File ‹Tools/BNF/bnf_comp.ML›
signature BNF_COMP =
sig
val typedef_threshold: int Config.T
val with_typedef_threshold: int -> (Proof.context -> Proof.context) -> Proof.context ->
Proof.context
val with_typedef_threshold_yield: int -> (Proof.context -> 'a * Proof.context) -> Proof.context ->
'a * Proof.context
val ID_bnf: BNF_Def.bnf
val DEADID_bnf: BNF_Def.bnf
type comp_cache
type unfold_set =
{map_unfolds: thm list,
set_unfoldss: thm list list,
rel_unfolds: thm list,
pred_unfolds: thm list}
val empty_comp_cache: comp_cache
val empty_unfolds: unfold_set
exception BAD_DEAD of typ * typ
val bnf_of_typ: bool -> BNF_Def.inline_policy -> (binding -> binding) ->
((string * sort) list list -> (string * sort) list) -> (string * sort) list ->
(string * sort) list -> typ -> (comp_cache * unfold_set) * local_theory ->
(BNF_Def.bnf * (typ list * typ list)) * ((comp_cache * unfold_set) * local_theory)
val default_comp_sort: (string * sort) list list -> (string * sort) list
val clean_compose_bnf: BNF_Def.inline_policy -> (binding -> binding) -> binding -> BNF_Def.bnf ->
BNF_Def.bnf list -> unfold_set * local_theory -> BNF_Def.bnf * (unfold_set * local_theory)
val kill_bnf: (binding -> binding) -> int -> BNF_Def.bnf ->
(comp_cache * unfold_set) * local_theory ->
BNF_Def.bnf * ((comp_cache * unfold_set) * local_theory)
val lift_bnf: (binding -> binding) -> int -> BNF_Def.bnf ->
(comp_cache * unfold_set) * local_theory ->
BNF_Def.bnf * ((comp_cache * unfold_set) * local_theory)
val permute_bnf: (binding -> binding) -> int list -> int list -> BNF_Def.bnf ->
(comp_cache * unfold_set) * local_theory ->
BNF_Def.bnf * ((comp_cache * unfold_set) * local_theory)
val permute_and_kill_bnf: (binding -> binding) -> int -> int list -> int list -> BNF_Def.bnf ->
(comp_cache * unfold_set) * local_theory ->
BNF_Def.bnf * ((comp_cache * unfold_set) * local_theory)
val lift_and_permute_bnf: (binding -> binding) -> int -> int list -> int list -> BNF_Def.bnf ->
(comp_cache * unfold_set) * local_theory ->
BNF_Def.bnf * ((comp_cache * unfold_set) * local_theory)
val normalize_bnfs: (int -> binding -> binding) -> ''a list list -> ''a list ->
(''a list list -> ''a list) -> BNF_Def.bnf list -> (comp_cache * unfold_set) * local_theory ->
(int list list * ''a list) * (BNF_Def.bnf list * ((comp_cache * unfold_set) * local_theory))
val compose_bnf: BNF_Def.inline_policy -> (int -> binding -> binding) ->
((string * sort) list list -> (string * sort) list) -> BNF_Def.bnf -> BNF_Def.bnf list ->
typ list -> typ list list -> typ list list -> (comp_cache * unfold_set) * local_theory ->
(BNF_Def.bnf * (typ list * typ list)) * ((comp_cache * unfold_set) * local_theory)
type absT_info =
{absT: typ,
repT: typ,
abs: term,
rep: term,
abs_inject: thm,
abs_inverse: thm,
type_definition: thm}
val morph_absT_info: morphism -> absT_info -> absT_info
val mk_absT: theory -> typ -> typ -> typ -> typ
val mk_repT: typ -> typ -> typ -> typ
val mk_abs: typ -> term -> term
val mk_rep: typ -> term -> term
val seal_bnf: (binding -> binding) -> unfold_set -> binding -> bool -> typ list -> typ list ->
BNF_Def.bnf -> local_theory -> (BNF_Def.bnf * (typ list * absT_info)) * local_theory
end;
structure BNF_Comp : BNF_COMP =
struct
open BNF_Def
open BNF_Util
open BNF_Tactics
open BNF_Comp_Tactics
val typedef_threshold = Attrib.setup_config_int \<^binding>‹bnf_typedef_threshold› (K 6);
fun with_typedef_threshold threshold f lthy =
lthy
|> Config.put typedef_threshold threshold
|> f
|> Config.put typedef_threshold (Config.get lthy typedef_threshold);
fun with_typedef_threshold_yield threshold f lthy =
lthy
|> Config.put typedef_threshold threshold
|> f
||> Config.put typedef_threshold (Config.get lthy typedef_threshold);
val ID_bnf = the (bnf_of \<^context> "BNF_Composition.ID");
val DEADID_bnf = the (bnf_of \<^context> "BNF_Composition.DEADID");
type comp_cache = (bnf * (typ list * typ list)) Typtab.table;
fun key_of_types s Ts = Type (s, Ts);
fun key_of_typess s = key_of_types s o map (key_of_types "");
fun typ_of_int n = Type (string_of_int n, []);
fun typ_of_bnf bnf =
key_of_typess "" [[T_of_bnf bnf], lives_of_bnf bnf, sort Term_Ord.typ_ord (deads_of_bnf bnf)];
fun key_of_kill n bnf = key_of_types "k" [typ_of_int n, typ_of_bnf bnf];
fun key_of_lift n bnf = key_of_types "l" [typ_of_int n, typ_of_bnf bnf];
fun key_of_permute src dest bnf =
key_of_types "p" (map typ_of_int src @ map typ_of_int dest @ [typ_of_bnf bnf]);
fun key_of_compose oDs Dss Ass outer inners =
key_of_types "c" (map (key_of_typess "") [[oDs], Dss, Ass, [map typ_of_bnf (outer :: inners)]]);
fun cache_comp_simple key cache (bnf, (unfold_set, lthy)) =
(bnf, ((Typtab.update (key, (bnf, ([], []))) cache, unfold_set), lthy));
fun cache_comp key (bnf_Ds_As, ((cache, unfold_set), lthy)) =
(bnf_Ds_As, ((Typtab.update (key, bnf_Ds_As) cache, unfold_set), lthy));
type unfold_set = {
map_unfolds: thm list,
set_unfoldss: thm list list,
rel_unfolds: thm list,
pred_unfolds: thm list
};
val empty_comp_cache = Typtab.empty;
val empty_unfolds = {map_unfolds = [], set_unfoldss = [], rel_unfolds = [], pred_unfolds = []};
fun add_to_thms thms new = thms |> not (Thm.is_reflexive new) ? insert Thm.eq_thm new;
fun adds_to_thms thms news = insert (eq_set Thm.eq_thm) (no_reflexive news) thms;
fun add_to_unfolds map sets rel pred
{map_unfolds, set_unfoldss, rel_unfolds, pred_unfolds} =
{map_unfolds = add_to_thms map_unfolds map,
set_unfoldss = adds_to_thms set_unfoldss sets,
rel_unfolds = add_to_thms rel_unfolds rel,
pred_unfolds = add_to_thms pred_unfolds pred};
fun add_bnf_to_unfolds bnf =
add_to_unfolds (map_def_of_bnf bnf) (set_defs_of_bnf bnf) (rel_def_of_bnf bnf) (pred_def_of_bnf bnf);
val bdTN = "bdT";
fun mk_killN n = "_kill" ^ string_of_int n;
fun mk_liftN n = "_lift" ^ string_of_int n;
fun mk_permuteN src dest =
"_permute_" ^ implode (map string_of_int src) ^ "_" ^ implode (map string_of_int dest);
val id_bnf_def = @{thm id_bnf_def};
val expand_id_bnf_def =
Envir.expand_term_defs dest_Const
[Thm.prop_of id_bnf_def |> Logic.dest_equals |> apfst dest_Const];
fun is_sum_prod_natLeq (Const (\<^const_name>‹csum›, _) $ t $ u) = forall is_sum_prod_natLeq [t, u]
| is_sum_prod_natLeq (Const (\<^const_name>‹cprod›, _) $ t $ u) = forall is_sum_prod_natLeq [t, u]
| is_sum_prod_natLeq t = t aconv \<^term>‹natLeq›;
fun clean_compose_bnf const_policy qualify b outer inners (unfold_set, lthy) =
let
val olive = live_of_bnf outer;
val onwits = nwits_of_bnf outer;
val odeads = deads_of_bnf outer;
val inner = hd inners;
val ilive = live_of_bnf inner;
val ideadss = map deads_of_bnf inners;
val inwitss = map nwits_of_bnf inners;
val (oDs, lthy1) = apfst (map TFree)
(Variable.invent_types (map Type.sort_of_atyp odeads) lthy);
val (Dss, lthy2) = apfst (map (map TFree))
(fold_map Variable.invent_types (map (map Type.sort_of_atyp) ideadss) lthy1);
val (Ass, lthy3) = apfst (replicate ilive o map TFree)
(Variable.invent_types (replicate ilive \<^sort>‹type›) lthy2);
val As = if ilive > 0 then hd Ass else [];
val Ass_repl = replicate olive As;
val (Bs, names_lthy) = apfst (map TFree)
(Variable.invent_types (replicate ilive \<^sort>‹type›) lthy3);
val Bss_repl = replicate olive Bs;
val (((((fs', Qs'), Ps'), Asets), xs), _) = names_lthy
|> apfst snd o mk_Frees' "f" (map2 (curry op -->) As Bs)
||>> apfst snd o mk_Frees' "Q" (map2 mk_pred2T As Bs)
||>> apfst snd o mk_Frees' "P" (map mk_pred1T As)
||>> mk_Frees "A" (map HOLogic.mk_setT As)
||>> mk_Frees "x" As;
val CAs = @{map 3} mk_T_of_bnf Dss Ass_repl inners;
val CCA = mk_T_of_bnf oDs CAs outer;
val CBs = @{map 3} mk_T_of_bnf Dss Bss_repl inners;
val outer_sets = mk_sets_of_bnf (replicate olive oDs) (replicate olive CAs) outer;
val inner_setss =
@{map 3} mk_sets_of_bnf (map (replicate ilive) Dss) (replicate olive Ass) inners;
val inner_bds = @{map 3} mk_bd_of_bnf Dss Ass_repl inners;
val outer_bd = mk_bd_of_bnf oDs CAs outer;
val mapx = fold_rev Term.abs fs'
(Term.list_comb (mk_map_of_bnf oDs CAs CBs outer,
map2 (fn Ds => (fn f => Term.list_comb (f, map Bound (ilive - 1 downto 0))) o
mk_map_of_bnf Ds As Bs) Dss inners));
val rel = fold_rev Term.abs Qs'
(Term.list_comb (mk_rel_of_bnf oDs CAs CBs outer,
map2 (fn Ds => (fn f => Term.list_comb (f, map Bound (ilive - 1 downto 0))) o
mk_rel_of_bnf Ds As Bs) Dss inners));
val pred = fold_rev Term.abs Ps'
(Term.list_comb (mk_pred_of_bnf oDs CAs outer,
map2 (fn Ds => (fn f => Term.list_comb (f, map Bound (ilive - 1 downto 0))) o
mk_pred_of_bnf Ds As) Dss inners));
fun mk_set i =
let
val (setTs, T) = `(replicate olive o HOLogic.mk_setT) (nth As i);
val outer_set = mk_collect
(mk_sets_of_bnf (replicate olive oDs) (replicate olive setTs) outer)
(mk_T_of_bnf oDs setTs outer --> HOLogic.mk_setT T);
val inner_sets = map (fn sets => nth sets i) inner_setss;
val outer_map = mk_map_of_bnf oDs CAs setTs outer;
val map_inner_sets = Term.list_comb (outer_map, inner_sets);
val collect_image = mk_collect
(map2 (fn f => fn set => HOLogic.mk_comp (mk_image f, set)) inner_sets outer_sets)
(CCA --> HOLogic.mk_setT T);
in
(Library.foldl1 HOLogic.mk_comp [mk_Union T, outer_set, map_inner_sets],
HOLogic.mk_comp (mk_Union T, collect_image))
end;
val (sets, sets_alt) = map_split mk_set (0 upto ilive - 1);
fun mk_simplified_set set =
let
val setT = fastype_of set;
val var_set' = Const (\<^const_name>‹id_bnf›, setT --> setT) $ Var ((Name.uu, 0), setT);
val goal = mk_Trueprop_eq (var_set', set);
fun tac {context = ctxt, prems = _} =
mk_simplified_set_tac ctxt (collect_set_map_of_bnf outer);
val set'_eq_set =
Goal.prove names_lthy [] [] goal tac
|> Thm.close_derivation ⌂;
val set' = fst (HOLogic.dest_eq (HOLogic.dest_Trueprop (Thm.prop_of set'_eq_set)));
in
(set', set'_eq_set)
end;
val (sets', set'_eq_sets) =
map_split mk_simplified_set sets
||> Proof_Context.export names_lthy lthy;
val bd = mk_cprod (Library.foldr1 (uncurry mk_csum) inner_bds) outer_bd;
val (bd', bd_ordIso_natLeq_thm_opt) =
if is_sum_prod_natLeq bd then
let
val bd' = \<^term>‹natLeq›;
val bd_bd' = HOLogic.mk_prod (bd, bd');
val ordIso = Const (\<^const_name>‹ordIso›, HOLogic.mk_setT (fastype_of bd_bd'));
val goal = mk_Trueprop_mem (bd_bd', ordIso);
in
(bd', SOME (Goal.prove_sorry lthy [] [] goal (bd_ordIso_natLeq_tac o #context)
|> Thm.close_derivation ⌂))
end
else
(bd, NONE);
fun map_id0_tac ctxt =
mk_comp_map_id0_tac ctxt (map_id0_of_bnf outer) (map_cong0_of_bnf outer)
(map map_id0_of_bnf inners);
fun map_comp0_tac ctxt =
mk_comp_map_comp0_tac ctxt (map_comp0_of_bnf outer) (map_cong0_of_bnf outer)
(map map_comp0_of_bnf inners);
fun mk_single_set_map0_tac i ctxt =
mk_comp_set_map0_tac ctxt (nth set'_eq_sets i) (map_comp0_of_bnf outer)
(map_cong0_of_bnf outer) (collect_set_map_of_bnf outer)
(map ((fn thms => nth thms i) o set_map0_of_bnf) inners);
val set_map0_tacs = map mk_single_set_map0_tac (0 upto ilive - 1);
fun bd_card_order_tac ctxt =
mk_comp_bd_card_order_tac ctxt (map bd_card_order_of_bnf inners) (bd_card_order_of_bnf outer);
fun bd_cinfinite_tac ctxt =
mk_comp_bd_cinfinite_tac ctxt (bd_cinfinite_of_bnf inner) (bd_cinfinite_of_bnf outer);
fun bd_regularCard_tac ctxt =
mk_comp_bd_regularCard_tac ctxt (map bd_regularCard_of_bnf inners) (bd_regularCard_of_bnf outer)
(map bd_Cinfinite_of_bnf inners) (bd_Cinfinite_of_bnf outer);
val set_alt_thms =
if Config.get lthy quick_and_dirty then
[]
else
map (fn goal =>
Goal.prove_sorry lthy [] [] goal
(fn {context = ctxt, prems = _} =>
mk_comp_set_alt_tac ctxt (collect_set_map_of_bnf outer))
|> Thm.close_derivation ⌂)
(map2 (curry mk_Trueprop_eq) sets sets_alt);
fun map_cong0_tac ctxt =
mk_comp_map_cong0_tac ctxt set'_eq_sets set_alt_thms (map_cong0_of_bnf outer)
(map map_cong0_of_bnf inners);
val set_bd_tacs =
if Config.get lthy quick_and_dirty then
replicate ilive (K all_tac)
else
let
val outer_set_bds = set_bd_of_bnf outer;
val inner_set_bdss = map set_bd_of_bnf inners;
val inner_bd_Cinfinites = map bd_Cinfinite_of_bnf inners;
val inner_bd_regularCards = map bd_regularCard_of_bnf inners;
fun single_set_bd_thm i j =
@{thm comp_single_set_bd_strict} OF [nth inner_bd_Cinfinites j, nth inner_bd_regularCards j,
bd_Cinfinite_of_bnf outer, bd_regularCard_of_bnf outer, nth (nth inner_set_bdss j) i,
nth outer_set_bds j]
fun single_bd_Cinfinite i = @{thm Cinfinite_cprod2} OF [
@{thm Cinfinite_Cnotzero} OF [bd_Cinfinite_of_bnf outer],
nth inner_bd_Cinfinites i
]
val single_set_bd_thmss =
map ((fn f => map f (0 upto olive - 1)) o single_set_bd_thm) (0 upto ilive - 1);
val Gbd_Fbd_Cinfinites = map single_bd_Cinfinite (0 upto length inners - 1)
in
@{map 3} (fn set'_eq_set => fn set_alt => fn single_set_bds => fn ctxt =>
mk_comp_set_bd_tac ctxt set'_eq_set bd_ordIso_natLeq_thm_opt set_alt single_set_bds
Gbd_Fbd_Cinfinites)
set'_eq_sets set_alt_thms single_set_bd_thmss
end;
val in_alt_thm =
let
val inx = mk_in Asets sets CCA;
val in_alt = mk_in (map2 (mk_in Asets) inner_setss CAs) outer_sets CCA;
val goal = fold_rev Logic.all Asets (mk_Trueprop_eq (inx, in_alt));
in
Goal.prove_sorry lthy [] [] goal
(fn {context = ctxt, prems = _} => mk_comp_in_alt_tac ctxt set_alt_thms)
|> Thm.close_derivation ⌂
end;
fun le_rel_OO_tac ctxt = mk_le_rel_OO_tac ctxt (le_rel_OO_of_bnf outer) (rel_mono_of_bnf outer)
(map le_rel_OO_of_bnf inners);
fun rel_OO_Grp_tac ctxt =
let
val outer_rel_Grp = rel_Grp_of_bnf outer RS sym;
val thm =
trans OF [in_alt_thm RS @{thm OO_Grp_cong},
trans OF [@{thm arg_cong2[of _ _ _ _ relcompp]} OF
[trans OF [outer_rel_Grp RS @{thm arg_cong[of _ _ conversep]},
rel_conversep_of_bnf outer RS sym], outer_rel_Grp],
trans OF [rel_OO_of_bnf outer RS sym, rel_cong0_of_bnf outer OF
(map (fn bnf => rel_OO_Grp_of_bnf bnf RS sym) inners)]]] RS sym;
in
unfold_thms_tac ctxt set'_eq_sets THEN rtac ctxt thm 1
end;
fun pred_set_tac ctxt =
let
val pred_alt = unfold_thms ctxt @{thms Ball_Collect}
(trans OF [pred_cong0_of_bnf outer OF map pred_set_of_bnf inners, pred_set_of_bnf outer]);
val in_alt = in_alt_thm RS @{thm Collect_inj} RS sym;
in
unfold_thms_tac ctxt (@{thm Ball_Collect} :: set'_eq_sets) THEN
HEADGOAL (rtac ctxt (trans OF [pred_alt, in_alt]))
end
val tacs = zip_axioms map_id0_tac map_comp0_tac map_cong0_tac set_map0_tacs bd_card_order_tac
bd_cinfinite_tac bd_regularCard_tac set_bd_tacs le_rel_OO_tac rel_OO_Grp_tac pred_set_tac;
val outer_wits = mk_wits_of_bnf (replicate onwits oDs) (replicate onwits CAs) outer;
val inner_witss = map (map (fn (I, wit) => Term.list_comb (wit, map (nth xs) I)))
(@{map 3} (fn Ds => fn n => mk_wits_of_bnf (replicate n Ds) (replicate n As))
Dss inwitss inners);
val inner_witsss = map (map (nth inner_witss) o fst) outer_wits;
val wits = (inner_witsss, (map (single o snd) outer_wits))
|-> map2 (fold (map_product (fn iwit => fn owit => owit $ iwit)))
|> flat
|> map (`(fn t => Term.add_frees t []))
|> minimize_wits
|> map (fn (frees, t) => fold absfree frees t);
fun wit_tac ctxt =
mk_comp_wit_tac ctxt set'_eq_sets (wit_thms_of_bnf outer) (collect_set_map_of_bnf outer)
(maps wit_thms_of_bnf inners);
val (bnf', lthy') =
bnf_def const_policy (K Dont_Note) true qualify tacs wit_tac (SOME (oDs @ flat Dss))
Binding.empty Binding.empty Binding.empty []
(((((((b, CCA), mapx), sets'), bd'), wits), SOME rel), SOME pred) lthy;
val phi =
Morphism.thm_morphism "BNF" (unfold_thms lthy' [id_bnf_def])
$> Morphism.term_morphism "BNF" expand_id_bnf_def;
val bnf'' = morph_bnf phi bnf';
in
(bnf'', (add_bnf_to_unfolds bnf'' unfold_set, lthy'))
end;
fun raw_kill_bnf qualify n bnf (accum as (unfold_set, lthy)) =
if n = 0 then (bnf, accum) else
let
val b = Binding.suffix_name (mk_killN n) (name_of_bnf bnf);
val live = live_of_bnf bnf;
val deads = deads_of_bnf bnf;
val nwits = nwits_of_bnf bnf;
val (Ds, lthy1) = apfst (map TFree)
(Variable.invent_types (map Type.sort_of_atyp deads) lthy);
val ((killedAs, As), lthy2) = apfst (`(take n) o map TFree)
(Variable.invent_types (replicate live \<^sort>‹type›) lthy1);
val (Bs, _) = apfst (append killedAs o map TFree)
(Variable.invent_types (replicate (live - n) \<^sort>‹type›) lthy2);
val ((Asets, lives), _) = lthy
|> mk_Frees "A" (map HOLogic.mk_setT (drop n As))
||>> mk_Frees "x" (drop n As);
val xs = map (fn T => Const (\<^const_name>‹undefined›, T)) killedAs @ lives;
val T = mk_T_of_bnf Ds As bnf;
val mapx = Term.list_comb (mk_map_of_bnf Ds As Bs bnf, map HOLogic.id_const killedAs);
val rel = Term.list_comb (mk_rel_of_bnf Ds As Bs bnf, map HOLogic.eq_const killedAs);
val pred = Term.list_comb (mk_pred_of_bnf Ds As bnf,
map (fn T => Term.absdummy T \<^term>‹True›) killedAs);
val bnf_sets = mk_sets_of_bnf (replicate live Ds) (replicate live As) bnf;
val sets = drop n bnf_sets;
val bd = mk_bd_of_bnf Ds As bnf;
fun map_id0_tac ctxt = rtac ctxt (map_id0_of_bnf bnf) 1;
fun map_comp0_tac ctxt =
unfold_thms_tac ctxt ((map_comp0_of_bnf bnf RS sym) ::
@{thms comp_assoc id_comp comp_id}) THEN rtac ctxt refl 1;
fun map_cong0_tac ctxt =
mk_kill_map_cong0_tac ctxt n (live - n) (map_cong0_of_bnf bnf);
val set_map0_tacs = map (fn thm => fn ctxt => rtac ctxt thm 1) (drop n (set_map0_of_bnf bnf));
fun bd_card_order_tac ctxt = rtac ctxt (bd_card_order_of_bnf bnf) 1;
fun bd_cinfinite_tac ctxt = rtac ctxt (bd_cinfinite_of_bnf bnf) 1;
fun bd_regularCard_tac ctxt = rtac ctxt (bd_regularCard_of_bnf bnf) 1;
val set_bd_tacs = map (fn thm => fn ctxt => rtac ctxt thm 1) (drop n (set_bd_of_bnf bnf));
val in_alt_thm =
let
val inx = mk_in Asets sets T;
val in_alt = mk_in (map HOLogic.mk_UNIV killedAs @ Asets) bnf_sets T;
val goal = fold_rev Logic.all Asets (mk_Trueprop_eq (inx, in_alt));
in
Goal.prove_sorry lthy [] [] goal (fn {context = ctxt, prems = _} =>
kill_in_alt_tac ctxt) |> Thm.close_derivation ⌂
end;
fun le_rel_OO_tac ctxt =
EVERY' [rtac ctxt @{thm ord_le_eq_trans}, rtac ctxt (le_rel_OO_of_bnf bnf)] 1 THEN
unfold_thms_tac ctxt @{thms eq_OO} THEN rtac ctxt refl 1;
fun rel_OO_Grp_tac ctxt =
let
val rel_Grp = rel_Grp_of_bnf bnf RS sym
val thm =
(trans OF [in_alt_thm RS @{thm OO_Grp_cong},
trans OF [@{thm arg_cong2[of _ _ _ _ relcompp]} OF
[trans OF [rel_Grp RS @{thm arg_cong[of _ _ conversep]},
rel_conversep_of_bnf bnf RS sym], rel_Grp],
trans OF [rel_OO_of_bnf bnf RS sym, rel_cong0_of_bnf bnf OF
(replicate n @{thm trans[OF Grp_UNIV_id[OF refl] eq_alt[symmetric]]} @
replicate (live - n) @{thm Grp_fst_snd})]]] RS sym);
in
rtac ctxt thm 1
end;
fun pred_set_tac ctxt = mk_simple_pred_set_tac ctxt (pred_set_of_bnf bnf) in_alt_thm;
val tacs = zip_axioms map_id0_tac map_comp0_tac map_cong0_tac set_map0_tacs bd_card_order_tac
bd_cinfinite_tac bd_regularCard_tac set_bd_tacs le_rel_OO_tac rel_OO_Grp_tac pred_set_tac;
val bnf_wits = mk_wits_of_bnf (replicate nwits Ds) (replicate nwits As) bnf;
val wits = map (fn t => fold absfree (Term.add_frees t []) t)
(map (fn (I, wit) => Term.list_comb (wit, map (nth xs) I)) bnf_wits);
fun wit_tac ctxt = mk_simple_wit_tac ctxt (wit_thms_of_bnf bnf);
val (bnf', lthy') =
bnf_def Smart_Inline (K Dont_Note) true qualify tacs wit_tac (SOME (Ds @ killedAs))
Binding.empty Binding.empty Binding.empty []
(((((((b, T), mapx), sets), bd), wits), SOME rel), SOME pred) lthy;
in
(bnf', (add_bnf_to_unfolds bnf' unfold_set, lthy'))
end;
fun kill_bnf qualify n bnf (accum as ((cache, unfold_set), lthy)) =
let val key = key_of_kill n bnf in
(case Typtab.lookup cache key of
SOME (bnf, _) => (bnf, accum)
| NONE => cache_comp_simple key cache (raw_kill_bnf qualify n bnf (unfold_set, lthy)))
end;
fun raw_lift_bnf qualify n bnf (accum as (unfold_set, lthy)) =
if n = 0 then (bnf, accum) else
let
val b = Binding.suffix_name (mk_liftN n) (name_of_bnf bnf);
val live = live_of_bnf bnf;
val deads = deads_of_bnf bnf;
val nwits = nwits_of_bnf bnf;
val (Ds, lthy1) = apfst (map TFree)
(Variable.invent_types (map Type.sort_of_atyp deads) lthy);
val ((newAs, As), lthy2) = apfst (chop n o map TFree)
(Variable.invent_types (replicate (n + live) \<^sort>‹type›) lthy1);
val ((newBs, Bs), _) = apfst (chop n o map TFree)
(Variable.invent_types (replicate (n + live) \<^sort>‹type›) lthy2);
val (Asets, _) = lthy
|> mk_Frees "A" (map HOLogic.mk_setT (newAs @ As));
val T = mk_T_of_bnf Ds As bnf;
val mapx =
fold_rev Term.absdummy (map2 (curry op -->) newAs newBs) (mk_map_of_bnf Ds As Bs bnf);
val rel = fold_rev Term.absdummy (map2 mk_pred2T newAs newBs) (mk_rel_of_bnf Ds As Bs bnf);
val pred = fold_rev Term.absdummy (map mk_pred1T newAs) (mk_pred_of_bnf Ds As bnf);
val bnf_sets = mk_sets_of_bnf (replicate live Ds) (replicate live As) bnf;
val sets = map (fn A => absdummy T (HOLogic.mk_set A [])) newAs @ bnf_sets;
val bd = mk_bd_of_bnf Ds As bnf;
fun map_id0_tac ctxt = rtac ctxt (map_id0_of_bnf bnf) 1;
fun map_comp0_tac ctxt =
unfold_thms_tac ctxt ((map_comp0_of_bnf bnf RS sym) ::
@{thms comp_assoc id_comp comp_id}) THEN rtac ctxt refl 1;
fun map_cong0_tac ctxt =
rtac ctxt (map_cong0_of_bnf bnf) 1 THEN REPEAT_DETERM_N live (Goal.assume_rule_tac ctxt 1);
val set_map0_tacs =
if Config.get lthy quick_and_dirty then
replicate (n + live) (K all_tac)
else
replicate n empty_natural_tac @
map (fn thm => fn ctxt => rtac ctxt thm 1) (set_map0_of_bnf bnf);
fun bd_card_order_tac ctxt = rtac ctxt (bd_card_order_of_bnf bnf) 1;
fun bd_cinfinite_tac ctxt = rtac ctxt (bd_cinfinite_of_bnf bnf) 1;
fun bd_regularCard_tac ctxt = rtac ctxt (bd_regularCard_of_bnf bnf) 1;
val set_bd_tacs =
if Config.get lthy quick_and_dirty then
replicate (n + live) (K all_tac)
else
replicate n (fn ctxt => mk_lift_set_bd_tac ctxt (bd_Cinfinite_of_bnf bnf)) @
(map (fn thm => fn ctxt => rtac ctxt thm 1) (set_bd_of_bnf bnf));
val in_alt_thm =
let
val inx = mk_in Asets sets T;
val in_alt = mk_in (drop n Asets) bnf_sets T;
val goal = fold_rev Logic.all Asets (mk_Trueprop_eq (inx, in_alt));
in
Goal.prove_sorry lthy [] [] goal (fn {context = ctxt, prems = _} => lift_in_alt_tac ctxt)
|> Thm.close_derivation ⌂
end;
fun le_rel_OO_tac ctxt = rtac ctxt (le_rel_OO_of_bnf bnf) 1;
fun rel_OO_Grp_tac ctxt = mk_simple_rel_OO_Grp_tac ctxt (rel_OO_Grp_of_bnf bnf) in_alt_thm;
fun pred_set_tac ctxt = mk_simple_pred_set_tac ctxt (pred_set_of_bnf bnf) in_alt_thm;
val tacs = zip_axioms map_id0_tac map_comp0_tac map_cong0_tac set_map0_tacs bd_card_order_tac
bd_cinfinite_tac bd_regularCard_tac set_bd_tacs le_rel_OO_tac rel_OO_Grp_tac pred_set_tac;
val wits = map snd (mk_wits_of_bnf (replicate nwits Ds) (replicate nwits As) bnf);
fun wit_tac ctxt = mk_simple_wit_tac ctxt (wit_thms_of_bnf bnf);
val (bnf', lthy') =
bnf_def Smart_Inline (K Dont_Note) true qualify tacs wit_tac (SOME Ds) Binding.empty
Binding.empty Binding.empty []
(((((((b, T), mapx), sets), bd), wits), SOME rel), SOME pred) lthy;
in
(bnf', (add_bnf_to_unfolds bnf' unfold_set, lthy'))
end;
fun lift_bnf qualify n bnf (accum as ((cache, unfold_set), lthy)) =
let val key = key_of_lift n bnf in
(case Typtab.lookup cache key of
SOME (bnf, _) => (bnf, accum)
| NONE => cache_comp_simple key cache (raw_lift_bnf qualify n bnf (unfold_set, lthy)))
end;
fun raw_permute_bnf qualify src dest bnf (accum as (unfold_set, lthy)) =
if src = dest then (bnf, accum) else
let
val b = Binding.suffix_name (mk_permuteN src dest) (name_of_bnf bnf) |> Binding.reset_pos;
val live = live_of_bnf bnf;
val deads = deads_of_bnf bnf;
val nwits = nwits_of_bnf bnf;
fun permute xs = permute_like_unique (op =) src dest xs;
fun unpermute xs = permute_like_unique (op =) dest src xs;
val (Ds, lthy1) = apfst (map TFree)
(Variable.invent_types (map Type.sort_of_atyp deads) lthy);
val (As, lthy2) = apfst (map TFree)
(Variable.invent_types (replicate live \<^sort>‹type›) lthy1);
val (Bs, _) = apfst (map TFree)
(Variable.invent_types (replicate live \<^sort>‹type›) lthy2);
val (Asets, _) = lthy
|> mk_Frees "A" (map HOLogic.mk_setT (permute As));
val T = mk_T_of_bnf Ds As bnf;
val mapx = fold_rev Term.absdummy (permute (map2 (curry op -->) As Bs))
(Term.list_comb (mk_map_of_bnf Ds As Bs bnf, unpermute (map Bound (live - 1 downto 0))));
val rel = fold_rev Term.absdummy (permute (map2 mk_pred2T As Bs))
(Term.list_comb (mk_rel_of_bnf Ds As Bs bnf, unpermute (map Bound (live - 1 downto 0))));
val pred = fold_rev Term.absdummy (permute (map mk_pred1T As))
(Term.list_comb (mk_pred_of_bnf Ds As bnf, unpermute (map Bound (live - 1 downto 0))));
val bnf_sets = mk_sets_of_bnf (replicate live Ds) (replicate live As) bnf;
val sets = permute bnf_sets;
val bd = mk_bd_of_bnf Ds As bnf;
fun map_id0_tac ctxt = rtac ctxt (map_id0_of_bnf bnf) 1;
fun map_comp0_tac ctxt = rtac ctxt (map_comp0_of_bnf bnf) 1;
fun map_cong0_tac ctxt =
rtac ctxt (map_cong0_of_bnf bnf) 1 THEN REPEAT_DETERM_N live (Goal.assume_rule_tac ctxt 1);
val set_map0_tacs = permute (map (fn thm => fn ctxt => rtac ctxt thm 1) (set_map0_of_bnf bnf));
fun bd_card_order_tac ctxt = rtac ctxt (bd_card_order_of_bnf bnf) 1;
fun bd_cinfinite_tac ctxt = rtac ctxt (bd_cinfinite_of_bnf bnf) 1;
fun bd_regularCard_tac ctxt = rtac ctxt (bd_regularCard_of_bnf bnf) 1;
val set_bd_tacs = permute (map (fn thm => fn ctxt => rtac ctxt thm 1) (set_bd_of_bnf bnf));
val in_alt_thm =
let
val inx = mk_in Asets sets T;
val in_alt = mk_in (unpermute Asets) bnf_sets T;
val goal = fold_rev Logic.all Asets (mk_Trueprop_eq (inx, in_alt));
in
Goal.prove_sorry lthy [] [] goal (fn {context = ctxt, prems = _} =>
mk_permute_in_alt_tac ctxt src dest)
|> Thm.close_derivation ⌂
end;
fun le_rel_OO_tac ctxt = rtac ctxt (le_rel_OO_of_bnf bnf) 1;
fun rel_OO_Grp_tac ctxt = mk_simple_rel_OO_Grp_tac ctxt (rel_OO_Grp_of_bnf bnf) in_alt_thm;
fun pred_set_tac ctxt = mk_simple_pred_set_tac ctxt (pred_set_of_bnf bnf) in_alt_thm;
val tacs = zip_axioms map_id0_tac map_comp0_tac map_cong0_tac set_map0_tacs bd_card_order_tac
bd_cinfinite_tac bd_regularCard_tac set_bd_tacs le_rel_OO_tac rel_OO_Grp_tac pred_set_tac;
val wits = map snd (mk_wits_of_bnf (replicate nwits Ds) (replicate nwits As) bnf);
fun wit_tac ctxt = mk_simple_wit_tac ctxt (wit_thms_of_bnf bnf);
val (bnf', lthy') =
bnf_def Smart_Inline (K Dont_Note) true qualify tacs wit_tac (SOME Ds) Binding.empty
Binding.empty Binding.empty []
(((((((b, T), mapx), sets), bd), wits), SOME rel), SOME pred) lthy;
in
(bnf', (add_bnf_to_unfolds bnf' unfold_set, lthy'))
end;
fun permute_bnf qualify src dest bnf (accum as ((cache, unfold_set), lthy)) =
let val key = key_of_permute src dest bnf in
(case Typtab.lookup cache key of
SOME (bnf, _) => (bnf, accum)
| NONE => cache_comp_simple key cache (raw_permute_bnf qualify src dest bnf (unfold_set, lthy)))
end;
fun permute_and_kill_bnf qualify n src dest bnf =
permute_bnf qualify src dest bnf
#> uncurry (kill_bnf qualify n);
fun lift_and_permute_bnf qualify n src dest bnf =
lift_bnf qualify n bnf
#> uncurry (permute_bnf qualify src dest);
fun normalize_bnfs qualify Ass Ds flatten_tyargs bnfs accum =
let
val before_kill_src = map (fn As => 0 upto (length As - 1)) Ass;
val kill_poss = map (find_indices op = Ds) Ass;
val live_poss = map2 (subtract op =) kill_poss before_kill_src;
val before_kill_dest = map2 append kill_poss live_poss;
val kill_ns = map length kill_poss;
val (inners', accum') =
@{fold_map 5} (permute_and_kill_bnf o qualify)
(if length bnfs = 1 then [0] else 1 upto length bnfs)
kill_ns before_kill_src before_kill_dest bnfs accum;
val Ass' = map2 (map o nth) Ass live_poss;
val As = flatten_tyargs Ass';
val after_lift_dest = replicate (length Ass') (0 upto (length As - 1));
val old_poss = map (map (fn x => find_index (fn y => x = y) As)) Ass';
val new_poss = map2 (subtract op =) old_poss after_lift_dest;
val after_lift_src = map2 append new_poss old_poss;
val lift_ns = map (fn xs => length As - length xs) Ass';
in
((kill_poss, As), @{fold_map 5} (lift_and_permute_bnf o qualify)
(if length bnfs = 1 then [0] else 1 upto length bnfs)
lift_ns after_lift_src after_lift_dest inners' accum')
end;
fun default_comp_sort Ass =
Library.sort (Term_Ord.typ_ord o apply2 TFree) (fold (fold (insert (op =))) Ass []);
fun raw_compose_bnf const_policy qualify flatten_tyargs outer inners oDs Dss tfreess accum =
let
val b = name_of_bnf outer;
val Ass = map (map Term.dest_TFree) tfreess;
val Ds = fold (fold Term.add_tfreesT) (oDs :: Dss) [];
val ((kill_poss, As), (inners', ((cache', unfold_set'), lthy'))) =
normalize_bnfs qualify Ass Ds flatten_tyargs inners accum;
val Ds =
oDs @ flat (@{map 3} (uncurry append oo curry swap oo map o nth) tfreess kill_poss Dss);
val As = map TFree As;
in
apfst (rpair (Ds, As))
(apsnd (apfst (pair cache'))
(clean_compose_bnf const_policy (qualify 0) b outer inners' (unfold_set', lthy')))
end;
fun compose_bnf const_policy qualify flatten_tyargs outer inners oDs Dss tfreess
(accum as ((cache, _), _)) =
let val key = key_of_compose oDs Dss tfreess outer inners in
(case Typtab.lookup cache key of
SOME bnf_Ds_As => (bnf_Ds_As, accum)
| NONE =>
cache_comp key
(raw_compose_bnf const_policy qualify flatten_tyargs outer inners oDs Dss tfreess accum))
end;
type absT_info =
{absT: typ,
repT: typ,
abs: term,
rep: term,
abs_inject: thm,
abs_inverse: thm,
type_definition: thm};
fun morph_absT_info phi
{absT, repT, abs, rep, abs_inject, abs_inverse, type_definition} =
{absT = Morphism.typ phi absT,
repT = Morphism.typ phi repT,
abs = Morphism.term phi abs,
rep = Morphism.term phi rep,
abs_inject = Morphism.thm phi abs_inject,
abs_inverse = Morphism.thm phi abs_inverse,
type_definition = Morphism.thm phi type_definition};
fun mk_absT thy repT absT repU =
let
val rho = Vartab.fold (cons o apsnd snd) (Sign.typ_match thy (repT, repU) Vartab.empty) [];
in Term.typ_subst_TVars rho absT end
handle Type.TYPE_MATCH => raise Term.TYPE ("mk_absT", [repT, absT, repU], []);
fun mk_repT absT repT absU =
if absT = repT then absU
else
(case (absT, absU) of
(Type (C, Ts), Type (C', Us)) =>
if C = C' then Term.typ_subst_atomic (Ts ~~ Us) repT
else raise Term.TYPE ("mk_repT", [absT, repT, absU], [])
| _ => raise Term.TYPE ("mk_repT", [absT, repT, absU], []));
fun mk_abs_or_rep _ absU (Const (\<^const_name>‹id_bnf›, _)) =
Const (\<^const_name>‹id_bnf›, absU --> absU)
| mk_abs_or_rep getT (Type (_, Us)) abs =
let val Ts = snd (dest_Type (getT (fastype_of abs)))
in Term.subst_atomic_types (Ts ~~ Us) abs end;
val mk_abs = mk_abs_or_rep range_type;
val mk_rep = mk_abs_or_rep domain_type;
fun maybe_typedef force_out_of_line (b, As, mx) set opt_morphs tac lthy =
let
val threshold = Config.get lthy typedef_threshold;
val repT = HOLogic.dest_setT (fastype_of set);
val out_of_line = force_out_of_line orelse
(threshold >= 0 andalso Term.size_of_typ repT >= threshold);
in
if out_of_line then
typedef (b, As, mx) set opt_morphs tac lthy
|>> (fn (T_name, ({Rep_name, Abs_name, ...},
{type_definition, Abs_inverse, Abs_inject, Abs_cases, ...}) : Typedef.info) =>
(Type (T_name, map TFree As),
(Rep_name, Abs_name, type_definition, Abs_inverse, Abs_inject, Abs_cases)))
else
((repT,
(\<^const_name>‹id_bnf›, \<^const_name>‹id_bnf›,
@{thm type_definition_id_bnf_UNIV},
@{thm type_definition.Abs_inverse[OF type_definition_id_bnf_UNIV]},
@{thm type_definition.Abs_inject[OF type_definition_id_bnf_UNIV]},
@{thm type_definition.Abs_cases[OF type_definition_id_bnf_UNIV]})), lthy)
end;
fun seal_bnf qualify (unfold_set : unfold_set) b force_out_of_line Ds all_Ds bnf lthy =
let
val live = live_of_bnf bnf;
val nwits = nwits_of_bnf bnf;
val ((As, As'), lthy1) = apfst (`(map TFree))
(Variable.invent_types (replicate live \<^sort>‹type›) (fold Variable.declare_typ all_Ds lthy));
val (Bs, _) = apfst (map TFree) (Variable.invent_types (replicate live \<^sort>‹type›) lthy1);
val ((((fs, fs'), (Rs, Rs')), (Ps, Ps')), _) = lthy
|> mk_Frees' "f" (map2 (curry op -->) As Bs)
||>> mk_Frees' "R" (map2 mk_pred2T As Bs)
||>> mk_Frees' "P" (map mk_pred1T As);
val repTA = mk_T_of_bnf Ds As bnf;
val T_bind = qualify b;
val repTA_tfrees = Term.add_tfreesT repTA [];
val all_TA_params_in_order = fold_rev Term.add_tfreesT all_Ds As';
val TA_params =
(if force_out_of_line then all_TA_params_in_order
else inter (op =) repTA_tfrees all_TA_params_in_order);
val ((TA, (Rep_name, Abs_name, type_definition, Abs_inverse, Abs_inject, _)), lthy) =
maybe_typedef force_out_of_line (T_bind, TA_params, NoSyn) (HOLogic.mk_UNIV repTA) NONE
(fn ctxt => EVERY' [rtac ctxt exI, rtac ctxt UNIV_I] 1) lthy;
val repTB = mk_T_of_bnf Ds Bs bnf;
val TB = Term.typ_subst_atomic (As ~~ Bs) TA;
val RepA = Const (Rep_name, TA --> repTA);
val RepB = Const (Rep_name, TB --> repTB);
val AbsA = Const (Abs_name, repTA --> TA);
val AbsB = Const (Abs_name, repTB --> TB);
val Abs_inject' = Abs_inject OF @{thms UNIV_I UNIV_I};
val Abs_inverse' = Abs_inverse OF @{thms UNIV_I};
val absT_info = {absT = TA, repT = repTA, abs = AbsA, rep = RepA, abs_inject = Abs_inject',
abs_inverse = Abs_inverse', type_definition = type_definition};
val bnf_map = fold_rev Term.absfree fs' (HOLogic.mk_comp (HOLogic.mk_comp (AbsB,
Term.list_comb (mk_map_of_bnf Ds As Bs bnf, fs)), RepA));
val bnf_sets = map ((fn t => HOLogic.mk_comp (t, RepA)))
(mk_sets_of_bnf (replicate live Ds) (replicate live As) bnf);
val bnf_bd = mk_bd_of_bnf Ds As bnf;
val bnf_rel = fold_rev Term.absfree Rs' (mk_vimage2p RepA RepB $
(Term.list_comb (mk_rel_of_bnf Ds As Bs bnf, Rs)));
val bnf_pred = fold_rev Term.absfree Ps' (HOLogic.mk_comp
(Term.list_comb (mk_pred_of_bnf Ds As bnf, Ps), RepA));
val bd_repT = fst (dest_relT (fastype_of bnf_bd));
val bdT_bind = qualify (Binding.suffix_name ("_" ^ bdTN) b);
val params = Term.add_tfreesT bd_repT [];
val all_deads = map TFree (fold_rev Term.add_tfreesT all_Ds []);
val ((bdT, (_, Abs_bd_name, _, _, Abs_bdT_inject, Abs_bdT_cases)), lthy) =
maybe_typedef false (bdT_bind, params, NoSyn) (HOLogic.mk_UNIV bd_repT) NONE
(fn ctxt => EVERY' [rtac ctxt exI, rtac ctxt UNIV_I] 1) lthy;
val (bnf_bd', bd_ordIso, bd_card_order, bd_cinfinite, bd_regularCard) =
if bdT = bd_repT then (bnf_bd, bd_Card_order_of_bnf bnf RS @{thm ordIso_refl},
bd_card_order_of_bnf bnf, bd_cinfinite_of_bnf bnf, bd_regularCard_of_bnf bnf)
else
let
val bnf_bd' = mk_dir_image bnf_bd (Const (Abs_bd_name, bd_repT --> bdT));
val Abs_bdT_inj = mk_Abs_inj_thm Abs_bdT_inject;
val Abs_bdT_bij = mk_Abs_bij_thm lthy Abs_bdT_inj Abs_bdT_cases;
val bd_ordIso = @{thm dir_image} OF [Abs_bdT_inj, bd_Card_order_of_bnf bnf];
val bd_card_order =
@{thm card_order_dir_image} OF [Abs_bdT_bij, bd_card_order_of_bnf bnf];
val bd_cinfinite =
(@{thm Cinfinite_cong} OF [bd_ordIso, bd_Cinfinite_of_bnf bnf]) RS conjunct1;
val bd_regularCard = @{thm regularCard_ordIso} OF [bd_ordIso, bd_Cinfinite_of_bnf bnf,
bd_regularCard_of_bnf bnf];
in
(bnf_bd', bd_ordIso, bd_card_order, bd_cinfinite, bd_regularCard)
end;
fun map_id0_tac ctxt =
rtac ctxt (@{thm type_copy_map_id0} OF [type_definition, map_id0_of_bnf bnf]) 1;
fun map_comp0_tac ctxt =
rtac ctxt (@{thm type_copy_map_comp0} OF [type_definition, map_comp0_of_bnf bnf]) 1;
fun map_cong0_tac ctxt =
EVERY' (rtac ctxt @{thm type_copy_map_cong0} :: rtac ctxt (map_cong0_of_bnf bnf) ::
map (fn i => EVERY' [select_prem_tac ctxt live (dtac ctxt meta_spec) i, etac ctxt meta_mp,
etac ctxt (o_apply RS equalityD2 RS set_mp)]) (1 upto live)) 1;
fun set_map0_tac thm ctxt =
rtac ctxt (@{thm type_copy_set_map0} OF [type_definition, thm]) 1;
val set_bd_tacs = map (fn thm => fn ctxt => rtac ctxt (@{thm ordLess_ordIso_trans} OF
[thm, bd_ordIso] RS @{thm type_copy_set_bd}) 1) (set_bd_of_bnf bnf);
fun le_rel_OO_tac ctxt =
rtac ctxt (le_rel_OO_of_bnf bnf RS @{thm vimage2p_relcompp_mono}) 1;
fun rel_OO_Grp_tac ctxt =
(rtac ctxt (rel_OO_Grp_of_bnf bnf RS @{thm vimage2p_cong} RS trans) THEN'
(if force_out_of_line then subst_tac ctxt NONE else SELECT_GOAL o unfold_thms_tac ctxt)
[type_definition RS @{thm vimage2p_relcompp_converse}] THEN'
SELECT_GOAL (unfold_thms_tac ctxt [o_apply,
type_definition RS @{thm type_copy_vimage2p_Grp_Rep},
type_definition RS @{thm vimage2p_relcompp_converse}]) THEN'
rtac ctxt refl) 1;
fun pred_set_tac ctxt =
HEADGOAL (EVERY'
[rtac ctxt (pred_set_of_bnf bnf RS @{thm arg_cong[of _ _ "λf. f ∘ _"]} RS trans),
SELECT_GOAL (unfold_thms_tac ctxt (@{thms Ball_comp_iff conj_comp_iff})), rtac ctxt refl]);
val tacs = zip_axioms map_id0_tac map_comp0_tac map_cong0_tac
(map set_map0_tac (set_map0_of_bnf bnf))
(fn ctxt => rtac ctxt bd_card_order 1) (fn ctxt => rtac ctxt bd_cinfinite 1)
(fn ctxt => rtac ctxt bd_regularCard 1) set_bd_tacs le_rel_OO_tac rel_OO_Grp_tac pred_set_tac;
val bnf_wits = map (fn (I, t) =>
fold Term.absdummy (map (nth As) I)
(AbsA $ Term.list_comb (t, map Bound (0 upto length I - 1))))
(mk_wits_of_bnf (replicate nwits Ds) (replicate nwits As) bnf);
fun wit_tac ctxt =
ALLGOALS (dtac ctxt (type_definition RS @{thm type_copy_wit})) THEN
mk_simple_wit_tac ctxt (wit_thms_of_bnf bnf);
val (bnf', lthy') =
bnf_def Hardly_Inline (user_policy Dont_Note) true qualify tacs wit_tac (SOME all_deads)
Binding.empty Binding.empty Binding.empty []
(((((((b, TA), bnf_map), bnf_sets), bnf_bd'), bnf_wits), SOME bnf_rel), SOME bnf_pred) lthy;
val unfolds = @{thm id_bnf_apply} ::
(#map_unfolds unfold_set @ flat (#set_unfoldss unfold_set) @
#rel_unfolds unfold_set @ #pred_unfolds unfold_set);
val bnf'' = bnf' |> morph_bnf_defs (Morphism.thm_morphism "BNF" (unfold_thms lthy' unfolds));
val map_def = map_def_of_bnf bnf'';
val set_defs = set_defs_of_bnf bnf'';
val rel_def = rel_def_of_bnf bnf'';
val bnf_b = qualify b;
val def_qualify =
Thm.def_binding o Binding.concealed o Binding.qualify false (Binding.name_of bnf_b);
fun mk_prefix_binding pre = Binding.prefix_name (pre ^ "_") bnf_b;
val map_b = def_qualify (mk_prefix_binding mapN);
val rel_b = def_qualify (mk_prefix_binding relN);
val set_bs = if live = 1 then [def_qualify (mk_prefix_binding setN)]
else map (def_qualify o mk_prefix_binding o mk_setN) (1 upto live);
val notes = (map_b, map_def) :: (rel_b, rel_def) :: (set_bs ~~ set_defs)
|> map (fn (b, def) => ((b, []), [([def], [])]))
val (noted, lthy'') = lthy'
|> Local_Theory.notes notes
||> (if repTA = TA then I else register_bnf_raw (fst (dest_Type TA)) bnf'')
in
((morph_bnf (substitute_noted_thm noted) bnf'', (all_deads, absT_info)), lthy'')
end;
exception BAD_DEAD of typ * typ;
fun bnf_of_typ _ _ _ _ _ Ds0 (T as TFree T') accum =
(if member (op =) Ds0 T' then (DEADID_bnf, ([T], [])) else (ID_bnf, ([], [T])), accum)
| bnf_of_typ _ _ _ _ _ _ (TVar _) _ = error "Unexpected schematic variable"
| bnf_of_typ optim const_policy qualify' flatten_tyargs Xs Ds0 (T as Type (C, Ts))
(accum as (_, lthy)) =
let
fun check_bad_dead ((_, (deads, _)), _) =
let val Ds = fold Term.add_tfreesT deads [] in
(case Library.inter (op =) Ds Xs of [] => ()
| X :: _ => raise BAD_DEAD (TFree X, T))
end;
val tfrees = subtract (op =) Ds0 (Term.add_tfreesT T []);
val bnf_opt = if null tfrees then NONE else bnf_of lthy C;
in
(case bnf_opt of
NONE => ((DEADID_bnf, ([T], [])), accum)
| SOME bnf =>
if optim andalso forall (can Term.dest_TFree) Ts andalso length Ts = length tfrees then
let
val T' = T_of_bnf bnf;
val deads = deads_of_bnf bnf;
val lives = lives_of_bnf bnf;
val tvars' = Term.add_tvarsT T' [];
val Ds_As =
apply2 (map (Term.typ_subst_TVars (map fst tvars' ~~ map TFree tfrees)))
(deads, lives);
in ((bnf, Ds_As), accum) end
else
let
val name = Long_Name.base_name C;
fun qualify i =
let val namei = name ^ nonzero_string_of_int i;
in qualify' o Binding.qualify true namei end;
val odead = dead_of_bnf bnf;
val olive = live_of_bnf bnf;
val Ds = map (fn i => TFree (string_of_int i, [])) (1 upto odead);
val Us = snd (Term.dest_Type (mk_T_of_bnf Ds (replicate olive dummyT) bnf));
val oDs_pos = map (fn x => find_index (fn y => x = y) Us) Ds
|> filter (fn x => x >= 0);
val oDs = map (nth Ts) oDs_pos;
val Ts' = map (nth Ts) (subtract (op =) oDs_pos (0 upto length Ts - 1));
val ((inners, (Dss, Ass)), (accum', lthy')) =
apfst (apsnd split_list o split_list) (@{fold_map 2}
(fn i => bnf_of_typ optim Smart_Inline (qualify i) flatten_tyargs Xs Ds0)
(if length Ts' = 1 then [0] else 1 upto length Ts') Ts' accum);
in
compose_bnf const_policy qualify flatten_tyargs bnf inners oDs Dss Ass (accum', lthy')
end)
|> tap check_bad_dead
end;
end;