mem)
 apply (simp add:set_r_ar_cos_ker, simp add:set_ar_cos_def, rule impI, blast)
apply (rule conjI)
 apply (simp add:qring_def)
 apply (simp add:set_r_ar_cos_ker)
 apply (simp add:rind_hom_def extensional_def)
apply (rule ballI)+
 apply (simp add:qring_def)
 apply (simp add:set_r_ar_cos_ker)
 apply (simp add:set_ar_cos_def)
 apply ((erule bexE)+, simp)
 apply (frule ker_ideal[of "A" "R" "f"], assumption+)
 apply (simp add:Ring.ar_c_top)
 apply (frule Ring.ring_is_ag[of "A"],
        frule Ring.ring_is_ag[of "R"],
        frule_tac x = aa and y = ab in aGroup.ag_pOp_closed[of "A"],
        assumption+)
 apply (simp add:rind_hom_well_def[THEN sym])
 apply (simp add:rHom_def, frule conjunct1, simp add:aHom_add)
apply (rule conjI)
 apply (rule ballI)+
 apply (frule ker_ideal[of "A" "R" "f"], assumption+,
        simp add:Ring.carrier_qring1, simp add:set_ar_cos_def,
        (erule bexE)+, simp add:qring_def Ring.rcostOp)
 apply (frule Ring.ring_is_ag[of "A"],
         frule_tac x = a and y = aa in Ring.ring_tOp_closed[of "A"],
         assumption+)
 apply (simp add:rind_hom_well_def[THEN sym], simp add:rHom_tOp)

apply (simp add:qring_def)
 apply (frule Ring.ring_one[of "A"],
        simp add:rind_hom_well_def[THEN sym],
        simp add:rHom_one)
done

lemma ind_hom_injec:"⟦Ring A; Ring R; f ∈ rHom A R⟧ ⟹
                              injec(qring A (kerA,R f)),R (f°A,R)"
apply (simp add:injec_def)
apply (frule ind_hom_rhom [of "A" "R" "f"], assumption+)
apply (frule rHom_aHom[of "f°A,R" "A /r (kerA,R f)" "R"], simp)
 apply (simp add:ker_def[of _ _ "f°A,R"])
apply ((subst qring_def)+, simp)
 apply (simp add:set_r_ar_cos_ker)

apply (frule Ring.ring_is_ag[of "A"],
       frule Ring.ring_is_ag[of "R"],
       frule ker_ideal[of "A" "R" "f"], assumption+)
apply (rule equalityI)
 apply (rule subsetI)
 apply (simp, erule conjE)
 apply (simp add:set_ar_cos_def, erule bexE, simp)
 apply (simp add:rind_hom_well_def[THEN sym, of "A" "R" "f"],
        thin_tac "x = a ⊎A kerA,R f")
 apply (rule_tac a = a in Ring.Qring_fix1[of "A" _ "kerA,R f"], assumption+)
 apply (simp add:ker_def)

 apply (rule subsetI, simp)
 apply (simp add:Ring.I_in_set_ar_cos[of "A" "kerA,R f"])
 apply (frule Ring.ideal_zero[of "A" "kerA,R f"], assumption+,
        frule Ring.ring_zero[of "A"])

 apply (frule Ring.ar_coset_same4[of "A" "kerA,R f" "𝟬A"], assumption+)
 apply (frule rind_hom_well_def[THEN sym, of "A" "R" "f" "𝟬A"], assumption+)
 apply simp

 apply (rule rHom_0_0, assumption+)
done

lemma rhom_to_rimg:"⟦Ring A; Ring R; f ∈ rHom A R⟧ ⟹
                                   f ∈ rHom A (rimg A R f)"
apply (frule Ring.ring_is_ag[of "A"], frule Ring.ring_is_ag[of "R"])
apply (subst rHom_def, simp)
apply (rule conjI)
 apply (subst aHom_def, simp)
 apply (rule conjI)
 apply (simp add:rimg_def)
 apply (rule conjI)
  apply (simp add:rHom_def aHom_def)
  apply ((rule ballI)+, simp add:rimg_def)
 apply (rule aHom_add, assumption+)
  apply (simp add:rHom_aHom, assumption+)

 apply (rule conjI)
 apply ((rule ballI)+, simp add:rimg_def, simp add:rHom_tOp)

 apply (simp add:rimg_def, simp add:rHom_one)
done

lemma ker_to_rimg:"⟦Ring A; Ring R; f ∈ rHom A R ⟧ ⟹
                         kerA,R f = kerA,(rimg A R f) f"
apply (frule rhom_to_rimg [of "A" "R" "f"], assumption+)
apply (simp add:ker_def)
apply (simp add:rimg_def)
done

lemma indhom_eq:"⟦Ring A; Ring R; f ∈ rHom A R⟧ ⟹ f°A,(rimg A R f) = f°A,R"
apply (frule rimg_ring[of "A" "R" "f"], assumption+)
apply (frule rhom_to_rimg[of "A" "R" "f"], assumption+,
       frule ind_hom_rhom[of "A" "rimg A R f"], assumption+,
       frule ind_hom_rhom[of "A" "R" "f"], assumption+) (** extensional **)
apply (rule funcset_eq[of "f°A,rimg A R f " "carrier (A /r (kerA,R f))" "f°A,R"])
 apply (simp add:ker_to_rimg[THEN sym],
        simp add:rHom_def[of _ "rimg A R f"] aHom_def)
 apply (simp add:rHom_def[of _ "R"] aHom_def)

apply (simp add:ker_to_rimg[THEN sym])
 apply (rule ballI)
 apply (frule ker_ideal[of "A" "R" "f"], assumption+,
        simp add:Ring.carrier_qring1)
 apply (simp add:set_ar_cos_def, erule bexE, simp)
 apply (simp add:rind_hom_well_def[THEN sym])
 apply (frule rind_hom_well_def[THEN sym, of "A" "rimg A R f" "f"],
         assumption+, simp add:ker_to_rimg[THEN sym])
done

lemma indhom_bijec2_rimg:"⟦Ring A; Ring R; f ∈ rHom A R⟧ ⟹
                    bijec(qring A (kerA,R f)),(rimg A R f) (f°A,R)"
apply (frule rimg_ring [of "A" "R" "f"], assumption+)
apply (frule rhom_to_rimg[of "A" "R" "f"], assumption+)
apply (frule ind_hom_rhom[of "A" "rimg A R f" "f"], assumption+)
 apply (frule ker_to_rimg[THEN sym, of "A" "R" "f"], assumption+)
 apply (frule indhom_eq[of "A" "R" "f"], assumption+)
apply simp
 apply (simp add:bijec_def)
 apply (rule conjI)
  apply (simp add:injec_def)
   apply (rule conjI)
   apply (simp add:rHom_def)
   apply (frule ind_hom_injec [of "A" "R" "f"], assumption+)
   apply (simp add:injec_def)
   apply (simp add:ker_def [of _ _ "f°A,R"])
   apply (simp add:rimg_def)

  apply (simp add:surjec_def)
   apply (rule conjI)
   apply (simp add:rHom_def)
   apply (rule surj_to_test)
   apply (simp add:rHom_def aHom_def)
   apply (rule ballI)
   apply (simp add:rimg_carrier)
   apply (simp add:image_def)
   apply (erule bexE, simp)
   apply (frule_tac a1 = x in rind_hom_well_def[THEN sym, of "A" "R" "f"],
                   assumption+)
   apply (frule ker_ideal[of "A" "R" "f"], assumption+,
        simp add:Ring.carrier_qring1,
        frule_tac a = x in Ring.mem_set_ar_cos[of "A" "kerA,R f"], assumption+)
 apply blast
done

lemma surjec_ind_bijec:"⟦Ring A; Ring R; f ∈ rHom A R; surjecA,R f⟧ ⟹
     bijec(qring A (kerA,R f)),R (f°A,R)"
apply (frule ind_hom_rhom[of "A" "R" "f"], assumption+)
apply (simp add:surjec_def)
apply (simp add:bijec_def)
 apply (simp add:ind_hom_injec)

 apply (simp add:surjec_def)
   apply (simp add:rHom_aHom)
   apply (rule surj_to_test)
   apply (simp add:rHom_def aHom_def)
   apply (rule ballI)
   apply (simp add:surj_to_def, frule sym,
                        thin_tac "f ` carrier A = carrier R", simp,
                        thin_tac "carrier R = f ` carrier A")
   apply (simp add:image_def, erule bexE)
   apply (frule_tac a1 = x in rind_hom_well_def[THEN sym, of "A" "R" "f"],
                   assumption+)
   apply (frule ker_ideal[of "A" "R" "f"], assumption+,
        simp add:Ring.carrier_qring1,
        frule_tac a = x in Ring.mem_set_ar_cos[of "A" "kerA,R f"], assumption+)
 apply blast
done

lemma ridmap_ind_bijec:"Ring A ⟹
     bijec(qring A (kerA,A (ridmap A))),A ((ridmap A)°A,A)"
apply (frule ridmap_surjec[of "A"])
apply (rule surjec_ind_bijec [of "A" "A" "ridmap A"], assumption+)
 apply (simp add:rHom_def, simp add:surjec_def)

 apply (rule conjI)
  apply (rule ballI)+
  apply (frule_tac x = x and y = y in Ring.ring_tOp_closed[of "A"],
          assumption+, simp add:ridmap_def)
  apply (simp add:ridmap_def Ring.ring_one)

 apply assumption
done

lemma ker_of_idmap:"Ring A ⟹ kerA,A (ridmap A) = {𝟬A}"
apply (simp add:ker_def)
apply (simp add:ridmap_def)
apply (rule equalityI)
 apply (rule subsetI) apply (simp add:CollectI)
 apply (rule subsetI) apply (simp add:CollectI)

 apply (simp add:Ring.ring_zero)
done

lemma ring_natural_isom:"Ring A ⟹
         bijec(qring A {𝟬A}),A ((ridmap A)°A,A)"
apply (frule ridmap_ind_bijec)
apply (simp add: ker_of_idmap)
done           (** A /r {0A} ≅ A **)

definition
  pj :: "[('a, 'm) Ring_scheme, 'a set] ⇒ ('a => 'a set)" where
  "pj R I = (λx. Pj (b_ag R) I x)"

 (* pj is projection homomorphism *)

lemma pj_Hom:"⟦Ring R; ideal R I⟧ ⟹ (pj R I) ∈ rHom R (qring R I)"
apply (simp add:rHom_def)
apply (rule conjI)
apply (simp add:aHom_def)
 apply (rule conjI)
 apply (rule Pi_I)
 apply (simp add:qring_def)
 apply (frule Ring.ring_is_ag)
 apply (simp add:aGroup.ag_carrier_carrier [THEN sym])
 apply (simp add:pj_def Pj_def)
 apply (simp add:set_rcs_def) apply blast
apply (rule conjI)
 apply (simp add:pj_def Pj_def extensional_def)
 apply (frule Ring.ring_is_ag) apply (simp add:aGroup.ag_carrier_carrier)
apply (rule ballI)+
 apply (frule Ring.ring_is_ag)
 apply (frule_tac x = a and y = b in aGroup.ag_pOp_closed, assumption+)
 apply (simp add:aGroup.ag_carrier_carrier [THEN sym])
 apply (simp add:pj_def Pj_def)
 apply (simp add:qring_def) apply (frule aGroup.b_ag_group)
 apply (simp add:aGroup.agop_gop [THEN sym])
 apply (subst Group.c_top_welldef[of "b_ag R" "I"], assumption+)
 apply (frule Ring.ideal_asubg[of "R" "I"], assumption+)
 apply (simp add:aGroup.asubg_nsubg)
 apply assumption+
 apply simp

apply (rule conjI)
 apply (rule ballI)+
 apply (simp add: qring_def)
 apply (frule_tac x = x and y = y in Ring.ring_tOp_closed, assumption+)
 apply (frule Ring.ring_is_ag)
 apply (simp add:aGroup.ag_carrier_carrier [THEN sym])
 apply (simp add:pj_def Pj_def)
 apply (simp add:aGroup.ag_carrier_carrier)

 apply (frule_tac a1 = x and b1 = y in Ring.rcostOp [THEN sym, of "R" "I"],
                                                             assumption+)
 apply (simp add:ar_coset_def)
apply (simp add:qring_def)
 apply (frule Ring.ring_one)
 apply (frule Ring.ring_is_ag)
 apply (simp add:aGroup.ag_carrier_carrier [THEN sym])
 apply (simp add:pj_def Pj_def)
 apply (simp add:ar_coset_def)
done

lemma pj_mem:"⟦Ring R; ideal R I; x ∈ carrier R⟧ ⟹ pj R I x = x ⊎R I"
apply (frule Ring.ring_is_ag)
apply (simp add:aGroup.ag_carrier_carrier [THEN sym])
apply (simp add:pj_def Pj_def)
apply (simp add:ar_coset_def)
done

lemma pj_zero:"⟦Ring R; ideal R I; x ∈ carrier R⟧ ⟹
                         (pj R I x = 𝟬(R /r I)) = (x ∈ I)"
apply (rule iffI)
apply (simp add:pj_mem Ring.qring_zero,
       simp add:Ring.qring_zero_1[of "R" "x" "I"])
apply (simp add:pj_mem Ring.qring_zero,
       rule Ring.Qring_fix1, assumption+)
done

lemma pj_surj_to:"⟦Ring R; ideal R J; X ∈ carrier (R /r J)⟧ ⟹
                   ∃r∈ carrier R. pj R J r = X"
apply (simp add:qring_def set_rcs_def,
       fold ar_coset_def, simp add:b_ag_def, erule bexE,
       frule_tac x = a in pj_mem[of R J], assumption+, simp)
 apply blast
done

lemma invim_of_ideal:"⟦Ring R; ideal R I; ideal (qring R I) J ⟧ ⟹
  ideal R (rInvim R (qring R I) (pj R I) J)"
apply (rule Ring.ideal_condition, assumption)
 apply (simp add:rInvim_def) apply (rule subsetI) apply (simp add:CollectI)
apply (subgoal_tac "𝟬R ∈ rInvim R (qring R I) (pj R I) J")
apply (simp add:nonempty)
apply (simp add:rInvim_def)
apply (simp add: Ring.ring_zero)
 apply (frule Ring.ring_is_ag)
 apply (frule pj_Hom [of "R" "I"], assumption+)
 apply (frule Ring.qring_ring [of "R" "I"], assumption+)
 apply (frule rHom_0_0 [of "R" "R /r I" "pj R I"], assumption+)
 apply (simp add:Ring.ideal_zero)
apply (rule ballI)+
 apply (simp add:rInvim_def) apply (erule conjE)+
 apply (rule conjI)
 apply (frule Ring.ring_is_ag)
 apply (rule aGroup.ag_pOp_closed, assumption+)
 apply (rule aGroup.ag_mOp_closed, assumption+)
 apply (frule pj_Hom [of "R" "I"], assumption+)
 apply (frule Ring.ring_is_ag)
 apply (frule_tac x = y in aGroup.ag_mOp_closed [of "R"], assumption+)
 apply (simp add:rHom_def) apply (erule conjE)+
 apply (subst aHom_add [of "R" "R /r I" "pj R I"], assumption+)
 apply (simp add:Ring.qring_ring Ring.ring_is_ag)
 apply assumption+
apply (frule Ring.qring_ring [of "R" "I"], assumption+)
 apply (rule Ring.ideal_pOp_closed, assumption+)
 apply (subst aHom_inv_inv[of "R" "R /r I" "pj R I"], assumption+)
 apply (simp add:Ring.ring_is_ag) apply assumption+
 apply (frule_tac x = "pj R I y" in Ring.ideal_inv1_closed [of "R /r I" "J"],
                                              assumption+)
apply (rule ballI)+
 apply (simp add:rInvim_def) apply (erule conjE)
 apply (simp add:Ring.ring_tOp_closed)
 apply (frule pj_Hom [of "R" "I"], assumption+)
 apply (subst rHom_tOp [of "R" "R /r I" _ _ "pj R I"], assumption+)
 apply (frule Ring.qring_ring[of "R" "I"], assumption+)
 apply (rule Ring.ideal_ring_multiple [of "R /r I" "J"])
 apply (simp add:Ring.qring_ring) apply assumption+
 apply (simp add:rHom_mem)
done

lemma pj_invim_cont_I:"⟦Ring R; ideal R I; ideal (qring R I) J⟧ ⟹
                         I ⊆ (rInvim R (qring R I) (pj R I) J)"
apply (rule subsetI)
 apply (simp add:rInvim_def)
 apply (frule Ring.ideal_subset [of "R" "I"], assumption+)
 apply simp
 apply (frule  pj_mem [of "R" "I"  _], assumption+)
 apply (simp add:Ring.ar_coset_same4)
apply (frule  Ring.qring_ring[of "R" "I"], assumption+)
apply (frule Ring.ideal_zero [of "qring R I" "J"], assumption+)

apply (frule Ring.qring_zero[of "R" "I"], assumption)
 apply simp
done

lemma pj_invim_mono1:"⟦Ring R; ideal R I; ideal (qring R I) J1;
      ideal (qring R I) J2; J1 ⊆ J2 ⟧ ⟹
      (rInvim R (qring R I) (pj R I) J1) ⊆ (rInvim R (qring R I) (pj R I) J2)"
apply (rule subsetI)
apply (simp add:rInvim_def)
apply (simp add:subsetD)
done

lemma pj_img_ideal:"⟦Ring R; ideal R I; ideal R J; I ⊆ J⟧ ⟹
                                  ideal (qring R I) ((pj R I)`J)"
apply (rule Ring.ideal_condition [of "qring R I" "(pj R I) `J"])
apply (simp add:Ring.qring_ring)
apply (rule subsetI, simp add:image_def)
 apply (erule bexE)
 apply (frule_tac h = xa in Ring.ideal_subset [of "R" "J"], assumption+)
 apply (frule pj_Hom [of "R" "I"], assumption+)
 apply (simp add:rHom_mem)
 apply (frule Ring.ideal_zero [of "R" "J"], assumption+)
 apply (simp add:image_def) apply blast
apply (rule ballI)+
 apply (simp add:image_def)
 apply (erule bexE)+
 apply (frule pj_Hom [of "R" "I"], assumption+)
 apply (rename_tac x y s t)
 apply (frule_tac h = s in Ring.ideal_subset [of "R" "J"], assumption+)
 apply (frule_tac h = t in Ring.ideal_subset [of "R" "J"], assumption+)
 apply (simp add:rHom_def)   apply (erule conjE)+
 apply (frule Ring.ring_is_ag)
 apply (frule Ring.qring_ring [of "R" "I"], assumption+)
 apply (frule Ring.ring_is_ag [of "R /r I"])
  apply (frule_tac x = t in aGroup.ag_mOp_closed [of "R"], assumption+)
 apply (frule_tac a1 = s and b1 = "-aR t" in aHom_add [of "R" "R /r I"
  "pj R I", THEN sym], assumption+) apply (simp add:aHom_inv_inv)
 apply (frule_tac x = t in Ring.ideal_inv1_closed [of "R" "J"], assumption+)
 apply (frule_tac x = s and y = "-aR t" in Ring.ideal_pOp_closed [of "R" "J"],
                                             assumption+)
 apply blast
apply (rule ballI)+
apply (simp add:qring_def)
 apply (simp add:Ring.set_r_ar_cos)
 apply (simp add:set_ar_cos_def, erule bexE)
 apply simp
 apply (simp add:image_def)
 apply (erule bexE)
 apply (frule_tac x = xa in pj_mem [of "R" "I"], assumption+)
 apply (simp add:Ring.ideal_subset) apply simp
 apply (subst Ring.rcostOp, assumption+)
    apply (simp add:Ring.ideal_subset)
 apply (frule_tac x = xa and r = a in Ring.ideal_ring_multiple [of "R" "J"],
                                                  assumption+)
 apply (frule_tac h = "a ⋅rR xa" in Ring.ideal_subset [of "R" "J"],
                                                                 assumption+)
 apply (frule_tac x1 = "a ⋅rR xa" in pj_mem [THEN sym, of "R" "I"],
                                                                 assumption+)
 apply simp
 apply blast
done

lemma npQring:"⟦Ring R; ideal R I; a ∈ carrier R⟧ ⟹
      npow (qring R I) (a ⊎R I) n = (npow R a n) ⊎R I"
apply (induct_tac n)
apply (simp add:qring_def)

apply (simp add:qring_def)
apply (rule Ring.rcostOp, assumption+)
apply (rule Ring.npClose, assumption+)
done

section "Primary ideals, Prime ideals"

definition
  maximal_set :: "['a set set, 'a set] ⇒ bool" where
  "maximal_set S mx ⟷ mx ∈ S ∧ (∀s∈S. mx ⊆ s ⟶ s = mx)"

definition
  nilpotent :: "[_, 'a] ⇒ bool" where
  "nilpotent R a ⟷ (∃(n::nat). a^R n = 𝟬R)"

definition
 zero_divisor :: "[_, 'a] ⇒ bool" where
  "zero_divisor R a ⟷ (∃x∈ carrier R. x ≠ 𝟬R ∧ x ⋅rR a = 𝟬R)"

definition
  primary_ideal :: "[_, 'a set] ⇒ bool" where
  "primary_ideal R q ⟷ ideal R q ∧ (1rR) ∉ q ∧
    (∀x∈ carrier R. ∀y∈ carrier R.
      x ⋅rR y ∈ q  ⟶ (∃n. (npow R x n) ∈ q ∨ y ∈ q))"

definition
  prime_ideal :: "[_, 'a set] ⇒ bool" where
  "prime_ideal R p ⟷ ideal R p ∧ (1rR) ∉ p ∧ (∀x∈ carrier R. ∀y∈ carrier R.
    (x ⋅rR y ∈ p ⟶ x ∈ p ∨ y ∈ p))"

definition
  maximal_ideal :: "[_, 'a set] ⇒ bool" where
  "maximal_ideal R mx ⟷ ideal R mx ∧ 1rR ∉ mx ∧
        {J. (ideal R J ∧ mx ⊆ J)} = {mx, carrier R}"

lemma (in Ring) maximal_ideal_ideal:"⟦maximal_ideal R mx⟧ ⟹ ideal R mx"
by (simp add:maximal_ideal_def)

lemma (in Ring) maximal_ideal_proper:"maximal_ideal R mx ⟹ 1r ∉ mx"
by (simp add:maximal_ideal_def)

lemma (in Ring) prime_ideal_ideal:"prime_ideal R I ⟹ ideal R I"
by (simp add:prime_ideal_def)

lemma (in Ring) prime_ideal_proper:"prime_ideal R I ⟹ I ≠ carrier R"
apply (simp add:prime_ideal_def, (erule conjE)+)
apply (simp add:proper_ideal)
done

lemma (in Ring) prime_ideal_proper1:"prime_ideal R p ⟹ 1r ∉ p"
by (simp add:prime_ideal_def)

lemma (in Ring) primary_ideal_ideal:"primary_ideal R q ⟹ ideal R q"
by (simp add:primary_ideal_def)

lemma (in Ring)  primary_ideal_proper1:"primary_ideal R q ⟹ 1r ∉ q"
by (simp add:primary_ideal_def)

lemma (in Ring) prime_elems_mult_not:"⟦prime_ideal R P; x ∈ carrier R;
                y ∈ carrier R; x ∉ P; y ∉ P ⟧ ⟹ x ⋅r y ∉ P"
apply (simp add:prime_ideal_def, (erule conjE)+)
apply (rule contrapos_pp, simp+)
 apply (frule_tac x = x in bspec, assumption,
        thin_tac "∀x∈carrier R. ∀y∈carrier R. x ⋅r y ∈ P ⟶ x ∈ P ∨ y ∈ P",
        frule_tac x = y in bspec, assumption,
        thin_tac "∀y∈carrier R. x ⋅r y ∈ P ⟶ x ∈ P ∨ y ∈ P", simp)
done


lemma (in Ring) prime_is_primary:"prime_ideal R p ⟹ primary_ideal R p"
apply (unfold primary_ideal_def)
apply (rule conjI, simp add:prime_ideal_def)
apply (rule conjI, simp add:prime_ideal_def)
apply ((rule ballI)+, rule impI)
apply (simp add:prime_ideal_def, (erule conjE)+)
 apply (frule_tac x = x in bspec, assumption,
        thin_tac "∀x∈carrier R. ∀y∈carrier R. x ⋅r y ∈ p ⟶ x ∈ p ∨ y ∈ p",
        frule_tac x = y in bspec, assumption,
        thin_tac "∀y∈carrier R. x ⋅r y ∈ p ⟶ x ∈ p ∨ y ∈ p", simp)
 apply (erule disjE)
 apply (frule_tac t = x in np_1[THEN sym])
 apply (frule_tac a = x and A = p and b = "x^R (Suc 0)" in eq_elem_in,
                                               assumption)
 apply blast
apply simp
done

lemma (in Ring) maximal_prime_Tr0:"⟦maximal_ideal R mx; x ∈ carrier R; x ∉ mx⟧
              ⟹  mx ∓ (Rxa R x) = carrier R"
apply (frule principal_ideal [of "x"])
 apply (frule maximal_ideal_ideal[of "mx"])
 apply (frule sum_ideals [of "mx" "Rxa R x"], assumption)
 apply (frule sum_ideals_la1 [of "mx" "Rxa R x"], assumption)
 apply (simp add:maximal_ideal_def)
 apply (erule conjE)+
 apply (subgoal_tac "mx ∓ (Rxa R x) ∈ {J. ideal R J ∧ mx ⊆ J}")
 apply simp
apply (frule sum_ideals_la2 [of "mx" "Rxa R x"], assumption+)
  apply (frule a_in_principal [of "x"])
  apply (frule subsetD [of "Rxa R x" "mx ∓ (Rxa R x)" "x"], assumption+)
 apply (thin_tac "{J. ideal R J ∧ mx ⊆ J} = {mx, carrier R}")
apply (erule disjE)
 apply simp apply simp

apply (thin_tac "{J. ideal R J ∧ mx ⊆ J} = {mx, carrier R}")
 apply simp
done

lemma (in Ring) maximal_is_prime:"maximal_ideal R mx ⟹ prime_ideal R mx"
apply (cut_tac ring_is_ag)
apply (simp add:prime_ideal_def)
apply (simp add:maximal_ideal_ideal)
apply (simp add:maximal_ideal_proper)

apply ((rule ballI)+, rule impI)
apply (rule contrapos_pp, simp+, erule conjE)
apply (frule_tac x = x in maximal_prime_Tr0[of "mx"], assumption+,
       frule_tac x = y in maximal_prime_Tr0[of "mx"], assumption+,
       frule maximal_ideal_ideal[of mx],
       frule ideal_subset1[of mx],
       frule_tac a = x in principal_ideal,
       frule_tac a = y in principal_ideal,
       frule_tac I = "R ♢p x" in ideal_subset1,
       frule_tac I = "R ♢p y" in ideal_subset1)
apply (simp add:aGroup.set_sum)
 apply (cut_tac ring_one)
 apply (frule sym,
        thin_tac "{xa. ∃h∈mx. ∃k∈R ♢p x. xa = h ± k} = carrier R",
        frule sym,
        thin_tac "{x. ∃h∈mx. ∃k∈R ♢p y. x = h ± k} = carrier R")
 apply (frule_tac a = "1r" and B = "{xa. ∃i∈mx. ∃j∈(Rxa R x). xa = i ± j}" in
                         eq_set_inc[of _ "carrier R"], assumption,
        frule_tac a = "1r" and B = "{xa. ∃i∈mx. ∃j∈(Rxa R y). xa = i ± j}" in
                         eq_set_inc[of _ "carrier R"], assumption,
        thin_tac "carrier R = {xa. ∃i∈mx. ∃j∈(Rxa R x). xa = i ± j}",
        thin_tac "carrier R = {x. ∃i∈mx. ∃j∈(Rxa R y). x = i ± j}")
 apply (drule CollectD, (erule bexE)+,
        frule sym, thin_tac "1r = i ± j")
 apply (drule CollectD, (erule bexE)+, rotate_tac -1,
        frule sym, thin_tac "1r = ia ± ja")
 apply (frule_tac h = i in ideal_subset[of mx], assumption,
        frule_tac h = ia in ideal_subset[of mx], assumption,
        frule_tac h = j in ideal_subset, assumption+,
        frule_tac h = ja in ideal_subset, assumption+)
 apply (cut_tac ring_one)
 apply (frule_tac x = i and y = j in aGroup.ag_pOp_closed, assumption+)
 apply (frule_tac x = "i ± j" and y = ia and z = ja in ring_distrib1,
           assumption+)
 apply (frule_tac x = ia and y = i and z = j in ring_distrib2, assumption+,
        frule_tac x = ja and y = i and z = j in ring_distrib2, assumption+,
        simp)
 apply (thin_tac "1rr ia = i ⋅r ia ± j ⋅r ia",
        thin_tac "1rr ja = i ⋅r ja ± j ⋅r ja",
        simp add:ring_l_one[of "1r"])
 apply (frule_tac x = ia and r = i in ideal_ring_multiple[of mx], assumption+,
        frule_tac x = i and r = j in ideal_ring_multiple1[of mx], assumption+,
        frule_tac x = i and r = ja in ideal_ring_multiple1[of mx], assumption+,
        frule_tac r = j and x = ia in ideal_ring_multiple[of mx], assumption+)
 apply (subgoal_tac "j ⋅r ja ∈ mx")
 apply (frule_tac x = "i ⋅r ia" and y = "j ⋅r ia" in ideal_pOp_closed[of mx],
                   assumption+) apply (
        frule_tac x = "i ⋅r ja" and y = "j ⋅r ja" in ideal_pOp_closed[of mx],
           assumption+)
 apply (frule_tac x = "i ⋅r ia ± j ⋅r ia" and y = "i ⋅r ja ± j ⋅r ja" in
          ideal_pOp_closed[of mx], assumption+,
        thin_tac "i ± j = i ⋅r ia ± j ⋅r ia ± (i ⋅r ja ± j ⋅r ja)",
        thin_tac "ia ± ja = i ⋅r ia ± j ⋅r ia ± (i ⋅r ja ± j ⋅r ja)")
 apply (frule sym, thin_tac "1r = i ⋅r ia ± j ⋅r ia ± (i ⋅r ja ± j ⋅r ja)",
       simp)
 apply (simp add:maximal_ideal_def)

apply (thin_tac "i ± j = i ⋅r ia ± j ⋅r ia ± (i ⋅r ja ± j ⋅r ja)",
       thin_tac "ia ± ja = i ⋅r ia ± j ⋅r ia ± (i ⋅r ja ± j ⋅r ja)",
       thin_tac "i ⋅r ia ± j ⋅r ia ± (i ⋅r ja ± j ⋅r ja) ∈ carrier R",
       thin_tac "1r = i ⋅r ia ± j ⋅r ia ± (i ⋅r ja ± j ⋅r ja)",
       thin_tac "i ⋅r j ∈ mx", thin_tac "i ⋅r ja ∈ mx",
       thin_tac "R ♢p y ⊆ carrier R", thin_tac "R ♢p x ⊆ carrier R",
       thin_tac "ideal R (R ♢p y)", thin_tac "ideal R (R ♢p x)")
 apply (simp add:Rxa_def, (erule bexE)+, simp)
 apply (simp add:ring_tOp_assoc)
 apply (simp add:ring_tOp_assoc[THEN sym])
 apply (frule_tac x = x and y = ra in ring_tOp_commute, assumption+, simp)
 apply (simp add:ring_tOp_assoc,
        frule_tac x = x and y = y in ring_tOp_closed, assumption+)
 apply (frule_tac x1 = r and y1 = ra and z1 = "x ⋅r y" in
        ring_tOp_assoc[THEN sym], assumption+, simp)
 apply (frule_tac x = r and y = ra in ring_tOp_closed, assumption+,
        rule ideal_ring_multiple[of mx], assumption+)
done

lemma (in Ring) chains_un:"⟦c ∈ chains {I. ideal R I ∧ I ⊂ carrier R}; c ≠ {}⟧
       ⟹ ideal R (⋃c)"
apply (rule ideal_condition1)
apply (rule Union_least[of "c" "carrier R"])
 apply (simp add:chains_def,
       erule conjE,
       frule_tac c = X in subsetD[of "c" "{I. ideal R I ∧ I ⊂ carrier R}"],
       assumption+, simp add:psubset_imp_subset)
 apply (simp add:chains_def,
       erule conjE)
 apply (frule nonempty_ex[of "c"], erule exE)
 apply (frule_tac c = x in subsetD[of "c" "{I. ideal R I ∧ I ⊂ carrier R}"],
        assumption+, simp, erule conjE)
 apply (frule_tac I = x in ideal_zero, blast)

apply (rule ballI)+
 apply simp
 apply (erule bexE)+
apply (simp add: chains_def chain_subset_def)
 apply (frule conjunct1) apply (frule conjunct2)
 apply (thin_tac "c ⊆ {I. ideal R I ∧ I ⊂ carrier R} ∧ (∀x∈c. ∀y∈c. x ⊆ y ∨ y ⊆ x)")
 apply (frule_tac x = X in bspec, assumption,
        thin_tac "∀x∈c. ∀y∈c. x ⊆ y ∨ y ⊆ x",
        frule_tac x = Xa in bspec, assumption,
        thin_tac "∀y∈c. X ⊆ y ∨ y ⊆ X")
 apply (frule_tac c = Xa in subsetD[of "c" "{I. ideal R I ∧ I ⊂ carrier R}"],
          assumption+,
        frule_tac c = X in subsetD[of "c" "{I. ideal R I ∧ I ⊂ carrier R}"],
          assumption+, simp)
 apply (erule conjE)+
 apply (erule disjE,
        frule_tac c = x and A = X and B = Xa in subsetD, assumption+,
        frule_tac x = x and y = y and I = Xa in ideal_pOp_closed, assumption+,
        blast)
 apply (frule_tac c = y and A = Xa and B = X in subsetD, assumption+,
        frule_tac x = x and y = y and I = X in ideal_pOp_closed, assumption+,
        blast)

apply (rule ballI)+
 apply (simp, erule bexE)
 apply (simp add:chains_def, erule conjE)
 apply (frule_tac c = X in subsetD[of "c" "{I. ideal R I ∧ I ⊂ carrier R}"],
        assumption+, simp, erule conjE)
 apply (frule_tac I = X and x = x and r = r in ideal_ring_multiple,
        assumption+, blast)
done

lemma (in Ring) zeroring_no_maximal:"zeroring R ⟹ ¬ (∃I. maximal_ideal R I)"
apply (rule contrapos_pp, simp+, erule exE,
       frule_tac mx = x in maximal_ideal_ideal)
apply (frule_tac I = x in ideal_zero)
apply (simp add:zeroring_def, erule conjE,
       cut_tac ring_one, simp, thin_tac "carrier R = {𝟬}",
        frule sym, thin_tac "1r = 𝟬", simp, thin_tac "𝟬 = 1r")
apply (simp add:maximal_ideal_def)
done

lemma (in Ring) id_maximal_Exist:"¬(zeroring R) ⟹ ∃I. maximal_ideal R I"
 apply (cut_tac A="{ I. ideal R I ∧ I ⊂ carrier R }" in Zorn_Lemma2)
 apply (rule ballI)

 apply (case_tac "C={}", simp)
   apply (cut_tac zero_ideal)
   apply (simp add:zeroring_def)
    apply (cut_tac Ring, simp,
           frule not_sym, thin_tac "carrier R ≠ {𝟬}")
   apply (cut_tac ring_zero,
         frule singleton_sub[of "𝟬" "carrier R"],
         thin_tac "𝟬 ∈ carrier R")
   apply (subst psubset_eq)
   apply blast
 apply (subgoal_tac "⋃C ∈ {I. ideal R I ∧ I ⊂ carrier R}")
 apply (subgoal_tac "∀x∈C. x ⊆ (⋃C)", blast)
  apply (rule ballI, rule Union_upper, assumption)
  apply (simp add:chains_un)
  apply (cut_tac A = C in Union_least[of _ "carrier R"])
  apply (simp add:chains_def, erule conjE,
        frule_tac c = X and A = C in
          subsetD[of _ "{I. ideal R I ∧ I ⊂ carrier R}"], assumption+,
          simp add:ideal_subset1, simp add:psubset_eq)
  apply (rule contrapos_pp, simp+,
         cut_tac ring_one, frule sym, thin_tac "⋃C = carrier R")
  apply (frule_tac B = "⋃C" in eq_set_inc[of "1r" "carrier R"], assumption,
         thin_tac "carrier R = ⋃C")
  apply (simp, erule bexE)
  apply (simp add:chains_def, erule conjE)
  apply (frule_tac c = X and A = C in
         subsetD[of _ "{I. ideal R I ∧ I ⊆ carrier R ∧ I ≠ carrier R}"],
         assumption+, simp, (erule conjE)+)
  apply (frule_tac I = X in ideal_inc_one, assumption+, simp)

 apply (erule bexE, simp, erule conjE)
 apply (subgoal_tac "maximal_ideal R M", blast)
 apply (simp add:maximal_ideal_def)

apply (rule conjI, rule contrapos_pp, simp+,
       frule_tac  I = M in ideal_inc_one, assumption+, simp)

apply (rule equalityI)
 apply (rule subsetI, simp)
 apply (erule conjE)
 apply (frule_tac x = x in spec,
        thin_tac "∀x. ideal R x ∧ x ⊂ carrier R ⟶ M ⊆ x ⟶ x = M", simp)
 apply (frule_tac I = x in ideal_subset1, simp add:psubset_eq)
 apply (case_tac "x = carrier R", simp)
 apply simp

 apply (rule subsetI, simp)
 apply (erule disjE)
 apply simp
 apply (simp add:whole_ideal)
done

definition
  ideal_Int :: "[_, 'a set set] ⇒ 'a set" where
  "ideal_Int R S == ⋂ S"

lemma (in Ring) ideal_Int_ideal:"⟦S ⊆ {I. ideal R I}; S≠{}⟧ ⟹
                                                 ideal R (⋂ S)"
apply (rule ideal_condition1)
 apply (frule nonempty_ex[of "S"], erule exE)
 apply (frule_tac c = x in subsetD[of "S" "{I. ideal R I}"], assumption+)
 apply (simp, frule_tac I = x in ideal_subset1)
 apply (frule_tac B = x and A = S in Inter_lower)
 apply (rule_tac A = "⋂S" and B = x and C = "carrier R" in subset_trans,
         assumption+)

 apply (cut_tac ideal_zero_forall, blast)
 apply (simp, rule ballI)

apply (rule ballI)+
 apply simp
 apply (frule_tac x = X in bspec, assumption,
        thin_tac "∀X∈S. x ∈ X",
        frule_tac x = X in bspec, assumption,
        thin_tac "∀X∈S. y ∈ X")
apply (frule_tac c = X in subsetD[of "S" "{I. ideal R I}"], assumption+,
       simp, rule_tac x = x and y = y in ideal_pOp_closed, assumption+)

apply (rule ballI)+
 apply (simp, rule ballI)
 apply (frule_tac x = X in bspec, assumption,
        thin_tac "∀X∈S. x ∈ X",
        frule_tac c = X in subsetD[of "S" "{I. ideal R I}"], assumption+,
        simp add:ideal_ring_multiple)
done

lemma (in Ring) sum_prideals_Int:"⟦∀l ≤ n. f l ∈ carrier R;
                S = {I. ideal R I ∧ f ` {i. i ≤ n} ⊆ I}⟧ ⟹
                                  (sum_pr_ideals R f n) = ⋂ S"
apply (rule equalityI)
apply (subgoal_tac "∀X∈S. sum_pr_ideals R f n ⊆ X")
apply blast
 apply (rule ballI)
 apply (simp, erule conjE)
 apply (rule_tac I = X and n = n and f = f in sum_of_prideals4, assumption+)
apply (subgoal_tac "(sum_pr_ideals R f n) ∈ S")
 apply blast
 apply (simp add:CollectI)
 apply (simp add: sum_of_prideals2)
 apply (simp add: sum_of_prideals)
done

text{* This proves that @{text "(sum_pr_ideals R f n)"} is the smallest ideal containing
 @{text "f ` (Nset n)"} *}

primrec ideal_n_prod::"[('a, 'm) Ring_scheme, nat,  nat ⇒ 'a set] ⇒ 'a set"
where
  ideal_n_prod0: "ideal_n_prod R 0 J = J 0"
| ideal_n_prodSn: "ideal_n_prod R (Suc n) J =
                          (ideal_n_prod R n J) ♢rR (J (Suc n))"

abbreviation
  IDNPROD  ("(3iΠ_,_ _)" [98,98,99]98) where
  "iΠR,n J == ideal_n_prod R n J"

primrec
  ideal_pow :: "['a set, ('a, 'more) Ring_scheme, nat] ⇒ 'a set"
               ("(3_/ ♢_ _)" [120,120,121]120)
where
  ip0:  "I ♢R 0 = carrier R"
| ipSuc:  "I ♢R (Suc n) = I ♢rR (I ♢R n)"

lemma (in Ring) prod_mem_prod_ideals:"⟦ideal R I; ideal R J; i ∈ I; j ∈ J⟧ ⟹
                            i ⋅r j ∈ (I ♢r J)"
apply (simp add:ideal_prod_def)
apply (rule allI, rule impI, erule conjE, rename_tac X)
 apply (rule_tac A = "{x. ∃i∈I. ∃j∈J. x = Ring.tp R i j}" and B = X and c = "i ⋅r j" in  subsetD, assumption)
 apply simp apply blast
done

lemma (in Ring) ideal_prod_ideal:"⟦ideal R I; ideal R J ⟧ ⟹
                                        ideal R (I ♢r J)"
apply (rule ideal_condition1)
 apply (simp add:ideal_prod_def)
 apply (rule subsetI, simp)
 apply (cut_tac whole_ideal)
 apply (frule_tac x = "carrier R" in spec,
        thin_tac "∀xa. ideal R xa ∧ {x. ∃i∈I. ∃j∈J. x = i ⋅r j} ⊆ xa ⟶
                                                                   x ∈ xa")
 apply (subgoal_tac "{x. ∃i∈I. ∃j∈J. x = i ⋅r j} ⊆ carrier R", simp)
     apply (thin_tac "ideal R (carrier R) ∧
            {x. ∃i∈I. ∃j∈J. x = i ⋅r j} ⊆ carrier R ⟶ x ∈ carrier R")
 apply (rule subsetI, simp, (erule bexE)+, simp)
 apply (frule_tac h = i in ideal_subset[of "I"], assumption+,
        frule_tac h = j in ideal_subset[of "J"], assumption+)
 apply (rule_tac x = i and y = j in ring_tOp_closed, assumption+)

 apply (frule ideal_zero[of "I"],
        frule ideal_zero[of "J"],
        subgoal_tac "𝟬 ∈ I ♢r R J", blast)
 apply (simp add:ideal_prod_def)
 apply (rule allI, rule impI, erule conjE)
 apply (rule ideal_zero, assumption)

 apply (rule ballI)+
 apply (simp add:ideal_prod_def)
 apply (rule allI, rule impI)
 apply (frule_tac x = xa in spec,
        thin_tac "∀xa. ideal R xa ∧ {x. ∃i∈I. ∃j∈J. x = i ⋅r j} ⊆ xa
                                            ⟶ x ∈ xa",
        frule_tac x = xa in spec,
        thin_tac "∀x. ideal R x ∧ {x. ∃i∈I. ∃j∈J. x = i ⋅r j} ⊆ x ⟶ y ∈ x",
        erule conjE, simp,
        rule_tac x = x and y = y in ideal_pOp_closed, assumption+)
 apply (rule ballI)+
        apply (simp add:ideal_prod_def)
        apply (rule allI, rule impI, erule conjE)
        apply (frule_tac x = xa in spec,
               thin_tac "∀xa. ideal R xa ∧ {x. ∃i∈I. ∃j∈J. x = i ⋅r j}
                            ⊆ xa ⟶ x ∈ xa", simp)
 apply (simp add:ideal_ring_multiple)
done

lemma (in Ring) ideal_prod_commute:"⟦ideal R I; ideal R J⟧ ⟹
                                              I ♢r J = J ♢r I"
apply (simp add:ideal_prod_def)
apply (subgoal_tac "{K. ideal R K ∧ {x. ∃i∈I. ∃j∈J. x = i ⋅r j}
       ⊆ K}  = {K. ideal R K ∧ {x. ∃i∈J. ∃j∈I. x = i ⋅r j} ⊆ K}")
apply simp
apply (rule equalityI)
apply (rule subsetI, rename_tac X, simp, erule conjE)
 apply (rule subsetI, simp)
 apply ((erule bexE)+)
 apply (subgoal_tac "x ∈ {x. ∃i∈I. ∃j∈J. x = i ⋅r j}",
        rule_tac c = x and A = "{x. ∃i∈I. ∃j∈J. x = i ⋅r j}" and B = X in
        subsetD, assumption+,
        frule_tac h = i in ideal_subset[of "J"], assumption,
        frule_tac h = j in ideal_subset[of "I"], assumption,
        frule_tac x = i and y = j in ring_tOp_commute, assumption+, simp,
        blast)
 apply (rule subsetI, simp, erule conjE,
        rule subsetI, simp,
        (erule bexE)+,
        subgoal_tac "xa ∈ {x. ∃i∈J. ∃j∈I. x = i ⋅r j}",
        rule_tac c = xa and A = "{x. ∃i∈J. ∃j∈I. x = i ⋅r j}" and B = x in
                 subsetD, assumption+,
        frule_tac h = i in ideal_subset[of "I"], assumption,
        frule_tac h = j in ideal_subset[of "J"], assumption,
        frule_tac x = i and y = j in ring_tOp_commute, assumption+, simp,
        blast)
done

lemma (in Ring) ideal_prod_subTr:"⟦ideal R I; ideal R J; ideal R C;
                        ∀i∈I. ∀j∈J. i ⋅r j ∈ C⟧ ⟹ I ♢r J ⊆ C"
apply (simp add:ideal_prod_def)
 apply (rule_tac B = C and
        A = "{L. ideal R L ∧ {x. ∃i∈I. ∃j∈J. x = i ⋅r j} ⊆ L}" in
        Inter_lower)
 apply simp
 apply (rule subsetI, simp, (erule bexE)+, simp)
done

lemma (in Ring) n_prod_idealTr:
     "(∀k ≤ n. ideal R (J k)) ⟶ ideal R (ideal_n_prod R n J)"
apply (induct_tac n)
apply (rule impI)
apply simp

apply (rule impI)
apply (simp only:ideal_n_prodSn)
 apply (cut_tac n = n in Nsetn_sub_mem1, simp)
 apply (rule ideal_prod_ideal, assumption)
 apply simp
done

lemma (in Ring) n_prod_ideal:"⟦∀k ≤ n. ideal R (J k)⟧
                               ⟹  ideal R (ideal_n_prod R n J)"
apply (simp add:n_prod_idealTr)
done

lemma (in Ring) ideal_prod_la1:"⟦ideal R I; ideal R J⟧ ⟹ (I ♢r J) ⊆ I"
 apply (simp add:ideal_prod_def)
 apply (rule subsetI)
 apply (simp add:CollectI)
 apply (subgoal_tac "{x. ∃i∈I. ∃j∈J. x =  i ⋅r j} ⊆ I")
 apply blast
apply (thin_tac "∀xa. ideal R xa ∧ {x. ∃i∈I. ∃j∈J. x =  i ⋅r j} ⊆ xa
                                                              ⟶ x ∈ xa")
 apply (rule subsetI, simp add:CollectI,
        (erule bexE)+, frule_tac h = j in ideal_subset[of "J"], assumption+)
 apply (simp add:ideal_ring_multiple1)
done

lemma (in Ring) ideal_prod_el1:"⟦ideal R I; ideal R J; a ∈ (I ♢r J)⟧ ⟹
                           a ∈ I"
apply (frule ideal_prod_la1 [of "I" "J"], assumption+)
apply (rule subsetD, assumption+)
done

lemma (in Ring) ideal_prod_la2:"⟦ideal R I; ideal R J ⟧ ⟹ (I ♢r J) ⊆ J"
 apply (subst ideal_prod_commute, assumption+,
        rule ideal_prod_la1[of "J" "I"], assumption+)
done

lemma (in Ring) ideal_prod_sub_Int:"⟦ideal R I; ideal R J ⟧ ⟹
                     (I ♢r J) ⊆ I ∩ J"
by (simp add:ideal_prod_la1 ideal_prod_la2)

lemma (in Ring) ideal_prod_el2:"⟦ideal R I; ideal R J; a ∈ (I ♢r J)⟧ ⟹
                                 a ∈ J"
by (frule ideal_prod_la2 [of "I" "J"], assumption+,
       rule subsetD, assumption+)

text{* @{text "iΠR,n J"} is the product of ideals *}
lemma (in Ring) ele_n_prodTr0:"⟦∀k ≤ (Suc n). ideal R (J k);
             a ∈ iΠR,(Suc n) J ⟧ ⟹ a ∈ (iΠR,n J) ∧ a ∈ (J (Suc n))"
apply (simp add:Nset_Suc[of n])
 apply (cut_tac n_prod_ideal[of n J])
apply (rule conjI)
 apply (rule ideal_prod_el1 [of "iΠR,n J" "J (Suc n)"], assumption, simp+)
 apply (rule ideal_prod_el2[of "iΠR,n J" "J (Suc n)"], assumption+, simp+)
done

lemma (in Ring) ele_n_prodTr1:
      "(∀k ≤ n. ideal R (J k)) ∧ a ∈ ideal_n_prod R n J ⟶
                                             (∀k ≤ n. a ∈ (J k))"
apply (induct_tac n)
(** n = 0 **)
 apply simp
(** n **)
 apply (rule impI)
 apply (rule allI, rule impI)
 apply (cut_tac n = n in Nsetn_sub_mem1, simp)
 apply (erule conjE)
 apply (frule_tac n = n in ele_n_prodTr0[of _ J a])
 apply simp

 apply (erule conjE,
        thin_tac "∀k≤Suc n. ideal R (J k)")
 apply simp
 apply (case_tac "k = Suc n", simp)
 apply (frule_tac m = k and n = "Suc n" in noteq_le_less, assumption+,
        thin_tac "k ≤ Suc n")
 apply (frule_tac x = k and n = "Suc n" in less_le_diff, simp)
done

lemma (in Ring) ele_n_prod:"⟦∀k ≤ n. ideal R (J k);
                       a ∈ ideal_n_prod R n J ⟧ ⟹  ∀k ≤ n. a ∈ (J k)"
by (simp add: ele_n_prodTr1 [of "n" "J" "a"])

lemma (in Ring) idealprod_whole_l:"ideal R I ⟹ (carrier R) ♢rR I = I"
apply (rule equalityI)
 apply (rule subsetI)
 apply (simp add:ideal_prod_def)
 apply (subgoal_tac "{x. ∃i∈carrier R. ∃j∈I. x = i ⋅r j} ⊆ I")
 apply blast
 apply (thin_tac "∀xa. ideal R xa ∧ {x. ∃i∈carrier R. ∃j∈I.
                       x = i ⋅r j} ⊆ xa ⟶ x ∈ xa")
 apply (rule subsetI)
 apply simp
 apply ((erule bexE)+, simp)
 apply (thin_tac "xa = i ⋅r j", simp add:ideal_ring_multiple)
apply (rule subsetI)
 apply (simp add:ideal_prod_def)
 apply (rule allI, rule impI) apply (erule conjE)
 apply (rename_tac xa X)
 apply (cut_tac ring_one)
 apply (frule_tac h = xa in ideal_subset[of "I"], assumption,
        frule_tac x = xa in ring_l_one)
 apply (subgoal_tac "1rr xa ∈ {x. ∃i∈carrier R. ∃j∈I. x = i ⋅r j}")
 apply (rule_tac c = xa and A = "{x. ∃i∈carrier R. ∃j∈I. x = i ⋅r j}" and
         B = X in subsetD, assumption+)
 apply simp
 apply simp
 apply (frule sym, thin_tac "1rr xa = xa", blast)
done

lemma (in Ring) idealprod_whole_r:"ideal R I ⟹ I ♢r (carrier R) = I"
by (cut_tac whole_ideal,
       simp add:ideal_prod_commute[of "I" "carrier R"],
       simp add:idealprod_whole_l)

lemma (in Ring) idealpow_1_self:"ideal R I ⟹ I ♢R (Suc 0) = I"
apply simp
apply (simp add:idealprod_whole_r)
done

lemma (in Ring) ideal_pow_ideal:"ideal R I ⟹ ideal R (I ♢R n)"
apply (induct_tac n)
apply (simp add:whole_ideal)
apply simp
apply (simp add:ideal_prod_ideal)
done

lemma (in Ring) ideal_prod_prime:"⟦ideal R I; ideal R J; prime_ideal R P;
                          I ♢r J ⊆ P ⟧ ⟹ I ⊆ P ∨ J ⊆ P"
apply (rule contrapos_pp, simp+)
apply (erule conjE, simp add:subset_eq, (erule bexE)+)
apply (frule_tac i = x and j = xa in prod_mem_prod_ideals[of "I" "J"],
          assumption+)
 apply (frule_tac x = "x ⋅r xa" in bspec, assumption,
        thin_tac "∀x∈I ♢r R J. x ∈ P")
 apply (simp add: prime_ideal_def, (erule conjE)+)
 apply (frule_tac h = x in ideal_subset, assumption,
        frule_tac x = x in bspec, assumption,
        thin_tac "∀x∈carrier R. ∀y∈carrier R. x ⋅r y ∈ P ⟶ x ∈ P ∨ y ∈ P",
        frule_tac h = xa in ideal_subset, assumption,
        frule_tac x = xa in bspec, assumption,
        thin_tac "∀y∈carrier R. x ⋅r y ∈ P ⟶ x ∈ P ∨ y ∈ P",
        simp)
done

lemma (in Ring) ideal_n_prod_primeTr:"prime_ideal R P ⟹
       (∀k ≤ n. ideal R (J k)) ⟶ (ideal_n_prod R n J ⊆ P) ⟶
                                               (∃i ≤ n. (J i) ⊆ P)"
apply (induct_tac n)
apply simp

apply (rule impI)
 apply (rule impI, simp)
 apply (cut_tac I = "iΠR,n J" and J = "J (Suc n)" in
                      ideal_prod_prime[of _ _ "P"],
        rule_tac n = n and J = J in n_prod_ideal,
         rule allI, simp+)
 apply (erule disjE, simp)
 apply (cut_tac n = n in Nsetn_sub_mem1,
        blast)
 apply blast
done

lemma (in Ring) ideal_n_prod_prime:"⟦prime_ideal R P;
            ∀k ≤ n. ideal R (J k); ideal_n_prod R n J ⊆ P⟧ ⟹
                                            ∃i ≤ n. (J i) ⊆ P"
apply (simp add:ideal_n_prod_primeTr)
done

definition
  ppa::"[_, nat ⇒ 'a set, 'a set, nat] ⇒ (nat ⇒ 'a)" where
  "ppa R P A i l = (SOME x. x ∈ A ∧ x ∈ (P (skip i l)) ∧ x ∉ P i)"
     (** Note (ppa R P A) is used to prove prime_ideal_cont1,
         some element x of A such that x ∈ P j for (i ≠ j) and x ∉ P i **)

lemma (in Ring) prod_primeTr:"⟦prime_ideal R P; ideal R A; ¬ A ⊆ P;
                ideal R B; ¬ B ⊆ P ⟧ ⟹ ∃x. x ∈ A ∧ x ∈ B ∧ x ∉ P"
apply (simp add:subset_eq)
 apply (erule bexE)+
apply (subgoal_tac "x ⋅r xa ∈ A ∧ x ⋅r xa ∈ B ∧ x ⋅r xa ∉ P")
 apply blast
 apply (rule conjI)
 apply (rule ideal_ring_multiple1, assumption+)
  apply (simp add:ideal_subset)
 apply (rule conjI)
  apply (rule ideal_ring_multiple, assumption+)
  apply (simp add:ideal_subset)

 apply (rule contrapos_pp, simp+)
apply (simp add:prime_ideal_def, (erule conjE)+)
 apply (frule_tac h = x in ideal_subset[of "A"], assumption+,
        frule_tac h = xa in ideal_subset[of "B"], assumption+,
        frule_tac x = x in bspec, assumption,
        thin_tac "∀x∈carrier R. ∀y∈carrier R. x ⋅r y ∈ P ⟶ x ∈ P ∨ y ∈ P",
        frule_tac x = xa in bspec, assumption,
        thin_tac "∀y∈carrier R. x ⋅r y ∈ P ⟶ x ∈ P ∨ y ∈ P")
  apply simp
done

lemma (in Ring) prod_primeTr1:"⟦∀k ≤ (Suc n). prime_ideal R (P k);
       ideal R A; ∀l ≤ (Suc n). ¬ (A ⊆ P l);
       ∀k ≤ (Suc n). ∀l ≤ (Suc n). k = l ∨ ¬ (P k) ⊆ (P l); i ≤ (Suc n)⟧ ⟹
       ∀l ≤ n. ppa R P A i l ∈ A ∧
                  ppa R P A i l ∈ (P (skip i l)) ∧ ppa R P A i l ∉ (P i)"
apply (rule allI, rule impI)
apply (cut_tac i = i and l = l in skip_il_neq_i)
apply (rotate_tac 2)
      apply (frule_tac x = i in spec,
             thin_tac "∀l ≤ (Suc n). ¬ A ⊆ P l", simp)

      apply (cut_tac l = l in skip_mem[of _ "n" "i"], simp,
             frule_tac x = "skip i l" in spec,
             thin_tac "∀k ≤ (Suc n). ∀l ≤ (Suc n). k = l ∨ ¬ P k ⊆ P l",
             simp)
     apply (rotate_tac -1,
            frule_tac x = i in spec,
            thin_tac "∀la ≤ (Suc n). skip i l = la ∨ ¬ P (skip i l) ⊆ P la",
            simp)
apply (cut_tac P = "P i" and A = A and B = "P (skip i l)" in prod_primeTr,
       simp, assumption+)
 apply (frule_tac x = "skip i l" in spec,
        thin_tac "∀k≤Suc n. prime_ideal R (P k)", simp,
        rule prime_ideal_ideal, assumption+)
 apply (simp add:ppa_def)
 apply (rule someI2_ex, assumption+)
done

lemma (in Ring) ppa_mem:"⟦∀k ≤ (Suc n). prime_ideal R (P k); ideal R A;
      ∀l ≤ (Suc n). ¬ (A ⊆ P l);
      ∀k ≤ (Suc n). ∀l ≤ (Suc n). k = l ∨ ¬ (P k) ⊆ (P l);
      i  ≤ (Suc n); l ≤ n⟧ ⟹ ppa R P A i l ∈ carrier R"
apply (frule_tac prod_primeTr1[of n P A], assumption+)
 apply (rotate_tac -1, frule_tac x = l in spec,
        thin_tac "∀l≤n. ppa R P A i l ∈ A ∧
           ppa R P A i l ∈ P (skip i l) ∧ ppa R P A i l ∉ P i", simp)
 apply (simp add:ideal_subset)
done

lemma (in Ring) nsum_memrTr:"(∀i ≤ n. f i ∈ carrier R) ⟶
                             (∀l ≤ n. nsum R f l ∈ carrier R)"
apply (cut_tac ring_is_ag)
apply (induct_tac n)
(** n = 0 **)
 apply (rule impI, rule allI, rule impI)
 apply simp
(** n **)
apply (rule impI)
 apply (rule allI, rule impI)

 apply (rule aGroup.nsum_mem, assumption)
 apply (rule allI, simp)
done

lemma (in Ring) nsum_memr:"∀i ≤ n. f i ∈ carrier R ⟹
                          ∀l ≤ n. nsum R f l ∈ carrier R"
by (simp add:nsum_memrTr)

lemma (in Ring) nsum_ideal_incTr:"ideal R A ⟹
               (∀i ≤ n. f i ∈ A) ⟶  nsum R f n ∈ A"
 apply (induct_tac n)
 apply (rule impI)
  apply simp
(** n **)
apply (rule impI)
apply simp
apply (rule ideal_pOp_closed, assumption+)
 apply simp
done

lemma (in Ring) nsum_ideal_inc:"⟦ideal R A; ∀i ≤ n. f i ∈ A⟧ ⟹
                    nsum R f n ∈ A"
by (simp add:nsum_ideal_incTr)

lemma (in Ring) nsum_ideal_excTr:"ideal R A ⟹
      (∀i ≤ n. f i ∈ carrier R) ∧ (∃j ≤ n. (∀l ∈ {i. i ≤ n} -{j}. f l ∈ A)
       ∧ (f j ∉ A)) ⟶ nsum R f n ∉ A"
apply (induct_tac n)
(** n = 0 **)
 apply simp
(** n **)
 apply (rule impI)
 apply (erule conjE)+
apply (erule exE)
apply (case_tac "j = Suc n", simp) apply (
       thin_tac "(∃j≤n. f j ∉ A) ⟶ Σe R f n ∉ A")
 apply (erule conjE)
 apply (cut_tac n = n and f = f in nsum_ideal_inc[of A], assumption,
        rule allI, simp)
 apply (rule contrapos_pp, simp+)
 apply (frule_tac a = e R f n" and b = "f (Suc n)" in
                   ideal_ele_sumTr1[of A],
        simp add:ideal_subset, simp, assumption+, simp)

apply (erule conjE,
       frule_tac m = j and n = "Suc n" in noteq_le_less, assumption,
       frule_tac x = j and n = "Suc n" in less_le_diff,
       thin_tac "j ≤ Suc n", thin_tac "j < Suc n", simp,
       cut_tac n = n in Nsetn_sub_mem1, simp)
apply (erule conjE,
       frule_tac x = "Suc n" in bspec, simp)
apply (rule contrapos_pp, simp+)
 apply (frule_tac a = e R f n" and b = "f (Suc n)" in
                   ideal_ele_sumTr2[of A])
 apply (cut_tac ring_is_ag,
        rule_tac n = n in aGroup.nsum_mem[of R _ f], assumption+,
        rule allI, simp, simp, assumption+, simp)
 apply (subgoal_tac "∃j≤n. (∀l∈{i. i ≤ n} - {j}. f l ∈ A) ∧ f j ∉ A",
        simp,
        thin_tac "(∃j≤n. (∀l∈{i. i ≤ n} - {j}. f l ∈ A) ∧ f j ∉ A)
                     ⟶ Σe R f n ∉ A")
 apply (subgoal_tac "∀l∈{i. i ≤ n} - {j}. f l ∈ A", blast,
        thin_tac e R f n ± f (Suc n) ∈ A",
        thin_tac e R f n ∈ A")
 apply (rule ballI)
 apply (frule_tac x = l in bspec, simp, assumption)
done

lemma (in Ring) nsum_ideal_exc:"⟦ideal R A; ∀i ≤ n. f i ∈ carrier R;
      ∃j ≤ n. (∀l∈{i. i ≤ n} -{j}. f l ∈ A) ∧ (f j ∉ A) ⟧ ⟹ nsum R f n ∉ A"
by (simp add:nsum_ideal_excTr)

lemma (in Ring) nprod_memTr:"(∀i ≤ n. f i ∈ carrier R) ⟶
                             (∀l. l ≤ n ⟶  nprod R f l ∈ carrier R)"
apply (induct_tac n)
apply (rule impI, rule allI, rule impI, simp)

apply (rule impI, rule allI, rule impI)
apply (case_tac "l ≤ n")
 apply (cut_tac n = n in Nset_Suc, blast)
 apply (cut_tac m = l and n = "Suc n" in Nat.le_antisym, assumption)
 apply (simp add: not_less)
 apply simp
 apply (rule ring_tOp_closed, simp)
 apply (cut_tac n = n in Nset_Suc, blast)
done

lemma (in Ring) nprod_mem:"⟦∀i ≤ n. f i ∈ carrier R; l ≤ n⟧ ⟹
                              nprod R f l ∈ carrier R"
by (simp add:nprod_memTr)

lemma (in Ring) ideal_nprod_incTr:"ideal R A ⟹
                (∀i ≤ n. f i ∈ carrier R) ∧
                             (∃l ≤ n. f l ∈ A) ⟶ nprod R f n ∈ A"
apply (induct_tac n)
(** n = 0 **)
apply simp
(** n **)
apply (rule impI)
 apply (erule conjE)+
apply simp
 apply (erule exE)
 apply (case_tac "l = Suc n", simp)
 apply (rule_tac x = "f (Suc n)" and r = "nprod R f n" in
                 ideal_ring_multiple[of "A"], assumption+)
 apply (rule_tac n = "Suc n" and f = f and l = n in nprod_mem,
                 assumption+, simp)
 apply (erule conjE)
 apply (frule_tac m = l and n = "Suc n" in noteq_le_less, assumption,
       frule_tac x = l and n = "Suc n" in less_le_diff,
       thin_tac "l ≤ Suc n", thin_tac "l < Suc n", simp)
apply (rule_tac x = "nprod R f n" and r = "f (Suc n)" in
                      ideal_ring_multiple1[of "A"], assumption+)
 apply blast
 apply simp
done

lemma (in Ring) ideal_nprod_inc:"⟦ideal R A; ∀i ≤ n. f i ∈ carrier R;
                ∃l ≤ n. f l ∈ A⟧ ⟹ nprod R f n ∈ A"
by (simp add:ideal_nprod_incTr)

lemma (in Ring) nprod_excTr:"prime_ideal R P ⟹
          (∀i ≤ n. f i ∈ carrier R) ∧ (∀l ≤ n. f l ∉ P) ⟶
                                                     nprod R f n ∉ P"
apply (induct_tac n)
(** n = 0 **)
 apply simp  (* n = 0 done *)
(** n **)
apply (rule impI)
apply (erule conjE)+
 apply simp
  apply (rule_tac y = "f (Suc n)" and x = "nprod R f n" in
          prime_elems_mult_not[of "P"], assumption,
         rule_tac n = n in  nprod_mem, rule allI, simp+)
done

lemma (in Ring) prime_nprod_exc:"⟦prime_ideal R P; ∀i ≤ n. f i ∈ carrier R;
                ∀l ≤ n. f l ∉ P⟧ ⟹ nprod R f n ∉ P"
by (simp add:nprod_excTr)

definition
  nilrad :: "_ ⇒ 'a set" where
  "nilrad R = {x. x ∈ carrier R ∧ nilpotent R x}"

lemma (in Ring) id_nilrad_ideal:"ideal R (nilrad R)"
apply (cut_tac ring_is_ag)
apply (rule ideal_condition1[of "nilrad R"])
 apply (rule subsetI) apply (simp add:nilrad_def CollectI)
 apply (simp add:nilrad_def)
 apply (cut_tac ring_zero)
 apply (subgoal_tac "nilpotent R 𝟬")
 apply blast
 apply (simp add:nilpotent_def)
 apply (frule np_1[of "𝟬"], blast)

 apply (rule ballI)+
apply (simp add:nilrad_def nilpotent_def, (erule conjE)+)
 apply (erule exE)+
 apply (simp add:aGroup.ag_pOp_closed[of "R"])
 apply (frule_tac x = x and y = y and m = n and n = na in npAdd,
        assumption+, blast)

 apply (rule ballI)+
 apply (simp add:nilrad_def nilpotent_def, erule conjE, erule exE)
 apply (simp add:ring_tOp_closed,
        frule_tac x = r and y = x and n = n in npMul, assumption+,
           simp,
        frule_tac x = r and n = n in npClose)
        apply (simp add:ring_times_x_0, blast)
done

definition
  rad_ideal :: "[_, 'a set ] ⇒ 'a set" where
  "rad_ideal R I = {a. a ∈ carrier R ∧ nilpotent (qring R I) ((pj R I) a)}"

lemma (in Ring) id_rad_invim:"ideal R I ⟹
       rad_ideal R I = (rInvim R (qring R I) (pj R I ) (nilrad (qring R I)))"
apply (cut_tac ring_is_ag)
apply (rule equalityI)
 apply (rule subsetI)
 apply (simp add:rad_ideal_def)
 apply (erule conjE)+
 apply (simp add:rInvim_def)
 apply (simp add:nilrad_def)
 apply (subst pj_mem, rule Ring_axioms)
 apply assumption+
 apply (simp add:qring_def ar_coset_def set_rcs_def)
 apply (simp add:aGroup.ag_carrier_carrier)
 apply blast

apply (rule subsetI)
 apply (simp add:rInvim_def nilrad_def)
apply (simp add: rad_ideal_def)
done

lemma (in Ring) id_rad_ideal:"ideal R I ⟹ ideal R (rad_ideal R I)"
(* thm invim_of_ideal *)
apply (subst id_rad_invim [of "I"], assumption)
apply (rule invim_of_ideal, rule Ring_axioms, assumption)
apply (rule Ring.id_nilrad_ideal)
apply (simp add:qring_ring)
done

lemma (in Ring) id_rad_cont_I:"ideal R I ⟹ I ⊆ (rad_ideal R I)"
apply (simp add:rad_ideal_def)
apply (rule subsetI, simp,
       simp add:ideal_subset)
apply (simp add:nilpotent_def)
apply (subst pj_mem, rule Ring_axioms, assumption+,
       simp add:ideal_subset) (* thm npQring *)

 apply (frule_tac h = x in ideal_subset[of "I"], assumption,
        frule_tac a = x in npQring[OF Ring, of "I" _ "Suc 0"], assumption,
        simp only:np_1, simp only:Qring_fix1,
        subst qring_zero[of "I"], assumption)
 apply blast
done

lemma (in Ring) id_rad_set:"ideal R I ⟹
       rad_ideal R I = {x. x ∈ carrier R ∧ (∃n. npow R x n ∈ I)}"
apply (simp add:rad_ideal_def)
apply (rule equalityI)
 apply (rule subsetI)
 apply (simp add:nilpotent_def, erule conjE, erule exE)
 apply (simp add: pj_mem[OF Ring], simp add:npQring[OF Ring])
apply ( simp add:qring_zero)
 apply (frule_tac x = x and n = n in npClose)
 apply (frule_tac a = "x^R n" in ar_coset_same3[of "I"], assumption+,
        blast)
apply (rule subsetI, simp, erule conjE, erule exE)
 apply (simp add:nilpotent_def)
 apply (simp add: pj_mem[OF Ring], simp add:npQring[OF Ring],
                                            simp add:qring_zero)
 apply (frule_tac a = "x^R n" in ar_coset_same4[of "I"], assumption+)
 apply blast
done

lemma (in Ring) rad_primary_prime:"primary_ideal R q ⟹
                                    prime_ideal R (rad_ideal R q)"
apply (simp add:prime_ideal_def)
apply (frule primary_ideal_ideal[of "q"])
apply (simp add:id_rad_ideal)
apply (rule conjI)
 apply (rule contrapos_pp, simp+)
 apply (simp add:id_rad_set, erule conjE, erule exE)
 apply (simp add:npOne)
 apply (simp add:primary_ideal_proper1[of "q"])

apply ((rule ballI)+, rule impI)
 apply (rule contrapos_pp, simp+, erule conjE)
 apply (simp add:id_rad_set, erule conjE, erule exE)
 apply (simp add:npMul)
 apply (simp add:primary_ideal_def, (erule conjE)+)
 apply (frule_tac x = x and n = n in npClose,
        frule_tac x = y and n = n in npClose)
 apply (frule_tac x = "x^R n" in bspec, assumption,
        thin_tac "∀x∈carrier R. ∀y∈carrier R. x ⋅r y ∈ q ⟶
                                    (∃n. x^R n ∈ q) ∨ y ∈ q",
        frule_tac x = "y^R n" in bspec, assumption,
        thin_tac "∀y∈carrier R. x^R nr y ∈ q ⟶
                             (∃na. x^R n^R na ∈ q) ∨ y ∈ q", simp)
 apply (simp add:npMulExp)
done

lemma (in Ring) npow_notin_prime:"⟦prime_ideal R P; x ∈ carrier R; x ∉ P⟧
                                ⟹ ∀n. npow R x n ∉ P"
apply (rule allI)
apply (induct_tac n)
 apply simp
 apply (simp add:prime_ideal_proper1)

 apply simp
 apply (frule_tac x = x and n = na in npClose)
 apply (simp add:prime_elems_mult_not)
done

lemma (in Ring) npow_in_prime:"⟦prime_ideal R P; x ∈ carrier R;
                               ∃n. npow R x n ∈ P ⟧ ⟹ x ∈ P"
apply (rule contrapos_pp, simp+)
apply (frule npow_notin_prime, assumption+)
apply blast
done

definition
  mul_closed_set::"[_, 'a set ] ⇒ bool" where
  "mul_closed_set R S ⟷ S ⊆ carrier R ∧ (∀s∈S. ∀t∈S. s ⋅rR t ∈ S)"

locale Idomain = Ring +
       assumes idom:
       "⟦a ∈ carrier R; b ∈ carrier R; a ⋅r b = 𝟬⟧ ⟹ a = 𝟬 ∨ b = 𝟬"
  (* integral domain *)

locale Corps =
       fixes K (structure)
       assumes f_is_ring: "Ring K"
       and f_inv: "∀x∈carrier K - {𝟬}. ∃x' ∈ carrier K. x' ⋅r x = 1r"
  (** integral domain **)

lemma (in Ring) mul_closed_set_sub:"mul_closed_set R S ⟹ S ⊆ carrier R"
by (simp add:mul_closed_set_def)

lemma (in Ring) mul_closed_set_tOp_closed:"⟦mul_closed_set R S; s ∈ S;
                            t ∈ S⟧ ⟹ s ⋅r t ∈ S"
by (simp add:mul_closed_set_def)

lemma (in Corps) f_inv_unique:"⟦ x ∈ carrier K - {𝟬}; x' ∈ carrier K;
      x'' ∈ carrier K; x' ⋅r  x = 1r; x'' ⋅r x = 1r ⟧ ⟹ x' = x''"
apply (cut_tac  f_is_ring)
 apply (cut_tac x = x' and y = x and z = x'' in Ring.ring_tOp_assoc[of K],
        assumption+, simp, assumption, simp)
 apply (simp add:Ring.ring_l_one[of K],
        simp add:Ring.ring_tOp_commute[of K x x''] Ring.ring_r_one[of K])
done

definition
  invf :: "[_, 'a] ⇒ 'a" where
  "invf K x = (THE y. y ∈ carrier K ∧ y ⋅rK x = 1rK)"

lemma (in Corps) invf_inv:"x ∈ carrier K - {𝟬} ⟹
                (invf K x) ∈ carrier K ∧ (invf K x) ⋅r x = 1r "
apply (simp add:invf_def)
apply (rule theI')
apply (rule ex_ex1I)
apply (cut_tac f_inv, blast)
apply (rule_tac x' = xa and x'' = y in f_inv_unique[of x])
       apply simp+
done



definition
  npowf :: "_  ⇒ 'a ⇒ int  ⇒ 'a" where
  "npowf K x n =
    (if 0 ≤ n then npow K x (nat n) else npow K (invf K x) (nat (- n)))"

abbreviation
  NPOWF ::  "['a, _, int] ⇒  'a"  ("(3___)" [77,77,78]77) where
  "aKn == npowf K a n"

abbreviation
  IOP :: "['a, _] ⇒ 'a" ("(_­ _)" [87,88]87) where
  "a­K == invf K a"

lemma (in Idomain) idom_is_ring: "Ring R" ..

lemma (in Idomain) idom_tOp_nonzeros:"⟦x ∈ carrier R;
       y ∈ carrier R; x ≠ 𝟬;  y ≠ 𝟬⟧ ⟹ x ⋅r y ≠ 𝟬"
apply (rule contrapos_pp, simp+)
apply (cut_tac idom[of x y]) apply (erule disjE, simp+)
done

lemma (in Idomain) idom_potent_nonzero:
       "⟦x ∈ carrier R; x ≠ 𝟬⟧  ⟹ npow R x n ≠ 𝟬 "
apply (induct_tac n)
 apply simp  (* case 0 *)
 apply (rule contrapos_pp, simp+)
 apply (frule ring_l_one[of "x", THEN sym]) apply simp
 apply (simp add:ring_times_0_x)
 (* case (Suc n) *)

 apply (rule contrapos_pp, simp+)
 apply (frule_tac n = n in npClose[of x],
        cut_tac a = "x^R n" and b = x in idom, assumption+)
 apply (erule disjE, simp+)
done

lemma (in Idomain) idom_potent_unit:"⟦a ∈ carrier R; 0 < n⟧
                 ⟹ (Unit R a) = (Unit R (npow R a n))"
apply (rule iffI)
 apply (simp add:Unit_def, erule bexE)
 apply (simp add:npClose)
 apply (frule_tac x1 = a and y1 = b and n1 = n in npMul[THEN sym], assumption,
        simp add:npOne)
  apply (frule_tac x = b and n = n in npClose, blast)

apply (case_tac "n = Suc 0", simp only: np_1)
 apply (simp add:Unit_def, erule conjE, erule bexE)
 apply (cut_tac x = a and n = "n - Suc 0" in npow_suc[of R], simp del:npow_suc,
      thin_tac "a^R n = a^R (n - Suc 0)r a",
      frule_tac x = a and n = "n - Suc 0" in npClose,
      frule_tac x = "a^R (n - Suc 0)" and y = a in ring_tOp_commute, assumption+,
      simp add:ring_tOp_assoc,
      frule_tac x = "a^R (n - Suc 0)" and y = b in ring_tOp_closed, assumption+)
 apply blast
done

lemma (in Idomain) idom_mult_cancel_r:"⟦a ∈ carrier R;
       b ∈ carrier R; c ∈ carrier R; c ≠ 𝟬; a ⋅r c = b ⋅r c⟧ ⟹ a = b"
apply (cut_tac ring_is_ag)
 apply (frule ring_tOp_closed[of "a" "c"], assumption+,
        frule ring_tOp_closed[of "b" "c"], assumption+)
 apply (simp add:aGroup.ag_eq_diffzero[of "R" "a ⋅r c" "b ⋅r c"],
        simp add:ring_inv1_1,
        frule aGroup.ag_mOp_closed[of "R" "b"], assumption,
        simp add:ring_distrib2[THEN sym, of "c" "a" "-a b"])
 apply (frule aGroup.ag_pOp_closed[of "R" "a" "-a b"], assumption+)
 apply (subst aGroup.ag_eq_diffzero[of R a b], assumption+)
 apply (rule contrapos_pp, simp+)
 apply (frule idom_tOp_nonzeros[of "a ± -a b" c], assumption+, simp)
done

lemma (in Idomain) idom_mult_cancel_l:"⟦a ∈ carrier R;
      b ∈ carrier R; c ∈ carrier R; c ≠ 𝟬; c ⋅r a = c ⋅r b⟧ ⟹ a = b"
apply (simp add:ring_tOp_commute)
apply (simp add:idom_mult_cancel_r)
done

lemma (in Corps) invf_closed1:"x ∈ carrier K - {𝟬} ⟹
                               invf K x ∈ (carrier K) - {𝟬}"
apply (frule  invf_inv[of x], erule conjE)
 apply (rule contrapos_pp, simp+)
 apply (cut_tac f_is_ring) apply (
        simp add:Ring.ring_times_0_x[of K])
 apply (frule sym, thin_tac "𝟬 = 1r", simp, erule conjE)
 apply (frule Ring.ring_l_one[of K x], assumption)
 apply (rotate_tac -1, frule sym, thin_tac "1rr x = x",
        simp add:Ring.ring_times_0_x)
done

lemma (in Corps) linvf:"x ∈ carrier K - {𝟬} ⟹ (invf K x) ⋅r x = 1r"
by (simp add:invf_inv)

lemma (in Corps) field_is_ring:"Ring K"
by (simp add:f_is_ring)

lemma (in Corps) invf_one:"1r ≠ 𝟬  ⟹ invf K (1r) = 1r"
apply (cut_tac field_is_ring)
 apply (frule_tac Ring.ring_one)
 apply (cut_tac invf_closed1 [of "1r"])
 apply (cut_tac linvf[of "1r"])
 apply (simp add:Ring.ring_r_one[of "K"])
 apply simp+
done

lemma (in Corps) field_tOp_assoc:"⟦x ∈ carrier K; y ∈ carrier K; z ∈ carrier K⟧
                                ⟹ x ⋅r y ⋅r z =  x ⋅r (y ⋅r z)"
apply (cut_tac field_is_ring)
apply (simp add:Ring.ring_tOp_assoc)
done

lemma (in Corps) field_tOp_commute:"⟦x ∈ carrier K; y ∈ carrier K⟧
                                ⟹ x ⋅r y  =  y ⋅r x"
apply (cut_tac field_is_ring)
apply (simp add:Ring.ring_tOp_commute)
done

lemma (in Corps) field_inv_inv:"⟦x ∈ carrier K; x ≠ 𝟬⟧ ⟹ (x­K)­K = x"
apply (cut_tac invf_closed1[of "x"])
 apply (cut_tac invf_inv[of "x­K"], erule conjE)
 apply (frule field_tOp_assoc[THEN sym, of "x­ K­ K" "x­ K" "x"],
        simp, assumption, simp)
 apply (cut_tac field_is_ring,
        simp add:Ring.ring_l_one Ring.ring_r_one, erule conjE,
        cut_tac invf_inv[of x], erule conjE, simp add:Ring.ring_r_one)
 apply simp+
done

lemma (in Corps) field_is_idom:"Idomain K"
apply (rule Idomain.intro)
 apply (simp add:field_is_ring)
 apply (cut_tac field_is_ring)
 apply (rule Idomain_axioms.intro)
 apply (rule contrapos_pp, simp+, erule conjE)
 apply (cut_tac x = a in invf_closed1, simp, simp, erule conjE)
 apply (frule_tac x = "a­ K" and y = a and z = b in field_tOp_assoc,
         assumption+)
 apply (simp add:linvf Ring.ring_times_x_0 Ring.ring_l_one)
done

lemma (in Corps) field_potent_nonzero:"⟦x ∈ carrier K; x ≠ 𝟬⟧ ⟹
                                       x^K n ≠ 𝟬"
apply (cut_tac field_is_idom)
apply (cut_tac field_is_ring,
       simp add:Idomain.idom_potent_nonzero)
done

lemma (in Corps) field_potent_nonzero1:"⟦x ∈ carrier K; x ≠ 𝟬⟧ ⟹ xKn  ≠ 𝟬"
apply (simp add:npowf_def)
apply (case_tac "0 ≤ n")
apply (simp add:field_potent_nonzero)

apply simp
 apply (cut_tac invf_closed1[of "x"], simp+, (erule conjE)+)
 apply (simp add:field_potent_nonzero)
 apply simp
done

lemma (in Corps) field_nilp_zero:"⟦x ∈ carrier K; x^K n = 𝟬⟧ ⟹ x = 𝟬"
by (rule contrapos_pp, simp+, simp add:field_potent_nonzero)

lemma (in Corps) npowf_mem:"⟦a ∈ carrier K; a ≠ 𝟬⟧ ⟹
                                    npowf K a n ∈ carrier K"
apply (simp add:npowf_def)
apply (cut_tac field_is_ring)
apply (case_tac "0 ≤ n", simp,
       simp add:Ring.npClose, simp)

apply (cut_tac invf_closed1[of "a"], simp, erule conjE,
       simp add:Ring.npClose, simp)
done

lemma (in Corps) field_npowf_exp_zero:"⟦a ∈ carrier K; a ≠ 𝟬⟧ ⟹
                                    npowf K a 0 = 1r"
by (cut_tac field_is_ring, simp add:npowf_def)

lemma (in Corps) npow_exp_minusTr1:"⟦x ∈ carrier K; x ≠ 𝟬; 0 ≤ i⟧  ⟹
       0 ≤ i - (int j) ⟶  xK(i - (int j)) = x^K (nat i)r (x­K)^K j"
apply (cut_tac field_is_ring,
       cut_tac invf_closed1[of "x"], simp,
       simp add:npowf_def, erule conjE)
apply (induct_tac "j", simp)
 apply (frule Ring.npClose[of "K" "x" "nat i"], assumption+,
        simp add:Ring.ring_r_one)
apply (rule impI, simp)
 apply (subst zdiff)
 apply (simp add:add.commute[of "1"])
 apply (cut_tac z = i and w = "int n + 1" in zdiff,
       simp only:minus_add_distrib,
       thin_tac "i - (int n + 1) = i + (- int n + - 1)")
 apply (cut_tac z = "i + - int n" in nat_diff_distrib[of "1"],
         simp, simp)
 apply (simp only:zdiff[of _ "1"], simp)

apply (cut_tac field_is_idom)
apply (frule_tac n = "nat i" in Ring.npClose[of "K" "x"], assumption+,
       frule_tac n = "nat i" in Ring.npClose[of "K" "x­ K"], assumption+,
       frule_tac n = n in Ring.npClose[of "K" "x­ K"], assumption+ )
apply (rule_tac a = "x^K (nat (i + (- int n - 1)))" and
       b = "x^K (nat i)r (x­ K^K nr x­ K)" and c = x in
       Idomain.idom_mult_cancel_r[of "K"], assumption+)
 apply (simp add:Ring.npClose, rule Ring.ring_tOp_closed, assumption+,
        rule Ring.ring_tOp_closed, assumption+)
 apply (subgoal_tac "0 < nat (i - int n)")
 apply (subst Ring.npMulElmR, assumption+, simp,
        simp add:field_tOp_assoc[THEN sym, of "x^K (nat i)" _ "x­ K"])
 apply (subst field_tOp_assoc[of _ _ x])
 apply (rule Ring.ring_tOp_closed[of K], assumption+)
 apply (simp add: linvf)
 apply (subst Ring.ring_r_one[of K], assumption)
 apply auto
 apply (metis Ring.npClose)
 apply (simp only: uminus_add_conv_diff [symmetric] add.assoc [symmetric])
 apply (simp add: algebra_simps nat_diff_distrib Suc_diff_Suc)
 apply (smt Ring.npMulElmR Suc_nat_eq_nat_zadd1 nat_diff_distrib' nat_int of_nat_0_le_iff)
done

lemma (in Corps) npow_exp_minusTr2:"⟦x ∈ carrier K; x ≠ 𝟬; 0 ≤ i; 0 ≤ j;
                 0 ≤ i - j⟧  ⟹  xK(i - j) = x^K (nat i)r (x­K)^K (nat j)"
apply (frule npow_exp_minusTr1[of "x" "i" "nat j"], assumption+)
apply simp
done

lemma (in Corps) npowf_inv:"⟦x ∈ carrier K; x ≠ 𝟬; 0 ≤ j⟧ ⟹ xKj = (x­K)K(-j)"
apply (simp add:npowf_def)
 apply (rule impI, simp add:zle)
 apply (simp add:field_inv_inv)
done

lemma (in Corps) npowf_inv1:"⟦x ∈ carrier K; x ≠ 𝟬; ¬ 0 ≤ j⟧ ⟹
                                      xKj = (x­K)K(-j)"
apply (simp add:npowf_def)
done

lemma (in Corps) npowf_inverse:"⟦x ∈ carrier K; x ≠ 𝟬⟧ ⟹ xKj = (x­K)K(-j)"
apply (case_tac "0 ≤ j")
apply (simp add:npowf_inv, simp add:npowf_inv1)
done

lemma (in Corps) npowf_expTr1:"⟦x ∈ carrier K; x ≠ 𝟬; 0 ≤ i; 0 ≤ j;
                 0 ≤ i - j⟧ ⟹ xK(i - j) = xKir xK(- j)"
apply (simp add:npow_exp_minusTr2)
apply (simp add:npowf_def)
done

lemma (in Corps) npowf_expTr2:"⟦x ∈ carrier K; x ≠ 𝟬; 0 ≤ i + j⟧ ⟹
                          xK(i + j) = xKir xKj"
apply (cut_tac field_is_ring)
 apply (case_tac "0 ≤ i")
  apply (case_tac "0 ≤ j")
  apply (simp add:npowf_def, simp add:nat_add_distrib,
         rule Ring.npMulDistr[THEN sym], assumption+)
 apply (subst zminus_minus[THEN sym, of "i" "j"],
        subst npow_exp_minusTr2[of "x" "i" "-j"], assumption+)
  apply (simp add:zle, simp add:zless_imp_zle, simp add:npowf_def)
 apply (simp add:add.commute[of "i" "j"],
        subst zminus_minus[THEN sym, of "j" "i"],
        subst npow_exp_minusTr2[of "x" "j" "-i"], assumption+)
  apply (simp add:zle, simp add:zless_imp_zle, simp)
  apply (frule npowf_mem[of "x" "i"], assumption+,
         frule npowf_mem[of "x" "j"], assumption+,
         simp add:field_tOp_commute[of "xKi" "xKj"])
  apply (simp add:npowf_def)
done

lemma (in Corps) npowf_exp_add:"⟦x ∈ carrier K; x ≠ 𝟬⟧ ⟹
                          xK(i + j) = xKir xKj"
apply (case_tac "0 ≤ i + j")
apply (simp add:npowf_expTr2)
apply (simp add:npowf_inv1[of "x" "i + j"])
 apply (simp add:zle)
apply (subgoal_tac "0 < -i + -j") prefer 2 apply simp
 apply (thin_tac "i + j < 0")
 apply (frule zless_imp_zle[of "0" "-i + -j"])
 apply (thin_tac "0 < -i + -j")
apply (cut_tac invf_closed1[of "x"])
apply (simp, erule conjE,
       frule npowf_expTr2[of "x­K" "-i" "-j"], assumption+)
 apply (simp add:zdiff[THEN sym])
apply (simp add:npowf_inverse, simp)
done

lemma (in Corps) npowf_exp_1_add:"⟦x ∈ carrier K; x ≠ 𝟬⟧ ⟹
                                        xK(1 + j) = x ⋅r xKj"
apply (simp add:npowf_exp_add[of "x" "1" "j"])
apply (cut_tac field_is_ring)
apply (simp add:npowf_def, simp add:Ring.ring_l_one)
done

lemma (in Corps) npowf_minus:"⟦x ∈ carrier K; x ≠ 𝟬⟧ ⟹ (xKj)­K = xK(- j)"
apply (frule npowf_exp_add[of "x" "j" "-j"], assumption+)
 apply (simp add:field_npowf_exp_zero)
apply (cut_tac field_is_ring)
apply (frule npowf_mem[of "x" "j"], assumption+)
 apply (frule field_potent_nonzero1[of "x" "j"], assumption+)
apply (cut_tac invf_closed1[of "xKj"], simp, erule conjE,
       frule Ring.ring_r_one[of "K" "(xKj)­K"], assumption, simp,
      thin_tac "1r = xKjr xK- j",
      frule npowf_mem[of "x" "-j"], assumption+)
apply (simp add:field_tOp_assoc[THEN sym], simp add:linvf,
       simp add:Ring.ring_l_one, simp)
done

lemma (in Ring) residue_fieldTr:"⟦maximal_ideal R mx; x ∈ carrier(qring R mx);
 x ≠ 𝟬(qring R mx)⟧ ⟹∃y∈carrier (qring R mx). y ⋅r(qring R mx) x = 1r(qring R mx)"
apply (frule maximal_ideal_ideal[of "mx"])
apply (simp add:qring_carrier)
 apply (simp add:qring_zero)
 apply (simp add:qring_def)
 apply (erule bexE)
 apply (frule sym, thin_tac "a ⊎R mx = x", simp)
 apply (frule_tac a = a in ar_coset_same4_1[of "mx"], assumption+)
 apply (frule_tac x = a in maximal_prime_Tr0[of "mx"], assumption+)
 apply (cut_tac ring_one)
 apply (rotate_tac -2, frule sym, thin_tac "mx ∓ R ♢p a = carrier R")
 apply (frule_tac B = "mx ∓ R ♢p a" in eq_set_inc[of "1r" "carrier R"],
                  assumption+,
        thin_tac "carrier R = mx ∓ R ♢p a")
 apply (frule ideal_subset1[of mx])
 apply (frule_tac a = a in principal_ideal,
        frule_tac I = "R ♢p a" in ideal_subset1)
 apply (cut_tac ring_is_ag,
        simp add:aGroup.set_sum, (erule bexE)+)
 apply (thin_tac "ideal R (R ♢p a)", thin_tac "R ♢p a ⊆ carrier R",
        simp add:Rxa_def, (erule bexE)+, simp, thin_tac "k = r ⋅r a")
 apply (frule_tac a = r and b = a in rcostOp[of "mx"], assumption+)
 apply (frule_tac x = r and y = a in ring_tOp_closed, assumption+)
 apply (frule_tac a = "r ⋅r a" and x = h and b = "1r" in
        aGroup.ag_eq_sol2[of "R"], assumption+)
       apply (simp add:ideal_subset) apply (simp add:ring_one, simp)
       apply (frule_tac a = h and b = "1r ± -a (r ⋅r a)" and A = mx in
              eq_elem_in, assumption+)
 apply (frule_tac a = "r ⋅r a" and b = "1r" in ar_coset_same1[of "mx"],
        rule ring_tOp_closed, assumption+, rule ring_one, assumption)
  apply (frule_tac a1 = "r ⋅r a" and h1 = h in aGroup.arcos_fixed[THEN sym,
         of R mx],  unfold ideal_def, erule conjE, assumption+,
         thin_tac "R +> mx ∧ (∀r∈carrier R. ∀x∈mx. r ⋅r x ∈ mx)",
         thin_tac "x = a ⊎R mx",
         thin_tac "1r = h ± r ⋅r a",
         thin_tac "h = 1r ± -a (r ⋅r a)", thin_tac "1r ± -a (r ⋅r a) ∈ mx")
  apply (rename_tac b h k r) apply simp
  apply blast
done

(*
constdefs (structure R)
 field_cd::"_ ⇒ bool"
 "field_cd R  == ∀x∈(carrier R - {𝟬}). ∃y∈carrier R.
                                                y ⋅r x = 1r" *)
(* field condition  *) (*
constdefs (structure R)
 rIf :: "_ ⇒ 'a  ⇒ 'a " *) (** rIf is ring_invf **) (*
 "rIf R == λx. (SOME y. y ∈ carrier R ∧ y ⋅r x = 1r)"
*) (*
constdefs (structure R)
  Rf::"_ ⇒ 'a field"
  "Rf R == ⦇carrier = carrier R, pop = pop R, mop = mop R, zero = zero R,
               tp = tp R, un = un R, invf = rIf R⦈" *)

(*
constdefs (structure R)
 Rf ::  "_ ⇒ ⦇ carrier :: 'a set,
  pOp :: ['a, 'a] ⇒ 'a, mOp ::'a ⇒ 'a, zero :: 'a, tOp :: ['a, 'a] ⇒ 'a,
  one ::'a, iOp ::'a ⇒ 'a⦈"

  "Rf R  == ⦇ carrier = carrier R, pOp = pOp R, mOp = mOp R, zero = zero R,
  tOp = tOp R, one = one R, iOp = ring_iOp R⦈" *)
(*
lemma (in Ring) rIf_mem:"⟦field_cd R; x ∈ carrier R - {𝟬}⟧ ⟹
                     rIf R x ∈ carrier R ∧ rIf R x ≠ 𝟬"
apply (simp add:rIf_def)
apply (rule someI2_ex)
apply (simp add:field_cd_def, blast)
apply (simp add:field_cd_def)
 apply (thin_tac "∀x∈carrier R - {𝟬}. ∃y∈carrier R. y ⋅r x = 1r")
 apply (erule conjE)+
 apply (rule contrapos_pp, simp+)
 apply (frule sym, thin_tac "𝟬 ⋅r x = 1r", simp add:ring_times_0_x)
  apply (frule ring_l_one[of "x"])
 apply (simp add:ring_times_0_x)
done

lemma (in Ring) rIf:"⟦field_cd R; x ∈ carrier R - {𝟬}⟧ ⟹
                                           (rIf R x) ⋅r x = 1r"
apply (simp add:rIf_def)
apply (rule someI2_ex)
apply (simp add:field_cd_def, blast)
apply simp
done

lemma (in Ring) field_cd_integral:"field_cd R ⟹ Idomain R"
apply (rule Idomain.intro)
 apply assumption
 apply (rule Idomain_axioms.intro)

apply (rule contrapos_pp, simp+, erule conjE)
apply (cut_tac x = a in rIf_mem, assumption, simp, erule conjE)
apply (frule_tac x = "rIf R a" and y = a and z = b in ring_tOp_assoc,
                 assumption+, simp add:rIf)
apply (simp add:ring_l_one ring_times_x_0)
done

lemma (in Ring) Rf_field:"field_cd R ⟹ field (Rf R)"
apply (rule field.intro)
 apply (simp add:Rf_def)
 apply (rule Ring.intro)
 apply (simp add:pop_closed)
 apply ( cut_tac ring_is_ag, simp add:aGroup.ag_pOp_assoc)
 apply (simp add:Rf_def,
         cut_tac ring_is_ag, simp add:aGroup.ag_pOp_commute)
 apply (simp add:mop_closed)
 apply (simp add:


apply (rule conjI)
 prefer 2
 apply (rule conjI)
 apply (rule univar_func_test, rule ballI)
 apply (simp, erule conjE, simp add:Rf_def)
 apply (rule rIf_mem, assumption+, simp)
apply (rule allI, rule impI)
 apply (simp add:Rf_def)
 apply (frule_tac x = x in rIf, simp, assumption)

 apply (subst Rf_def, simp add:Ring_def)
 apply (cut_tac ring_is_ag)
 apply (rule conjI, simp add:aGroup_def)
 apply (rule conjI, (rule allI, rule impI)+, simp add:aGroup.ag_pOp_assoc)
 apply (rule conjI, (rule allI, rule impI)+, simp add:aGroup.ag_pOp_commute)
 apply (rule conjI, rule univar_func_test, rule ballI,
                                              simp add:aGroup.ag_mOp_closed)
 apply (rule conjI, rule allI, rule impI, simp add:aGroup.ag_l_inv1)
 apply (simp add:aGroup.ag_inc_zero)
 apply (rule conjI, rule allI, rule impI, simp add:aGroup.ag_l_zero)

 apply (rule conjI, rule bivar_func_test, (rule ballI)+,
                                          simp add:ring_tOp_closed)
 apply (rule conjI, (rule allI, rule impI)+, simp add:ring_tOp_assoc)
 apply (rule conjI, (rule allI, rule impI)+, simp add:ring_tOp_commute)
 apply (simp add:ring_one)
 apply (rule conjI, (rule allI, rule impI)+, simp add:ring_distrib1)
 apply (rule allI, rule impI, simp add:ring_l_one)
done
 *)

lemma (in Ring) residue_field_cd:"maximal_ideal R mx ⟹
                                           Corps (qring R mx)"
apply (rule Corps.intro)
apply (rule Ring.qring_ring, rule Ring_axioms)
apply (simp add:maximal_ideal_ideal)
apply (simp add:residue_fieldTr[of "mx"])
done

(*
lemma (in Ring) qRf_field:"maximal_ideal R mx ⟹ field (Rf (qring R mx))"
apply (frule maximal_ideal_ideal[of "mx"])
apply (frule qring_ring [of "mx"])
 apply (frule residue_field_cd[of "mx"])
 apply (rule Ring.Rf_field, assumption+)
done

lemma (in Ring) qRf_pj_rHom:"maximal_ideal R mx ⟹
                          (pj R mx) ∈ rHom R (Rf (qring R mx))"
apply (frule maximal_ideal_ideal[of "mx"])
apply (frule pj_Hom[OF Ring, of "mx"])
apply (simp add:rHom_def aHom_def Rf_def)
done *)

lemma (in Ring) maximal_set_idealTr:
       "maximal_set {I. ideal R I ∧ S ∩ I = {}} mx ⟹ ideal R mx"
by (simp add:maximal_set_def)

lemma (in Ring) maximal_setTr:"⟦maximal_set {I. ideal R I ∧ S ∩ I = {}} mx;
                                         ideal R J; mx ⊂ J ⟧ ⟹ S ∩ J ≠ {}"
by (rule contrapos_pp, simp+, simp add:psubset_eq, erule conjE,
       simp add:maximal_set_def, blast)

lemma (in Ring) mulDisj:"⟦mul_closed_set R S; 1r ∈ S; 𝟬 ∉ S;
    T = {I. ideal R I ∧ S ∩ I = {}}; maximal_set T mx ⟧ ⟹ prime_ideal R mx"
apply (simp add:prime_ideal_def)
apply (rule conjI, simp add:maximal_set_def,
       rule conjI, simp add:maximal_set_def)
apply (rule contrapos_pp, simp+)
apply ((erule conjE)+, blast)

apply ((rule ballI)+, rule impI)
apply (rule contrapos_pp, simp+, (erule conjE)+)
apply (cut_tac a = x in id_ideal_psub_sum[of "mx"],
               simp add:maximal_set_def, assumption+,
       cut_tac a = y in id_ideal_psub_sum[of "mx"],
               simp add:maximal_set_def, assumption+)
apply (frule_tac J = "mx ∓ R ♢p x" in maximal_setTr[of "S" "mx"],
       rule sum_ideals, simp add:maximal_set_def,
       simp add:principal_ideal, assumption,
       thin_tac "mx ⊂ mx ∓ R ♢p x")
apply (frule_tac J = "mx ∓ R ♢p y" in maximal_setTr[of "S" "mx"],
       rule sum_ideals, simp add:maximal_set_def,
       simp add:principal_ideal, assumption,
       thin_tac "mx ⊂ mx ∓ R ♢p y")
apply (frule_tac A = "S ∩ (mx ∓ R ♢p x)" in nonempty_ex,
       frule_tac A = "S ∩ (mx ∓ R ♢p y)" in nonempty_ex,
       (erule exE)+, simp, (erule conjE)+)
apply (rename_tac x y s1 s2,
       thin_tac "S ∩ (mx ∓ R ♢p x) ≠ {}",
       thin_tac "S ∩ (mx ∓ R ♢p y) ≠ {}")
apply (frule maximal_set_idealTr,
       frule_tac a = x in principal_ideal,
       frule_tac a = y in principal_ideal,
       frule ideal_subset1[of mx],
       frule_tac I = "R ♢p x" in ideal_subset1,
       frule_tac I = "R ♢p y" in ideal_subset1)
apply (cut_tac ring_is_ag,
       simp add:aGroup.set_sum[of R mx],
       erule bexE, erule bexE, simp)
apply (frule_tac s = s1 and t = s2 in mul_closed_set_tOp_closed, simp,
       assumption, simp,
       frule_tac c = h in subsetD[of mx "carrier R"], assumption+,
       frule_tac c = k and A = "R ♢p x" in subsetD[of _ "carrier R"],
       assumption+)
apply (
       cut_tac mul_closed_set_sub,
       frule_tac c = s2 in subsetD[of S "carrier R"], assumption+,
       simp add:ring_distrib2)
apply ((erule bexE)+, simp,
       frule_tac c = ha in subsetD[of mx "carrier R"], assumption+,
       frule_tac c = ka and A = "R ♢p y" in subsetD[of _ "carrier R"],
       assumption+,
       simp add:ring_distrib1)
apply (frule_tac x = h and r = ha in ideal_ring_multiple1[of mx], assumption+)
apply (frule_tac x = h and r = ka in ideal_ring_multiple1[of mx], assumption+,
       frule_tac x = ha and r = k in ideal_ring_multiple[of mx], assumption+)
apply (frule_tac a = x and b = y and x = k and y = ka in
                  mul_two_principal_idealsTr, assumption+,
       erule bexE,
       frule_tac x = "x ⋅r y" and r = r in ideal_ring_multiple[of mx],
       assumption+,
       rotate_tac -2, frule sym, thin_tac "k ⋅r ka = r ⋅r (x ⋅r y)", simp)
 apply (frule_tac x = "h ⋅r ha ± h ⋅r ka" and y = "k ⋅r ha ± k ⋅r ka" in
        ideal_pOp_closed[of mx])
 apply (rule ideal_pOp_closed, assumption+)+
 apply (simp add:maximal_set_def)
 apply blast
 apply assumption
done

lemma (in Ring) ex_mulDisj_maximal:"⟦mul_closed_set R S; 𝟬 ∉ S; 1r ∈ S;
       T = {I. ideal R I ∧ S ∩ I = {}}⟧ ⟹  ∃mx. maximal_set T mx"
apply (cut_tac A="{ I. ideal R I ∧ S ∩ I = {}}" in Zorn_Lemma2)
prefer 2
  apply (simp add:maximal_set_def)

apply (rule ballI)
apply (case_tac "C = {}")
 apply (cut_tac zero_ideal, blast)

apply (subgoal_tac "C ∈ chains {I. ideal R I ∧ I ⊂ carrier R}")
apply (frule chains_un, assumption)
 apply (subgoal_tac "S ∩ (⋃ C) = {}")
 apply (subgoal_tac "∀x∈C. x ⊆ ⋃ C",  blast)
apply (rule ballI, rule subsetI, simp add:CollectI)
 apply blast

apply (rule contrapos_pp, simp+)
 apply (frule_tac A = S and B = "⋃ C" in nonempty_int)
 apply (erule exE)
 apply (simp, erule conjE, erule bexE)
 apply (simp add:chains_def, erule conjE)
 apply (frule_tac c = X and A = C and B = "{I. ideal R I ∧ S ∩ I = {}}" in
        subsetD, assumption+,
        thin_tac "C ⊆ {I. ideal R I ∧ I ⊂ carrier R}",
        thin_tac "C ⊆ {I. ideal R I ∧ S ∩ I = {}}")
 apply (simp, blast)

apply (simp add:chains_def chain_subset_def, erule conjE)
 apply (rule subsetI)
 apply (frule_tac c = x and A = C and B = "{I. ideal R I ∧ S ∩ I = {}}" in
                  subsetD, assumption+,
        thin_tac "C ⊆ {I. ideal R I ∧ S ∩ I = {}}",
        thin_tac "T = {I. ideal R I ∧ S ∩ I = {}}")
 apply (simp, thin_tac "∀x∈C. ∀y∈C. x ⊆ y ∨ y ⊆ x", erule conjE)
 apply (simp add:psubset_eq ideal_subset1)
 apply (rule contrapos_pp, simp+)
 apply (rotate_tac -1, frule sym, thin_tac "x = carrier R",
        thin_tac "carrier R = x")
 apply (cut_tac ring_one, blast)
done

lemma (in Ring) ex_mulDisj_prime:"⟦mul_closed_set R S; 𝟬 ∉ S; 1r ∈ S⟧ ⟹
                            ∃mx. prime_ideal R mx ∧ S ∩ mx = {}"
apply (frule ex_mulDisj_maximal[of "S" "{I. ideal R I ∧ S ∩ I = {}}"],
               assumption+, simp, erule exE)
 apply (frule_tac mx = mx in mulDisj [of "S" "{I. ideal R I ∧ S ∩ I = {}}"],
                  assumption+, simp, assumption)
 apply (simp add:maximal_set_def, (erule conjE)+, blast)
done

lemma (in Ring) nilradTr1:"¬ zeroring R ⟹ nilrad R = ⋂ {p. prime_ideal R p}"
apply (rule equalityI)
 (* nilrad R ⊆ ⋂Collect (prime_ideal R) *)
apply (rule subsetI)
 apply (simp add:nilrad_def CollectI nilpotent_def)
 apply (erule conjE, erule exE)
 apply (rule allI, rule impI)
 apply (frule_tac prime_ideal_ideal)
 apply (frule sym, thin_tac "x^R n = 𝟬", frule ideal_zero, simp)
 apply (case_tac "n = 0", simp)
 apply (frule Zero_ring1[THEN not_sym], simp)
 apply (rule_tac P = xa and x = x in npow_in_prime,assumption+, blast)

apply (rule subsetI)
 apply (rule contrapos_pp, simp+)
 apply (frule id_maximal_Exist, erule exE,
        frule maximal_is_prime)
 apply (frule_tac a = I in forall_spec, assumption,
        frule_tac I = I in prime_ideal_ideal,
        frule_tac h = x and I = I in ideal_subset, assumption)
apply (subgoal_tac "𝟬 ∉ {s. ∃n. s = npow R x n} ∧
                                  1r ∈ {s. ∃n. s = npow R x n}")
apply (subgoal_tac "mul_closed_set R {s. ∃n. s = npow R x n}")
apply (erule conjE)
apply (frule_tac S = "{s. ∃n. s = npow R x n}" in ex_mulDisj_prime,
       assumption+, erule exE, erule conjE)
apply (subgoal_tac "x ∈ {s. ∃n. s = x^R n}", blast)

apply simp
apply (cut_tac t = x in np_1[THEN sym], assumption, blast)

apply (thin_tac "𝟬 ∉ {s. ∃n. s = x^R n} ∧ 1r ∈ {s. ∃n. s = x^R n}",
       thin_tac "∀xa. prime_ideal R xa ⟶ x ∈ xa")
apply (subst mul_closed_set_def)
 apply (rule conjI)
 apply (rule subsetI, simp, erule exE)
 apply (simp add:npClose)
apply ((rule ballI)+, simp, (erule exE)+, simp)
 apply (simp add:npMulDistr, blast)

apply (rule conjI)
 apply simp
 apply (rule contrapos_pp, simp+, erule exE)
 apply (frule sym, thin_tac "𝟬 = x^R n")
 apply (simp add:nilrad_def nilpotent_def)

apply simp
 apply (cut_tac x1 = x in npow_0[THEN sym, of "R"], blast)
done

lemma (in Ring) nonilp_residue_nilrad:"⟦¬ zeroring R; x ∈ carrier R;
        nilpotent (qring R (nilrad R)) (x ⊎R (nilrad R))⟧ ⟹
                   x ⊎R (nilrad R) = 𝟬(qring R (nilrad R))"
apply (simp add:nilpotent_def)
 apply (erule exE)
 apply (cut_tac id_nilrad_ideal)
 apply (simp add:qring_zero)
 apply (cut_tac "Ring")
 apply (simp add:npQring)
 apply (frule_tac x = x and n = n in npClose)
 apply (frule_tac I = "nilrad R" and a = "x^R n" in ar_coset_same3,
             assumption+)
 apply (rule_tac I = "nilrad R" and a = x in ar_coset_same4, assumption)
 apply (thin_tac "x^R nR nilrad R = nilrad R",
        simp add:nilrad_def nilpotent_def, erule exE)
 apply (simp add:npMulExp, blast)
done

lemma (in Ring) ex_contid_maximal:"⟦ S = {1r}; 𝟬 ∉ S; ideal R I; I ∩ S = {};
T = {J. ideal R J ∧ S ∩ J = {} ∧ I ⊆ J}⟧ ⟹ ∃mx. maximal_set T mx"
apply (cut_tac A="{J. ideal R J ∧ S ∩ J = {} ∧ I ⊆ J}" in Zorn_Lemma2)
apply (rule ballI)
apply (case_tac "C = {}") (** case C = {} **)
 apply blast             (** case C = {} done **)
     (** existence of sup in C **)
apply (subgoal_tac "⋃C∈{J. ideal R J ∧ S ∩ J = {} ∧ I ⊆ J} ∧
                                         (∀x∈C. x ⊆  ⋃C)")
 apply blast
apply (rule conjI,
       simp add:CollectI)
apply (subgoal_tac "C ∈ chains {I. ideal R I ∧ I ⊂ carrier R}")
apply (rule conjI,
       simp add:chains_un)
apply (rule conjI)
apply (rule contrapos_pp, simp+, erule bexE)
 apply (thin_tac " C ∈ chains {I. ideal R I ∧ I ⊂ carrier R}")
 apply (simp add:chains_def, erule conjE)
 apply (frule_tac c = x and A = C and B = "{J. ideal R J ∧ 1r ∉ J ∧ I ⊆ J}"
         in subsetD, assumption+, simp,
        thin_tac "C ∈ chains {I. ideal R I ∧ I ⊂ carrier R}")
 apply (frule_tac A = C in nonempty_ex, erule exE, simp add:chains_def,
        erule conjE,
        frule_tac c = x and A = C and B = "{J. ideal R J ∧ 1r ∉ J ∧ I ⊆ J}" in
                  subsetD, assumption+, simp, (erule conjE)+)
 apply (rule_tac A = I and B = x and C = "⋃C" in subset_trans, assumption,
        rule_tac B = x and A = C in Union_upper, assumption+)
 apply (simp add:chains_def, erule conjE)
 apply (rule subsetI, simp)
 apply (frule_tac c = x and A = C and B = "{J. ideal R J ∧ 1r ∉ J ∧ I ⊆ J}"
        in subsetD, assumption+, simp, (erule conjE)+)
 apply (subst psubset_eq, simp add:ideal_subset1)
 apply (rule contrapos_pp, simp+, simp add:ring_one)

 apply (rule ballI)
 apply (rule Union_upper, assumption)
 apply (erule bexE)
 apply (simp add:maximal_set_def)
 apply blast
done

lemma (in Ring) contid_maximal:"⟦S = {1r}; 𝟬 ∉ S; ideal R I; I ∩ S = {};
             T = {J. ideal R J ∧ S ∩ J = {} ∧ I ⊆ J}; maximal_set T mx⟧ ⟹
                                                maximal_ideal R mx"
apply (simp add:maximal_set_def maximal_ideal_def)
apply (erule conjE)+
apply (rule equalityI)
  (** {J. ideal R J ∧ mx ⊆ J} ⊆ {mx, carrier R} **)
  apply (rule subsetI, simp add:CollectI, erule conjE)
 apply (case_tac "x = mx", simp, simp)
 apply (subgoal_tac "1r ∈ x")
 apply (rule_tac  I = x in ideal_inc_one, assumption+)
 apply (rule contrapos_pp, simp+)
apply (drule spec[of _ mx])
 apply (simp add:whole_ideal,
        rule subsetI, rule ideal_subset[of "mx"], assumption+)
done

lemma (in Ring) ideal_contained_maxid:"⟦¬(zeroring R); ideal R I; 1r ∉ I⟧ ⟹
                    ∃mx. maximal_ideal R mx ∧ I ⊆ mx"
apply (cut_tac ex_contid_maximal[of "{1r}" "I"
                      "{J. ideal R J ∧ {1r} ∩ J = {} ∧ I ⊆ J}"])
apply (erule exE,
       cut_tac mx = mx in contid_maximal[of "{1r}" "I"
                         "{J. ideal R J ∧ {1r} ∩ J = {} ∧ I ⊆ J}"])
apply simp
 apply (frule Zero_ring1, simp,
        assumption, simp, simp, simp,
        simp add:maximal_set_def, (erule conjE)+, blast,
        simp, frule Zero_ring1, simp)
 apply (assumption, simp, simp)
done

lemma (in Ring) nonunit_principal_id:"⟦a ∈ carrier R; ¬ (Unit R a)⟧ ⟹
                                             (R ♢p a) ≠ (carrier R)"
apply (rule contrapos_pp, simp+)
apply (frule sym, thin_tac "R ♢p a = carrier R")
apply (cut_tac ring_one)
 apply (frule eq_set_inc[of "1r" "carrier R" "R ♢p a"], assumption,
        thin_tac "carrier R = R ♢p a", thin_tac "1r ∈ carrier R")
apply (simp add:Rxa_def, erule bexE, simp add:ring_tOp_commute[of _ "a"],
       frule sym, thin_tac "1r = a ⋅r r")
apply (simp add:Unit_def)
done

lemma (in Ring) nonunit_contained_maxid:"⟦¬(zeroring R); a ∈ carrier R;
                ¬ Unit R a ⟧  ⟹  ∃mx. maximal_ideal R mx ∧ a ∈  mx"
apply (frule principal_ideal[of "a"],
       frule ideal_contained_maxid[of "R ♢p a"], assumption)
 apply (rule contrapos_pp, simp+,
        frule ideal_inc_one[of "R ♢p a"], assumption,
        simp add:nonunit_principal_id)
apply (erule exE, erule conjE)
 apply (frule a_in_principal[of "a"])
 apply (frule_tac B = mx in subsetD[of "R ♢p a" _ "a"], assumption, blast)
done

definition
  local_ring :: "_ ⇒ bool" where
  "local_ring R == Ring R ∧ ¬ zeroring R ∧ card {mx. maximal_ideal R mx} = 1"

lemma (in Ring) local_ring_diff:"⟦¬ zeroring R; ideal R mx; mx ≠ carrier R;
  ∀a∈ (carrier R - mx). Unit R a ⟧ ⟹ local_ring R ∧ maximal_ideal R mx"
apply (subgoal_tac "{mx} = {m. maximal_ideal R m}")
 apply (cut_tac singletonI[of "mx"], simp)
 apply (frule sym, thin_tac "{mx} = {m. maximal_ideal R m}")
 apply (simp add:local_ring_def, simp add:Ring)
apply (rule equalityI)
 apply (rule subsetI, simp)
 apply (simp add:maximal_ideal_def)
 apply (simp add:ideal_inc_one1[of "mx", THEN sym])
 apply (thin_tac "x = mx", simp)
 apply (rule equalityI)
  apply (rule subsetI, simp, erule conjE)
  apply (case_tac "x ≠ mx")
  apply (frule_tac A = x and B = mx in sets_not_eq, assumption)
  apply (erule bexE)
  apply (frule_tac h = a and I = x in ideal_subset, assumption+)
  apply (frule_tac x = a in bspec, simp)
  apply (frule_tac I = x and a = a in ideal_inc_unit1, assumption+,
        simp)
  apply simp

  apply (rule subsetI, simp)
  apply (erule disjE)
  apply simp
  apply (simp add:whole_ideal ideal_subset1)

apply (rule subsetI)
 apply simp
 apply (subgoal_tac "x ⊆ mx",
        thin_tac "∀a∈carrier R - mx. Unit R a",
        simp add:maximal_ideal_def, (erule conjE)+)
 apply (subgoal_tac "mx ∈ {J. ideal R J ∧ x ⊆ J}", simp)
 apply (thin_tac "{J. ideal R J ∧ x ⊆ J} = {x, carrier R}")
 apply simp

 apply (rule contrapos_pp, simp+)
 apply (simp add:subset_eq, erule bexE)
 apply (frule_tac mx = x in maximal_ideal_ideal,
        frule_tac x = xa in bspec,
        thin_tac "∀a∈carrier R - mx. Unit R a", simp,
        simp add:ideal_subset)
 apply (frule_tac I = x and a = xa in ideal_inc_unit, assumption+,
                  simp add:maximal_ideal_def)
done

lemma (in Ring) localring_unit:"⟦¬ zeroring R; maximal_ideal R mx;
                ∀x. x ∈ mx ⟶ Unit R (x ± 1r) ⟧ ⟹ local_ring R"
apply (frule maximal_ideal_ideal[of "mx"])
apply (frule local_ring_diff[of "mx"], assumption)
 apply (simp add:maximal_ideal_def, erule conjE)
 apply (simp add:ideal_inc_one1[THEN sym, of "mx"])
 apply (rule ballI, simp, erule conjE)

 apply (frule_tac x = a in maximal_prime_Tr0[of "mx"], assumption+)

 apply (frule sym, thin_tac "mx ∓ R ♢p a = carrier R",
        cut_tac ring_one,
        frule_tac a = "1r" and A = "carrier R" and B = "mx ∓ R ♢p a" in
                  eq_set_inc, assumption+,
        thin_tac "carrier R = mx ∓ R ♢p a")
 apply (frule_tac a = a in principal_ideal,
       frule ideal_subset1[of mx],
       frule_tac I = "R ♢p a" in ideal_subset1)
 apply (cut_tac ring_is_ag,
        simp add:aGroup.set_sum, (erule bexE)+)
 apply (simp add:Rxa_def, erule bexE, simp)
 apply (frule sym, thin_tac "1r = h ± r ⋅r a",
        frule_tac x = r and y = a in ring_tOp_closed, assumption+,
        frule_tac h = h in ideal_subset[of "mx"], assumption+)
 apply (frule_tac I = mx and x = h in ideal_inv1_closed, assumption)
 apply (frule_tac a = "-a h" in forall_spec, assumption,
        thin_tac "∀x. x ∈ mx ⟶ Unit R (x ± (h ± r ⋅r a))",
        thin_tac "h ± r ⋅r a = 1r")
 apply (frule_tac h = "-a h" in ideal_subset[of "mx"], assumption,
        frule_tac x1 = "-a h" and y1 = h and z1 = "r ⋅r a" in
        aGroup.ag_pOp_assoc[THEN sym], assumption+,
        simp add:aGroup.ag_l_inv1 aGroup.ag_l_zero,
        thin_tac "k = r ⋅r a", thin_tac "h ± r ⋅r a ∈ carrier R",
        thin_tac "h ∈ carrier R", thin_tac "-a h ∈ mx",
        thin_tac "-a h ± (h ± r ⋅r a) = r ⋅r a")
 apply (simp add:ring_tOp_commute, simp add:Unit_def, erule bexE,
        simp add:ring_tOp_assoc,
        frule_tac x = r and y = b in ring_tOp_closed, assumption+, blast)
 apply simp
done

definition
  J_rad ::"_ ⇒ 'a set" where
  "J_rad R = (if (zeroring R) then (carrier R) else
                 ⋂ {mx. maximal_ideal R mx})"
  (** if zeroring R then ⋂ {mx. maximal_ideal R mx} is UNIV, hence
      we restrict UNIV to carrier R **)

lemma (in Ring) zeroring_J_rad_empty:"zeroring R ⟹ J_rad R = carrier R"
by (simp add:J_rad_def)

lemma (in Ring) J_rad_mem:"x ∈ J_rad R ⟹ x ∈ carrier R"
apply (simp add:J_rad_def)
apply (case_tac "zeroring R", simp)
apply simp
apply (frule id_maximal_Exist, erule exE)
 apply (frule_tac a = I in forall_spec, assumption,
        thin_tac "∀xa. maximal_ideal R xa ⟶ x ∈ xa")
 apply (frule maximal_ideal_ideal,
        simp add:ideal_subset)
done

lemma (in Ring) J_rad_unit:"⟦¬ zeroring R; x ∈ J_rad R⟧ ⟹
            ∀y. (y∈ carrier R ⟶ Unit R (1r ± (-a x) ⋅r y))"
apply (cut_tac ring_is_ag,
       rule allI, rule impI,
       rule contrapos_pp, simp+)
apply (frule J_rad_mem[of "x"],
       frule_tac x = x and y = y in ring_tOp_closed, assumption,
       frule_tac x = "x ⋅r y" in aGroup.ag_mOp_closed, assumption+)
apply (cut_tac ring_one,
      frule_tac x = "1r" and y = "-a (x ⋅r y)" in aGroup.ag_pOp_closed,
      assumption+)
 apply (frule_tac a = "1r ± -a (x ⋅r y)" in nonunit_contained_maxid,
        assumption+, simp add:ring_inv1_1)
apply (erule exE, erule conjE)
 apply (simp add:J_rad_def,
        frule_tac a = mx in forall_spec, assumption,
        thin_tac "∀xa. maximal_ideal R xa ⟶ x ∈ xa",
        frule_tac mx = mx in maximal_ideal_ideal,
        frule_tac I = mx and x = x and r = y in ideal_ring_multiple1,
        assumption+)
 apply (frule_tac I = mx and x = "x ⋅r y" in ideal_inv1_closed,
           assumption+)

 apply (frule_tac I = mx and a = "1r" and b = "-a (x ⋅r y)" in ideal_ele_sumTr2,
        assumption+)
 apply (simp add:maximal_ideal_def)
done

end