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Chapter 1

Overview

pGCL is both a programming language and a specification language that incorpo-
rates both probabilistic and nondeterministic choice, in a unified manner. Program
verification is by refinement or annotation (or both), using either Hoare triples, or
weakest-precondition entailment, in the style of GCL [ , 1.

This document is divided into three parts: Chapter 2 gives a tutorial-style intro-
duction to pGCL, and demonstrates the tools provided by the package; Chapter 3
covers the development of the semantic interpretation: expectation transformers;
and Chapter 4 covers the formalisation of the language primitives, the associated
healthiness results, and the tools for structured and automated reasoning. This sec-
ond part follows the technical development of the pGCL theory package, in detail.
It is not a great place to start learning pGCL. For that, see either the tutorial or

[2004].

This formalisation was first presented (as an overview) in [ ]. The lan-
guage has previously been formalised in HOL4 by [ ]. Two sub-
stantial results using this package were presented in [ 1, [ ]

and [ ].
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Chapter 2

Introduction to pGCL

2.1 Language Primitives
theory Primitives imports ../pGCL begin

Programs in pGCL are probabilistic automata. They can do anything a traditional
program can, plus, they may make truly probabilistic choices.

2.1.1 The Basics

Imagine flipping a pair of fair coins: a and b. Using a record type for the state
allows a number of syntactic niceties, which we describe shortly:

datatype coin = Heads | Tails

record coins =
a:: coin
b :: coin

The primitive state operation is Apply, which takes a state transformer as an argu-
ment, constructs the pGCL equivalent. Thus Apply (a-update (\-. Heads)) sets the
value of coin a to Heads. As records are so common as state types, we introduce
syntax to make these update neater: The same program may be defined more sim-
ply as Apply (a-update (A-. Heads)) (note that the syntax translation involved does
not apply to Latex output, and thus this lemma appears trivial):

lemma
Apply (As. s (| a := Heads |)) = (a := (\s. Heads))
(proof)

We can treat the record’s fields as the names of variables. Note that the right-hand
side of an assignment is always a function of the current state. Thus we may use a
record accessor directly, for example Apply (As. s(a := b s|)), which updates a with
the current value of b. If we wish to formally establish that the previous statement

3



4 CHAPTER 2. INTRODUCTION TO PGCL

is correct i.e. that in the final state, a really will have whatever value b had in the
initial state, we must first introduce the assertion language.

2.1.2 Assertion and Annotation

Assertions in pGCL are real-valued functions of the state, which are often inter-
preted as a probability distribution over possible outcomes. These functions are
termed expectations, for reasons which shortly be clear. Initially, however, we
need only consider standard expectations: those derived from a binary predicate.
A predicate P::’s = bool is embedded as « P »::’s = real, such that P s — « P »
s=1N-"Ps— «P»s=0.

An annotation consists of an assertion on the initial state and one on the final state,
which for standard expectations may be interpreted as ‘if P holds in the initial state,
then Q will hold in the final state’. These are in weakest-precondition form: we
assert that the precondition implies the weakest precondition: the weakest assertion
on the initial state, which implies that the postcondition must hold on the final
state. So far, this is identical to the standard approach. Remember, however, that
we are working with real-valued assertions. For standard expectations, the logic
is nevertheless identical, if the implication Vs. P s — Q s is substituted with the
equivalent expectation entailment « P » = « O », [« 2P » = « 2Q »; ?P ?s] = ?Q
?s. Thus a valid specification of Apply (As. s(a := b s))) is:

lemma
Nx. «As.bs=x»twp (a:=b) «\s.as=x»
(proof)

Any ordinary computation and its associated annotation can be expressed in this
form.

2.1.3 Probability

Next, we introduce the syntax x ;; y for the sequential composition of x and y, and
also demonstrate that one can operate directly on a real-valued (and thus infinite)
state space:

lemma
«Aszreal. s # 0> = wp (Apply ((%) 2) ;; Apply (As. s [/ s)) «As. s = I»
(proof)

So far, we haven’t done anything that required probabilities, or expectations other
than 0 and 1. As an example of both, we show that a single coin toss is fair. We in-
troduce the syntax x & y for a probabilistic choice between x and y. This program
behaves as x with probability p, and as y with probability / — p. The probabil-
ity may depend on the state, and is therefore of type ‘s = real. The following
annotation states that the probability of heads is exactly 1/2:

definition
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flip-a :: real = coins prog
where
flip-a p = a := (\-. Heads) (As.p) @@= (\-. Tails)

lemma
(As. 1/2) =wp (flip-a (1/2)) «\s. a s = Heads»
(proof )

2.1.4 Nondeterminism

We can also under-specify a program, using the nondeterministic choice operator,
x[] y. This is interpreted demonically, giving the pointwise minimum of the pre-
expectations for x and y: the chance of seeing heads, if your opponent is allowed
choose between a pair of coins, one biased 2/3 heads and one 2/3 tails, and then
flips it, is at least 1/3, but we can make no stronger statement:

lemma
As. 1/3 4 wp (flip-a (2/3) ['] flip-a (1/3)) «As. a s = Heads»
(proof)

2.1.5 Properties of Expectations

The probabilities of independent events combine as usual, by multiplying: The
chance of getting heads on two separate coins is I / (4::'a).

definition
flip-b :: real = coins prog
where

Aip-bp = b := (\-. Heads) (As.p)® b= (A-. Tails)

lemma

(As. 1/4) = wp (flip-a (1/2) ;; flip-b (1/2))
«\s.a s = Heads N\ b's = Heads»

(proof)

If, rather than two coins, we use two dice, we can make some slightly more in-
volved calculations. We see that the weakest pre-expectation of the value on the
face of the die after rolling is its expected value in the initial state, which justifies
the use of the term expectation.

record dice =
red :: nat
blue :: nat

definition Puniform :: ‘a set = ('a = real)
where Puniform S = (Ax. if x € Sthen 1 | card S else 0)

lemma Puniform-in:
x € S = PuniformSx=1/card §

(proof )



6 CHAPTER 2. INTRODUCTION TO PGCL

lemma Puniform-out:
x ¢ S = PuniformSx=0

(proof)

lemma supp-Puniform:
finite S = supp (Puniform S) = §
(proof)

The expected value of a roll of a six-sided die is (7::'a) / (2::a):

lemma
(Xs. 7/2) = wp (bind v at (As. Puniform {1..6} v) in red := (\-.v)) red
(proof)

The expectations of independent variables add:

lemma
(As. 7) = wp ((bind v at (As. Puniform {1..6} v) in red := (Xs. v)) ;;
(bind v at (As. Puniform {1..6} v) in blue := (As. v)))
(As. red s + blue s)

(proof)
end
2.2 Loops

theory LoopExamples imports ../pGCL begin

Reasoning about loops in pGCL is mostly familiar, in particular in the use of in-
variants. Proving termination for truly probabilistic loops is slightly different: We
appeal to a 0—1 law to show that the loop terminates with probability 1. In our se-
mantic model, terminating with certainty and with probability 1 are exactly equiv-
alent.

2.2.1 Guaranteed Termination

We start with a completely classical loop, to show that standard techniques apply.
Here, we have a program that simply decrements a counter until it hits zero:

definition countdown :: int prog
where
countdown = do (M\x. 0 < x) — Apply (\s. s — I) od

Clearly, this loop will only terminate from a state where 0 < x. This is, in fact, also
a loop invariant.

definition inv-count :: int = bool
where
inv-count = (Ax. 0 < x)
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Read wp-inv G body I as: I is an invariant of the loop px. body ;; x g »® Skip, or
«G» && I+ wp body I.

lemma wp-inv-count:
wp-inv (Ax. 0 < x) (Apply (As. s — 1)) «inv-count»
(proof)

This example is contrived to give us an obvious variant, or measure function: the
counter itself.

lemma term-countdown:
«inv-count» & wp countdown (As. 1)

(proof)

2.2.2 Probabilistic Termination

Loops need not terminate deterministically: it is sufficient to terminate with proba-
bility 1. Here we show the intuitively obvious result that by flipping a coin repeat-
edly, you will eventually see heads.

type-synonym coin = bool

definition Heads = True

definition Tails = False

definition

flip :: coin prog
where

Sflip = Apply (\-. Heads) (As. 1/2)® Apply (\-. Tails)
We can’t define a measure here, as we did previously, as neither of the two possible
states guarantee termination.

definition

wait-for-heads :: coin prog
where

wait-for-heads = do ((#) Heads) — flip od
Nonetheless, we can show termination .

lemma wait-for-heads-term:
As. 1+ wp wait-for-heads (Xs. 1)
(proof)

end

2.3 The Monty Hall Problem

theory Monty imports ../pGCL begin

We now tackle a more substantial example, allowing us to demonstrate the tools
for compositional reasoning and the use of invariants in non-recursive programs.
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Our example is the well-known Monty Hall puzzle in statistical inference [ ,
].

The setting is a game show: There is a prize hidden behind one of three doors,
and the contestant is invited to choose one. Once the guess is made, the host than
opens one of the remaining two doors, revealing a goat and showing that the prize
is elsewhere. The contestent is then given the choice of switching their guess to the
other unopened door, or sticking to their first guess.

The puzzle is whether the contestant is better off switching or staying put; or indeed
whether it makes a difference at all. Most people’s intuition suggests that it make

no difference, whereas in fact, switching raises the chance of success from 1/3 to
2/3.

2.3.1 The State Space

The game state consists of the prize location, the guess, and the clue (the door the
host opens). These are not constrained a priori to the range {1, 2, 3}, but are simply
natural numbers: We instead show that this is in fact an invariant.

record game =

prize :: nat
guess :: nat
clue ::nat

The victory condition: The player wins if they have guessed the correct door, when
the game ends.

definition player-wins :: game = bool
where player-wins g = guess g = prize g
Invariants

We prove explicitly that only valid doors are ever chosen.

definition inv-prize :: game = bool
where inv-prize g = prize g € {1,2,3}

definition inv-clue :: game = bool
where inv-clue g = clue g € {1,2,3}

definition inv-guess :: game = bool
where inv-guess g = guess g € {1,2,3}

2.3.2 The Game

Hide the prize behind door D.

definition hide-behind :: nat = game prog
where hide-behind D = Apply (prize-update (\x. D))
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Choose door D.

definition guess-behind :: nat = game prog

where guess-behind D = Apply (guess-update (Ax. D))

Open door D and reveal what’s behind.

definition open-door :: nat = game prog

where open-door D = Apply (clue-update (M\x. D))

Hide the prize behind door 1, 2 or 3, demonically i.e. according to any probability
distribution (or none).

definition hide-prize :: game prog

where hide-prize = hide-behind 1 || hide-behind 2 || hide-behind 3
Guess uniformly at random.

definition make-guess :: game prog
where make-guess = guess-behind 1 (Xs. ]/3)69
guess-behind 2 (Xs. ]/2)69 guess-behind 3

Open one of the two doors that doesn’t hide the prize.

definition reveal :: game prog
where reveal = [ |de(\s. {1,2,3} — {prize s, guess s}). open-door d

Switch your guess to the other unopened door.

definition switch-guess :: game prog
where switch-guess = [ |de(Ns. {1,2,3} — {clue s, guess s}). guess-behind d

The complete game, either with or without switching guesses.

definition monty :: bool = game prog
where
monty switch = hide-prize ;;
make-guess ;;
reveal ;;
(if switch then switch-guess else Skip)

2.3.3 A Brute Force Solution

For sufficiently simple programs, we can calculate the exact weakest pre-expectation
by unfolding.
lemma eval-win[simp]:

p = g = «player-wins» (s( prize := p, guess := g, clue :==c|) =1

(proof)

lemma eval-loss[simp):
p # g = «player-wins» (s( prize :== p, guess := g, clue :==c|)) =0
(proof)

If they stick to their guns, the player wins with p = 1/3.
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lemma wp-monty-noswitch:
(As. 1/3) = wp (monty False) «player-wins»
(proof)

lemma swap-upd:
s(| prize := p, clue := ¢, guess := g |) =
s(| prize :== p, guess := g, clue := ¢ )

(proof)

If they switch, they win with p = 2/3. Brute force here takes longer, but is still
feasible. On larger programs, this will rapidly become impossible, as the size of
the terms (generally) grows exponentially with the length of the program.

lemma wp-monty-switch-bruteforce:
(As. 2/3) = wp (monty True) «player-wins»
(proof)

2.3.4 A Modular Approach

We can solve the problem more efficiently, at the cost of a little more user effort, by
breaking up the problem and annotating each step of the game separately. While
this is not strictly necessary for this program, it will scale to larger examples, as
the work in annotation only increases linearly with the length of the program.

Healthiness

We first establish healthiness for each step. This follows straightforwardly by ap-
plying the supplied rulesets.

lemma wd-hide-prize:
well-def hide-prize
(proof)

lemma wd-make-guess:
well-def make-guess

(proof)

lemma wd-reveal:
well-def reveal

(proof)

lemma wd-switch-guess:
well-def switch-guess

{proof)

lemmas monty-healthy =
wd-switch-guess wd-reveal wd-make-guess wd-hide-prize
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Annotations

We now annotate each step individually, and then combine them to produce an
annotation for the entire program.

hide-prize chooses a valid door.

lemma wp-hide-prize:
(As. 1) & wp hide-prize «inv-prize»
(proof )

Given the prize invariant, make-guess chooses a valid door, and guesses incorrectly
with probability at least 2/3.

lemma wp-make-guess:
(As. 2/3 % «Ag. inv-prize g» s) b
wp make-guess «\g. guess g 7 prize g N\ inv-prize g N inv-guess g»
(proof )

lemma last-one:
assumes a # b and a € {I::nat,2,3} and b € {1,2,3}
shows 3lc. {1,2,3} — {b,a} = {c}
(proof )

Given the composed invariants, and an incorrect guess, reveal will give a clue that
is neither the prize, nor the guess.

lemma wp-reveal:
«\g. guess g # prize g N inv-prize g N\ inv-guess g» =
wp reveal «\g. guess g # prize g \
clue g # prize g A
clue g # guess g \
inv-prize g N inv-guess g N\ inv-clue g»
(is ?X t= wp reveal ?Y)
(proof)

Showing that the three doors are all district is a largeish first-order problem, for
which sledgehammer gives us a reasonable script.

lemma distinct-game:
[ guess g # prize g; clue g # prize g; clue g # guess g;
inv-prize g; inv-guess g; inv-clue g | =
{1, 2,3} ={guess g, prize g, clue g}
(proof )

Given the invariants, switching from the wrong guess gives the right one.

lemma wp-switch-guess:
«\g. guess g # prize g N\ clue g # prize g N clue g # guess g N
inv-prize g A inv-guess g N inv-clue g»
wp switch-guess «player-wins»
(proof)
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Given componentwise specifications, we can glue them together with calculational
reasoning to get our result.

lemma wp-monty-switch-modular:
(As. 2/3) & wp (monty True) «player-wins»
(proof )

Using the VCG

lemmas scaled-hide = wp-scale|OF wp-hide-prize, simplified)
declare scaled-hide[pwp] wp-make-guess[pwp] wp-reveal[pwp] wp-switch-guess|pwp)]
declare wd-hide-prize[wd] wd-make-guess|wd] wd-reveal[wd] wd-switch-guess[wd)

Alternatively, the VCG will get this using the same annotations.

lemma wp-monty-switch-vcg:
(As. 2/3) = wp (monty True) «player-wins»
(proof)

end



Chapter 3

Semantic Structures

3.1 Expectations
theory Expectations imports Misc begin type-synonym ’s expect = 's = real

Expectations are a real-valued generalisation of boolean predicates: An expectation
on state s is a function s = real. A predicate P on s is embedded as an expectation
by mapping True to 1 and False to 0. Under this embedding, implication becomes
comparison, as the truth tables demonstrate:

a b a—=blzx y z<y
F F T 0 0 T
F T T 0 1 T
T F F 1 0 F
T T T 1 1 T

For probabilistic automata, an expectation gives the current expected value of some
expression, if it were to be evaluated in the final state. For example, consider
the automaton of Figure 3.1, with transition probabilities affixed to edges. Let
P b=2.0and P c = 3.0. Both states b and c are final (accepting) states, and thus
the ‘final expected value’ of P in state b is 2.0 and in state c is 3.0. The expected
value from state a is the weighted sum of these, or 0.7 x 2.0 + 0.3 x 3.0 = 2.3.

Figure 3.1: A probabilistic automaton

13
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All expectations must be non-negative and bounded i.e. Vs.0 < P sand 3b.Vs.P s <
b. Note that although every expectation must have a bound, there is no bound on
all expectations; In particular, the following series has no global bound, although
each element is clearly bounded:

P, =Xs.t© wherei € N

3.1.1 Bounded Functions

definition bounded-by :: real = ('a = real) = bool
where bounded-byb P=Vx.Px<b

By instantiating the classical reasoner, both establishing and appealing to bound-
edness is largely automatic.

lemma bounded-bylintro|:
[ Ax. Px < b] = bounded-by b P

(proof)

lemma bounded-byI2]intro):
P < (As. b) = bounded-by b P

(proof)

lemma bounded-byD|[dest|:
bounded-by bP — Px < b

(proof)

lemma bounded-byD?2[dest|:
bounded-by b P —> P < ()s. b)

(proof)

A function is bounded if there exists at least one upper bound on it.

definition bounded :: ('a = real) = bool
where  bounded P = (3b. bounded-by b P)

In the reals, if there exists any upper bound, then there must exist a least upper
bound.

definition bound-of :: (‘a = real) = real
where  bound-of P = Sup (P * UNIV)

lemma bounded-bdd-aboveintro):
assumes bP: bounded P
shows bdd-above (range P)

(proof)

The least upper bound has the usual properties:

lemma bound-of-least[intro):
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assumes bP: bounded-by b P
shows bound-of P < b

(proof)

lemma bounded-by-bound-of [intro]:
fixes P::'a = real
assumes bP: bounded P
shows bounded-by (bound-of P) P

(proof)

lemma bound-of-greater|intro|:
bounded P —> P x < bound-of P

(proof)

lemma bounded-by-mono:
[ bounded-by a P; a < b | => bounded-by b P
(proof)

lemma bounded-by-imp-bounded|intro]:
bounded-by b P —> bounded P

(proof)

This is occasionally easier to apply:

lemma bounded-by-bound-of-alt:

[ bounded P; bound-of P = a | = bounded-by a P

(proof)

lemma bounded-const[simp|:
bounded (\x. c)

(proof)

lemma bounded-by-const[intro|:
¢ < b = bounded-by b (\x. c)

(proof)

lemma bounded-by-mono-alt[intro):
[ bounded-by b Q; P < Q | = bounded-by b P
(proof )

lemma bound-of-const[simp, introl:
bound-of (Ax. ¢) = (c::real)
(proof)

lemma bound-of-lel:
assumes A\x. P x < (c::real)
shows bound-of P < ¢

(proof)

lemma bound-of-monolintro):

15
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[ P < Q; bounded P; bounded Q | = bound-of P < bound-of Q
(proof)

lemma bounded-by-olintro,simp|:
\b. bounded-by b P = bounded-by b (P o f)
(proof)

lemma le-bound-of [intro]:
N\x. bounded f — fx < bound-of f

(proof)

3.1.2 Non-Negative Functions.

The definitions for non-negative functions are analogous to those for bounded func-
tions.
definition
nneg :: (‘a = 'b::{zero,order}) = bool
where
nneg P +— (Vx.0 < Px)

lemma nnegl|intro|:
[ Ax.0< Px] = nneg P
(proof )

lemma nnegl2[intro):
(As. 0) < P=>nneg P

(proof)

lemma nnegD|dest|:
nnegP—0<Px

(proof)

lemma nnegD2[dest|:
nneg P = (Xs. 0) <P
(proof)

lemma nneg-bdd-below[intro]:
nneg P => bdd-below (range P)

(proof)

lemma nneg-const|iff]:
nneg (Ax.c) +— 0<c

(proof)

lemma nneg-olintro,simp|:
nneg P = nneg (P o f)
(proof)

lemma nneg-bound-nneg|intro):
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[ bounded P; nneg P | —> 0 < bound-of P
(proof)

lemma nneg-bounded-by-nneg|dest]:
[ bounded-by b P; nneg P | = 0 < (b::real)
(proof)

lemma bounded-by-nneg[dest]:
fixes P::'s = real
shows [ bounded-by b P; nneg P| = 0 <b
(proof )

3.1.3 Sound Expectations

definition sound :: (s = real) = bool
where sound P = bounded P N\ nneg P

Combining nneg and Expectations.bounded, we have sound expectations. We set
up the classical reasoner and the simplifier, such that showing soundess, or deriving
a simple consequence (e.g. sound P = 0 < P s) will usually follow by blast, force
or simp.
lemma soundlI:

[ bounded P; nneg P | = sound P

(proof )

lemma soundI2[intro]:
[ bounded-by b P; nneg P | = sound P

(proof)

lemma sound-bounded|dest):
sound P => bounded P

(proof )

lemma sound-nneg|dest|:
sound P =—> nneg P

(proof)

lemma bound-of-sound|intro]:
assumes sP: sound P
shows 0 < bound-of P

(proof)

This proof demonstrates the use of the classical reasoner (specifically blast), to
both introduce and eliminate soundness terms.

lemma sound-sum|[simp intro):
assumes sP: sound P and sQ: sound Q
shows sound (A\s. P s+ Q s)

(proof)
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lemma mult-sound:
assumes sP: sound P and sQ: sound Q
shows sound (As. Ps x Q's)

(proof)

lemma div-sound:
assumes sP: sound P and cpos: 0 < ¢
shows sound (A\s. Ps / ¢)

(proof)

lemma rminus-sound:
assumes sP: sound P and nnc: 0 < ¢
shows sound (As. P s © ¢)

(proof)

lemma const-sound:
0 < ¢ = sound ()\s. ¢)

(proof)

lemma sound-o[intro,simp|:
sound P = sound (P o f)

(proof)

lemma sc-bounded-by[intro,simp):
[ sound P; 0 < ¢ | = bounded-by (¢ * bound-of P) (Ax. ¢ % P x)

(proof)

lemma sc-bounded|intro,simp):
assumes sP: sound P and pos: 0 < ¢
shows bounded (Ax. ¢ * P x)

(proof)

lemma sc-bound|simp):
assumes sP: sound P
and cnn: 0 < ¢
shows ¢ x bound-of P = bound-of (\x. ¢ * P x)

{proof)

lemma sc-sound:
[ sound P; 0 < ¢ | = sound (As.c x Ps)

(proof)

lemma bounded-by-mult:
assumes sP: sound P and bP: bounded-by a P
and sQ: sound Q and bQ: bounded-by b Q
shows bounded-by (a x b) (As. Ps * Q s)

(proof)

lemma bounded-by-add:
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fixes P::'s = real and Q
assumes bP: bounded-by a P
and bQ: bounded-by b Q
shows bounded-by (a + b) (As. Ps+ Q's)
(proof)

lemma sound-unit[intro!,simp|:
sound (Xs. I)
(proof)

lemma wunit-mult[intro):
assumes sP: sound P and bP: bounded-by 1 P
and sQ: sound Q and bQ: bounded-by 1 Q
shows bounded-by 1 (As. P s Q's)

(proof)

lemma sum-sound:
assumes sP: ¥V x€S. sound (P x)
shows sound (\s. > x€S. Px s)

(proof)

3.1.4 Unitary expectations

A unitary expectation is a sound expectation that is additionally bounded by one.
This is the domain on which the liberal (partial correctness) semantics operates.

definition unitary :: s expect = bool
where unitary P <— sound P A bounded-by 1 P

lemma unitaryl|intro:
[ sound P; bounded-by 1 P | = unitary P
(proof)

lemma unitaryl2:
[ nneg P; bounded-by 1 P | = unitary P
(proof)

lemma unitary-sound|dest|:
unitary P = sound P

(proof)

lemma unitary-bound|dest|:
unitary P = bounded-by I P

(proof)

3.1.5 Standard Expectations

definition
embed-bool :: ('s = bool) = 's = real («« - » 1000)
where



20 CHAPTER 3. SEMANTIC STRUCTURES

«P» = (As. if P s then 1 else 0)

Standard expectations are the embeddings of boolean predicates, mapping False to
0 and True to 1. We write « P » rather than [P] (the syntax employed by

[ ]) for boolean embedding to avoid clashing with the HOL syntax
for lists.

lemma embed-bool-nneg[simp,intro|:
nneg «P»

(proof)

lemma embed-bool-bounded-by-1[simpintro):
bounded-by I «P»

(proof)

lemma embed-bool-bounded|simp,intro|:
bounded «P»

(proof)

Standard expectations have a number of convenient properties, which mostly fol-
low from boolean algebra.

lemma embed-bool-idem:
«P» s % «P» s = «P» s

(proof)

lemma eval-embed-true[simp):
Ps=— «P»s=1

(proof)

lemma eval-embed-false|simp):
“Ps= «P»s=10

(proof)

lemma embed-ge-0[simp,intro]:
0<«G»s

(proof)

lemma embed-le-1[simp,intro:
«G» s <]

(proof)

lemma embed-le-1-alt[simp,intro):
0<1—«G»s

(proof)

lemma expect-1-1:
Px=1<«P»x

(proof)

lemma standard-sound|intro,simp|:
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sound «P»

(proof)

lemma embed-o[simp]:
«Pr»of=«Pof»
(proof )

Negating a predicate has the expected effect in its embedding as an expectation:

definition negate :: ('s = bool) = 's = bool (N>)
where negate P = (As. = Ps)

lemma negatel:
- Ps= NPs

(proof)

lemma embed-split:
fs=«Prs*xfs+ «N P»sx*fs
(proof)

lemma negate-embed:
N Prs=1—«P»s

(proof)

lemma eval-nembed-true[simp):
Ps= «NP»rs=0
(proof)

lemma eval-nembed-false|simp|:
—Ps=—= «N Prs=1

(proof)
lemma negate-Not|simp|:
N Not = (\x. x)
(proof)
lemma negate-negate[simp:
NNP)=P
(proof)

lemma embed-bool-cancel:
«G» sx «<N G»s=0

(proof)

3.1.6 Entailment

Entailment on expectations is a generalisation of that on predicates, and is defined
by pointwise comparison:

abbreviation entails :: (s = real) = ('s = real) = bool («- + - 50)
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where P-Q=P < Q

lemma entailsl|intro:
[As-Ps<Q0s]=PHFQ
(proof)

lemma entailsD|dest]:
PHQOQ=Ps<Q0s
(proof)

lemma eg-entails[intro:
P=Q—PFQ
(proof)

lemma entails-trans|trans|:
[PFQO;0FR]= PHFR
(proof)

For standard expectations, both notions of entailment coincide. This result justifies
the above claim that our definition generalises predicate entailment:

lemma implies-entails:
[As-Ps= Qs] = «P» - «O»
(proof)

lemma entails-implies:
Ns. [«P» = «O»;Ps] = Qs
(proof )

3.1.7 Expectation Conjunction

definition
peonj :: real = real = real (infixl <.&> 71)
where

p&qgq=p+qol

definition
exp-conj :: (s = real) = ('s = real) = (s = real) (infixl «&&> 71)
where a && b= )Xs. (as & bs)

Expectation conjunction likewise generalises (boolean) predicate conjunction. We
show that the expected properties are preserved, and instantiate both the classical
reasoner, and the simplifier (in the case of associativity and commutativity).
lemma pconj-lzerolintro,simp]:

b<1=0.b=0

(proof)

lemma pconj-rzerolintro,simp|:
b<l=b.&0=0
(proof)
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lemma pconj-lone[intro,simp):
0<b=—1.&b=b
(proof)

lemma pconj-ronelintro,simp|:
0<b=—=b.&l=0b
(proof)

lemma pconj-bconj:
«a» s & «b» s =«As.as ANbs»s

(proof)

lemma pconj-comm|ac-simps):
akb=>b.&a
(proof)

lemma pconj-assoc:
[0<a;a<1;0<Db;b<1;0<c¢c;c<]]=
a.&(b.&c)=(a.&b).&c

(proof)

lemma pconj-mono:
[a<bic<d]=a.&c<b.&kd
(proof)

lemma pconj-nneg[intro,simp):
0<a.kh
(proof)

lemma min-pconj:
(minab) .& (mincd) < min (a .& ¢) (b .& d)
(proof)

lemma pconj-less-one|simp]:
a+b<l=a.kb=0
(proof )

lemma pconj-ge-one[simp|:
I1<a+b=—a.&kcb=a+b-1
(proof)

lemma pconj-idem[simp]:
«P» s & «P» s = «P» s
(proof)

3.1.8 Rules Involving Conjunction.

lemma exp-conj-mono-left:

23
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PQO=P&&RFQ&&R
(proof )

lemma exp-conj-mono-right:
OFR=—P&&QFP&&R

(proof)

lemma exp-conj-comm[ac-simps):
a&&b=>b&&a
(proof)

lemma exp-conj-bounded-by[intro,simp):
assumes bP: bounded-by 1 P
and bQ: bounded-by 1 Q
shows bounded-by 1 (P && Q)
(proof )

lemma exp-conj-o-distrib[simp):
(P&& Q)of=(Pof)&& (Qof)
(proof )

lemma exp-conj-assoc:
assumes unitary P and unitary Q and unitary R
shows P && (Q && R) = (P && Q) && R
(proof)

lemma exp-conj-top-left[simp):
sound P => «\-. True» && P = P
(proof)

lemma exp-conj-top-right[simp):
sound P => P && «\-. True» = P
(proof )

lemma exp-conj-idem|simp]:
«P» && «P» = «P>»
(proof)

lemma exp-conj-nneg[intro,simp):
(As. 0) < P&& Q
(proof)

lemma exp-conj-sound|intro,simp):
assumes s-P: sound P
and s-Q: sound Q
shows sound (P && Q)

(proof)

lemma exp-conj-rzerolsimp|:
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bounded-by 1 P = P && (Xs. 0) = ()s. 0)
(proof)

lemma exp-conj-1-right[simp|:
assumes nn: nneg A
shows A && (A-. 1) =A
(proof)

lemma exp-conj-std-split:
«As. P s A\ Q s» = «P» && «QO»
(proof )

3.1.9 Rules Involving Entailment and Conjunction Together

Meta-conjunction distributes over expectaton entailment, becoming expectation
conjunction:

lemma entails-frame:
assumes ¢PR: P+ R
and eQS: QO+ S
shows P && Q- R && S
(proof)

This rule allows something very much akin to a case distinction on the pre-expectation.

lemma pentails-cases:
assumes PQe: Ax. Pxt QO x
and exhaust: \s. Ix. P (xs) s =1
and framed: \x. Px && Rt Qx && S
and sR: sound R and sS: sound S
and bQ: A\x. bounded-by I (Q x)
shows R - §
(proof)

lemma unitary-bot|iff]:
unitary (As. 0::real)
(proof)

lemma unitary-top[iff]:
unitary (As. 1::real)
(proof)

lemma unitary-embed|iff):
unitary «P»

(proof)

lemma unitary-const[iff]:
[0<c¢;c<1]= unitary (Xs.c)

(proof)
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lemma unitary-mult:
assumes uA: unitary A and uB: unitary B
shows unitary (As. A s x B s)

(proof)

lemma exp-conj-unitary:
[ unitary P; unitary Q | = unitary (P && Q)
(proof)

lemma unitary-comp|simp:
unitary P = unitary (P o f)
(proof )

lemmas unitary-intros =
unitary-bot unitary-top unitary-embed unitary-mult exp-conj-unitary
unitary-comp unitary-const

lemmas sound-intros =
mult-sound div-sound const-sound sound-o sound-sum
tminus-sound sc-sound exp-conj-sound sum-sound

end

3.2 Expectation Transformers

theory Transformers imports Expectations begin type-synonym ’s trans = 's expect =
's expect

Transformers are functions from expectations to expectations i.e. (s = real) = s
= real.

The set of healthy transformers is the universe into which we place our seman-
tic interpretation of pGCL programs. In its standard presentation, the healthiness
condition for pGCL programs is sublinearity, for demonic programs, and super-
linearity for angelic programs. We extract a minimal core property, consisting of
monotonicity, feasibility and scaling to form our healthiness property, which holds
across all programs. The additional components of sublinearity are broken out
separately, and shown later. The two reasons for this are firstly to avoid the effort
of establishing sub-(super-)linearity globally, and to allow us to define primitives
whose sublinearity, and indeed healthiness, depend on context.

Consider again the automaton of Figure 3.1. Here, the effect of executing the
automaton from its initial state (a) until it reaches some final state (b or ¢) is to
transform the expectation on final states (P), into one on initial states, giving the
expected value of the function on termination. Here, the transformation is linear:
Pprior(a) = 0.7 % Ppogt(b) + 0.3 * Ppogt(c), but this need not be the case.

Consider the automaton of Figure 3.2. Here, we have extended that of Figure 3.1
with two additional states, d and e, and a pair of silent (unlabelled) transitions.
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Figure 3.2: A nondeterministic-probabilistic automaton.
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Figure 3.3: A diverging automaton.

From the initial state, e, this automaton is free to transition either to the original
starting state (a), and thence behave exactly as the previous automaton did, or to
d, which has the same set of available transitions, now with different probabilities.
Where previously we could state that the automaton would terminate in state b with
probability 0.7 (and in ¢ with probability 0.3), this now depends on the outcome of
the nondeterministic transition from e to either a or d. The most we can now say is
that we must reach b with probability at least 0.5 (the minimum from either a or d)
and ¢ with at least probability 0.3. Note that these probabilities do not sum to one
(although the sum will still always be less than one). The associated expectation
transformer is now sub-linear: Pyior(€) = 0.5 % Pyost(b) + 0.3 % Poosi(c).

Finally, Figure 3.3 shows the other way in which strict sublinearity arises: diver-
gence. This automaton transitions with probability 0.5 to state d, from which it
never escapes. Once there, the probability of reaching any terminating state is
zero, and thus the probabilty of terminating from the initial state (e) is no higher
than 0.5. If it instead takes the edge to state a, we again see a self loop, and thus
in theory an infinite trace. In this case, however, every time the automaton reaches
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state a, with probability 0.5 + 0.3 = 0.8, it transitions to a terminating state. An
infinite trace of transitions a — a — ... thus has probability 0, and the automaton
terminates with probability 1. We formalise such probabilistic termination argu-
ments in Section 4.11.

Having reached a, the automaton will proceed to b with probability 0.5 (1/(0.5+
0.3)) = 0.625, and to ¢ with probability 0.375. As a is in turn reached half the
time, the final probability of ending in b is 0.3125, and in ¢, 0.1875, which sum
to only 0.5. The remaining probability is that the automaton diverges via d. We
view nondeterminism and divergence demonically: we take the least probability of
reaching a given final state, and use it to calculate the expectation. Thus for this
automaton, Ppyrior(€) = 0.3125 % Ppogt(b) + 0.1875 % Ppogt(c). The end result is the
same as for nondeterminism: a sublinear transformation (the weights sum to less
than one). The two outcomes are thus unified in the semantic interpretation, al-
though as we will establish in Section 4.6, the two have slightly different algebraic
properties.

This pattern holds for all pGCL programs: probabilistic choices are always linear,
while struct sublinearity is introduced both nondeterminism and divergence.

Healthiness, again, is the combination of three properties: feasibility, monotonicity
and scaling. Feasibility requires that a transformer take non-negative expectations
to non-negative expectations, and preserve bounds. Thus, starting with an expecta-
tion bounded between 0 and some bound, b, after applying any number of feasible
transformers, the result will still be bounded between 0 and b. This closure prop-
erty allows us to treat expectations almost as a complete lattice. Specifically, for
any b, the set of expectations bounded by b is a complete lattice (L = (\s.0),
T = (As.b)), and is closed under the action of feasible transformers, including
M and LI, which are themselves feasible. We are thus able to define both least and
greatest fixed points on this set, and thus give semantics to recursive programs built
from feasible components.

3.2.1 Comparing Transformers

Transformers are compared pointwise, but only on sound expectations. From the
preorder so generated, we define equivalence by antisymmetry, giving a partial
order.

definition

le-trans :: s trans = s trans = bool
where

le-trans tu =V P. sound P — t P <u P

We also need to define relations restricted to unitary transformers, for the liberal
(wlp) semantics.

definition
le-utrans :: 's trans = 's trans = bool
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where
le-utrans t u <— (¥ P. unitary P — t P < u P)

lemma /e-transl|intro|:
[ AP sound P =t P <uP] = le-trans tu

(proof)

lemma le-utranslintro|:
[ AP. unitary P =t P < u P | = le-utrans t u

(proof)

lemma [e-transD]dest|:
[ le-trans t u; sound P] =t P <u P

(proof )

lemma le-utransD|dest|:
[ le-utrans t u; unitary P] =t P <u P

(proof)

lemma le-trans-trans(trans:
[ le-trans x y; le-trans y z | = le-trans x z

(proof)

lemma le-utrans-trans(trans):
[ le-utrans x y; le-utrans y z || = le-utrans x z

(proof)

lemma le-trans-refl[iff]:
le-trans x x

(proof)

lemma le-utrans-refl[iff):
le-utrans x x

(proof)

lemma /le-trans-le-utrans|dest]:
le-trans t u = le-utrans t u

(proof )

definition

I-trans :: s trans = s trans = bool
where

I-trans t u +— le-trans t u \ — le-trans u t

Transformer equivalence is induced by comparison:

definition

equiv-trans :: 's trans = s trans = bool
where

equiv-trans t u <— le-trans t u N\ le-trans u t

29
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definition

equiv-utrans :: 's trans = 's trans = bool
where

equiv-utrans t u <— le-utrans t u N\ le-utrans u t

lemma equiv-transl|intro):
[ \P. sound P =>t P = u P | = equiv-trans t u

(proof)

lemma equiv-utransl[intro):
[ \P. sound P —>t P = u P | = equiv-utrans t u

(proof)

lemma equiv-transD[dest):
[ equiv-trans t u; sound P| =t P =u P

(proof)

lemma equiv-utransD[dest):
[ equiv-utrans t u; unitary P| =t P=u P
(proof)

lemma equiv-trans-refl[iff]:
equiv-trans t t

(proof)

lemma equiv-utrans-refl[iff]:
equiv-utrans t t

(proof)

lemma le-trans-antisym:
[ le-trans x y; le-trans y x | = equiv-trans x y

(proof)

lemma le-utrans-antisym:
[ le-utrans x y; le-utrans y x | = equiv-utrans x y

(proof)

lemma equiv-trans-comm|ac-simps):
equiv-trans t u <— equiv-trans u t

(proof)

lemma equiv-utrans-comm|ac-simps|:
equiv-utrans t u <— equiv-utrans u t

(proof)

lemma equiv-imp-lelintrol:
equiv-trans t u = le-trans t u

(proof)
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lemma equivu-imp-le[intro):
equiv-utrans t u = le-utrans t u
(proof)

lemma equiv-imp-le-alt:
equiv-trans t u = le-trans u t

(proof)

lemma equiv-uimp-le-alt:
equiv-utrans t u = le-utrans u t

(proof)

lemma le-trans-equiv-rsp[simp]:
equiv-trans t u = le-trans t v <— le-trans u v
(proof )

lemma le-utrans-equiv-rsp|simp):
equiv-utrans t u = le-utrans t v <— le-utrans u v
(proof )

lemma equiv-trans-le-trans(trans):
[ equiv-trans t u; le-trans u v | = le-trans t v

(proof)

lemma equiv-utrans-le-utrans|trans):
[ equiv-utrans t u; le-utrans u v | = le-utrans t v

(proof)

lemma le-trans-equiv-rsp-right[simp|:
equiv-trans t u = le-trans v t <— le-trans v u
(proof)

lemma le-utrans-equiv-rsp-right|[simp|:
equiv-utrans t u = le-utrans v t <— le-utrans v u
(proof )

lemma le-trans-equiv-trans(trans):
[ le-trans t u; equiv-trans u v | = le-trans t v

(proof)

lemma le-utrans-equiv-utrans|trans):
[ le-utrans t u; equiv-utrans u v | = le-utrans t v

(proof)

lemma equiv-trans-trans|trans:
assumes xy: equiv-trans x y
and yz: equiv-trans y z
shows equiv-trans x z

31
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(proof)

lemma equiv-utrans-trans|trans:
assumes xy: equiv-utrans x y
and yz: equiv-utrans y z
shows equiv-utrans x z

(proof)

lemma equiv-trans-equiv-utrans|dest|:
equiv-trans t u == equiv-utrans t u

(proof)

3.2.2 Healthy Transformers
Feasibility

definition feasible :: ((‘a = real) = ('a = real)) = bool
where feasible t <— (VP b. bounded-by b P N\ nneg P —
bounded-by b (t P) A nneg (t P))

A feasible transformer preserves non-negativity, and bounds. A feasible trans-
former always takes its argument ‘closer to O’ (or leaves it where it is). Note that
any particular value of the expectation may increase, but no element of the new
expectation may exceed any bound on the old. This is thus a relatively weak con-
dition.
lemma feasiblel[intro):

[ A\b P. [ bounded-by b P; nneg P | = bounded-by b (t P);

b P. [ bounded-by b P; nneg P | = nneg (t P) | => feasible t
(proof)

lemma feasible-boundedD|dest):
[ feasible t; bounded-by b P; nneg P | = bounded-by b (t P)
(proof)

lemma feasible-nnegD|dest):
[ feasible t; bounded-by b P; nneg P | —> nneg (¢ P)
(proof)

lemma feasible-sound|dest]:
[ feasible t; sound P | = sound (t P)

(proof)

lemma feasible-pr-O[simp]:
fixes ::('s = real) = 's = real
assumes f7: feasible t
shows ¢ (A\x. 0) = (\x. 0)

(proof)

lemma feasible-id:
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feasible (\x. x)
(proof)

lemma feasible-bounded-by[dest:
[ feasible t; sound P; bounded-by b P | = bounded-by b (t P)

(proof)

lemma feasible-fixes-top:
feasible t =t (As. 1) < (As. (1::real))
(proof)

lemma feasible-fixes-bot:
assumes ft: feasible t
shows 7 (\s. 0) = (As. 0)

(proof)

lemma feasible-unitaryD|[dest]:
assumes fi: feasible t and uP: unitary P
shows unitary (t P)

(proof)

Monotonicity

definition
mono-trans :: (('s = real) = (s = real)) = bool
where

mono-trans t =Y P Q. (sound P N\ sound Q NP < Q) —tP <t Q

33

Monotonicity allows us to compose transformers, and thus model sequential com-
putation. Recall the definition of predicate entailment (Section 3.1.6) as less-than-
or-equal. The statement Q I ¢ R means that Q is everywhere below ¢ R. For stan-
dard expectations (Section 3.1.5), this simply means that Q implies t R, the weakest

precondition of R under ¢.

Given another, monotonic, transformer u, we have that u Q = u (¢ R), or that the

weakest precondition of Q under u entails that of R under the composition u o z. If
we additionally know that P f~ u Q, then by transitivity we have P - u (r R). We
thus derive a probabilistic form of the standard rule for sequential composition:

[mono-trans t; Pt-u Q; Q& t R = Pt u (t R).

lemma mono-transl[intro):

[ AP Q. [ sound P; sound Q; P < Q]| = t P <t Q] = mono-trans t

(proof)

lemma mono-transD|dest):
[ mono-trans t; sound P; sound Q; P < Q]| = tP <tQ

(proof )



34 CHAPTER 3. SEMANTIC STRUCTURES

Scaling

A healthy transformer commutes with scaling by a non-negative constant.

definition
scaling :: (('s = real) = (s = real)) = bool
where
scalingt =V Pcx.sound PNO<c—c*xtPx=t(M.cxPx)x

The scaling and feasibility properties together allow us to treat transformers as a
complete lattice, when operating on bounded expectations. The action of a trans-
former on such a bounded expectation is completely determined by its action on
unitary expectations (those bounded by 1): t P s = bound-of P x t (As. P s /
bound-of P) s. Feasibility in turn ensures that the lattice of unitary expectations is
closed under the action of a healthy transformer. We take advantage of this fact in
Section 3.3, in order to define the fixed points of healthy transformers.

lemma scalingl [intro]:
[APcx. [soundP;0<c]=c*tPx=t(\x.c*Px)x] = scaling t

(proof)

lemma scalingD|dest|:
[ scaling t; sound P; 0 < c¢] = c*tPx=1t(M.c*xPx)x

(proof)

lemma right-scalingD:
assumes st: scaling t
and sP: sound P
and nnc: 0 < ¢
showstPsxc=1t(As.Ps%c)s

(proof)

Healthiness

Healthy transformers are feasible and monotonic, and respect scaling

definition

healthy :: (('s = real) = (s = real)) = bool
where

healthy t <— feasible t \ mono-trans t A\ scaling t

lemma healthyl[intro):
[ feasible t; mono-trans t; scaling t | = healthy t

(proof)

lemmas healthy-parts = healthyl[OF feasiblel mono-transl scalingl)

lemma healthy-monoD|dest|:
healthy t => mono-trans t

(proof)
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lemmas healthy-monoD2 = mono-transD|OF healthy-monoD]

lemma healthy-feasibleD|dest]:
healthy t = feasible t

(proof)

lemma healthy-scalingD|dest]:
healthy t = scaling t

(proof)

lemma healthy-bounded-byDlintro):
[ healthy t; bounded-by b P; nneg P | => bounded-by b (t P)
(proof )

lemma healthy-bounded-byD2:
[ healthy t; bounded-by b P; sound P | = bounded-by b (t P)

(proof)

lemma healthy-boundedD|dest,simp]:
[ healthy t; sound P | = bounded (t P)

(proof)

lemma healthy-nnegD|dest,simp]:
[ healthy t; sound P | = nneg (t P)

(proof)

lemma healthy-nnegD2|dest,simp:
[ healthy t; bounded-by b P; nneg P | = nneg (t P)
(proof)

lemma healthy-sound|intro|:
[ healthy t; sound P | = sound (t P)

(proof)

lemma healthy-unitary(intro):
[ healthy t; unitary P | = unitary (t P)
(proof )

lemma healthy-id[simp,intro]:
healthy id
(proof)

lemmas healthy-fixes-bot = feasible-fixes-bot[OF healthy-feasibleD)

Some additional results on le-trans, specific to healthy transformers.

lemma le-trans-bot|intro,simp:
healthy t = le-trans (AP 5. 0) t

(proof )
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lemma le-trans-toplintro,simp:
healthy t = le-trans t (AP s. bound-of P)
(proof)

lemma healthy-pr-bot|[simp:
healthy t => t (As. 0) = (Xs. 0)
(proof)

The first significant result is that healthiness is preserved by equivalence:

lemma healthy-equivl:
fixes 1::('s = real) = 's = real and u
assumes equiv: equiv-transtu
and healthy: healthy t
shows healthy u

(proof)

lemma healthy-equiv:
equiv-trans t u = healthy t <— healthy u

(proof)

lemma healthy-scale:
fixes ::('s = real) = 's = real
assumes ht: healthy t and nc: 0 < c and bc: ¢ < 1
shows healthy (AP s. ¢ %t P s)

(proof)

lemma healthy-topliff]:
healthy (AP s. bound-of P)

(proof)

lemma healthy-bot[iff]:
healthy (AP s. 0)

(proof)

This weaker healthiness condition is for the liberal (wlp) semantics. We only insist
that the transformer preserves unitarity (bounded by 1), and drop scaling (it is un-
necessary in establishing the lattice structure here, unlike for the strict semantics).

definition
nearly-healthy :: (('s = real) = ('s = real)) = bool
where
nearly-healthy t <— (¥ P. unitary P — unitary (t P)) A
(VP Q. unitary P — unitary Q — P+ Q — t P11 Q)

lemma nearly-healthylintro|:
[ \P. unitary P = unitary (¢ P);
AP Q. [ unitary P; unitary Q; P+ Q] =t P+ t Q | = nearly-healthy t
(proof)
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lemma nearly-healthy-monoD|dest:
[ nearly-healthy t; P &= Q; unitary P; unitary Q| =t P+t Q
(proof)

lemma nearly-healthy-unitaryD|[dest]:
[ nearly-healthy t; unitary P | = unitary (t P)
(proof )

lemma healthy-nearly-healthy[dest):
assumes ht: healthy t
shows nearly-healthy t

(proof)

lemmas nearly-healthy-id[iff] =
healthy-nearly-healthy|OF healthy-id, unfolded id-def]

3.2.3 Sublinearity

As already mentioned, the core healthiness property (aside from feasibility and
continuity) for transformers is sublinearity: The transformation of a quasi-linear
combination of sound expectations is greater than the same combination applied
to the transformation of the expectations themselves. The term x © y represents
truncated subtraction i.e. max (x — y) O (see Section 4.13.1).

definition sublinear ::
(('s = real) = (s = real)) = bool
where
sublineart +— (Yabc P Qs. (sound PN\ sound QNO<aANO<bAO<c)—
axtPs+bxtQsSc
<t(Asl.axPs'+bxQs'©c)s)

lemma sublinearl|intro|:
[AabcPQs.| sound P; sound 0;0<a;0<b;0<c] =
axtPs+bxtQsoSc<
t(AsaxPs'+bxQs'©c)s] = sublinear t

(proof)

lemma sublinearD|dest:
[ sublinear t; sound P; sound Q; 0 < a; 0 < b; 0 < c]| =
axtPs+bxtQsSc<
t(As".axPs'"+bxQs'©c)s
(proof)

Itis easier to see the relevance of sublinearity by breaking it into several component
properties, as in the following sections.

Sub-additivity
definition sub-add ::
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Figure 3.4: A graphical depiction of sub-additivity as convexity.

(('s = real) = (s = real)) = bool
where
sub-add t <— (VP Q s. (sound P A sound Q) —
tPs+tQs<t(As’.Ps'+Qs')s)

Sub-additivity, together with scaling (Section 3.2.2) gives the linear portion of sub-
linearity. Together, these two properties are equivalent to convexity, as Figure 3.4
illustrates by analogy.

Here P is an affine function (expectation) real = real, restricted to some finite
interval. In practice the state space (the left-hand type) is typically discrete and
multi-dimensional, but on the reals we have a convenient geometrical intuition.
The lines ¢t P and u P represent the effect of two healthy transformers (again affine).
Neither monotonicity nor scaling are represented, but both are feasible: Both lines
are bounded above by the greatest value of P.

The curve @ is the pointwise minimum of ¢P and ¢(Q), written ¢P M tQ. This is,
not coincidentally, the syntax for a binary nondeterministic choice in pGCL: The
probability that some property is established by the choice between programs a
and b cannot be guaranteed to be any higher than either the probability under a, or
that under b.

The original curve, P, is trivially convex—it is linear. Also, both ¢ and u, and the
operator 'l preserve convexity. A probabilistic choice will also preserve it. The
preservation of convexity is a property of sub-additive transformers that respect
scaling. Note the form of the definition of convexity:

Q) + QM) _
Tew

Tty

v, .
T,y 2)
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Were we to replace () by some sub-additive transformer v, and = and y by expec-
tations R and S, the equivalent expression:

vR+vS R+ S

<
o < u( )
Can be rewritten, using scaling, to:
1 1
§(vR +09) < §U(R +.5)

Which holds everywhere exactly when v is sub-additive i.e.:

vR+vS <v(R+S5)

lemma sub-addl[intro]:
[ AP Q s. [ sound P; sound Q | =
tPs+tQs<t(A\s"Ps'+Qs')s] = sub-addt
(proof )

lemma sub-addl2:
[AP Q. [ sound P; sound Q | =
As.tPs+tQstt(As. Ps+Q0s)] =
sub-add t

(proof)

lemma sub-addD|dest]:
[ sub-add t; sound P; sound Q| = tPs+tQs<t(As."Ps'+Qs')s
(proof)

lemma equiv-sub-add:
fixes 1::('s = real) = 's = real
assumes eq: equiv-trans t u
and sa: sub-add t
shows sub-add u

(proof)
Sublinearity and feasibility imply sub-additivity.

lemma sublinear-subadd.:
fixes 1::('s = real) = 's = real
assumes slt: sublinear t
and fi: feasible t
shows sub-add t

(proof)

A few properties following from sub-additivity:

lemma standard-negate:
assumes ht: healthy t
and sat: sub-add t
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shows ¢ «P» s + t «N P» s < |
(proof)

lemma sub-add-sum:
fixes r::'s trans and S::'a set
assumes sat: sub-add t
and ht: healthy t
and sP: Ax. sound (P x)
shows (Ax. Y yeS. 1t (Py)x) <t (M. > yeS. Pyx)
(proof)

lemma sub-add-guard-split:
fixes 7::'s::finite trans and P::’s expect and s::'s
assumes sat: sub-add t
and ht: healthy t
and sP: sound P
shows (Zye{s. GS}. Pysxt«Az.z=y» S) +
O-ye{s.°Gs}.Pyxt«Az.z=y»s)<tPs
(proof)

Sub-distributivity

definition sub-distrib ::
(('s = real) = ('s = real)) = bool
where
sub-distrib t <— (VP s.sound P —tPso 1<t (As". Ps'S1)s)

lemma sub-distribl[intro]:
[APs.soundP=tPsS1<t(As'.Ps'©1I)s] = sub-distrib t

(proof)

lemma sub-distribI2:
[AP-sound P = Xs.tPs© 1t (As. Ps© 1) ]| = sub-distrib t

(proof)

lemma sub-distribD|dest):
[ sub-distrib t; sound P] = tPs© 1<t (As". Ps'©1I)s
(proof)

lemma equiv-sub-distrib:
fixes 1::('s = real) = 's = real
assumes eq: equiv-trans t u
and sd: sub-distrib t
shows sub-distrib u

(proof)
Sublinearity implies sub-distributivity:

lemma sublinear-sub-distrib:
fixes t::('s = real) = 's = real
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assumes slt: sublinear t
shows sub-distrib t

(proof)

Healthiness, sub-additivity and sub-distributivity imply sublinearity. This is how
we usually show sublinearity.

lemma sd-sa-sublinear:
fixes 1::('s = real) = 's = real
assumes sdt: sub-distrib t and sat: sub-add t and ht: healthy t
shows sublinear t

(proof)

Sub-conjunctivity

definition

sub-conj :: (('s = real) = 's = real) = bool
where

sub-conj t =Y P Q. (sound P A\ sound Q) —

tP&&t Okt (P && Q)

lemma sub-conjl|intro):
[ AP Q. [ sound P; sound Q | =
tP&&tQFt (P && Q)] = sub-conjt
(proof)

lemma sub-conjD|dest|:
[ sub-conj t; sound P; sound Q] =t P && t Q 1t (P && Q)

(proof)

lemma sub-conj-wp-twice:
fixes f::'s = (('s = real) = 's = real)
assumes all: V' s. sub-conj (f's)
shows sub-conj (AP s.fs P's)

(proof)
Sublinearity implies sub-conjunctivity:

lemma sublinear-sub-conj:
fixes 1::('s = real) = 's = real
assumes sit: sublinear t
shows sub-conj t

(proof)

Sublinearity under equivalence

Sublinearity is preserved by equivalence.

lemma equiv-sublinear:
[ equiv-trans t u; sublinear t; healthy t | = sublinear u

(proof )
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3.2.4 Determinism

Transformers which are both additive, and maximal among those that satisfy fea-
sibility are deterministic, and will turn out to be maximal in the refinement order.

Additivity

Full additivity is not generally satisfied. It holds for (sub-)probabilistic transform-
ers however.

definition
additive :: (('a = real) = 'a = real) = bool
where
additive t =Y P Q. (sound P N\ sound Q) —
t(As.Ps+Qs)=(Ns.tPs+1Q5s)

lemma additiveD:
[ additive t; sound P; sound Q| =t (As. Ps+ Qs)=(As.tPs+1Qs)
(proof )

lemma additivelintro]:
[ AP Qs. [ sound P; sound Q] =t (As. Ps+ Qs)s=tPs+t0s] =
additive t
(proof)

Additivity is strictly stronger than sub-additivity.

lemma additive-sub-add:
additive t = sub-add t

(proof)

The additivity property extends to finite summation.

lemma additive-sum:
fixes S::'s set
assumes additive: additive t
and healthy: healthy t
and finite: finite S
and sPz:  Az. sound (P z)
shows ¢ (Ax. > yeS. Pyx) = (Ax. Y yeS.t (Py) x)
(proof )

An additive transformer (over a finite state space) is linear: it is simply the weighted
sum of final expectation values, the weights being the probability of reaching a
given final state. This is useful for reasoning using the forward, or “gambling
game” interpretation.

lemma additive-delta-split:
fixes ::('s::finite = real) = 's = real
assumes additive: additive t
and ht: healthy t
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and sP: sound P
shows t P x = (D y€UNIV. Py x t «A\z. 2 = y» X)
(proof )

We can group the states in the linear form, to split on the value of a predicate
(guard).

lemma additive-guard-split:
fixes 1::('s::finite = real) = 's = real
assumes additive: additive t
and ht: healthy t
and sP: sound P
showst Px= (D ye{s. Gs}.Pyxt«dz.z=y»x)+
Ooye{s. 2 Gs}.Pyxt«Az.2=y»x)
(proof )

Maximality

definition

maximal :: (('a = real) = 'a = real) = bool
where

maximal t =Vc.0<c¢c—1(A-.¢c)=(\.¢)

lemma maximall[intro):
[Ac.0<c=t(\.c)=(I.c)] = maximal t
(proof)

lemma maximalD|dest|:
[ maximalt; 0 <c] =t (A-.c)=(A-.¢)
(proof)

A transformer that is both additive and maximal is deterministic:

definition determ :: (('a = real) = 'a = real) = bool
where
determ t = additive t N maximal t

lemma determl[intro|:
[ additive t; maximal t | = determ t

(proof)

lemma determ-additiveD|intro):
determ t = additive t

(proof)

lemma determ-maximalD|[intro]:
determ t => maximal t

(proof)

For a fully-deterministic transformer, a transformed standard expectation, and its
transformed negation are complementary.
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lemma determ-negate:
assumes determ: determ t
shows t «P» s +t «N P»s=1

(proof)

3.2.5 Modular Reasoning

The emphasis of a mechanised logic is on automation, and letting the computer
tackle the large, uninteresting problems. However, as terms generally grow expo-
nentially in the size of a program, it is still essential to break up a proof and reason
in a modular fashion.

The following rules allow proof decomposition, and later will be incorporated into
a verification condition generator.

lemma entails-combine:
assumes wpl: Pt R
and wp2: Q¢S
and sc: sub-conj t
and sR: sound R
and sS: sound S
shows P && Ot (R && )

(proof)

These allow mismatched results to be composed

lemma entails-strengthen-post:
[ Pt t Q; healthy t; sound R; Q = R; sound Q| = P+t R
(proof)

lemma entails-weaken-pre:
[OFtR;PHQ] = Pk ¢R
(proof)

This rule is unique to pGCL. Use it to scale the post-expectation of a rule to ’fit
under’ the precondition you need to satisfy.
lemma entails-scale:
assumes wp: P ¢t Q and h: healthy t
and sQ: sound Q and pos: 0 < ¢
shows (As.cx Ps) 1 (As.cxQs)
(proof)

3.2.6 Transforming Standard Expectations

Reasoning with standard expectations, those obtained by embedding a predicate,
is often easier, as the analogues of many familiar boolean rules hold in modified
form.

One may use a standard pre-expectation as an assumption:

lemma use-premise:



3.3. INDUCTION 45

assumes h: healthy t and wP: \s. Ps = 1 <t «Q» s
shows «P» -t «O»

(proof)

The other direction works too.

lemma fold-premise:
assumes ht: healthy t
and wp: «P» It «Q»
shows Vs. Ps — 1 <t «Q»s

(proof)

Predicate conjunction behaves as expected:

lemma conj-post:
[Ph1«hs. Qs ARs» healthyt] = Pt t «O»

(proof)

Similar to [healthy ?t; N\s. 2P s = 1 < 2t « ?Q » 5| = « ?P» = 2t « ?Q », but
more general.

lemma entails-pconj-assumption:
assumes f: feasible t and wP: \s. Ps = Qs <tRs
and uQ: unitary Q and uR: unitary R
shows «P» && QO+t R

(proof)

end

3.3 Induction

theory Induction
imports Expectations Transformers
begin

3.3.1 The Lattice of Expectations

Defining recursive (or iterative) programs requires us to reason about fixed points

on the semantic objects, in this case expectations. The complication here, com-
pared to the standard Knaster-Tarski theorem (for example, as shown in HOL.Inductive),
is that we do not have a complete lattice.

Finding a lower bound is easy (it’s A-. 0), but as we do not insist on any global
bound on expectations (and work directly in HOL'’s real type, rather than extending
it with a point at infinity), there is no top element. We solve the problem by defining
the least (greatest) fixed point, restricted to an internally-bounded set, allowing us
to substitute this bound for the top element. This works as long as the set contains
at least one fixed point, which appears as an extra assumption in all the theorems.

This also works semantically, thanks to the definition of healthiness. Given a
healthy transformer parameterised by some sound expectation: ¢. Imagine that we
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wish to find the least fixed point of ¢ P. In practice, ¢ is generally doubly healthy,
that is V P. sound P — healthy (t P) and V Q. sound Q — healthy (AP. t P Q).
Thus by feasibility, ¢ P Q must be bounded by bound-of P. Thus, as by definition
x <t P x for any fixed point, all must lie in the set of sound expectations bounded
above by \-. bound-of P.

definition Inf-exp :: s expect set = s expect
where Inf-exp S = (As. Inf {fs |f.f € S})

lemma Inf-exp-lower:
[PeS;VPES. nneg P| = Inf-exp S <P
(proof )

lemma Inf-exp-greatest:
[S#{};VPES.Q<P]= Q<InfexpS
(proof)

definition Sup-exp :: 's expect set = s expect
where Sup-exp S = (if S = {} then \s. 0 else (As. Sup {fs |f.f € S}))

lemma Sup-exp-upper:
[P € S;VPES. bounded-by b P | =—> P < Sup-exp S
(proof)

lemma Sup-exp-least:
[VPES. P < Q;nneg Q] = Sup-exp S < Q
(proof)

lemma Sup-exp-sound:
assumes sS: \P. PES = sound P
and bS: \P. PES = bounded-by b P
shows sound (Sup-exp S)
{proof )

definition [fp-exp :: 's trans = s expect
where [fp-exp t = Inf-exp {P. sound P \ t P < P}

lemma [fp-exp-lowerbound:
[tP < P;sound P| = Ilfp-expt < P
(proof)

lemma [fp-exp-greatest:
[AP-[tP<P;sound P]| = Q < P; sound Q; t Rt R; sound R | = Q < lfp-exp t
(proof)

lemma feasible-Ifp-exp-sound:
feasible t = sound (Ifp-exp t)

(proof)
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lemma [fp-exp-sound:
assumes fR: t R - R and sR: sound R
shows sound (Ifp-exp t)

(proof)

lemma [fp-exp-bound:
(AP. unitary P => unitary (t P)) = bounded-by 1 (Ifp-exp t)

(proof)

lemma [fp-exp-unitary:
(A\P. unitary P = unitary (t P)) = unitary (Ifp-exp t)
(proof)

lemma [fp-exp-lemma2:
fixes 1::'s trans
assumes st: A\P. sound P = sound (t P)
and mt: mono-trans t
and fR: t Rt R and sR: sound R
shows ¢ (Ifp-exp t) < lfp-exp t
(proof)

lemma [fp-exp-lemma3:
assumes st: \P. sound P —> sound (t P)
and mt: mono-trans t
and fR: t R+ R and sR: sound R
shows Ifp-exp t <t (Ifp-exp t)
(proof)

lemma [fp-exp-unfold:
assumes nt: \P. sound P => sound (t P)
and mt: mono-trans t
and fR: t R~ R and sR: sound R
shows Ilfp-exp t = t (Ifp-exp 1)
(proof)

definition gfp-exp :: 's trans = s expect
where gfp-exp t = Sup-exp {P. unitary P \ P <t P}

lemma gfp-exp-upperbound:
[P<tP;unitaryP]| = P < gfp-exp t
(proof )

lemma gfp-exp-least:

[AP. [P <tP;unitary P]| = P < Q; unitary Q | = gfp-expt < Q

(proof)

lemma gfp-exp-bound:
(A\P. unitary P => unitary (¢t P)) = bounded-by 1 (gfp-exp t)
(proof)

47
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lemma gfp-exp-nnegliff):
nneg (gfp-exp t)
{proof )

lemma gfp-exp-unitary:
(A\P. unitary P = unitary (t P)) = unitary (gfp-exp t)
(proof)

lemma gfp-exp-lemma2:
assumes ft: A\P. unitary P = unitary (¢ P)
and mr: \P Q. [ unitary P; unitary Q; P+ Q] = tPF1tQ
shows gfp-exp t <1t (gfp-exp 1)
(proof)

lemma gfp-exp-lemma3:
assumes ft: A\P. unitary P = unitary (¢ P)
and mr: \P Q. [ unitary P; unitary Q; P+ Q] = tPF1tQ
shows 7 (gfp-exp t) < gfp-exp t
(proof)

lemma gfp-exp-unfold:

(A\P. unitary P = unitary (t P)) = (AP Q. [ unitary P; unitary Q; P+ Q] =t P}
Q) =

efp-exp t =t (gfp-exp 1)

(proof)

3.3.2 The Lattice of Transformers

In addition to fixed points on expectations, we also need to reason about fixed
points on expectation transformers. The interpretation of a recursive program in
pGCL is as a fixed point of a function from transformers to transformers. In con-
trast to the case of expectations, healthy transformers do form a complete lattice,
where the bottom element is A- -. 0, and the top element is the greatest allowed by
feasibility: AP -. bound-of P.

definition Inf-trans :: 's trans set = 's trans
where Inf-trans S = (AP. Inf-exp {t P |t. t € S})

lemma Inf-trans-lower:
[t €S;VueS.VP. sound P —s sound (u P) | = le-trans (Inf-trans S) t

(proof)

lemma Inf-trans-greatest:
[S#{};VteS.VP.le-trans ut | = le-trans u (Inf-trans S)

(proof)

definition Sup-trans :: 's trans set = s trans
where Sup-trans S = (AP. Sup-exp {t P |t. t € S})
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lemma Sup-trans-upper:
[t € S;YueS. VY P. unitary P — unitary (u P) | = le-utrans t (Sup-trans S)

(proof)

lemma Sup-trans-upper2:
[t €S;YueS. VP. (nneg P A\ bounded-by b P) — (nneg (u P) A bounded-by b (u P));
nneg P; bounded-by b P | = t P\~ Sup-trans S P

(proof)

lemma Sup-trans-least:
[ V€S. le-utrans t u; \P. unitary P = unitary (u P) | = le-utrans (Sup-trans S) u

(proof)

lemma Sup-trans-least2:
[V€S.V P. nneg P — bounded-by b P — t Pt u P;
Yu€S. Vv P. (nneg P A bounded-by b P) — (nneg (u P) A bounded-by b (u P));
nneg P; bounded-by b P; \P. [ nneg P; bounded-by b P | = nneg (u P) | =
Sup-trans S P+ u P
(proof)

lemma feasible-Sup-trans:
fixes S::'s trans set
assumes fS: Vt€S. feasible t
shows feasible (Sup-trans S)

(proof)

definition [fp-trans :: ('s trans = 's trans) = 's trans
where [fp-trans T = Inf-trans {t. (¥ P. sound P — sound (t P)) A le-trans (Tt) t}

lemma [fp-trans-lowerbound:
[ le-trans (T t) t; \P. sound P => sound (t P) | = le-trans (Ifp-trans T) t

(proof)

lemma [fp-trans-greatest:
[ A\t P. [ le-trans (T t) t; \P. sound P —> sound (¢ P) | => le-trans u t;
AP. sound P = sound (v P); le-trans (Tv) v ] =
le-trans u (lfp-trans T)

(proof)

lemma [fp-trans-sound.:
fixes P Q::'s expect
assumes sP: sound P
and fv: le-trans (T v) v
and sv: \P. sound P = sound (v P)
shows sound (Ifp-trans T P)

(proof)

lemma [fp-trans-unitary:
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fixes P Q::'s expect
assumes uP: unitary P

and fv: le-trans (T v) v

and sv: A\P. sound P = sound (v P)

and fT: le-trans (T (AP s. bound-of P)) (AP s. bound-of P)
shows unitary (Ifp-trans T P)

(proof)

lemma [fp-trans-lemma?2:
fixes v::'s trans
assumes mono: \t u. [ le-trans t u; \P. sound P => sound (t P);
NAP. sound P = sound (u P) | = le-trans (T't) (T u)

and nT: At P. [ AO. sound Q = sound (t Q); sound P | = sound (T t P)
and fv: le-trans (T v) v
and sv: AP. sound P => sound (v P)

shows le-trans (T (Ifp-trans T)) (Ifp-trans T)

(proof )

lemma Ifp-trans-lemma3:
fixes v::'s trans
assumes mono: Nt u. [ le-trans t u; \P. sound P => sound (t P);
AP. sound P => sound (u P) | = le-trans (T't) (T u)

and sT: At P. [ AQ. sound Q = sound (t Q); sound P | = sound (Tt P)
and fv: le-trans (T v) v
and sv: AP. sound P = sound (v P)

shows le-trans (Ifp-trans T) (T (Ifp-trans T))

{proof)

lemma [fp-trans-unfold:
fixes P::'s expect
assumes mono: Nt u. [ le-trans t u; \P. sound P = sound (t P);
NP sound P = sound (u P) | = le-trans (T't) (T u)

and sT: At P. [ AQ. sound Q = sound (t Q); sound P | = sound (Tt P)
and fv: le-trans (Tv) v
and sv: AP. sound P => sound (v P)

shows equiv-trans (Ifp-trans T) (T (lfp-trans T))

(proof)

definition gfp-trans :: ('s trans = 's trans) = 's trans
where gfp-trans T = Sup-trans {t. (¥ P. unitary P — unitary (t P)) A le-utrans t (Tt)}

lemma gfp-trans-upperbound:
[ le-utrans t (T t); \P. unitary P = unitary (t P) | = le-utrans t (gfp-trans T)

(proof)

lemma gfp-trans-least:
[ At. [ le-utrans t (T t); \P. unitary P => unitary (t P) | = le-utrans t u;
AP. unitary P = unitary (u P) | =
le-utrans (gfp-trans T) u
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(proof)

lemma gfp-trans-unitary:
fixes P::'s expect
assumes uP: unitary P
shows unitary (gfp-trans T P)

(proof)

lemma gfp-trans-lemma?2:
assumes mono: \t u. [ le-utrans t u; \P. unitary P = unitary (t P);
AP. unitary P = unitary (u P) | = le-utrans (T t) (T u)
and hT: At P. [ \Q. unitary Q = unitary (¢ Q); unitary P | = unitary (T t P)
shows le-utrans (gfp-trans T) (T (gfp-trans T))
(proof)

lemma gfp-trans-lemma3:
assumes mono: \t u. [ le-utrans t u; \P. unitary P = unitary (¢ P);
NP. unitary P = unitary (u P) | = le-utrans (T t) (T u)
and hT: At P. [ \Q. unitary Q = unitary (t Q); unitary P | => unitary (T t P)
shows le-utrans (T (gfp-trans T)) (gfp-trans T)

(proof)

lemma gfp-trans-unfold:
assumes mono: \t u. [ le-utrans t u; \P. unitary P => unitary (t P);
\P. unitary P = unitary (u P) | = le-utrans (T't) (T u)
and hT: At P. [ AQ. unitary Q = unitary (¢ Q); unitary P | = unitary (T t P)
shows equiv-utrans (gfp-trans T) (T (gfp-trans T))
(proof)

3.3.3 Tail Recursion

The least (greatest) fixed point of a tail-recursive expression on transformers is
equivalent (given appropriate side conditions) to the least (greatest) fixed point on
expectations.

lemma gfp-pulldown:
fixes P::’s expect
assumes tailcall: A\u P. unitary P=—=Tu P =1tP (uP)
and fT: Nt P. [ NQ. unitary Q = unitary (t Q); unitary P | = unitary (Tt P)
and ft: AP Q. unitary P = unitary Q = unitary (t P Q)
and mz: AP O R. [ unitary P; unitary Q; unitary R; QF R] = tP QO+t PR
and uP: unitary P
and monoT: At u. [ le-utrans t u; \P. unitary P => unitary (t P);
\P. unitary P = unitary (u P) | = le-utrans (T't) (T u)
shows gfp-trans T P = gfp-exp (t P) (is ?’X P = ?Y P)
(proof)

lemma [fp-pulldown:
fixes P::’s expect and t::'s expect = s trans
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and T::'s trans = s trans

assumes tailcall: A\u P. sound P=—=Tu P =1tP (uP)
and sz: AP Q. sound P => sound Q = sound (t P Q)
and mt: A\P. sound P => mono-trans (t P)
and monoT: N\t u. [ le-trans t u; \P. sound P = sound (t P);

NAP. sound P = sound (u P) | = le-trans (T't) (T u)

and nT: At P. [ AO. sound Q = sound (t Q); sound P | = sound (T t P)
and fv: le-trans (T v) v
and sv: AP. sound P => sound (v P)
and sP: sound P

shows [fp-trans T P = lfp-exp (¢t P) (is ?2X P = ?Y P)

(proof )

definition Inf-utrans :: 's trans set = 's trans
where Inf-utrans S = (if S = {} then AP s. 1 else Inf-trans S)

lemma Inf-utrans-lower:
[t € S;VteS. VY P. unitary P — unitary (t P) | = le-utrans (Inf-utrans S) t

(proof)

lemma Inf-utrans-greatest:
[ \P. unitary P = unitary (t P); Vu€S. le-utrans t u | = le-utrans t (Inf-utrans S)

(proof)

end



Chapter 4

The pGCL Language

4.1 A Shallow Embedding of pGCL in HOL

theory Embedding imports Misc Induction begin

4.1.1 Core Primitives and Syntax

A pGCL program is embedded directly as its strict or liberal transformer. This
is achieved with an additional parameter, specifying which semantics should be
obeyed.

type-synonym s prog = bool = ('s = real) = (s = real)

Abort either always fails, AP s. 0, or always succeeds, AP s. I.

definition Abort :: 's prog
where Abort = \ab P s. if ab then 0 else 1

Skip does nothing at all.

definition Skip :: 's prog
where Skip = Xab P. P

Apply lifts a state transformer into the space of programs.

definition Apply :: ('s = 's) = 's prog
where Applyf=XabPs. P (fs)

Seq is sequential composition.

definition Seq :: 's prog = 's prog = 's prog
(infixl ;> 59)
where Seqab = (\ab.aabob ab)
PC is probabilistic choice between programs.
definition PC :: s prog = (s = real) = 's prog = 's prog
(- . - [58,57,57] 57)

53
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where PCaPb=MXabQs.PsxaabQs+ (I —Ps)xbabQs

DC is demonic choice between programs.

definition DC :: 's prog = 's prog = s prog («-[| - [58,57] 57)
where DCab=MXabQs.min(aabQs) (babQs)

AC is angelic choice between programs.

definition AC :: s prog = s prog = 's prog («<- || - [58,57] 57)
where ACab=MXabQs.max(aabQs) (babQs)

Embed allows any expectation transformer to be treated syntactically as a program,
by ignoring the failure flag.

definition Embed :: 's trans = 's prog
where Embed t = (\ab. 1)

Mu is the recursive primitive, and is either then least or greatest fixed point.

definition Mu :: ('s prog = 's prog) = 's prog (binder <«u> 50)
where Mu(T) = (\ab. if ab then lfp-trans (M\t. T (Embed t) ab)
else gfp-trans (A\t. T (Embed t) ab))

repeat expresses finite repetition

primrec

repeat :: nat = 'a prog = 'a prog
where

repeat 0 p = Skip |

repeat (Suc n) p =p ;; repeat n p

SetDC is demonic choice between a set of alternatives, which may depend on the
state.

definition SetDC :: (‘a = s prog) = ('s = 'a set) = 's prog
where SetDC fS = Xab Ps. Inf (Aa.faab Ps) ‘Ss)

syntax -SetDC :: ptirn => ('s => 'a set) => 's prog => 's prog

({1-€-./ - 100)
syntax-consts -SetDC == SetDC
translations [ |x€S. p == CONST SetDC (%x. p) S

The above syntax allows us to write [ |x€S. Apply f

SetPC is probabilistic choice from a set. Note that this is only meaningful for
distributions of finite support.

definition

SetPC :: ('a = 's prog) = ('s = 'a = real) = 's prog
where

SetPCfp=MXabPs.> acsupp (ps).psa*xfaabPs

Bind allows us to name an expression in the current state, and re-use it later.
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definition
Bind :: ('s = 'a) = (‘a = 's prog) = 's prog
where
Bindgfab=MPs.leta=gsinfaabPs

This gives us something like let syntax

syntax -Bind :: ptirn => ('s => 'a) => s prog => 's prog
(- is - in - [55,55,55]55)

syntax-consts -Bind == Bind

translations x is fin a => CONST Bind f (%x. a)

definition flip :: (‘a= b= 'c)='b="a="c
where [simp): flip f = (\b a.fab)

The following pair of translations introduce let-style syntax for SetPC and SetDC,
respectively.

syntax -PBind :: pttrn => ('s => real) => 's prog => 's prog
(<bind - at - in - [55,55,55]55)
syntax-consts -PBind == SetPC
translations bind x at p in a => CONST SetPC (%x. a) (CONST flip (%x. p))

syntax -DBind :: pttrn => (s => 'a set) = 's prog => s prog
(<bind - from - in -> [55,55,55]55)

syntax-consts -DBind == SetDC

translations bind x from S in a => CONST SetDC (%x. a) S

The following syntax translations are for convenience when using a record as the
state type.

syntax
-assign :: ident => 'a => 's prog (<- :== -> [1000,900]900)
(ML)

syntax
-SetPC :: ident => ('s => 'a => real) => 's prog
(<choose - at -> [66,66]66)
syntax-consts
-SetPC = SetPC
(ML)

syntax

-set-dc :: ident => ('s => 'a set) => 's prog (<- :€ -> [66,66]66)
syntax-consts

-set-dc = SetDC
(ML)

These definitions instantiate the embedding as either weakest precondition (True)
or weakest liberal precondition (False).

syntax
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-set-dc-UNIV :: ident => 's prog (<any -> [66]66)
syntax-consts

-set-dc-UNIV == SetDC
translations

-set-dc-UNIV x => -set-dc x (%-. CONST UNIV)

definition

wp :: s prog = s trans
where

wp pr = pr True

definition

wlip :: 's prog = 's trans
where

wlp pr = pr False

If-Then-Else as a degenerate probabilistic choice.
abbreviation(inpur)
if-then-else :: ['s = bool, 's prog, 's prog] = 's prog
(If - Then - Else -> 58)
where
If PThen a Else b ==a p,P b

Syntax for loops

abbreviation
do-while :: ['s = bool, 's prog| = 's prog
(o~ —// (4-) ] fodb)
where

do-while P a = p x. If P Then a ;; x Else Skip

THE PGCL LANGUAGE

4.1.2 Unfolding rules for non-recursive primitives

lemma eval-wp-Abort:
wp Abort P = ()s. 0)

(proof)

lemma eval-wip-Abort:
wlp Abort P = (As. 1)

(proof)
lemma eval-wp-Skip:
wp Skip P = P
(proof)
lemma eval-wip-Skip:
wlp Skip P =P
(proof )

lemma eval-wp-Apply:
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wp (Applyf) P=Pof
(proof)

lemma eval-wip-Apply:
wip (Applyf) P=Pof
{proof)

lemma eval-wp-Seq:
wp (a;;b) P=(wpaowpb) P
(proof)

lemma eval-wlp-Seq:
wlp (a ;; b) P = (wlp a o wip b) P
(proof )

lemma eval-wp-PC:
wp(ag®b)P=(Xs.Qs*xwpaPs+ (I —Qs)xwpbPs)
(proof)

lemma eval-wip-PC:
wip (a g b) P=(As. Qs*wlpaPs+ (I —Qs)*wlpbPs)
(proof)

lemma eval-wp-DC:
wp (a[] b) P= (As.min (wpaPs) (wpbPs))
(proof)

lemma eval-wip-DC:
wip (a[] b) P= (\s. min (wlpa Ps) (wip b Ps))
(proof)

lemma eval-wp-AC:
wp (a|] b) P=(As.max (wpaPs) (wpbPs))
(proof )

lemma eval-wip-AC:
wip (a| | b) P = (As. max (wlpa Ps) (wlp b P s))
(proof )

lemma eval-wp-Embed:
wp (Embed t) =t
(proof)

lemma eval-wip-Embed:
wip (Embed t) =t
(proof)

lemma eval-wp-SetDC:
wp (SetDCp S) Rs =Inf (Aa. wp (pa) Rs) “Ss)
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(proof)

lemma eval-wip-SetDC:
wlp (SetDCp S) R s = Inf (Ma. wlp (pa)Rs) “Ss)
(proof)

lemma eval-wp-SetPC:
wp (SetPCfp) P = (Xs. > a€supp (ps).psaxwp (fa)Ps)
(proof)

lemma eval-wlp-SetPC:
wip (SetPC fp) P = (As. > acsupp (ps).psax*wlp (fa) Ps)
(proof)

lemma eval-wp-Mu:
wp (ut. T't) = lfp-trans (At. wp (T (Embed t)))

(proof)

lemma eval-wilp-Mu:
wip (pt. Tt) = gfp-trans (\t. wip (T (Embed t)))

(proof)

lemma eval-wp-Bind:

wp (Bind gf) = (APs.wp (f (gs)) Ps)
(proof)

lemma eval-wlp-Bind.:

wip (Bind g f) = (AP s.wip (f (g s)) P s)
(proof)

Use simp add:wp_eval to fully unfold a program fragment

lemmas wp-eval = eval-wp-Abort eval-wlp-Abort eval-wp-Skip eval-wlp-Skip
eval-wp-Apply eval-wip-Apply eval-wp-Seq eval-wlp-Seq
eval-wp-PC eval-wlp-PC eval-wp-DC eval-wlp-DC
eval-wp-AC eval-wlp-AC
eval-wp-Embed eval-wlp-Embed eval-wp-SetDC eval-wlp-SetDC
eval-wp-SetPC eval-wip-SetPC eval-wp-Mu eval-wlp-Mu
eval-wp-Bind eval-wlp-Bind

lemma Skip-Seq:
Skip ;A=A
(proof)

lemma Seq-Skip:
A Skip=A
(proof)

Use these as simp rules to clear out Skips

lemmas skip-simps = Skip-Seq Seq-Skip
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end

4.2 Healthiness

theory Healthiness imports Embedding begin

4.2.1 The Healthiness of the Embedding

Healthiness is mostly derived by structural induction using the simplifier. Abort,
Skip and Apply form base cases.

lemma healthy-wp-Abort:
healthy (wp Abort)
(proof )

lemma nearly-healthy-wlp-Abort:
nearly-healthy (wlp Abort)

(proof)

lemma healthy-wp-Skip:
healthy (wp Skip)

(proof)

lemma nearly-healthy-wlip-Skip:
nearly-healthy (wip Skip)
(proof)

lemma healthy-wp-Seq:
fixes r::'s prog and u
assumes ht: healthy (wp t) and hu: healthy (wp u)
shows healthy (wp (t ;; u))

(proof)

lemma nearly-healthy-wlp-Seq:
fixes r::'s prog and u
assumes /it: nearly-healthy (wlp t) and hu: nearly-healthy (wlp u)
shows nearly-healthy (wip (t ;; u))

(proof)

lemma healthy-wp-PC:
fixes f::'s prog
assumes /if: healthy (wp f) and hg: healthy (wp g)
and uP: unitary P
shows healthy (wp (f p® g))

(proof)

lemma nearly-healthy-wip-PC:
fixes f::'s prog
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assumes Af: nearly-healthy (wip f)
and hg: nearly-healthy (wip g)
and uP: unitary P

shows nearly-healthy (wip (f p® g))

{proof)

lemma healthy-wp-DC:
fixes f::'s prog
assumes /if: healthy (wp f) and hg: healthy (wp g)
shows healthy (wp (f[] g))

(proof )

lemma nearly-healthy-wilp-DC:
fixes f::s prog
assumes /if: nearly-healthy (wip f)
and hg: nearly-healthy (wip g)
shows nearly-healthy (wip (f ] g))

{proof)

lemma healthy-wp-AC:
fixes f::'s prog
assumes Af: healthy (wp f) and hg: healthy (wp g)
shows healthy (wp (f || g))

(proof )

lemma nearly-healthy-wip-AC:
fixes f::'s prog
assumes /f : nearly-healthy (wip f)
and hg: nearly-healthy (wip g)
shows nearly-healthy (wip (f | | g))

{proof)

lemma healthy-wp-Embed:
healthy t => healthy (wp (Embed 1))

(proof)

lemma nearly-healthy-wlp-Embed:
nearly-healthy t = nearly-healthy (wlp (Embed t))

(proof)

lemma healthy-wp-repeat:
assumes /i-a: healthy (wp a)
shows healthy (wp (repeat n a)) (is ?X n)

(proof)

lemma nearly-healthy-wlp-repeat:
assumes i-a: nearly-healthy (wip a)
shows nearly-healthy (wip (repeat n a)) (is ?X n)

(proof)
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lemma healthy-wp-SetDC:
fixes prog::'b = 'a prog and S::'a = 'b set
assumes healthy: A\xs.x € S's = healthy (wp (prog x))
and nonempty: \s. 3x. x €S's
shows healthy (wp (SetDC prog S)) (is healthy ?T)

(proof)

lemma nearly-healthy-wip-SetDC:
fixes prog::'b = 'a prog and S::'a = 'b set
assumes healthy: \xs.x € S s = nearly-healthy (wlp (prog x))
and nonempty: A\s. 3x.x €S's
shows nearly-healthy (wlp (SetDC prog S)) (is nearly-healthy ?T)
(proof)

lemma healthy-wp-SetPC:
fixes p::'s = ‘a = real
and f::'a = 's prog
assumes healthy: \a s. a € supp (p s) = healthy (wp (fa))
and sound: \\s. sound (p s)
and sub-dist: \s. (3 acsupp (ps).psa) <1
shows healthy (wp (SetPC fp)) (is healthy ?X)
(proof )

lemma nearly-healthy-wlp-SetPC:
fixes p::'s = 'a = real
and f::'a = 's prog
assumes healthy: \a s. a € supp (p s) = nearly-healthy (wilp (fa))
and sound: \\s. sound (p s)
and sub-dist: N\s. (> acsupp (ps).psa) <1
shows nearly-healthy (wip (SetPC f p)) (is nearly-healthy ?X)
(proof)

lemma healthy-wp-Apply:
healthy (wp (Apply f))
{(proof)

lemma nearly-healthy-wip-Apply:

nearly-healthy (wip (Apply f))
(proof)

lemma healthy-wp-Bind.:
fixes f::'s = a
assumes hsub: \s. healthy (wp (p (fs)))
shows healthy (wp (Bind fp))

(proof)

lemma nearly-healthy-wlp-Bind:
fixes f::'s = a
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assumes hsub: \s. nearly-healthy (wip (p (fs)))
shows nearly-healthy (wlp (Bind f p))

(proof)

4.2.2 Healthiness for Loops

lemma wp-loop-step-mono:
fixes 7 u::'s trans
assumes hb: healthy (wp body)
and le: le-trans t u
and hr: \P. sound P => sound (t P)
and hu: \P. sound P => sound (u P)
shows le-trans (wp (body ;; Embed t i ,,® Skip))
(Wp (bOdy ;; Embed u G»D Sklp))
(proof )

lemma wip-loop-step-mono:
fixes 7 u::'s trans
assumes mb: nearly-healthy (wip body)
and le: le-utrans t u
and ht: \P. unitary P = unitary (t P)
and hu: \P. unitary P = unitary (u P)
shows le-utrans (wlp (body ;; Embed t  ¢; ,@ Skip))
(wip (body ;; Embed u ¢ ,&® Skip))
(proof )

For each sound expectation, we have a pre fixed point of the loop body. This lets
us use the relevant fixed-point lemmas.

lemma [fp-loop-fp:
assumes hb: healthy (wp body)
and sP: sound P
shows \s. «G» s x wp body (\s. bound-of P) s + «N G» s x P s = \s. bound-of P
(proof )

lemma [fp-loop-greatest:

fixes P::'s expect

assumes [b: AR. \s. «G» s * wp body Rs + «N G» s * P st~ R = sound R =— Q + R
and hb: healthy (wp body)
and sP: sound P
and sQ: sound Q

shows Q = Ifp-exp (AQ s. «G» s * wp body Q s + «N G» s x Ps)

(proof)

lemma [fp-loop-sound.:
fixes P::'s expect
assumes hb: healthy (wp body)
and sP: sound P
shows sound (lfp-exp (AQ s. «G» s x wp body Q s + «N G» s % P s))
(proof)
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lemma wip-loop-step-unitary:
fixes 7 u::'s trans
assumes hb: nearly-healthy (wlp body)
and ht: \P. unitary P = unitary (t P)
and uP: unitary P
shows unitary (wip (body ;; Embed t ¢ ,,& Skip) P)
(proof)

lemma wp-loop-step-sound:
fixes 7 u::'s trans
assumes /1b: healthy (wp body)
and ht: \P. sound P => sound (t P)
and sP: sound P
shows sound (wp (body ;; Embed t  ; ,,® Skip) P)

(proof)

This gives the equivalence with the alternative definition for loops|
, , §7, p. 198, footnote 23].

lemma wip-Loop1:
fixes body :: 's prog
assumes unitary: unitary P
and healthy: nearly-healthy (wip body)
shows wip (do G — body od) P =
gfp-exp (AQ s. «G» s * wip body Q s + «N G» s * P s)
(is ?X = gfp-exp (?Y P))
(proof)

lemma wp-loop-sound.:
assumes sP: sound P
and hb: healthy (wp body)
shows sound (wp do G — body od P)
(proof)

Likewise, we can rewrite strict loops.

lemma wp-Loop1:
fixes body :: 's prog
assumes sP: sound P
and healthy: healthy (wp body)
shows wp (do G — body od) P =
Ifp-exp (AQ 5. «G» s x wp body Q s + «N G» s * P s)
(is ?X = lfp-exp (?Y P))
(proof)

lemma nearly-healthy-wlp-loop:
fixes body::'s prog
assumes 1b: nearly-healthy (wlp body)
shows nearly-healthy (wip (do G — body od))

(proof)

63
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We show healthiness by appealing to the properties of expectation fixed points,
applied to the alternative loop definition.

lemma healthy-wp-loop:
fixes body::'s prog
assumes 1b: healthy (wp body)
shows healthy (wp (do G — body od))

{proof)

Use ’simp add:healthy_intros’ or ’blast intro:healthy_intros’ as appropriate to dis-
charge healthiness side-contitions for primitive programs automatically.

lemmas healthy-intros =
healthy-wp-Abort nearly-healthy-wip-Abort healthy-wp-Skip nearly-healthy-wlp-Skip
healthy-wp-Seq nearly-healthy-wilp-Seq healthy-wp-PC  nearly-healthy-wilp-PC
healthy-wp-DC  nearly-healthy-wlp-DC  healthy-wp-AC  nearly-healthy-wlp-AC
healthy-wp-Embed nearly-healthy-wlp-Embed healthy-wp-Apply nearly-healthy-wlp-Apply
healthy-wp-SetDC nearly-healthy-wlp-SetDC healthy-wp-SetPC nearly-healthy-wlp-SetPC
healthy-wp-Bind nearly-healthy-wlp-Bind healthy-wp-repeat nearly-healthy-wlp-repeat
healthy-wp-loop nearly-healthy-wlp-loop

end

4.3 Continuity

theory Continuity imports Healthiness begin

We rely on one additional healthiness property, continuity, which is shown here
seperately, as its proof relies, in general, on healthiness. It is only relevant when a
program appears in an inductive context i.e. inside a loop.

A continuous transformer preserves limits (or the suprema of ascending chains).

definition bd-cts :: s trans = bool

where bd-ctst = (VM. (Vi. M it M (Suc i)) A sound (M i)) —
(3b. Vi. bounded-by b (M i)) —
t (Sup-exp (range M)) = Sup-exp (range (t o M)))

lemma bd-ctsD:
[ bd-cts t; Ni. M i =M (Suc i); \i. sound (M i); \i. bounded-by b (M i) | =
t (Sup-exp (range M)) = Sup-exp (range (t o M))
(proof)

lemma bd-ctsl:
(AbM. (Ni. M it M (Suci)) = (\i. sound (M i)) = (\i. bounded-by b (M i)) =
t (Sup-exp (range M)) = Sup-exp (range (t o M))) = bd-cts t
(proof)

A generalised property for transformers of transformers.

definition bd-cts-tr :: ('s trans = 's trans) = bool
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where bd-cts-tr T = (VM. (Vi. le-trans (M i) (M (Suc i)) A feasible (M i)) —
equiv-trans (T (Sup-trans (M  UNIV))) (Sup-trans ((T o M) * UNIV)))

lemma bd-cts-trD:
[ bd-cts-tr T; \i. le-trans (M i) (M (Suc i)); \i. feasible (M i) | =
equiv-trans (T (Sup-trans (M ‘ UNIV))) (Sup-trans (T o M) * UNIV))
(proof )

lemma bd-cts-trl:
(AM. (\i. le-trans (M i) (M (Suc i))) = (\i. feasible (M i)) =
equiv-trans (T (Sup-trans (M  UNIV))) (Sup-trans ((T o M) * UNIV))) = bd-cts-tr
T

(proof)

4.3.1 Continuity of Primitives

lemma cts-wp-Abort:
bd-cts (wp (Abort::'s prog))
(proof)

lemma cts-wp-Skip:
bd-cts (wp Skip)
(proof )

lemma cts-wp-Apply:
bd-cts (wp (Apply f))
(proof )

lemma cts-wp-Bind:
fixes a::'a = 's prog
assumes ca: \s. bd-cts (wp (a (fs)))
shows bd-cts (wp (Bind f a))

(proof)

The first nontrivial proof. We transform the suprema into limits, and appeal to
the continuity of the underlying operation (here infimum). This is typical of the
remainder of the nonrecursive elements.

lemma cts-wp-DC:
fixes a b::'s prog
assumes ca: bd-cts (wp a)
and cb: bd-cts (wp D)
and ha: healthy (wp a)
and hb: healthy (wp b)
shows bd-cts (wp (a[] b))

(proof)

lemma cts-wp-Seq:
fixes a b::'s prog
assumes ca: bd-cts (wp a)
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and cb: bd-cts (wp b)
and hb: healthy (wp b)
shows bd-cts (wp (a ;; b))
{proof )

lemma cts-wp-PC:
fixes a b::'s prog
assumes ca: bd-cts (wp a)
and cb: bd-cts (wp b)
and ha: healthy (wp a)
and hb: healthy (wp b)
and up: unitary p
shows bd-cts (wp (PC ap D))
(proof)

Both set-based choice operators are only continuous for finite sets (probabilistic
choice can be extended infinitely, but we have not done so). The proofs for both
are inductive, and rely on the above results on binary operators.

lemma SetPC-Bind:
SetPC a p = Bind p (\p. SetPC a (\-. p))
(proof)

lemma SetPC-remove:
assumes nz:px # Oand nl: p x # 1
and fsupp: finite (supp p)
shows SetPC a (\-. p) = PC (a x) (\-. p x) (SetPC a (\-. dist-remove p x))
(proof)

lemma cts-bot:
bd-cts (\(P::'s expect) (s::s). O::real)
(proof)

lemma wp-SetPC-nil:
wp (SetPC a (As a.0)) = (AP s.0)

(proof)

lemma SetPC-sgl:
suppp = {x} = SetPCa (A\-.p) = (ANabPs.pxxaxabPs)
(proof)

lemma bd-cts-scale:
fixes a::'s trans
assumes ca: bd-cts a
and ha: healthy a
and nnc: 0 < c¢
shows bd-cts (AP s.c*a P s)

(proof)

lemma cts-wp-SetPC-const:
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fixes a::'a = 's prog

assumes ca: \x. x € (supp p) = bd-cts (wp (a x))
and ha: \x. x € (supp p) = healthy (wp (a x))
and up: unitary p
and sump: sum p (supp p) < 1
and fsupp: finite (supp p)

shows bd-cts (wp (SetPC a (M- p)))

(proof)

lemma cts-wp-SetPC:
fixes a::'a = 's prog
assumes ca: \x s. x € (supp (p s)) = bd-cts (wp (a x))
and ha: N\xs. x € (supp (p s)) = healthy (wp (a x))
and up: \s. unitary (p s)
and sump: \s. sum (p s) (supp (ps)) <1
and fsupp: \s. finite (supp (p s))
shows bd-cts (wp (SetPC a p))
(proof)

lemma wp-SetDC-Bind:
SetDC a S = Bind S (\S. SetDC a ()\-. S))

(proof)

lemma SetDC-finite-insert:
assumes fS: finite S
and neS: S # {}
shows SetDC a (\-. insert x S) = ax[] SetDC a ()-. S)

(proof)

lemma SerDC-singleton:
SetDCa (A-. {x})=ax
(proof )

lemma cts-wp-SetDC-const:
fixes a::'a = 's prog
assumes ca: \x. x € S = bd-cts (wp (a x))
and ha: \x. x € S = healthy (wp (a x))
and fS: finite S
and neS: S # {}
shows bd-cts (wp (SetDC a (A-. S)))

(proof)

lemma cts-wp-SetDC:
fixes a::'a = 's prog
assumes ca: \xs.x € S s = bd-cts (wp (a x))
and ha: A\xs.x € Ss = healthy (wp (a x))
and fS: As. finite (S s)
and neS: \s. Ss # {}
shows bd-cts (wp (SetDC a S))
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(proof)

lemma cts-wp-repeat:
bd-cts (wp a) = healthy (wp a) == bd-cts (wp (repeat n a))

(proof)

lemma cts-wp-Embed:
bd-cts t => bd-cts (wp (Embed 1))

(proof)

4.3.2 Continuity of a Single Loop Step

A single loop iteration is continuous, in the more general sense defined above for
transformer transformers.

lemma cts-wp-loopstep:
fixes body::'s prog
assumes 1b: healthy (wp body)
and cb: bd-cts (wp body)
shows bd-cts-tr (Ax. wp (body ;; Embed x i ,,® Skip)) (is bd-cts-tr ?F)

{proof)

end

4.4 Continuity and Induction for Loops
theory LoopInduction imports Healthiness Continuity begin

Showing continuity for loops requires a stronger induction principle than we have
used so far, which in turn relies on the continuity of loops (inductively). Thus, the
proofs are intertwined, and broken off from the main set of continuity proofs. This
result is also essential in showing the sublinearity of loops.

A loop step is monotonic.

lemma wp-loop-step-mono-trans:
fixes body::'s prog
assumes sP: sound P
and hb: healthy (wp body)
shows mono-trans (AQ s. « G» s x wp body Qs + « N G» s x Ps)

(proof)

We can therefore apply the standard fixed-point lemmas to unfold it:

lemma [fp-wp-loop-unfold:
fixes body::'s prog
assumes hb: healthy (wp body)
and sP: sound P
shows [fp-exp (AQ s. «G» s *x wp body Q s + «N G» s % Ps) =
(As. «G» s * wp body (lfp-exp (AQ 5. «G» s x wp body Qs + «N G» s« Ps)) s +
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«N G» s * Ps)
(proof)

lemma wp-loop-step-unitary:
fixes body::'s prog
assumes hb: healthy (wp body)
and uP: unitary P and uQ: unitary Q
shows unitary (As. «G» s * wp body Q s + «N G» s x Ps)

(proof)

lemma [fp-loop-unitary:
fixes body::'s prog
assumes hb: healthy (wp body)
and uP: unitary P
shows unitary (Ifp-exp (AQ s. «G» s x wp body Q s + «N G» s * P 5))

(proof)

From the lattice structure on transformers, we establish a transfinite induction prin-
ciple for loops. We use this to show a number of properties, particularly subdis-
tributivity, for loops. This proof follows the pattern of lemma Ifp_ordinal_induct
in HOL/Inductive.

lemma loop-induct:
fixes body::'s prog
assumes hwp: healthy (wp body)
and hwlp: nearly-healthy (wlp body)
— The body must be healthy, both in strict and liberal semantics.
and Limit: \S. [ Vx€S. P (fst x) (snd x); V x€S. feasible (fst x);
Vx€S. YV Q. unitary Q — unitary (snd x Q) | =
P (Sup-trans (fst * S)) (Inf-utrans (snd ©S))
— The property holds at limit points.
and IH: At u. [ Ptu; feasible t; \Q. unitary Q = unitary (u Q) | =
P (wp (body ;; Embed t . ¢ & Skip))
(wip (body ;; Embed u i ,® Skip))
— The inductive step. The property is preserved by a single loop iteration.
and P-equiv: \tt'uu’. [ P t u; equiv-trans t t'; equiv-utrans uu' | = P t'u’
— The property must be preserved by equivalence
shows P (wp (do G — body od)) (wip (do G — body od))
— The property can refer to both interpretations simultaneously. The unifier will happily
apply the rule to just one or the other, however.

(proof)

4.4.1 The Limit of Iterates

The iterates of a loop are its sequence of finite unrollings. We show shortly that
this converges on the least fixed point. This is enormously useful, as we can appeal
to various properties of the finite iterates (which will follow by finite induction),
which we can then transfer to the limit.

definition iterates :: 's prog = ('s = bool) = nat = 's trans
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where iterates body G i = ((Ax. wp (body ;; Embed x ¢ ,&® Skip)) M i) (AP 5. 0)

lemma iterates-0[simp|:
iterates body G 0 = (AP s. 0)

(proof)

lemma iterates-Suc[simp]:
iterates body G (Suc i) = wp (body ;; Embed (iterates body G i) (¢,® Skip)

(proof)

All iterates are healthy.

lemma iterates-healthy:
healthy (wp body) = healthy (iterates body G i)

(proof)

The iterates are an ascending chain.

lemma iterates-increasing:
fixes body::'s prog
assumes hb: healthy (wp body)
shows le-trans (iterates body G i) (iterates body G (Suc i))

{proof)

lemma wp-loop-step-bounded:
fixes z::'s trans and Q::'s expect
assumes nQ: nneg Q
and bQ: bounded-by b Q
and ht: healthy t
and hb: healthy (wp body)
shows bounded-by b (wp (body ;; Embed t  ¢; ,® Skip) Q)

{proof)

This is the key result: The loop is equivalent to the supremum of its iterates. This
proof follows the pattern of lemma continuous_Ifp in HOL/Library/Continuity.

lemma [fp-iterates:
fixes body::'s prog
assumes hb: healthy (wp body)
and cb: bd-cts (wp body)
shows equiv-trans (wp (do G — body od)) (Sup-trans (range (iterates body G)))
(is equiv-trans ?X ?Y)

{proof)

Therefore, evaluated at a given point (state), the sequence of iterates gives a se-
quence of real values that converges on that of the loop itself.

corollary loop-iterates:
fixes body::'s prog
assumes hb: healthy (wp body)
and cb: bd-cts (wp body)
and sP: sound P
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shows (\i. iterates body G i P s) —— wp (do G — body od) P s
(proof)

The iterates themselves are all continuous.

lemma cts-iterates:
fixes body::'s prog
assumes hb: healthy (wp body)
and cb: bd-cts (wp body)
shows bd-cts (iterates body G i)

(proof)

Therefore so is the loop itself.

lemma cts-wp-loop:
fixes body::'s prog
assumes hb: healthy (wp body)
and cb: bd-cts (wp body)
shows bd-cts (wp do G — body od)

(proof)

lemmas cts-intros =
cts-wp-Abort cts-wp-Skip
cts-wp-Seq  cts-wp-PC
cts-wp-DC  cts-wp-Embed
cts-wp-Apply cts-wp-SetDC
cts-wp-SetPC cts-wp-Bind
cts-wp-repeat

end

4.5 Sublinearity

theory Sublinearity imports Embedding Healthiness LoopInduction begin

4.5.1 Nonrecursive Primitives

Sublinearity of non-recursive programs is generally straightforward, and follows
from the alebraic properties of the underlying operations, together with healthiness.

lemma sublinear-wp-Skip:
sublinear (wp Skip)

(proof)

lemma sublinear-wp-Abort:
sublinear (wp Abort)

(proof)

lemma sublinear-wp-Apply:
sublinear (wp (Apply f))
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(proof)

lemma sublinear-wp-Segq:
fixes x::'s prog
assumes slx: sublinear (wp x) and sly: sublinear (wp y)
and hx: healthy (wp x) and hy: healthy (wp y)
shows sublinear (wp (x ;;y))

(proof)

lemma sublinear-wp-PC:
fixes x::'s prog
assumes six: sublinear (wp x) and sly: sublinear (wp y)
and uP: unitary P
shows sublinear (wp (x p® y))

(proof)

lemma sublinear-wp-DC:
fixes x::'s prog
assumes six: sublinear (wp x) and sly: sublinear (wp y)
shows sublinear (wp (x[] y))

{proof)

As for continuity, we insist on a finite support.

lemma sublinear-wp-SetPC:
fixes p::'a = 's prog
assumes sip: \s a. a € supp (P s) = sublinear (wp (p a))
and sum: \s. (3 ac€supp (Ps). Psa) <1
and nnP: Asa.0<Psa
and fin: \s. finite (supp (P s))
shows sublinear (wp (SetPC p P))

(proof)

lemma sublinear-wp-SetDC:
fixes p::'a = 's prog
assumes sip: \s a. a € S s = sublinear (wp (p a))
and hp: A\sa.a € Ss = healthy (wp (p a))
and ne: \s.Ss# {}
shows sublinear (wp (SetDC p S))

{proof)

lemma sublinear-wp-Embed:
sublinear t = sublinear (wp (Embed t))

(proof)

lemma sublinear-wp-repeat:
[ sublinear (wp p); healthy (wp p) | = sublinear (wp (repeat n p))

(proof)

lemma sublinear-wp-Bind:
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[ A\s. sublinear (wp (a (fs))) | = sublinear (wp (Bind f a))
(proof)

4.5.2 Sublinearity for Loops

We break the proof of sublinearity loops into separate proofs of sub-distributivity
and sub-additivity. The first follows by transfinite induction.

lemma sub-distrib-wp-loop:
fixes body::'s prog
assumes sdb: sub-distrib (wp body)
and hb: healthy (wp body)
and nhb: nearly-healthy (wlp body)
shows sub-distrib (wp (do G — body od))

(proof)

For sub-additivity, we again use the limit-of-iterates characterisation. Firstly, all
iterates are sublinear:

lemma sublinear-iterates:
assumes hb: healthy (wp body)
and sb: sublinear (wp body)
shows sublinear (iterates body G i)
(proof)

From this, sub-additivity follows for the limit (i.e. the loop), by appealing to the
property at all steps.

lemma sub-add-wp-loop:
fixes body::'s prog
assumes sb: sublinear (wp body)
and cb: bd-cts (wp body)
and hwp: healthy (wp body)
shows sub-add (wp (do G — body od))
(proof)

lemma sublinear-wp-loop:
fixes body::'s prog
assumes hb: healthy (wp body)
and nhb: nearly-healthy (wlp body)
and sb: sublinear (wp body)
and cb: bd-cts (wp body)
shows sublinear (wp (do G — body od))

(proof)

lemmas sublinear-intros =
sublinear-wp-Abort
sublinear-wp-Skip
sublinear-wp-Apply
sublinear-wp-Seq
sublinear-wp-PC



74 CHAPTER 4. THE PGCL LANGUAGE

sublinear-wp-DC
sublinear-wp-SetPC
sublinear-wp-SetDC
sublinear-wp-Embed
sublinear-wp-repeat
sublinear-wp-Bind
sublinear-wp-loop

end

4.6 Determinism
theory Determinism imports WellDefined begin

We provide a set of lemmas for establishing that appropriately restricted programs
are fully additive, and maximal in the refinement order. This is particularly useful
with data refinement, as it implies correspondence.

4.6.1 Additivity

lemma additive-wp-Abort:
additive (wp (Abort))

(proof)

wlp Abort is not additive.

lemma additive-wp-Skip:
additive (wp (Skip))
(proof)

lemma additive-wp-Apply:
additive (wp (Apply f))
(proof )

lemma additive-wp-Seq:
fixes a::'s prog
assumes adda: additive (wp a)
and addb: additive (wp b)
and wb: well-def b
shows additive (wp (a ;; D))
(proof)

lemma additive-wp-PC:
[ additive (wp a); additive (wp b) | = additive (wp (a p® b))
(proof)

DC is not additive.

lemma additive-wp-SetPC:
[ A\xs.x € supp (p s) = additive (wp (ax)); \s. finite (supp (p s)) | =
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additive (wp (SetPC a p))
(proof )

lemma additive-wp-Bind:
[ A\x. additive (wp (a (fx))) | = additive (wp (Bind f a))
(proof)

lemma additive-wp-Embed:
[ additive t | = additive (wp (Embed t))

(proof)

lemma additive-wp-repeat:
additive (wp a) = well-def a = additive (wp (repeat n a))

(proof )

lemmas fa-intros =
additive-wp-Abort additive-wp-Skip
additive-wp-Apply additive-wp-Seq
additive-wp-PC  additive-wp-SetPC
additive-wp-Bind additive-wp-Embed
additive-wp-repeat

4.6.2 Maximality

lemma max-wp-Skip:
maximal (wp Skip)
(proof)

lemma max-wp-Apply:
maximal (wp (Apply f))
(proof)

lemma max-wp-Segq:
[ maximal (wp a); maximal (wp b) | = maximal (wp (a ;; b))
(proof )

lemma max-wp-PC:

[ maximal (wp a); maximal (wp b) | = maximal (wp (a p® b))

(proof)

lemma max-wp-DC:

[ maximal (wp a); maximal (wp b) | = maximal (wp (a[] b))

(proof)

lemma max-wp-SetPC:
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[ As a.a € supp (Ps) = maximal (wp (p a)); N\s. (> acsupp (Ps).Psa)=1] =

maximal (wp (SetPC p P))
(proof)



76 CHAPTER 4. THE PGCL LANGUAGE

lemma max-wp-SetDC:
fixes p::'a = 's prog
assumes mp: \s a. a € S s = maximal (wp (p a))
and ne: \s. Ss # {}
shows maximal (wp (SetDC p S))

(proof )

lemma max-wp-Embed:
maximal t => maximal (wp (Embed 1))

(proof)

lemma max-wp-repeat:
maximal (wp a) = maximal (wp (repeat n a))

(proof)

lemma max-wp-Bind:
assumes ma: /\s. maximal (wp (a (fs)))
shows maximal (wp (Bind f a))

{proof)

lemmas max-intros =
max-wp-Skip max-wp-Apply
max-wp-Seq max-wp-PC
max-wp-DC  max-wp-SetPC
max-wp-SetDC max-wp-Embed
max-wp-Bind max-wp-repeat

A healthy transformer that terminates is maximal.

lemma healthy-term-max:
assumes ht: healthy t
and trm: As. 1+t (Xs. 1)
shows maximal t

{proof)

4.6.3 Determinism

lemma det-wp-Skip:
determ (wp Skip)
(proof)

lemma det-wp-Apply:
determ (wp (Apply f))
(proof)

lemma det-wp-Seq:
determ (wp a) = determ (wp b) = well-def b = determ (wp (a ;; b))

(proof)

lemma det-wp-PC:
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determ (wp a) = determ (wp b) = determ (wp (a p® b))

(proof)

lemma det-wp-SetPC:
(Axs. x € supp (p s) = determ (wp (a x))) =
(\s. finite (supp (p s))) =
(N\s. sum (ps) (supp (ps)) =1) =
determ (wp (SetPC a p))

(proof)

lemma det-wp-Bind:
(A\x. determ (wp (a (fx)))) = determ (wp (Bind f a))
(proof)

lemma det-wp-Embed.:
determ t = determ (wp (Embed t))

(proof)

lemma det-wp-repeat:
determ (wp a) = well-def a = determ (wp (repeat n a))

(proof)

lemmas determ-intros =
det-wp-Skip det-wp-Apply
det-wp-Seq det-wp-PC
det-wp-SetPC det-wp-Bind
det-wp-Embed det-wp-repeat

end

4.7 Well-Defined Programs.

theory WellDefined imports
Healthiness
Sublinearity
LoopInduction

begin

The definition of a well-defined program collects the various notions of healthiness
and well-behavedness that we have so far established: healthiness of the strict and
liberal transformers, continuity and sublinearity of the strict transformers, and two
new properties. These are that the strict transformer always lies below the liberal
one (i.e. that it is at least as strict, recalling the standard embedding of a predicate),
and that expectation conjunction is distributed between then in a particular manner,
which will be crucial in establishing the loop rules.
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4.7.1 Strict Implies Liberal

This establishes the first connection between the strict and liberal interpretations
(wp and wip).

definition
wp-under-wlp :: 's prog = bool
where
wp-under-wlp prog =V P. unitary P — wp prog P - wlp prog P

lemma wp-under-wipl|intro|:
[ A\P. unitary P => wp prog P\ wip prog P | => wp-under-wlp prog
(proof )

lemma wp-under-wipD|dest|:
[ wp-under-wlp prog; unitary P | = wp prog P & wip prog P
(proof)

lemma wp-under-le-trans:
wp-under-wlp a = le-utrans (wp a) (wlp a)

(proof)

lemma wp-under-wlp-Abort:
wp-under-wlp Abort

(proof)

lemma wp-under-wlp-Skip:
wp-under-wlp Skip
(proof)

lemma wp-under-wip-Apply:
wp-under-wip (Apply f)
(proof)

lemma wp-under-wlip-Seq:
assumes h-wilp-a: nearly-healthy (wip a)
and h-wp-b: healthy (wp b)
and h-wip-b: nearly-healthy (wlp D)
and wp-u-a: wp-under-wlp a
and wp-u-b: wp-under-wlp b
shows wp-under-wip (a ;; D)

(proof)

lemma wp-under-wip-PC:
assumes hi-wp-a: healthy (wp a)
and h-wip-a: nearly-healthy (wlp a)
and h-wp-b: healthy (wp b)
and h-wip-b: nearly-healthy (wlp D)
and wp-u-a: wp-under-wlp a
and wp-u-b: wp-under-wip b
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and uP:  unitary P
shows wp-under-wip (a p® b)
(proof )

lemma wp-under-wilp-DC:
assumes wp-u-a: wp-under-wlp a
and wp-u-b: wp-under-wlp b
shows wp-under-wip (a[] b)
(proof)

lemma wp-under-wlp-SetPC:
assumes wp-u-f: s a.a € supp (P s) = wp-under-wlp (f a)
andnP: Asa.acsupp(Ps)=—0<Psa
shows wp-under-wlp (SetPC f P)

(proof)

lemma wp-under-wip-SetDC:
assumes wp-u-f: Asa.a € Ss = wp-under-wlp (f a)
and hf: Asa.a € Ss = healthy (wp (fa))
andnS:  As.Ss# {}
shows wp-under-wlp (SetDC f S)

(proof)

lemma wp-under-wlp-Embed:
wp-under-wlp (Embed t)

(proof)

lemma wp-under-wlp-loop:
fixes body::'s prog
assumes hwp: healthy (wp body)
and hwip: nearly-healthy (wlp body)
and wp-under: wp-under-wlp body
shows wp-under-wilp (do G — body od)

(proof)

lemma wp-under-wlp-repeat:
[ healthy (wp a); nearly-healthy (wlp a); wp-under-wip a | =
wp-under-wlp (repeat n a)

(proof)

lemma wp-under-wlp-Bind.:
[ \s. wp-under-wlp (a (fs)) | = wp-under-wlp (Bind f a)
(proof )

lemmas wp-under-wlp-intros =
wp-under-wlp-Abort wp-under-wlp-Skip
wp-under-wip-Apply wp-under-wlp-Seq
wp-under-wlp-PC  wp-under-wilp-DC
wp-under-wip-SetPC wp-under-wip-SetDC
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wp-under-wip-Embed wp-under-wlp-loop
wp-under-wlp-repeat wp-under-wlp-Bind

4.7.2 Sub-Distributivity of Conjunction

definition
sub-distrib-pconj :: 's prog = bool
where
sub-distrib-pconj prog =
YV P Q. unitary P — unitary Q —>
wlp prog P && wp prog Q + wp prog (P && Q)

lemma sub-distrib-pconjl [intro]:
IAP Q. [ unitary P; unitary Q | = wip prog P && wp prog Q & wp prog (P && Q) |
N
sub-distrib-pconj prog
(proof)

lemma sub-distrib-pconjD|dest]:
AP Q. [ sub-distrib-pconj prog; unitary P; unitary Q | =
wlp prog P && wp prog Q & wp prog (P && Q)
(proof)

lemma sdp-Abort:
sub-distrib-pconj Abort
(proof)

lemma sdp-Skip:
sub-distrib-pconj Skip
(proof)

lemma sdp-Seq:

fixes a and b

assumes sdp-a: sub-distrib-pconj a
and sdp-b: sub-distrib-pconj b
and h-wp-a: healthy (wp a)
and h-wp-b: healthy (wp b)
and h-wip-b: nearly-healthy (wlp D)

shows sub-distrib-pconj (a ;; D)

(proof)

lemma sdp-Apply:
sub-distrib-pconj (Apply )
(proof )

lemma sdp-DC:
fixes a::'s prog and b
assumes sdp-a: sub-distrib-pconj a
and sdp-b: sub-distrib-pconj b
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and h-wp-a: healthy (wp a)
and h-wp-b: healthy (wp b)
and h-wip-b: nearly-healthy (wlp b)
shows sub-distrib-pconj (a[] b)
(proof )

lemma sdp-PC:
fixes a::’s prog and b
assumes sdp-a: sub-distrib-pconj a
and sdp-b: sub-distrib-pconj b
and h-wp-a: healthy (wp a)
and h-wp-b: healthy (wp b)
and h-wip-b: nearly-healthy (wlp b)
and uP:  unitary P
shows sub-distrib-pconj (a p® b)
(proof )

lemma sdp-Embed:

[ AP Q. [ unitary P; unitary Q| =t P && t Qb+t (P && Q) | =

sub-distrib-pconj (Embed t)
(proof)

lemma sdp-repeat:
fixes a::’s prog
assumes sdpa: sub-distrib-pconj a
and hwp: healthy (wp a) and hwip: nearly-healthy (wip a)
shows sub-distrib-pconj (repeat n a) (is ?X n)

(proof)

lemma sdp-SetPC:
fixes p::'a = 's prog
assumes sdp: \s a. a € supp (P s) = sub-distrib-pconj (p a)
and fin: \s. finite (supp (P s))
and nnp: Asa.0<Psa
and sub: \s. sum (P s) (supp (Ps)) <1
shows sub-distrib-pconj (SetPC p P)

(proof)

lemma sdp-SetDC:
fixes p::'a = 's prog
assumes sdp: \s a. a € S s = sub-distrib-pconj (p a)
and hwp: \s a. a € S s = healthy (wp (p a))
and hwlp: \s a. a € S s = nearly-healthy (wlp (p a))
and ne: \s.Ss#{}
shows sub-distrib-pconj (SetDC p S)
(proof)

lemma sdp-Bind:
[ \s. sub-distrib-pconj (p (f s)) | = sub-distrib-pconj (Bind f p)
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(proof)

For loops, we again appeal to our transfinite induction principle, this time taking
advantage of the simultaneous treatment of both strict and liberal transformers.

lemma sdp-loop:
fixes body::'s prog
assumes sdp-body: sub-distrib-pconj body
and hwlip: nearly-healthy (wlp body)
and hwp: healthy (wp body)
shows sub-distrib-pconj (do G — body od)

{proof)

lemmas sdp-intros =
sdp-Abort sdp-Skip sdp-Apply
sdp-Seq sdp-DC  sdp-PC
sdp-SetPC sdp-SetDC sdp-Embed
sdp-repeat sdp-Bind sdp-loop

4.7.3 The Well-Defined Predicate.

definition
well-def :: 's prog = bool
where
well-def prog = healthy (wp prog) A nearly-healthy (wlp prog)
A wp-under-wlp prog N\ sub-distrib-pconj prog
A sublinear (wp prog) A bd-cts (wp prog)

lemma well-defl[intro):
[ healthy (wp prog); nearly-healthy (wip prog);
wp-under-wlp prog; sub-distrib-pconj prog; sublinear (wp prog);
bd-cts (wp prog) | =
well-def prog
(proof)

lemma well-def-wp-healthy|dest:
well-def prog = healthy (wp prog)

(proof)

lemma well-def-wip-nearly-healthy|dest]:
well-def prog = nearly-healthy (wip prog)

(proof)

lemma well-def-wp-under|dest|:
well-def prog = wp-under-wlp prog
(proof)

lemma well-def-sdp|[dest]:
well-def prog =—> sub-distrib-pconj prog
(proof)
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lemma well-def-wp-sublinear|dest]:
well-def prog = sublinear (wp prog)

(proof)

lemma well-def-wp-cts[dest]:
well-def prog => bd-cts (wp prog)
(proof)

lemmas wd-dests =
well-def-wp-healthy well-def-wlp-nearly-healthy
well-def-wp-under well-def-sdp
well-def-wp-sublinear well-def-wp-cts

lemma wd-Abort:
well-def Abort

(proof)

lemma wd-Skip:
well-def Skip
(proof )

lemma wd-Apply:

well-def (Apply f)
(proof )

lemma wd-Seq:
[ well-def a; well-def b | = well-def (a ;; b)
(proof)

lemma wd-PC:
[ well-def a; well-def b; unitary P | => well-def (a p® b)
(proof)

lemma wd-DC:
[ well-def a; well-def b | = well-def (a[] b)
(proof )

lemma wd-SetDC:
[Axs.x€Ss= well-def (ax); \s.Ss#{};
Ns. finite (S s) | = well-def (SetDC a S)

(proof)

lemma wd-SetPC:

[ Axs.x € (supp (p s)) = well-def (a x); \s. unitary (p s); \s. finite (supp (p s));
Ns. sum (p s) (supp (p s)) < 1] = well-def (SetPC a p)

(proof)
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lemma wd-Embed:
fixes r::'s trans
assumes ht: healthy t and st: sublinear t and ct: bd-cts t
shows well-def (Embed t)

{proof)

lemma wd-repeat:
well-def a = well-def (repeat n a)

(proof)

lemma wd-Bind:
[ \s. well-def (a (fs)) | = well-def (Bind fa)
(proof)

lemma wd-loop:
well-def body = well-def (do G — body od)

(proof)

lemmas wd-intros =
wd-Abort wd-Skip  wd-Apply
wd-Embed wd-Seq  wd-PC
wd-DC  wd-SetPC wd-SetDC
wd-Bind wd-repeat wd-loop

end

4.8 The Loop Rules

theory Loops imports WellDefined begin

Given a well-defined body, we can annotate a loop using an invariant, just as in the
classical setting.

4.8.1 Liberal and Strict Invariants.

A probabilistic invariant generalises a boolean one: it entails itself, given the loop
guard.

definition

wp-inv :: (s = bool) = s prog = ('s = real) = bool
where

wp-inv G body I +— (V5. «G» s x [ s < wp body I s)

lemma wp-invi:
N (A\s. «G» s x I s < wp body I s) = wp-inv G body 1
(proof)

definition
wip-inv :: ('s = bool) = 's prog = ('s = real) = bool
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where
wip-inv G body I < (V5. «G» s * I s < wip body I 5)

lemma wip-invi:
N (A\s. «G» s % I s < wip body I s) = wip-inv G body I
(proof)

lemma wip-invD:
wip-inv G body I => «G» s x I s < wlp body I s

(proof)

For standard invariants, the multiplication reduces to conjunction.

lemma wp-inv-stdD:
assumes inv: wp-inv G body «I»
and hb: healthy (wp body)
shows «G» && «I» = wp body «I»

(proof)

4.8.2 Partial Correctness

Partial correctness for loops| , ,Lemma 7.2.2, §7, p. 185].

lemma wip-Loop:
assumes wd: well-def body
and ul: unitary 1
and inv: wip-inv G body I
shows I < wip do G — body od (As. «N G» s x I 5)
(is I < wlp do G — body od ?P)
(proof)

4.8.3 Total Correctness

The first total correctness lemma for loops which terminate with probability 1[
, , Lemma 7.3.1, §7, p. 186].

lemma wp-Loop:
assumes wd: well-def body
and inv: wip-inv G body 1
and unit: unitary 1
shows I && wp (do G — body od) (Xs. 1) & wp (do G — body od) (As. «N G» s * I

5)
(is I && 2T+ wp ?loop ?X)
(proof)

4.8.4 Unfolding

lemma wp-loop-unfold:
fixes body :: 's prog
assumes sP: sound P
and h: healthy (wp body)
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shows wp (do G — body od) P =
(As. «N G» 5 % P s+ «G» s *x wp body (wp (do G — body od) P) s)
(proof)

lemma wp-loop-nguard:
[ healthy (wp body); sound P; = G s | = wp do G — body od P s = P s

(proof)

lemma wp-loop-guard:
[ healthy (wp body); sound P; G s | =
wp do G — body od P s = wp (body ;; do G — body od) P s
(proof )

end

4.9 The Algebra of pGCL

theory Algebra imports WellDefined begin

Programs in pGCL have a rich algebraic structure, largely mirroring that for GCL.
We show that programs form a lattice under refinement, witha [ | band a | | b as
the meet and join operators, respectively. We also take advantage of the algebraic
structure to establish a framwork for the modular decomposition of proofs.

4.9.1 Program Refinement

Refinement in pGCL relates to refinement in GCL exactly as probabilistic entail-
ment relates to implication. It turns out to have a very similar algebra, the rules of
which we establish shortly.

definition
refines :: 's prog = 's prog = bool (infix <> 70)
where
prog C prog’ =V P. sound P — wp prog P\~ wp prog’ P

lemma refinesl|[intro|:
[ \P. sound P =—> wp prog P+ wp prog’' P | = prog C prog’
(proof )

lemma refinesD[dest]:
[ prog C prog’; sound P | = wp prog P+ wp prog’ P
(proof)

The equivalence relation below will turn out to be that induced by refinement. It is
also the application of equiv-trans to the weakest precondition.
definition
pequiv :: 's prog = s prog = bool (infix <> 70)
where
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prog =~ prog’ =V P. sound P — wp prog P = wp prog’ P

lemma pequivi[intro:
[ \P. sound P => wp prog P = wp prog' P | = prog ~ prog’
(proof)

lemma pequivD|dest,simp]:
[ prog ~ prog’; sound P | = wp prog P = wp prog’ P
(proof)

lemma pequiv-equiv-trans:
a ~ b <— equiv-trans (wp a) (wp b)

(proof)

4.9.2 Simple Identities

The following identities involve only the primitive operations as defined in Sec-
tion 4.1.1, and refinement as defined above.

Laws following from the basic arithmetic of the operators seperately

lemma DC-comm|ac-simps:
al[lb=b[]a
(proof)

lemma DC-assoclac-simps|:
al1(1e)=(a1b)[] ¢
(proof)

lemma DC-idem:
al[la=a
{proof)

lemma AC-comm|ac-simps|:
al]b=>bl]a
(proof)

lemma AC-assoc|ac-simps):
all (bl e)=(b)]ec
(proof)

lemma AC-idem:
all]a=a
(proof)

lemma PC-quasi-comm:
a p@ b=>b ( )@ a
(proof)

As.l—ps
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lemma PC-idem:
ap@ a=a

(proof)

lemma Seg-assoc|ac-simps]:
A5 (B;C)=A5; B35 C
(proof)

lemma Abort-refines|intro|:
well-def a = Abort C a

(proof)

Laws relating demonic choice and refinement

lemma left-refines-DC:
(a[1b)Ca
(proof)

lemma right-refines-DC:
(a[1b)Eb
(proof)

lemma DC-refines:
fixes a::’s prog and b and ¢
assumes rab: a C b and rac: a C ¢
showsa C (b[] ¢)

(proof)

lemma DC-mono:
fixes a::'s prog
assumes rab: a C b and red: ¢ C d
shows (a[] c)C (b[] d)

(proof)

Laws relating angelic choice and refinement

lemma left-refines-AC:
aC(al]b)
(proof)

lemma right-refines-AC:
bC (al]b)
(proof)

lemma AC-refines:
fixes a::’s prog and b and ¢
assumes rac: a = cand rbe: b C ¢
shows (a| | b) C ¢

(proof)

THE PGCL LANGUAGE
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lemma AC-mono:
fixes a::'s prog
assumes rab: a C band red: ¢ C d
shows (a| | ¢) T (b| ] d)

(proof)

Laws depending on the arithmetic of a ,® b and a [ | b together

lemma DC-refines-PC:
assumes unit: unitary p
shows (a[] b) C (a p® b)
(proof)

Laws depending on the arithmetic of a ,& b and a | | b together

lemma PC-refines-AC:
assumes unit: unitary p
shows (a ,® b) C (a || b)
(proof )

Laws depending on the arithmetic of a | | » and a [ ] b together
lemma DC-refines-AC:

(al1b)C (al] b)
(proof )

Laws Involving Refinement and Equivalence

lemma pr-trans|trans):
fixes A::'a prog
assumes prAB:AC B
and prBC: BC C
shows A C C
(proof)

lemma pequiv-refi[intro! ,simp):
a~a

(proof)

lemma pequiv-comm[ac-simps]:
a~b+—b~a

(proof)

lemma pequiv-pr|dest]:
a~b—alb
(proof )

lemma pequiv-transintro,trans:
[a~b;b~c]=a~c

(proof)
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lemma pequiv-pr-trans|intro,trans|:
[a~b;bCc]=aCc
(proof )

lemma pr-pequiv-trans|intro,trans|:
[aCh;b~c]=—aCc

(proof)

Refinement induces equivalence by antisymmetry:
lemma pequiv-antisym:
[aCh;pbCa]=a~b

(proof)

lemma pequiv-DC:
[a~cibd] — (a[]b)=(c[1d)
(proof)

lemma pequiv-AC:
[a~c;b~d] = (a|] D) ~(c|]d)
(proof )

4.9.3 Deterministic Programs are Maximal

Any sub-additive refinement of a deterministic program is in fact an equivalence.
Deterministic programs are thus maximal (under the refinement order) among sub-
additive programs.

lemma refines-determ:
fixes a::'s prog
assumes da: determ (wp a)
and wa: well-def a
and wb: well-def b
anddr:aC b
shows a ~ b

Proof by contradiction.

{proof)

4.9.4 The Algebraic Structure of Refinement

Well-defined programs form a half-bounded semilattice under refinement, where
Abort is bottom, and a [ | b is inf. There is no unique top element, but all fully-
deterministic programs are maximal.

The type that we construct here is not especially useful, but serves as a convenient
way to express this result.

quotient-type s program =
's prog / partial : Aa b. a ~ b A\ well-def a N\ well-def b
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(proof)

instantiation program :: (type) semilattice-inf begin
lift-definition
less-eq-program :: 'a program = 'a program = bool is refines

(proof )

lift-definition
less-program :: 'a program = 'a program = bool
isXab.aCbN—-bLCa

(proof)

lift-definition
inf-program :: 'a program = 'a program = 'a program is DC

(proof)

instance

(proof)

end

instantiation program :: (type) bot begin
lift-definition
bot-program :: 'a program is Abort

(proof)

instance (proof)
end

lemma eg-det: \a b::'s prog. [ a ~ b; determ (wp a) | = determ (wp b)

(proof)

lift-definition
pdeterm :: 's program = bool
is \a. determ (wp a)

(proof)

lemma determ-maximal:
[pdeterma;a<x] = a=x

(proof)

4.9.5 Data Refinement

A projective data refinement construction for pGCL. By projective, we mean that
the abstract state is always a function () of the concrete state. Refinement may be
predicated (G) on the state.

definition
drefines :: ('b = 'a) = ('b = bool) = 'a prog = 'b prog = bool
where
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drefines o GAB=VY P Q. (unitary P A unitary Q A (P+wp A Q)) —
(«G» && (Po ) Fwp B(Q o))

lemma drefinesD|dest]:
[ drefines ¢ G A B; unitary P; unitary Q; PHwp A Q]| =
«G» && (Po @) -wp B (Q o ¢)
(proof)

We can alternatively use G as an assumption:

lemma drefinesD?2:
assumes dr: drefines p GA B
and uP: unitary P
and uQ: unitary Q
and wpA: P+wp A Q

and G: Gs
shows (Pop)s<wpB(Qoy)s
{proof)

This additional form is sometimes useful:

lemma drefinesD3:
assumes dr: drefines o Ga b
and G: Gs
and uQ: unitary Q
and wa: well-def a
shows wpa Q (¢ s) <wpb(Qop)s
(proof)

lemma drefinesl|intro):
[ AP Q. [ unitary P; unitary Q; P:-wp A Q] =
«G»&& (Pop)-wpB(Qoyp)] =
drefines p GAB
(proof)

Use G as an assumption, when showing refinement:

lemma drefinesi2:
fixes A::'a prog
and B:'bprog
and p:'b='a
and G::'b = bool
assumes wB: well-def B
and withAs:
AP O s. [ unitary P; unitary Q;
Gs;PwpAQ]= (Pop)s<wpB(Qoyp)s
shows drefines o GA B
(proof)

lemma dr-strengthen-guard:
fixes a::'s prog and b::'t prog
assumes fg: \s. Fs = G's
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and drab: drefines o Ga b
shows drefines ¢ F a b
(proof)

Probabilistic correspondence, pcorres, is equality on distribution transformers, mod-
ulo a guard. It is the analogue, for data refinement, of program equivalence for
program refinement.

definition
pcorres :: ('b = 'a) = ('b = bool) = 'a prog = 'b prog = bool
where
pcorres o GA B +—
(V Q. unitary Q — «G» && (wp A Qo p) = «G» && wp B (Q 0 ¢))

lemma pcorresI:
[ AQ. unitary Q = «G» && (wp A Q 0 ) = «G» && wp B (Q o ¢) | =
pcorres o GAB
(proof)

Often easier to use, as it allows one to assume the precondition.

lemma pcorresi2|intro:
fixes A::’a prog and B::'b prog
assumes withG: \Q s. [ unitary Q; Gs] = wp A Q (¢ s)=wpB(Qop) s
and wA: well-def A
and wB: well-def B
shows pcorres p GA B

(proof)

lemma pcorresD:
[ pcorres ¢ G A B; unitary Q | = «G» && (wp A Q 0 p) = «G» && wp B (Q 0 ¢)
(proof )

Again, easier to use if the precondition is known to hold.

lemma pcorresD2:
assumes pc: pcorres p GA B
and uQ: unitary Q
and wA: well-def A and wB: well-def B
and G: G s
shows wp A Q (ps) =wpB(Qop)s
(proof)

4.9.6 The Algebra of Data Refinement

Program refinement implies a trivial data refinement:

lemma refines-drefines:
fixes a::'s prog
assumes rab: a C b and wb: well-def b
shows drefines (As.s) Gab

(proof)
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Data refinement is transitive:

lemma dr-trans(trans):
fixes A::'a prog and B::'b prog and C::'c prog
assumes drAB: drefines p GA B
and drBC: drefines o' G’ B C
and Gimp: \s. G's = G (¢'s)
shows drefines (p o ¢') G'A C
(proof)

Data refinement composes with program refinement:

lemma pr-dr-trans|trans]:
assumes prAB: AC B
and drBC: drefines ¢ G B C
shows drefines p GA C

(proof)

lemma dr-pr-trans(trans):
assumes drAB: drefines p GA B
assumes prBC: BC C
shows drefines p GA C

(proof)

If the projection ¢ commutes with the transformer, then data refinement is reflex-
ive:

lemma dr-refl:
assumes wa: well-def a
and comm: \Q. unitary Q = wpa Qo ot wpa (Qo p)
shows drefines p Gaa

(proof)

Correspondence implies data refinement

lemma pcorres-drefine:
assumes corres: pcorres ¢ GA C
and wC: well-def C
shows drefines p GA C

(proof)

Any data refinement of a deterministic program is correspondence. This is the
analogous result to that relating program refinement and equivalence.

lemma drefines-determ:
fixes a::'a prog and b::'b prog
assumes da: determ (wp a)
and wa: well-def a
and wb: well-def b
and dr: drefines o G a b
shows pcorres p Ga b
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The proof follows exactly the same form as that for program refinement: Assuming that
correspondence doesn’t hold, we show that wp b is not feasible, and thus not healthy,
contradicting the assumption.

(proof)

4.9.7 Structural Rules for Correspondence

lemma pcorres-Skip:
pcorres ¢ G Skip Skip

(proof)

Correspondence composes over sequential composition.

lemma pcorres-Seq:
fixes A::'b prog and B::'c prog
and C::'b prog and D::'c prog
and ¢::c = b
assumes pcAB: pcorres o GA B
and pcCD: pcorres ¢ HC D
and wA: well-def A and wB: well-def B
and wC: well-def C and wD: well-def D
and p3p2: \Q. unitary Q = «I» && wp B Q = wp B («H» && Q)
and pIp3: \s.Gs =>1Is
shows pcorres ¢ G (A;;C) (B;;D)
(proof)

4.9.8 Structural Rules for Data Refinement

lemma dr-Skip:

fixes p::'c = b

shows drefines ¢ G Skip Skip
(proof )

lemma dr-Abort:

fixes p::'c = b

shows drefines p G Abort Abort
(proof)

lemma dr-Apply:
fixes p::'c = b
assumes commutes: fop =pog
shows drefines v G (Apply f) (Apply g)
(proof)

lemma dr-Segq:
assumes drAB: drefines p PA B
and drBC: drefines ¢ Q C D
and wpB: «P» = wp B «O»
and wB: well-def B
and wC: well-def C
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and wD: well-def D
shows drefines ¢ P (A;;C) (B;;D)
{proof )

lemma dr-repeat:
fixes p:: ‘a="b
assumes dr-ab: drefines o G a b
and Gpr: «G» = wp b «G»
and wa: well-def a
and wb: well-def b
shows drefines ¢ G (repeat n a) (repeat n b) (is ?X n)

(proof)

end

4.10 Structured Reasoning
theory StructuredReasoning imports Algebra begin

By linking the algebraic, the syntactic, and the semantic views of computation, we
derive a set of rules for decomposing expectation entailment proofs, firstly over the
syntactic structure of a program, and secondly over the refinement relation. These
rules also form the basis for automated reasoning.

4.10.1 Syntactic Decomposition

lemma wp-Abort:
(As. 0) = wp Abort Q

(proof)

lemma wip-Abort:
(As. 1) = wip Abort Q

(proof)

lemma wp-Skip:
Pt wp Skip P
(proof)

lemma wip-Skip:
Pt~ wip Skip P
(proof)

lemma wp-Apply:
Qoftwp(Applyf) Q
(proof)

lemma wip-Apply:
Qof = wip (Apply f) Q
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(proof)

lemma wp-Seq:
assumes ent-a: Pt~ wp a Q
and ent-b: Q- wp b R
and wa: well-def a
and wb: well-def b
and s-Q: sound Q
and s-R: sound R
shows Pt~ wp (a;;b) R
(proof )

lemma wip-Segq:
assumes ent-a: P+ wip a Q
and ent-b: Q+ wip b R
and wa: well-def a
and wb: well-def b
and u-Q: unitary Q
and u-R: unitary R
shows P~ wip (a ;; b) R
(proof)

lemma wp-PC:
(As.PsxwpaQs+(I—Ps)xwpbQs)twp(apdd)Q
(proof)

lemma wip-PC:
(Ms.PsxwlpaQs+ (I —Ps)xwlpbQs)t wip (a p®b)Q
(proof)

A simpler rule for when the probability does not depend on the state.

lemma PC-fixed:
assumes wpa: Pt~ a ab R
and wpb: Qb ab R
andnp: 0 <pand bp:p <1
shows (As.p*Ps+ (I —p)«Qs)t (a (As.p)®@ b)abR

(proof)

lemma wp-PC-fixed:
[PwpaR, ObwpbR,0<p;p<Ii]=
(As.pxPs+ (1 —p)*Qs)wp(a(y, ,®b)R
(proof)

lemma wip-PC-fixed:
[PHwlpaR, Qb wlpbR;0<p;p<1] =
As.pxPs+ (I —p)x0s)wlp(a ()\s.p)@b)R
(proof )

lemma wp-DC:

97



98 CHAPTER 4.

(As.min (wpa Qs) (wpbQs))twp(al]b)Q
(proof)

lemma wip-DC:

(As.min (wlpa Qs) (wipb Qs))bwip (a[] D) QO

(proof )

Combining annotations for both branches:

lemma DC-split:
fixes a::'s prog and b
assumes wpa: Pt aab R
and wpb: Qb ab R
shows (As. min (Ps) (Qs)) ¥ (a[] b) abR
(proof)

lemma wp-DC-split:
[Pt wpprog R; O wp prog’ R] =
(As. min (P s) (Q s)) & wp (prog[] prog’) R
(proof)

lemma wip-DC-split:
[ Pt wip prog R; O+ wip prog’ R =
(As. min (P s) (Q s)) = wip (prog [] prog’) R
(proof )

lemma wp-DC-split-same:

THE PGCL LANGUAGE

[ P+ wp prog Q; Pt wp prog’ Q| = P+ wp (prog['] prog’) Q

(proof)

lemma wip-DC-split-same:

[ Pt wip prog Q; Pt wip prog’ Q] = Pt~ wip (prog [ | prog’) Q

(proof)

lemma SetPC-split:
fixes f::'x = 'y prog
and p::'y = 'x = real

assumes rec: N\xs.x € supp (ps) = Pxtfxab Q

and nnp: \s. nneg (p s)

shows (As. > x € supp (ps).psxxPxs)t SetPCfpabQ

(proof)

lemma wp-SetPC-split:

[Axs.x€supp (ps) = Pxtwp (fx) Q; \s. nneg (ps) | =

(As. > x€supp (ps).psx*Pxs)t wp (SetPCfp)Q

(proof)

lemma wip-SetPC-split:

[Axs.x€supp (ps) = Pxtwip (fx) Q; \s. nneg (ps) | =

(As. > x€supp (ps).psx+Pxs)t wilp (SetPC fp) O
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(proof)

lemma wp-SetDC-split:
[Asx.xe€Ss=Pltwp (fx) O; \s.Ss £ {} ]| =
Pt wp (SetDCfS) Q
{proof )

lemma wip-SetDC-split:
[Asx.xeSs=Pltwip (fx) O; \s.Ss #{} ]| =
Pt wip (SetDCfS) Q

(proof)

lemma wp-SetDC:
assumes wp: Asx.x€Ss=Pxtwp (fx) Q0
and ne: \s. Ss # {}
and sP: A\x. sound (P x)
shows (As. Inf (Ax. Pxs) ‘S s)) = wp (SetDCfS) Q

(proof)

lemma wip-SetDC:
assumes wp: Asx.x€Ss= Pxwip (fx) O

and ne: \s. Ss # {}
and sP: Ax. sound (P x)

shows (As. Inf (Ax. Pxs) “Ss)) = wip (SetDCfS) O
(proof)

lemma wp-Embed:
PrHtQ = Pt wp (Embedt) Q

(proof)

lemma wip-Embed.:
Pt tQ = Pt wip (Embedt) Q

(proof)

lemma wp-Bind:
[As-Ps<wp(a(fs)) Qs] = Pt wp (Bindfa)Q
(proof )

lemma wip-Bind:

[As-Ps<wlp(a(fs)) Qs] = P+ wip (Bindfa) Q
(proof)

lemma wp-repeat:
[P+ wpaQ; QF wp (repeat n a) R;
well-def a; sound Q; sound R | = P I~ wp (repeat (Suc n) a) R
(proof )

lemma wip-repeat:
[P+ wipaQ; Ot wip (repeat n a) R;
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well-def a; unitary Q; unitary R | = P I~ wip (repeat (Suc n) a) R
(proof)

Note that the loop rules presented in section Section 4.8 are of the same form, and
would belong here, had they not already been stated.

The following rules are specialisations of those for general transformers, and are
easier for the unifier to match.

lemmas wp-strengthen-post=
entails-strengthen-post|where t=wp a for da]

lemma wip-strengthen-post:
Pt wip a Q = nearly-healthy (wlp a) = unitary R —> Q &+ R = unitary Q —
PtwlpaR

(proof)

lemmas wp-weaken-pre=
entails-weaken-pre[where t=wp a for a]

lemmas wip-weaken-pre=
entails-weaken-pre[where r=wlip a for d]

lemmas wp-scale=
entails-scale|where t=wp a for a, OF - well-def-wp-healthy)

4.10.2 Algebraic Decomposition

Refinement is a powerful tool for decomposition, belied by the simplicity of the
rule. This is an axiomatic formulation of refinement (all annotations of the a are
annotations of b), rather than an operational version (all traces of b are traces of a.

lemma wp-refines:
[aCb;Pt-wpaQ;sound Q] = P+wpb Q
(proof)

lemmas wp-drefines = drefinesD

4.10.3 Hoare triples

The Hoare triple, or validity predicate, is logically equivalent to the weakest-precondition
entailment form. The benefit is that it allows us to define transitivity rules for com-
putational (also/finally) reasoning.

definition

wp-valid :: ('a = real) = 'a prog = (‘a = real) = bool ({-} - {-}p>)
where

wp-valid P prog Q = P+ wp prog Q

lemma wp-validl:
P = wp prog Q = {P}} prog {Ql}p
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(proof)

lemma wp-validD:
{P}} prog {O}p = Pt wp prog O
(proof)

lemma valid-Seq:
[{P] a {O}p; {0} b {R]}p; well-def a; well-def b; sound Q; sound R | =
{P}as; b {Rlp
(proof)

We make it available to the computational reasoner:

declare valid-Seq[trans)

end

4.11 Loop Termination
theory Termination imports Embedding StructuredReasoning Loops begin

Termination for loops can be shown by classical means (using a variant, or a mea-
sure function), or by probabilistic means: We only need that the loop terminates
with probability one.

4.11.1 Trivial Termination

A maximal transformer (program) doesn’t affect termination. This is essentially
saying that such a program doesn’t abort (or diverge).

lemma maximal-Seq-term:
fixes r::'s prog and s::'s prog
assumes mr: maximal (wp r)
and ws: well-def s
and zs: (As. 1) Ewp s (As. 1)
shows (As. I) = wp (r3;;s) (As. 1)
(proof)

From any state where the guard does not hold, a loop terminates in a single step.

lemma term-onestep:
assumes wb: well-def body
shows «\ G» = wp do G — body od (Xs. 1)

(proof)

4.11.2 Classical Termination

The first non-trivial termination result is quite standard: If we can provide a natural-
number-valued measure, that decreases on every iteration, and implies termination
on reaching zero, the loop terminates.
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lemma loop-term-nat-measure-noinv:
fixes m :: 's = nat and body :: 's prog
assumes wb: well-def body
and guard: \s. ms=0— -G
and variant: \n. «\s. m s = Suc n» = wp body «\s. m s = n»
shows \s. I = wp do G — body od (Xs. 1)

(proof)

This version allows progress to depend on an invariant. Termination is then deter-
mined by the invariant’s value in the initial state.

lemma loop-term-nat-measure:
fixes m :: 's = nat and body :: 's prog
assumes wb: well-def body
and guard: N\s.ms=0—-Gs
and variant: \n. «As. m s = Suc n» && «I» = wp body «As. m s = n»
and inv:  wp-inv G body «I»
shows «I» - wp do G — body od (As. 1)

(proof)

4.11.3 Probabilistic Termination

Any loop that has a non-zero chance of terminating after each step terminates with
probability 1.

lemma termination-0-1:

fixes body :: 's prog

assumes wb: well-def body
— The loop terminates in one step with nonzero probability
and onestep: (\s. p) = wp body «N G»
andnzp: 0<p
— The body is maximal i.e. it terminates absolutely.
and mb:  maximal (wp body)

shows As. 1 = wp do G — body od (Xs. 1)

(proof)

end

4.12 Automated Reasoning

theory Automation imports StructuredReasoning
begin

This theory serves as a container for automated reasoning tactics for pGCL, imple-
mented in ML. At present, there is a basic verification condition generator (VCG).

named-theorems wd

theorems to automatically establish well—definedness
named-theorems pwp-core

core probabilistic wp rules, for evaluating primitive terms
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named-theorems pwp

user—supplied probabilistic wp rules
named-theorems pwip

user—supplied probabilistic wlp rules

(ML)
declare wd-intros[wd)]

lemmas core-wp-rules =
wp-Skip wip-Skip
wp-Abort  wip-Abort
wp-Apply  wip-Apply
wp-Seq wlp-Seq
wp-DC-split  wlp-DC-split
wp-PC-fixed wlp-PC-fixed
wp-SetDC  wip-SetDC
wp-SetPC-split wip-SetPC-split

declare core-wp-rules[pwp-core]

end
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Additional Material

4.13 Miscellaneous Mathematics

theory Misc
imports
HOL—Analysis.Multivariate-Analysis
begin lemma sum-UNIV:
fixes S::'a::finite set
assumes complete: \x. x¢S —> fx =0
shows sum 'S = sum f UNIV

(proof)

lemma clnf-mono:
fixes A::'a::conditionally-complete-lattice set
assumes lower: A\b.b € B=— JacA.a <b
and bounded: N\a.a € A = c<a
and ne: B # {}
shows InfA < Inf B

(proof)

lemma max-distrib:
fixes c::real
assumes nn: 0 < ¢
shows ¢ * max a b = max (c x a) (¢ * b)

(proof)

lemma mult-div-mono-left:
fixes c::real
assumes nnc: 0 < c and nzc: ¢ # 0
and inv: a < inverse ¢ x b
showscxa <b

(proof)

lemma mult-div-mono-right:
fixes c::real
assumes nnc: 0 < c and nzc: ¢ # 0
and inv: inverse c xa < b
showsa <cx*xb

(proof)
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lemma min-distrib:
fixes c::real
assumes nnc: 0 < ¢
shows ¢ * min a b = min (c * a) (¢ * b)

(proof )

lemma finite-set-least:
fixes S::'a::linorder set
assumes finite: finite S
and ne: S # {}
shows 3xeS. VyeS. x <y

(proof)

lemma cSup-add:
fixes c::real
assumes ne: S # {}
and bS: \x. xS = x<b
shows Sup S + ¢ = Sup {x + ¢ |x. x € S}

{proof)

lemma cSup-mult:
fixes c::real
assumes ne: S # {}
and bS: A\x. xeS=x<b
and nnc: 0 <c¢
shows ¢ % Sup S = Sup {c * x |x. x € S}

(proof)

lemma closure-contains-Sup:
fixes S :: real set
assumes neS: S # {} and bS: Vx€S. x < B
shows Sup S € closure S

(proof)

lemma tendsto-min:
fixes x y::real
assumes fa: a —— X
and tb: b —— y
shows (Ai. min (a i) (bi)) —— minxy
(proof)

definition supp :: ('s = real) = s set
where supp f = {x. fx # 0}

definition dist-remove :: ('s = real) = 's = 's = real

ADDITIONAL MATERIAL

where dist-remove p x = (A\y. if y=xthenOelsepy / (1 — p x))

lemma supp-dist-remove:
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px+# 0= px# 1= supp (dist-remove p x) = supp p — {x}

(proof)

lemma supp-empty:
suppf ={} = fx=0
{proof)

lemma nsupp-zero:
x¢suppf = fx=20
(proof )

lemma sum-supp:

fixes f::'a::finite = real

shows sum f (supp ) = sum f UNIV
(proof)

4.13.1 Truncated Subtraction

definition

tminus :: real = real = real (infixl <©> 60)
where

x&y=max(x—y)0

lemma minus-le-tminus(intro! simp):
a—b<aocb
(proof )

lemma rminus-cancel-1:
0<a=—a+16l=a

(proof)

lemma tminus-zero-imp-le:
xOy<O0=x<y
(proof)

lemma tminus-zero[simp:
0<x—x60=x

(proof)

lemma tminus-left-mono:
a<b—a6c<boc

(proof)

lemma rminus-less:
[0<a;0<b]=aSb<a
(proof)

lemma tminus-left-distrib:
assumes nna: 0 < a
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showsa*x (bSO c)=axbSaxc
{proof )

lemma tminus-le[simp]:
b<a=aSb=a-b>b

(proof )

lemma tminus-le-alt[simp):
a<b=—acb=0

(proof)

lemma tminus-nle[simp):
b<a=—aSb=0

(proof)

lemma tminus-add-mono:
(a+b) © (c+d) < (aSc) + (bSd)
(proof )

lemma tminus-sum-mono:
assumes fS: finite S
shows sum S © sum g S < sum (MAx. fx© gx) S
(is 72X S)
(proof)

lemma tminus-nneg|simp intro):
0<ao©b
(proof)

lemma tminus-right-antimono:
assumes clb: ¢ < b
showsaob<aoc

(proof)

lemma min-tminus-distrib:
minabSc=min(aoc) (boc)
(proof)

end

ADDITIONAL MATERIAL
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