pGCL for Isabelle

David Cock

March 17, 2025

Contents

1	Ove	rview		1			
2	Intr	oduction	n to pGCL	3			
	2.1	Langua	age Primitives	3			
		2.1.1	The Basics	3			
		2.1.2	Assertion and Annotation	4			
		2.1.3	Probability	4			
		2.1.4	Nondeterminism	5			
		2.1.5	Properties of Expectations	5			
	2.2	Loops		6			
		2.2.1	Guaranteed Termination	6			
		2.2.2	Probabilistic Termination	7			
	2.3	The M	onty Hall Problem	7			
		2.3.1	The State Space	8			
		2.3.2	The Game	8			
		2.3.3	A Brute Force Solution	9			
		2.3.4	A Modular Approach	10			
3	Semantic Structures 13						
	3.1	Expect	tations	13			
		3.1.1	Bounded Functions	14			
		3.1.2	Non-Negative Functions	16			
		3.1.3	Sound Expectations	17			
		3.1.4	Unitary expectations	19			
		3.1.5	Standard Expectations	19			
		3.1.6	Entailment	21			
		3.1.7	Expectation Conjunction	22			
		3.1.8	Rules Involving Conjunction.	23			
		3.1.9	Rules Involving Entailment and Conjunction Together	25			
	3.2	Expect	tation Transformers	26			
		3.2.1	Comparing Transformers	28			
		3.2.2	Healthy Transformers	32			
		3.2.3	Sublinearity	37			

iv CONTENTS

		3.2.4	Determinism
		3.2.5	Modular Reasoning
		3.2.6	Transforming Standard Expectations
	3.3	Induct	ion
		3.3.1	The Lattice of Expectations
		3.3.2	The Lattice of Transformers
		3.3.3	Tail Recursion 51
4	The	nGCL	Language 53
	4.1	-	llow Embedding of pGCL in HOL
		4.1.1	Core Primitives and Syntax
		4.1.2	Unfolding rules for non-recursive primitives
	4.2		iness
	2	4.2.1	The Healthiness of the Embedding
		4.2.2	Healthiness for Loops
	4.3		nuity
	7.5	4.3.1	Continuity of Primitives
		4.3.2	Continuity of a Single Loop Step
	4.4		nuity and Induction for Loops
	7.7	4.4.1	The Limit of Iterates
	4.5		earity
	7.5	4.5.1	Nonrecursive Primitives
		4.5.2	Sublinearity for Loops
	4.6		ninism
	4.0	4.6.1	
		4.6.1	
		4.6.3	•
	4.7		
	4.7	4.7.1	$oldsymbol{arepsilon}$
			ı
		4.7.2	Sub-Distributivity of Conjunction
	4.0	4.7.3	The Well-Defined Predicate
	4.8		pop Rules
		4.8.1	Liberal and Strict Invariants
			Partial Correctness
		4.8.3	Total Correctness
		4.8.4	Unfolding
	4.9		lgebra of pGCL
		4.9.1	Program Refinement
		4.9.2	Simple Identities
		4.9.3	Deterministic Programs are Maximal
		4.9.4	The Algebraic Structure of Refinement
		4.9.5	Data Refinement
		4.9.6	The Algebra of Data Refinement
		4.9.7	Structural Rules for Correspondence 95

CONTENTS	v
----------	---

	4.9.8	Structural Rules for Data Refinement	95		
4.10	Structured Reasoning				
	4.10.1	Syntactic Decomposition	96		
		Algebraic Decomposition	100		
	4.10.3	Hoare triples	100		
4.11	Loop 7	Termination	101		
	4.11.1	Trivial Termination	101		
	4.11.2	Classical Termination	101		
	4.11.3	Probabilistic Termination	102		
4.12	Autom	ated Reasoning	102		
Addition	nal Mat	erial	105		
4.13	Miscel	laneous Mathematics	105		
	4.13.1	Truncated Subtraction	107		

vi *CONTENTS*

Chapter 1

Overview

pGCL is both a programming language and a specification language that incorporates both probabilistic and nondeterministic choice, in a unified manner. Program verification is by *refinement* or *annotation* (or both), using either Hoare triples, or weakest-precondition entailment, in the style of GCL [Dijkstra, 1975].

This document is divided into three parts: Chapter 2 gives a tutorial-style introduction to pGCL, and demonstrates the tools provided by the package; Chapter 3 covers the development of the semantic interpretation: *expectation transformers*; and Chapter 4 covers the formalisation of the language primitives, the associated *healthiness* results, and the tools for structured and automated reasoning. This second part follows the technical development of the pGCL theory package, in detail. It is not a great place to start learning pGCL. For that, see either the tutorial or McIver and Morgan [2004].

This formalisation was first presented (as an overview) in Cock [2012]. The language has previously been formalised in HOL4 by Hurd et al. [2005]. Two substantial results using this package were presented in Cock [2013], Cock [2014a] and Cock [2014b].

Chapter 2

Introduction to pGCL

2.1 Language Primitives

theory Primitives imports ../pGCL begin

Programs in pGCL are probabilistic automata. They can do anything a traditional program can, plus, they may make truly probabilistic choices.

2.1.1 The Basics

Imagine flipping a pair of fair coins: a and b. Using a record type for the state allows a number of syntactic niceties, which we describe shortly:

```
datatype coin = Heads | Tails
record coins =
  a :: coin
  b :: coin
```

The primitive state operation is Apply, which takes a state transformer as an argument, constructs the pGCL equivalent. Thus Apply (a-update (λ -. Heads)) sets the value of coin a to Heads. As records are so common as state types, we introduce syntax to make these update neater: The same program may be defined more simply as Apply (a-update (λ -. Heads)) (note that the syntax translation involved does not apply to Latex output, and thus this lemma appears trivial):

lemma

```
\begin{array}{l} \textit{Apply} \ (\lambda s. \ s \ (\mid a := \textit{Heads} \ )) = (a := (\lambda s. \ \textit{Heads})) \\ \langle \textit{proof} \, \rangle \end{array}
```

We can treat the record's fields as the names of *variables*. Note that the right-hand side of an assignment is always a function of the current state. Thus we may use a record accessor directly, for example Apply ($\lambda s. s(a := b s)$), which updates a with the current value of b. If we wish to formally establish that the previous statement

is correct i.e. that in the final state, a really will have whatever value b had in the initial state, we must first introduce the assertion language.

2.1.2 Assertion and Annotation

Assertions in pGCL are real-valued functions of the state, which are often interpreted as a probability distribution over possible outcomes. These functions are termed *expectations*, for reasons which shortly be clear. Initially, however, we need only consider *standard* expectations: those derived from a binary predicate. A predicate $P::'s \Rightarrow bool$ is embedded as $(P)::'s \Rightarrow real$, such that $Ps \longrightarrow (P) \times S = I \land Ps \longrightarrow (P) \times S = I \land S$

An annotation consists of an assertion on the initial state and one on the final state, which for standard expectations may be interpreted as 'if P holds in the initial state, then Q will hold in the final state'. These are in weakest-precondition form: we assert that the precondition implies the *weakest precondition*: the weakest assertion on the initial state, which implies that the postcondition must hold on the final state. So far, this is identical to the standard approach. Remember, however, that we are working with *real-valued* assertions. For standard expectations, the logic is nevertheless identical, if the implication $\forall s. Ps \longrightarrow Qs$ is substituted with the equivalent expectation entailment $(P) \Vdash (Q) \Vdash (P) \vdash (P)$

lemma

```
\bigwedge x. «\lambda s. b \ s = x» \vdash wp \ (a := b) «\lambda s. a \ s = x» \langle proof \rangle
```

Any ordinary computation and its associated annotation can be expressed in this form.

2.1.3 Probability

Next, we introduce the syntax x;; y for the sequential composition of x and y, and also demonstrate that one can operate directly on a real-valued (and thus infinite) state space:

lemma

```
 \text{$<\lambda s$::$real. } s \neq 0 \text{$>\>$} \vdash wp \; (Apply \; ((*)\; 2) \; ;; Apply \; (\lambda s.\; s \; / \; s)) \; \text{$<\lambda s.$ } s = 1 \text{$>\>$} \\ \langle proof \; \rangle
```

So far, we haven't done anything that required probabilities, or expectations other than 0 and 1. As an example of both, we show that a single coin toss is fair. We introduce the syntax $x_p \oplus y$ for a probabilistic choice between x and y. This program behaves as x with probability p, and as y with probability 1 - p. The probability may depend on the state, and is therefore of type $s \Rightarrow real$. The following annotation states that the probability of heads is exactly 1/2:

definition

```
flip-a :: real \Rightarrow coins \ prog
where
flip-a \ p = a := (\lambda -. \ Heads) \ (\lambda s. \ p) \oplus a := (\lambda -. \ Tails)
lemma
(\lambda s. \ 1/2) = wp \ (flip-a \ (1/2)) \ «\lambda s. \ a \ s = Heads»
\langle proof \rangle
```

2.1.4 Nondeterminism

We can also under-specify a program, using the *nondeterministic choice* operator, $x \sqcap y$. This is interpreted demonically, giving the pointwise *minimum* of the pre-expectations for x and y: the chance of seeing heads, if your opponent is allowed choose between a pair of coins, one biased 2/3 heads and one 2/3 tails, and then flips it, is *at least* 1/3, but we can make no stronger statement:

lemma

$$\lambda s. 1/3 \vdash wp \text{ (flip-a (2/3) } \sqcap \text{ flip-a (1/3)) } \text{ «} \lambda s. a s = \text{Heads} \text{»}$$
 $\langle proof \rangle$

2.1.5 Properties of Expectations

The probabilities of independent events combine as usual, by multiplying: The chance of getting heads on two separate coins is 1 / (4::'a).

definition

```
flip-b :: real \Rightarrow coins prog
where
flip-b p = b := (\lambda -. Heads)_{(\lambda s. p)} \oplus b := (\lambda -. Tails)
lemma
(\lambda s. 1/4) = wp \ (flip-a \ (1/2) \ ;; flip-b \ (1/2))
\ll \lambda s. \ a \ s = Heads \wedge b \ s = Heads \gg \langle proof \rangle
```

If, rather than two coins, we use two dice, we can make some slightly more involved calculations. We see that the weakest pre-expectation of the value on the face of the die after rolling is its *expected value* in the initial state, which justifies the use of the term expectation.

```
record dice = red :: nat
blue :: nat
definition Puniform :: 'a set \Rightarrow ('a \Rightarrow real)
where Puniform <math>S = (\lambda x. \ if \ x \in S \ then \ 1 \ / \ card \ S \ else \ 0)
lemma Puniform-in:
x \in S \Longrightarrow Puniform \ S \ x = 1 \ / \ card \ S
\langle proof \rangle
```

```
lemma Puniform-out: x \notin S \Longrightarrow Puniform \ S \ x = 0 \langle proof \rangle

lemma supp-Puniform: finite \ S \Longrightarrow supp \ (Puniform \ S) = S \langle proof \rangle
```

The expected value of a roll of a six-sided die is (7::'a) / (2::'a):

lemma

```
(\lambda s. 7/2) = wp \ (bind \ v \ at \ (\lambda s. \ Puniform \ \{1..6\} \ v) \ in \ red := (\lambda -. \ v)) \ red \ \langle proof \rangle
```

The expectations of independent variables add:

lemma

```
(\lambda s. 7) = wp ((bind v at (\lambda s. Puniform \{1..6\} v) in red := (\lambda s. v)) ;; (bind v at (\lambda s. Puniform \{1..6\} v) in blue := (\lambda s. v))) (\lambda s. red s + blue s) 
 \langle proof \rangle
```

end

2.2 Loops

theory LoopExamples imports ../pGCL begin

Reasoning about loops in pGCL is mostly familiar, in particular in the use of invariants. Proving termination for truly probabilistic loops is slightly different: We appeal to a 0–1 law to show that the loop terminates *with probability 1*. In our semantic model, terminating with certainty and with probability 1 are exactly equivalent.

2.2.1 Guaranteed Termination

We start with a completely classical loop, to show that standard techniques apply. Here, we have a program that simply decrements a counter until it hits zero:

```
definition countdown :: int prog where countdown = do(\lambda x. 0 < x) \longrightarrow Apply(\lambda s. s - 1) od
```

Clearly, this loop will only terminate from a state where $0 \le x$. This is, in fact, also a loop invariant.

```
definition inv-count :: int \Rightarrow bool where inv-count = (\lambda x. \ 0 \le x)
```

Read *wp-inv G body I* as: *I* is an invariant of the loop μx . *body* ;; $x \in G \to Skip$, or $\in G \to \&\& I \vdash wp \ body I$.

```
lemma wp-inv-count:
wp-inv (\lambda x. \ 0 < x) (Apply (\lambda s. \ s - 1)) «inv-count» \langle proof \rangle
```

This example is contrived to give us an obvious variant, or measure function: the counter itself.

```
lemma term-countdown:

«inv-count» \vdash wp countdown (\lambda s. 1)

\langle proof \rangle
```

2.2.2 Probabilistic Termination

Loops need not terminate deterministically: it is sufficient to terminate with probability 1. Here we show the intuitively obvious result that by flipping a coin repeatedly, you will eventually see heads.

```
type-synonym coin = bool

definition Heads = True

definition Tails = False

definition

flip :: coin prog

where

flip = Apply (\lambda -. Heads) (\lambda s. 1/2) \oplus Apply (\lambda -. Tails)
```

We can't define a measure here, as we did previously, as neither of the two possible states guarantee termination.

```
definition
```

```
wait-for-heads :: coin prog

where

wait-for-heads = do ((\neq) Heads) \longrightarrow flip od
```

Nonetheless, we can show termination.

```
lemma wait-for-heads-term:

\lambda s. \ 1 \vdash wp \ wait-for-heads \ (\lambda s. \ 1)

\langle proof \rangle
```

end

2.3 The Monty Hall Problem

```
theory Monty imports ../pGCL begin
```

We now tackle a more substantial example, allowing us to demonstrate the tools for compositional reasoning and the use of invariants in non-recursive programs.

Our example is the well-known Monty Hall puzzle in statistical inference [Selvin, 1975].

The setting is a game show: There is a prize hidden behind one of three doors, and the contestant is invited to choose one. Once the guess is made, the host than opens one of the remaining two doors, revealing a goat and showing that the prize is elsewhere. The contestent is then given the choice of switching their guess to the other unopened door, or sticking to their first guess.

The puzzle is whether the contestant is better off switching or staying put; or indeed whether it makes a difference at all. Most people's intuition suggests that it make no difference, whereas in fact, switching raises the chance of success from 1/3 to 2/3.

2.3.1 The State Space

The game state consists of the prize location, the guess, and the clue (the door the host opens). These are not constrained a priori to the range $\{1, 2, 3\}$, but are simply natural numbers: We instead show that this is in fact an invariant.

```
record game =
prize :: nat
guess :: nat
clue :: nat
```

The victory condition: The player wins if they have guessed the correct door, when the game ends.

```
definition player-wins :: game \Rightarrow bool where player-wins g \equiv guess \ g = prize \ g
```

Invariants

We prove explicitly that only valid doors are ever chosen.

```
definition inv-prize :: game \Rightarrow bool where inv-prize g \equiv prize g \in \{1,2,3\} definition inv-clue :: game \Rightarrow bool where inv-clue g \equiv clue g \in \{1,2,3\} definition inv-guess :: game \Rightarrow bool where inv-guess g \equiv guess g \in \{1,2,3\}
```

2.3.2 The Game

Hide the prize behind door *D*.

```
definition hide-behind :: nat \Rightarrow game\ prog where hide-behind D \equiv Apply\ (prize-update\ (\lambda x.\ D))
```

Choose door D.

```
definition guess-behind :: nat \Rightarrow game prog where guess-behind D \equiv Apply (guess-update (\lambda x. D))
```

Open door D and reveal what's behind.

```
definition open-door :: nat \Rightarrow game\ prog
where open-door D \equiv Apply\ (clue-update\ (\lambda x.\ D))
```

Hide the prize behind door 1, 2 or 3, demonically i.e. according to any probability distribution (or none).

```
definition hide-prize :: game prog where hide-prize \equiv hide-behind 1 \sqcap hide-behind 2 \sqcap hide-behind 3 \sqcap hide-behind 3
```

Guess uniformly at random.

```
definition make-guess :: game prog

where make-guess \equiv guess-behind 1 (\lambda s. 1/3)^{\bigoplus}

guess-behind 2 (\lambda s. 1/2)^{\bigoplus} guess-behind 3
```

Open one of the two doors that *doesn't* hide the prize.

```
definition reveal :: game prog where reveal \equiv \prod d \in (\lambda s. \{1,2,3\} - \{prize \ s, \ guess \ s\}). open-door d
```

Switch your guess to the other unopened door.

```
definition switch-guess :: game prog where switch-guess \equiv \prod d \in (\lambda s. \{1,2,3\} - \{clue\ s, guess\ s\}). guess-behind d
```

The complete game, either with or without switching guesses.

```
definition monty :: bool ⇒ game prog

where

monty switch ≡ hide-prize ;;

make-guess ;;

reveal ;;

(if switch then switch-guess else Skip)
```

2.3.3 A Brute Force Solution

For sufficiently simple programs, we can calculate the exact weakest pre-expectation by unfolding.

If they stick to their guns, the player wins with p = 1/3.

If they switch, they win with p=2/3. Brute force here takes longer, but is still feasible. On larger programs, this will rapidly become impossible, as the size of the terms (generally) grows exponentially with the length of the program.

```
lemma wp-monty-switch-bruteforce: (\lambda s. 2/3) = wp \ (monty \ True) \ «player-wins» \ \langle proof \rangle
```

2.3.4 A Modular Approach

We can solve the problem more efficiently, at the cost of a little more user effort, by breaking up the problem and annotating each step of the game separately. While this is not strictly necessary for this program, it will scale to larger examples, as the work in annotation only increases linearly with the length of the program.

Healthiness

We first establish healthiness for each step. This follows straightforwardly by applying the supplied rulesets.

```
| lemma wd-hide-prize:
| well-def hide-prize |
| ⟨proof⟩ |
| lemma wd-make-guess:
| well-def make-guess |
| ⟨proof⟩ |
| lemma wd-reveal:
| well-def reveal |
| ⟨proof⟩ |
| lemma wd-switch-guess:
| well-def switch-guess |
| ⟨proof⟩ |
| lemmas monty-healthy = |
| wd-switch-guess wd-reveal wd-make-guess wd-hide-prize
```

Annotations

We now annotate each step individually, and then combine them to produce an annotation for the entire program.

hide-prize chooses a valid door.

```
lemma wp-hide-prize:

(\lambda s. \ 1) \Vdash wp \ hide-prize \ll inv-prize \gg \langle proof \rangle
```

Given the prize invariant, *make-guess* chooses a valid door, and guesses incorrectly with probability at least 2/3.

```
lemma wp-make-guess:
```

```
(\lambda s.\ 2/3 * \& \lambda g.\ inv-prize\ g \gg s) \Vdash 
wp make-guess \& \lambda g.\ guess\ g \neq prize\ g \land inv-prize\ g \land inv-guess\ g \gg 
\langle proof \rangle
```

lemma last-one:

```
assumes a \neq b and a \in \{1::nat,2,3\} and b \in \{1,2,3\} shows \exists !c. \{1,2,3\} - \{b,a\} = \{c\} \langle proof \rangle
```

Given the composed invariants, and an incorrect guess, *reveal* will give a clue that is neither the prize, nor the guess.

lemma *wp-reveal*:

Showing that the three doors are all district is a largeish first-order problem, for which sledgehammer gives us a reasonable script.

lemma *distinct-game*:

```
[ guess g \neq prize\ g; clue g \neq prize\ g; clue g \neq guess\ g; inv-prize g; inv-guess g; inv-clue g ] \Longrightarrow \{1, 2, 3\} = \{guess\ g, prize\ g, clue\ g\} \langle proof \rangle
```

Given the invariants, switching from the wrong guess gives the right one.

lemma wp-switch-guess:

Given componentwise specifications, we can glue them together with calculational reasoning to get our result.

Using the VCG

```
lemmas scaled-hide = wp-scale[OF wp-hide-prize, simplified]
declare scaled-hide[pwp] wp-make-guess[pwp] wp-reveal[pwp] wp-switch-guess[pwp]
declare wd-hide-prize[wd] wd-make-guess[wd] wd-reveal[wd] wd-switch-guess[wd]
```

Alternatively, the VCG will get this using the same annotations.

```
lemma wp-monty-switch-vcg:

(\lambda s. 2/3) \Vdash wp (monty True) \ll player-wins \gg \langle proof \rangle
```

end

Chapter 3

Semantic Structures

3.1 Expectations

theory Expectations imports Misc begin type-synonym 's expect = 's \Rightarrow real

Expectations are a real-valued generalisation of boolean predicates: An expectation on state 's is a function 's \Rightarrow real. A predicate P on 's is embedded as an expectation by mapping True to 1 and False to 0. Under this embedding, implication becomes comparison, as the truth tables demonstrate:

a	b	$\begin{array}{c} a \to b \\ \text{T} \\ \text{T} \end{array}$	x	y	$x \leq y$
F	F	T	0	0	T
F	T		0	1	T
T		F	1	0	F
T	T	T	1	1	T

For probabilistic automata, an expectation gives the current expected value of some expression, if it were to be evaluated in the final state. For example, consider the automaton of Figure 3.1, with transition probabilities affixed to edges. Let $P \ b = 2.0$ and $P \ c = 3.0$. Both states b and c are final (accepting) states, and thus the 'final expected value' of P in state b is 2.0 and in state c is 3.0. The expected value from state a is the weighted sum of these, or $0.7 \times 2.0 + 0.3 \times 3.0 = 2.3$.

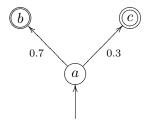


Figure 3.1: A probabilistic automaton

All expectations must be non-negative and bounded i.e. $\forall s.\ 0 \le P\ s$ and $\exists b. \forall s. P\ s \le b$. Note that although every expectation must have a bound, there is no bound on all expectations; In particular, the following series has no global bound, although each element is clearly bounded:

$$P_i = \lambda s. i$$
 where $i \in \mathbb{N}$

3.1.1 Bounded Functions

```
definition bounded-by :: real \Rightarrow ('a \Rightarrow real) \Rightarrow bool where bounded-by b P \equiv \forall x. P x \leq b
```

By instantiating the classical reasoner, both establishing and appealing to boundedness is largely automatic.

A function is bounded if there exists at least one upper bound on it.

```
definition bounded :: ('a \Rightarrow real) \Rightarrow bool where bounded P \equiv (\exists b. bounded-by b P)
```

In the reals, if there exists any upper bound, then there must exist a least upper bound.

```
definition bound-of :: ('a \Rightarrow real) \Rightarrow real

where bound-of P \equiv Sup (P `UNIV)

lemma bounded-bdd-above[intro]:

assumes bP: bounded P

shows bdd-above (range P)

\langle proof \rangle
```

The least upper bound has the usual properties:

lemma bound-of-least[intro]:

```
assumes bP: bounded-by b P
 shows bound-of P \le b
 \langle proof \rangle
lemma bounded-by-bound-of[intro!]:
 fixes P:: 'a \Rightarrow real
 assumes bP: bounded P
 shows bounded-by (bound-of P) P
 \langle proof \rangle
lemma bound-of-greater[intro]:
 bounded P \Longrightarrow P x \leq bound-of P
 \langle proof \rangle
lemma bounded-by-mono:
 \llbracket bounded-by a P; a \leq b \rrbracket \Longrightarrow bounded-by b P
lemma bounded-by-imp-bounded[intro]:
 bounded-by b P \Longrightarrow bounded P
 \langle proof \rangle
This is occasionally easier to apply:
lemma bounded-by-bound-of-alt:
 \llbracket bounded P; bound-of P = a \rrbracket \Longrightarrow bounded-by a P
 \langle proof \rangle
lemma bounded-const[simp]:
 bounded (\lambda x. c)
 \langle proof \rangle
lemma bounded-by-const[intro]:
 c \leq b \Longrightarrow bounded-by\ b\ (\lambda x.\ c)
 \langle proof \rangle
lemma bounded-by-mono-alt[intro]:
 \llbracket bounded-by\ b\ Q; P \leq Q\ \rrbracket \Longrightarrow bounded-by\ b\ P
 \langle proof \rangle
lemma bound-of-const[simp, intro]:
 bound-of (\lambda x. c) = (c::real)
 \langle proof \rangle
lemma bound-of-leI:
 assumes \bigwedge x. P x \leq (c::real)
 shows bound-of P \le c
 \langle proof \rangle
lemma bound-of-mono[intro]:
```

3.1.2 Non-Negative Functions.

The definitions for non-negative functions are analogous to those for bounded functions.

```
definition
 nneg :: ('a \Rightarrow 'b::\{zero, order\}) \Rightarrow bool
 nneg\ P \longleftrightarrow (\forall x.\ 0 \le P\ x)
lemma nnegI[intro]:
  [\![ \bigwedge x. \ 0 \le P \ x \, ]\!] \Longrightarrow nneg \ P
  \langle proof \rangle
lemma nnegI2[intro]:
 (\lambda s. 0) \leq P \Longrightarrow nneg P
  \langle proof \rangle
lemma nnegD[dest]:
 nneg\ P \Longrightarrow 0 \le P\ x
  \langle proof \rangle
lemma nnegD2[dest]:
 nneg\ P \Longrightarrow (\lambda s.\ 0) \le P
  \langle proof \rangle
lemma nneg-bdd-below[intro]:
 nneg\ P \Longrightarrow bdd\text{-}below\ (range\ P)
  \langle proof \rangle
lemma nneg-const[iff]:
 nneg(\lambda x. c) \longleftrightarrow 0 \le c
  \langle proof \rangle
lemma nneg-o[intro,simp]:
 nneg\ P \Longrightarrow nneg\ (P\ o\ f)
  \langle proof \rangle
```

lemma *nneg-bound-nneg*[*intro*]:

3.1.3 Sound Expectations

```
definition sound :: ('s \Rightarrow real) \Rightarrow bool where sound P \equiv bounded P \land nneg P
```

Combining *nneg* and *Expectations.bounded*, we have *sound* expectations. We set up the classical reasoner and the simplifier, such that showing soundess, or deriving a simple consequence (e.g. *sound* $P \Longrightarrow 0 \le P s$) will usually follow by blast, force or simp.

```
lemma soundI:
  \llbracket bounded P; nneg P \rrbracket \Longrightarrow sound P
 \langle proof \rangle
lemma soundI2[intro]:
  \llbracket bounded-by\ b\ P; nneg\ P\ \rrbracket \Longrightarrow sound\ P
  \langle proof \rangle
lemma sound-bounded[dest]:
 sound P \Longrightarrow bounded P
 \langle proof \rangle
lemma sound-nneg[dest]:
 sound P \Longrightarrow nneg P
 \langle proof \rangle
lemma bound-of-sound[intro]:
 assumes sP: sound P
 shows 0 \le bound\text{-}of P
  \langle proof \rangle
```

This proof demonstrates the use of the classical reasoner (specifically blast), to both introduce and eliminate soundness terms.

```
lemma sound-sum[simp,intro]:

assumes sP: sound P and sQ: sound Q

shows sound (\lambda s. P s + Q s)

\langle proof \rangle
```

```
lemma mult-sound:
 assumes sP: sound P and sQ: sound Q
 shows sound (\lambda s. P s * Q s)
\langle proof \rangle
lemma div-sound:
 assumes sP: sound P and cpos: 0 < c
 shows sound (\lambda s. P s / c)
\langle proof \rangle
lemma tminus-sound:
 assumes sP: sound P and nnc: 0 \le c
 shows sound (\lambda s. P s \ominus c)
\langle proof \rangle
lemma const-sound:
 0 \le c \Longrightarrow sound(\lambda s. c)
 \langle proof \rangle
lemma sound-o[intro,simp]:
 sound P \Longrightarrow sound (P \circ f)
 \langle proof \rangle
lemma sc-bounded-by[intro,simp]:
 \llbracket \text{ sound } P; 0 \le c \rrbracket \Longrightarrow \text{bounded-by } (c * \text{bound-of } P) (\lambda x. c * P x)
 \langle proof \rangle
lemma sc-bounded[intro,simp]:
 assumes sP: sound P and pos: 0 \le c
 shows bounded (\lambda x. c * P x)
 \langle proof \rangle
lemma sc-bound[simp]:
 assumes sP: sound P
    and cnn: 0 \le c
 shows c * bound-of P = bound-of (\lambda x. c * P x)
\langle proof \rangle
lemma sc-sound:
 \llbracket sound P; 0 \le c \rrbracket \Longrightarrow sound (\lambda s. c * P s)
 \langle proof \rangle
lemma bounded-by-mult:
 assumes sP: sound P and bP: bounded-by a P
    and sQ: sound Q and bQ: bounded-by b Q
 shows bounded-by (a * b) (\lambda s. P s * Q s)
 \langle proof \rangle
```

lemma bounded-by-add:

```
fixes P::'s \Rightarrow real and Q
 assumes bP: bounded-by a P
    and bQ: bounded-by b Q
 shows bounded-by (a + b) (\lambda s. P s + Q s)
 \langle proof \rangle
lemma sound-unit[intro!,simp]:
 sound (\lambda s. 1)
 \langle proof \rangle
lemma unit-mult[intro]:
 assumes sP: sound P and bP: bounded-by 1 P
    and sQ: sound Q and bQ: bounded-by 1 Q
 shows bounded-by 1 (\lambda s. P s * Q s)
\langle proof \rangle
lemma sum-sound:
 assumes sP: \forall x \in S. sound (P x)
 shows sound (\lambda s. \sum x \in S. Px s)
\langle proof \rangle
```

3.1.4 Unitary expectations

A unitary expectation is a sound expectation that is additionally bounded by one. This is the domain on which the *liberal* (partial correctness) semantics operates.

3.1.5 Standard Expectations

```
definition embed\text{-}bool :: ('s \Rightarrow bool) \Rightarrow 's \Rightarrow real (<< ->> 1000) where
```

```
\langle P \rangle \equiv (\lambda s. \text{ if } P \text{ s then } 1 \text{ else } 0)
```

Standard expectations are the embeddings of boolean predicates, mapping False to 0 and True to 1. We write $\langle P \rangle$ rather than [P] (the syntax employed by McIver and Morgan [2004]) for boolean embedding to avoid clashing with the HOL syntax for lists.

```
lemma embed-bool-nneg[simp,intro]:
 nneg «P»
 \langle proof \rangle
lemma embed-bool-bounded-by-1[simp,intro]:
 bounded-by 1 «P»
 \langle proof \rangle
lemma embed-bool-bounded[simp,intro]:
 bounded «P»
 \langle proof \rangle
low from boolean algebra.
```

Standard expectations have a number of convenient properties, which mostly fol-

```
lemma embed-bool-idem:
 \ll P \gg s * \ll P \gg s = \ll P \gg s
 \langle proof \rangle
lemma eval-embed-true[simp]:
 P s \Longrightarrow \ll P \gg s = 1
 \langle proof \rangle
lemma eval-embed-false[simp]:
  \neg P \ s \Longrightarrow \ll P \gg s = 0
 \langle proof \rangle
lemma embed-ge-0[simp,intro]:
 0 \le «G» s
 \langle proof \rangle
lemma embed-le-1[simp,intro]:
 \ll G \gg s \leq 1
 \langle proof \rangle
lemma embed-le-1-alt[simp,intro]:
 0 \le 1 - «G» s
 \langle proof \rangle
lemma expect-1-I:
 P x \Longrightarrow 1 \le «P» x
 \langle proof \rangle
```

lemma *standard-sound*[*intro*,*simp*]:

sound «P»

21

```
\langle proof \rangle
lemma embed-o[simp]:
 P \circ of = P \circ f
 \langle proof \rangle
Negating a predicate has the expected effect in its embedding as an expectation:
definition negate :: ('s \Rightarrow bool) \Rightarrow 's \Rightarrow bool (\langle \mathcal{N} \rangle)
where negate P = (\lambda s. \neg P s)
lemma negateI:
 \neg P s \Longrightarrow \mathcal{N} P s
 \langle proof \rangle
lemma embed-split:
 fs = \langle P \rangle s * fs + \langle N P \rangle s * fs
 \langle proof \rangle
lemma negate-embed:
 \ll \mathcal{N} P \gg s = 1 - \ll P \gg s
 \langle proof \rangle
lemma eval-nembed-true[simp]:
 P s \Longrightarrow \ll \mathcal{N} P \gg s = 0
 \langle proof \rangle
lemma eval-nembed-false[simp]:
 \neg P s \Longrightarrow \ll \mathcal{N} P \gg s = 1
 \langle proof \rangle
lemma negate-Not[simp]:
 \mathcal{N} Not = (\lambda x. x)
 \langle proof \rangle
lemma negate-negate[simp]:
 \mathcal{N}(\mathcal{N}P) = P
 \langle proof \rangle
lemma embed-bool-cancel:
 \ll G \gg s * \ll \mathcal{N} G \gg s = 0
 \langle proof \rangle
```

3.1.6 Entailment

Entailment on expectations is a generalisation of that on predicates, and is defined by pointwise comparison:

```
abbreviation entails :: ('s \Rightarrow real) \Rightarrow ('s \Rightarrow real) \Rightarrow bool (\leftarrow \vdash \rightarrow 50)
```

```
where P \Vdash Q \equiv P \leq Q

lemma entailsI[intro]:
\llbracket \bigwedge s. \ P \ s \leq Q \ s \rrbracket \implies P \Vdash Q
\langle proof \rangle

lemma entailsD[dest]:
P \Vdash Q \Longrightarrow P \ s \leq Q \ s
\langle proof \rangle

lemma eq-entails[intro]:
P = Q \Longrightarrow P \Vdash Q
\langle proof \rangle

lemma entails-trans[trans]:
\llbracket P \Vdash Q; Q \Vdash R \rrbracket \Longrightarrow P \Vdash R
\langle proof \rangle
```

For standard expectations, both notions of entailment coincide. This result justifies the above claim that our definition generalises predicate entailment:

$$\llbracket \bigwedge s. \ P \ s \Longrightarrow Q \ s \ \rrbracket \Longrightarrow \ «P» \Vdash \ «Q»$$

$$\langle proof \rangle$$

lemma *entails-implies*:

3.1.7 Expectation Conjunction

definition

```
pconj :: real \Rightarrow real \Rightarrow real \text{ (infixl <.&> 71)}
where
p .\& q \equiv p + q \ominus 1
```

definition

```
exp\text{-}conj :: ('s \Rightarrow real) \Rightarrow ('s \Rightarrow real) \Rightarrow ('s \Rightarrow real) \text{ (infixl } <\& \& > 71) where a \&\& b \equiv \lambda s. (a s .\& b s)
```

Expectation conjunction likewise generalises (boolean) predicate conjunction. We show that the expected properties are preserved, and instantiate both the classical reasoner, and the simplifier (in the case of associativity and commutativity).

```
lemma pconj-lzero[intro,simp]: b \le 1 \Longrightarrow 0 \ \& b = 0 \langle proof \rangle

lemma pconj-rzero[intro,simp]: b \le 1 \Longrightarrow b \ \& 0 = 0 \langle proof \rangle
```

```
lemma pconj-lone[intro,simp]:
 0 \le b \Longrightarrow 1 \cdot \& b = b
 \langle proof \rangle
lemma pconj-rone[intro,simp]:
 0 < b \Longrightarrow b \& 1 = b
 \langle proof \rangle
lemma pconj-bconj:
  \langle a \rangle s . \& \langle b \rangle s = \langle \lambda s. \ a \ s \wedge b \ s \rangle s
  \langle proof \rangle
lemma pconj-comm[ac-simps]:
 a . \& b = b . \& a
  \langle proof \rangle
lemma pconj-assoc:
  \llbracket \ 0 \leq a; a \leq 1; 0 \leq b; b \leq 1; 0 \leq c; c \leq 1 \ \rrbracket \Longrightarrow
  a . \& (b . \& c) = (a . \& b) . \& c
  \langle proof \rangle
lemma pconj-mono:
 \llbracket a \le b; c \le d \rrbracket \Longrightarrow a .\& c \le b .\& d
 \langle proof \rangle
lemma pconj-nneg[intro,simp]:
 0 \le a \& b
 \langle proof \rangle
lemma min-pconj:
  (min \ a \ b) \ .\& \ (min \ c \ d) \le min \ (a \ .\& \ c) \ (b \ .\& \ d)
  \langle proof \rangle
lemma pconj-less-one[simp]:
 a + b < 1 \Longrightarrow a . \& b = 0
 \langle proof \rangle
lemma pconj-ge-one[simp]:
  1 \le a + b \Longrightarrow a \cdot \& b = a + b - 1
 \langle proof \rangle
lemma pconj-idem[simp]:
  \ll P \gg s . \& \ll P \gg s = \ll P \gg s
  \langle proof \rangle
```

3.1.8 Rules Involving Conjunction.

lemma exp-conj-mono-left:

```
P \Vdash Q \Longrightarrow P \&\& R \Vdash Q \&\& R
 \langle proof \rangle
lemma exp-conj-mono-right:
 Q \Vdash R \Longrightarrow P \&\& Q \Vdash P \&\& R
 \langle proof \rangle
lemma exp-conj-comm[ac-simps]:
 a \&\& b = b \&\& a
 \langle proof \rangle
lemma exp-conj-bounded-by[intro,simp]:
 assumes bP: bounded-by 1 P
    and bQ: bounded-by 1 Q
 shows bounded-by 1 (P \&\& Q)
\langle proof \rangle
lemma exp-conj-o-distrib[simp]:
 (P \&\& Q) of = (P of) \&\& (Q of)
 \langle proof \rangle
lemma exp-conj-assoc:
 assumes unitary P and unitary Q and unitary R
 shows P \&\& (Q \&\& R) = (P \&\& Q) \&\& R
 \langle proof \rangle
lemma exp-conj-top-left[simp]:
 sound P \Longrightarrow \ll \lambda-. True» && P = P
 \langle proof \rangle
lemma exp-conj-top-right[simp]:
 sound P \Longrightarrow P \&\& «\lambda-. True» = P
 \langle proof \rangle
lemma exp-conj-idem[simp]:
 \ll P \gg \&\& \ll P \gg = \ll P \gg
 \langle proof \rangle
lemma exp-conj-nneg[intro,simp]:
 (\lambda s. 0) \le P \&\& Q
 \langle proof \rangle
lemma exp-conj-sound[intro,simp]:
 assumes s-P: sound P
    and s-Q: sound Q
 shows sound (P \&\& Q)
 \langle proof \rangle
lemma exp-conj-rzero[simp]:
```

```
bounded-by 1 P \Longrightarrow P \&\& (\lambda s. 0) = (\lambda s. 0)

\langle proof \rangle

lemma exp-conj-1-right[simp]:

assumes nn: nneg A

shows A \&\& (\lambda -. 1) = A

\langle proof \rangle

lemma exp-conj-std-split:

\langle \lambda s. P s \wedge Q s \rangle = \langle P \rangle \&\& \langle Q \rangle

\langle proof \rangle
```

3.1.9 Rules Involving Entailment and Conjunction Together

Meta-conjunction distributes over expectation entailment, becoming expectation conjunction:

```
lemma entails-frame:

assumes ePR: P \Vdash R

and eQS: Q \Vdash S

shows P \&\& Q \Vdash R \&\& S

\langle proof \rangle
```

This rule allows something very much akin to a case distinction on the pre-expectation.

```
lemma pentails-cases:
 assumes PQe: \bigwedge x. P x \vdash Q x
    and exhaust: \bigwedge s. \exists x. P(x s) s = 1
    and framed: \bigwedge x. Px \&\& R \Vdash Qx \&\& S
    and sR: sound R and sS: sound S
    and bQ: \bigwedge x. bounded-by 1(Qx)
 shows R \Vdash S
\langle proof \rangle
lemma unitary-bot[iff]:
 unitary (\lambda s. 0::real)
  \langle proof \rangle
lemma unitary-top[iff]:
 unitary (\lambda s. 1::real)
  \langle proof \rangle
lemma unitary-embed[iff]:
 unitary «P»
  \langle proof \rangle
lemma unitary-const[iff]:
  \llbracket 0 \le c; c \le 1 \rrbracket \Longrightarrow unitary(\lambda s. c)
  \langle proof \rangle
```

end

```
lemma unitary-mult:
 assumes uA: unitary A and uB: unitary B
 shows unitary (\lambda s. A s * B s)
\langle proof \rangle
lemma exp-conj-unitary:
 \llbracket unitary P; unitary Q \rrbracket \Longrightarrow unitary (P \&\& Q)
 \langle proof \rangle
lemma unitary-comp[simp]:
 unitary P \Longrightarrow unitary (P \circ f)
 \langle proof \rangle
lemmas unitary-intros =
 unitary-bot unitary-top unitary-embed unitary-mult exp-conj-unitary
 unitary-comp unitary-const
lemmas sound-intros =
 mult-sound div-sound const-sound sound-o sound-sum
 tminus-sound sc-sound exp-conj-sound sum-sound
```

3.2 Expectation Transformers

theory Transformers **imports** Expectations **begin type-synonym** 's trans = 's expect \Rightarrow 's expect

Transformers are functions from expectations to expectations i.e. $('s \Rightarrow real) \Rightarrow 's \Rightarrow real$.

The set of *healthy* transformers is the universe into which we place our semantic interpretation of pGCL programs. In its standard presentation, the healthiness condition for pGCL programs is *sublinearity*, for demonic programs, and *superlinearity* for angelic programs. We extract a minimal core property, consisting of monotonicity, feasibility and scaling to form our healthiness property, which holds across all programs. The additional components of sublinearity are broken out separately, and shown later. The two reasons for this are firstly to avoid the effort of establishing sub-(super-)linearity globally, and to allow us to define primitives whose sublinearity, and indeed healthiness, depend on context.

Consider again the automaton of Figure 3.1. Here, the effect of executing the automaton from its initial state (a) until it reaches some final state (b or c) is to transform the expectation on final states (P), into one on initial states, giving the expected value of the function on termination. Here, the transformation is linear: $P_{prior}(a) = 0.7 * P_{post}(b) + 0.3 * P_{post}(c)$, but this need not be the case.

Consider the automaton of Figure 3.2. Here, we have extended that of Figure 3.1 with two additional states, d and e, and a pair of silent (unlabelled) transitions.

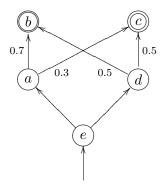


Figure 3.2: A nondeterministic-probabilistic automaton.

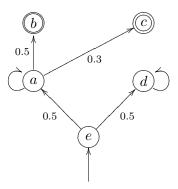


Figure 3.3: A diverging automaton.

Finally, Figure 3.3 shows the other way in which strict sublinearity arises: divergence. This automaton transitions with probability 0.5 to state d, from which it never escapes. Once there, the probability of reaching any terminating state is zero, and thus the probability of terminating from the initial state (e) is no higher than 0.5. If it instead takes the edge to state a, we again see a self loop, and thus in theory an infinite trace. In this case, however, every time the automaton reaches

state a, with probability 0.5+0.3=0.8, it transitions to a terminating state. An infinite trace of transitions $a \to a \to \dots$ thus has probability 0, and the automaton terminates with probability 1. We formalise such probabilistic termination arguments in Section 4.11.

Having reached a, the automaton will proceed to b with probability 0.5*(1/(0.5+0.3))=0.625, and to c with probability 0.375. As a is in turn reached half the time, the final probability of ending in b is 0.3125, and in c, 0.1875, which sum to only 0.5. The remaining probability is that the automaton diverges via d. We view nondeterminism and divergence demonically: we take the least probability of reaching a given final state, and use it to calculate the expectation. Thus for this automaton, $P_{\text{prior}}(e) = 0.3125*P_{\text{post}}(b) + 0.1875*P_{\text{post}}(c)$. The end result is the same as for nondeterminism: a sublinear transformation (the weights sum to less than one). The two outcomes are thus unified in the semantic interpretation, although as we will establish in Section 4.6, the two have slightly different algebraic properties.

This pattern holds for all pGCL programs: probabilistic choices are always linear, while struct sublinearity is introduced both nondeterminism and divergence.

Healthiness, again, is the combination of three properties: feasibility, monotonicity and scaling. Feasibility requires that a transformer take non-negative expectations to non-negative expectations, and preserve bounds. Thus, starting with an expectation bounded between 0 and some bound, b, after applying any number of feasible transformers, the result will still be bounded between 0 and b. This closure property allows us to treat expectations almost as a complete lattice. Specifically, for any b, the set of expectations bounded by b is a complete lattice ($\bot = (\lambda s.0)$, $\top = (\lambda s.b)$), and is closed under the action of feasible transformers, including \Box and \Box , which are themselves feasible. We are thus able to define both least and greatest fixed points on this set, and thus give semantics to recursive programs built from feasible components.

3.2.1 Comparing Transformers

Transformers are compared pointwise, but only on *sound* expectations. From the preorder so generated, we define equivalence by antisymmetry, giving a partial order.

definition

```
le	ext{-}trans :: 's \ trans \Rightarrow 's \ trans \Rightarrow bool where le	ext{-}trans \ t \ u \equiv \forall \ P. \ sound \ P \longrightarrow t \ P \leq u \ P
```

We also need to define relations restricted to *unitary* transformers, for the liberal (wlp) semantics.

definition

```
le-utrans :: 's trans \Rightarrow 's trans \Rightarrow bool
```

where *le-utrans t u* \longleftrightarrow $(\forall P. unitary P \longrightarrow t P \leq u P)$ **lemma** *le-transI*[*intro*]: $\llbracket \bigwedge P. \text{ sound } P \Longrightarrow t P \leq u P \rrbracket \Longrightarrow le\text{-trans } t u$ $\langle proof \rangle$ **lemma** *le-utransI*[*intro*]: $\llbracket \bigwedge P. \text{ unitary } P \Longrightarrow t P \leq u P \rrbracket \Longrightarrow le\text{-utrans } t u$ $\langle proof \rangle$ **lemma** le-transD[dest]: $\llbracket le$ -trans tu; sound $P \rrbracket \Longrightarrow tP \le uP$ $\langle proof \rangle$ **lemma** *le-utransD*[*dest*]: $\llbracket le$ -utrans t u; unitary $P \rrbracket \Longrightarrow t$ $P \le u$ P $\langle proof \rangle$ **lemma** *le-trans-trans*[*trans*]: $\llbracket le\text{-trans } x \ y; le\text{-trans } y \ z \rrbracket \Longrightarrow le\text{-trans } x \ z$ $\langle proof \rangle$ **lemma** *le-utrans-trans*[*trans*]: $\llbracket le\text{-}utrans\ x\ y; le\text{-}utrans\ y\ z\ \rrbracket \Longrightarrow le\text{-}utrans\ x\ z$ $\langle proof \rangle$ **lemma** *le-trans-refl*[*iff*]: le-trans x x $\langle proof \rangle$ **lemma** *le-utrans-refl*[*iff*]: *le-utrans x x* $\langle proof \rangle$ **lemma** *le-trans-le-utrans*[*dest*]: le-trans $t u \Longrightarrow le$ -utrans t u $\langle proof \rangle$ definition l-trans :: 's trans \Rightarrow 's trans \Rightarrow bool where l-trans $t \ u \longleftrightarrow le$ -trans $t \ u \land \neg le$ -trans $u \ t$

Transformer equivalence is induced by comparison:

definition

```
equiv-trans :: 's trans \Rightarrow 's trans \Rightarrow bool

where

equiv-trans t u \longleftrightarrow le-trans t u \land le-trans u t
```

```
definition
 equiv-utrans :: 's trans \Rightarrow 's trans \Rightarrow bool
where
 equiv-utrans t u \longleftrightarrow le-utrans t u \land le-utrans u t
lemma equiv-transI[intro]:
  \llbracket \bigwedge P. \text{ sound } P \Longrightarrow t P = u P \rrbracket \Longrightarrow equiv-trans t u
  \langle proof \rangle
lemma equiv-utransI[intro]:
 \llbracket \bigwedge P. \text{ sound } P \Longrightarrow t P = u P \rrbracket \Longrightarrow equiv\text{-utrans } t u
  \langle proof \rangle
lemma equiv-transD[dest]:
  \llbracket equiv-trans\ t\ u; sound\ P\ \rrbracket \Longrightarrow t\ P=u\ P
  \langle proof \rangle
lemma equiv-utransD[dest]:
  \llbracket equiv\text{-}utrans\ t\ u;\ unitary\ P\ \rrbracket \Longrightarrow t\ P=u\ P
  \langle proof \rangle
lemma equiv-trans-refl[iff]:
  equiv-trans t t
  \langle proof \rangle
lemma equiv-utrans-refl[iff]:
 equiv-utrans t t
  \langle proof \rangle
lemma le-trans-antisym:
  \llbracket le\text{-trans } x \ y; le\text{-trans } y \ x \ \rrbracket \Longrightarrow equiv\text{-trans } x \ y
  \langle proof \rangle
lemma le-utrans-antisym:
  \llbracket le\text{-}utrans\ x\ y; le\text{-}utrans\ y\ x\ \rrbracket \Longrightarrow equiv\text{-}utrans\ x\ y
  \langle proof \rangle
lemma equiv-trans-comm[ac-simps]:
  equiv-trans t u \longleftrightarrow equiv-trans u t
  \langle proof \rangle
lemma equiv-utrans-comm[ac-simps]:
 equiv-utrans t \ u \longleftrightarrow equiv-utrans u \ t
  \langle proof \rangle
lemma equiv-imp-le[intro]:
 equiv-trans t u \Longrightarrow le-trans t u
  \langle proof \rangle
```

```
lemma equivu-imp-le[intro]:
 equiv-utrans t u \Longrightarrow le-utrans t u
 \langle proof \rangle
lemma equiv-imp-le-alt:
 equiv-trans t u \Longrightarrow le-trans u t
  \langle proof \rangle
lemma equiv-uimp-le-alt:
 equiv-utrans t u \Longrightarrow le-utrans u t
  \langle proof \rangle
lemma le-trans-equiv-rsp[simp]:
 equiv-trans t u \Longrightarrow le-trans t v \longleftrightarrow le-trans u v
  \langle proof \rangle
lemma le-utrans-equiv-rsp[simp]:
 equiv-utrans t u \Longrightarrow le-utrans t v \longleftrightarrow le-utrans u v
  \langle proof \rangle
lemma equiv-trans-le-trans[trans]:
  \llbracket equiv\text{-}trans\ t\ u; le\text{-}trans\ u\ v\ \rrbracket \Longrightarrow le\text{-}trans\ t\ v
  \langle proof \rangle
lemma equiv-utrans-le-utrans[trans]:
  \llbracket equiv\text{-}utrans\ t\ u; le\text{-}utrans\ u\ v\ \rrbracket \Longrightarrow le\text{-}utrans\ t\ v
  \langle proof \rangle
lemma le-trans-equiv-rsp-right[simp]:
 equiv-trans t u \Longrightarrow le-trans v t \longleftrightarrow le-trans v u
  \langle proof \rangle
lemma le-utrans-equiv-rsp-right[simp]:
 equiv-utrans t u \Longrightarrow le-utrans v t \longleftrightarrow le-utrans v u
 \langle proof \rangle
lemma le-trans-equiv-trans[trans]:
  \llbracket le\text{-trans } t \text{ } u; equiv\text{-trans } u \text{ } v \rrbracket \Longrightarrow le\text{-trans } t \text{ } v
  \langle proof \rangle
lemma le-utrans-equiv-utrans[trans]:
  \llbracket le-utrans t u; equiv-utrans u v \rrbracket \Longrightarrow le-utrans t v
  \langle proof \rangle
lemma equiv-trans-trans[trans]:
 assumes xy: equiv-trans x y
     and yz: equiv-trans y z
 shows equiv-trans x z
```

```
⟨proof⟩

lemma equiv-utrans-trans[trans]:
assumes xy: equiv-utrans x y
and yz: equiv-utrans y z
shows equiv-utrans x z
⟨proof⟩

lemma equiv-trans-equiv-utrans[dest]:
equiv-trans t u ⇒ equiv-utrans t u
⟨proof⟩
```

3.2.2 Healthy Transformers

Feasibility

```
definition feasible :: (('a \Rightarrow real) \Rightarrow ('a \Rightarrow real)) \Rightarrow bool

where feasible t \longleftrightarrow (\forall P \ b. \ bounded-by \ b \ P \land nneg \ P \longrightarrow bounded-by \ b \ (t \ P) \land nneg \ (t \ P))
```

A *feasible* transformer preserves non-negativity, and bounds. A *feasible* transformer always takes its argument 'closer to 0' (or leaves it where it is). Note that any particular value of the expectation may increase, but no element of the new expectation may exceed any bound on the old. This is thus a relatively weak condition.

```
lemma feasibleI[intro]:
 \llbracket \land b \ P. \ \llbracket \ bounded-by \ b \ P; \ nneg \ P \ \rrbracket \Longrightarrow bounded-by \ b \ (t \ P);
     \bigwedge b P. \llbracket bounded-by \ b \ P; nneg \ P \ \rrbracket \Longrightarrow nneg \ (t \ P) \ \rrbracket \Longrightarrow feasible \ t
  \langle proof \rangle
lemma feasible-boundedD[dest]:
  \llbracket feasible t; bounded-by b P; nneg P \rrbracket \Longrightarrow bounded-by b (t P)
  \langle proof \rangle
lemma feasible-nnegD[dest]:
  \llbracket feasible\ t; bounded-by\ b\ P; nneg\ P\ \rrbracket \Longrightarrow nneg\ (t\ P)
  \langle proof \rangle
lemma feasible-sound[dest]:
  \llbracket \text{ feasible } t; \text{ sound } P \rrbracket \Longrightarrow \text{ sound } (t P)
  \langle proof \rangle
lemma feasible-pr-0[simp]:
 fixes t::('s \Rightarrow real) \Rightarrow 's \Rightarrow real
 assumes ft: feasible t
 shows t(\lambda x. 0) = (\lambda x. 0)
\langle proof \rangle
lemma feasible-id:
```

```
 \begin{array}{l} \textit{feasible} \ (\lambda x. \, x) \\ \langle \textit{proof} \rangle \end{array} \\ \\ \textbf{lemma} \ \textit{feasible-bounded-by[dest]:} \\ \mathbb{I} \ \textit{feasible} \ t; \textit{sound} \ P; \textit{bounded-by} \ b \ P \ \mathbb{I} \Longrightarrow \textit{bounded-by} \ b \ (t \ P) \\ \langle \textit{proof} \rangle \end{array} \\ \\ \textbf{lemma} \ \textit{feasible-fixes-top:} \\ \textit{feasible} \ t \Longrightarrow t \ (\lambda s. \ 1) \leq (\lambda s. \ (1::real)) \\ \langle \textit{proof} \rangle \\ \\ \textbf{lemma} \ \textit{feasible-fixes-bot:} \\ \textbf{assumes} \ \textit{ft:} \ \textit{feasible} \ t \\ \textbf{shows} \ t \ (\lambda s. \ 0) = (\lambda s. \ 0) \\ \langle \textit{proof} \rangle \\ \\ \textbf{lemma} \ \textit{feasible-unitaryD[dest]:} \\ \textbf{assumes} \ \textit{ft:} \ \textit{feasible} \ t \ \textbf{and} \ \textit{uP:} \ \textit{unitary} \ P \\ \textbf{shows} \ \textit{unitary} \ (t \ P) \\ \langle \textit{proof} \rangle \end{array}
```

Monotonicity

```
definition
```

```
mono-trans :: (('s \Rightarrow real) \Rightarrow ('s \Rightarrow real)) \Rightarrow bool

where

mono-trans t \equiv \forall P Q. (sound P \land sound Q \land P \leq Q) \longrightarrow t P \leq t Q
```

Monotonicity allows us to compose transformers, and thus model sequential computation. Recall the definition of predicate entailment (Section 3.1.6) as less-than-or-equal. The statement $Q \Vdash t R$ means that Q is everywhere below t R. For standard expectations (Section 3.1.5), this simply means that Q implies t R, the weakest precondition of R under t.

Given another, monotonic, transformer u, we have that $u \ Q \Vdash u \ (t \ R)$, or that the weakest precondition of Q under u entails that of R under the composition $u \circ t$. If we additionally know that $P \Vdash u \ Q$, then by transitivity we have $P \Vdash u \ (t \ R)$. We thus derive a probabilistic form of the standard rule for sequential composition: $[mono-trans \ t; P \Vdash u \ Q; Q \Vdash t \ R] \Longrightarrow P \Vdash u \ (t \ R)$.

```
 \begin{array}{l} \textbf{lemma} \ mono\text{-}transI[intro] \colon \\ & \| \bigwedge P \ Q . \ \| \ sound \ P; \ sound \ Q; \ P \leq Q \ \| \implies t \ P \leq t \ Q \ \| \implies mono\text{-}trans \ t \\ & \langle proof \rangle \\ \\ \textbf{lemma} \ mono\text{-}transD[dest] \colon \\ & \| \ mono\text{-}trans \ t; \ sound \ P; \ sound \ Q; \ P \leq Q \ \| \implies t \ P \leq t \ Q \\ & \langle proof \rangle \\ \end{array}
```

Scaling

A healthy transformer commutes with scaling by a non-negative constant.

definition

```
scaling :: (('s \Rightarrow real) \Rightarrow ('s \Rightarrow real)) \Rightarrow bool

where

scaling t \equiv \forall P \ c \ x. sound P \land 0 \le c \longrightarrow c * t \ P \ x = t \ (\lambda x. \ c * P \ x) \ x
```

The *scaling* and feasibility properties together allow us to treat transformers as a complete lattice, when operating on bounded expectations. The action of a transformer on such a bounded expectation is completely determined by its action on *unitary* expectations (those bounded by 1): $t P s = bound-of P * t (\lambda s. P s / bound-of P) s$. Feasibility in turn ensures that the lattice of unitary expectations is closed under the action of a healthy transformer. We take advantage of this fact in Section 3.3, in order to define the fixed points of healthy transformers.

```
lemma scalingI[intro]:

\llbracket \bigwedge P \ c \ x. \llbracket \ sound \ P ; \ 0 \le c \ \rrbracket \implies c * t \ P \ x = t \ (\lambda x. \ c * P \ x) \ x \ \rrbracket \implies scaling t \ \langle proof \rangle

lemma scalingD[dest]:

\llbracket \ scaling \ t ; \ sound \ P ; \ 0 \le c \ \rrbracket \implies c * t \ P \ x = t \ (\lambda x. \ c * P \ x) \ x \ \langle proof \rangle

lemma right-scalingD:

assumes st: scaling \ t

and sP: sound \ P

and nnc: 0 \le c

shows t \ P \ s * c = t \ (\lambda s. \ P \ s * c) \ s \ \langle proof \rangle
```

Healthiness

Healthy transformers are feasible and monotonic, and respect scaling

definition

```
healthy :: (('s \Rightarrow real) \Rightarrow ('s \Rightarrow real)) \Rightarrow bool
where
healthy t \longleftrightarrow feasible \ t \land mono\text{-}trans \ t \land scaling \ t

lemma healthyI[intro]:
\llbracket feasible \ t; mono\text{-}trans \ t; scaling \ t \rrbracket \Longrightarrow healthy \ t
\langle proof \rangle

lemma healthy-parts = healthyI[OF feasibleI mono-transI scalingI]

lemma healthy-monoD[dest]:
healthy t \Longrightarrow mono\text{-}trans \ t
\langle proof \rangle
```

```
lemmas healthy-monoD2 = mono-transD[OF healthy-monoD]
lemma healthy-feasibleD[dest]:
 healthy t \Longrightarrow feasible t
 \langle proof \rangle
lemma healthy-scalingD[dest]:
 healthy t \Longrightarrow scaling t
 \langle proof \rangle
lemma healthy-bounded-byD[intro]:
 \llbracket \text{ healthy } t; \text{ bounded-by } b \text{ } P; \text{ nneg } P \rrbracket \Longrightarrow \text{ bounded-by } b \text{ } (t \text{ } P)
   \langle proof \rangle
lemma healthy-bounded-byD2:
  \llbracket healthy t; bounded-by b P; sound P \rrbracket \Longrightarrow bounded-by b (t P)
  \langle proof \rangle
lemma healthy-boundedD[dest,simp]:
 \llbracket \text{ healthy } t; \text{ sound } P \rrbracket \Longrightarrow \text{ bounded } (t P)
  \langle proof \rangle
lemma healthy-nnegD[dest,simp]:
  \llbracket \text{ healthy } t; \text{ sound } P \rrbracket \Longrightarrow \text{nneg } (t P)
  \langle proof \rangle
lemma healthy-nnegD2[dest,simp]:
  \llbracket \text{ healthy } t; \text{ bounded-by } b P; \text{ nneg } P \rrbracket \Longrightarrow \text{nneg } (t P)
  \langle proof \rangle
lemma healthy-sound[intro]:
  \llbracket \text{ healthy } t; \text{ sound } P \rrbracket \Longrightarrow \text{ sound } (t P)
 \langle proof \rangle
lemma healthy-unitary[intro]:
 \llbracket healthy\ t; unitary\ P\ \rrbracket \Longrightarrow unitary\ (t\ P)
  \langle proof \rangle
lemma healthy-id[simp,intro!]:
 healthy id
 \langle proof \rangle
lemmas healthy-fixes-bot = feasible-fixes-bot [OF healthy-feasibleD]
Some additional results on le-trans, specific to healthy transformers.
lemma le-trans-bot[intro,simp]:
 healthy t \Longrightarrow le\text{-trans} (\lambda P s. 0) t
  \langle proof \rangle
```

```
lemma le-trans-top[intro,simp]:
 healthy t \Longrightarrow le-trans t (\lambda P s. bound-of P)
 \langle proof \rangle
lemma healthy-pr-bot[simp]:
 healthy t \Longrightarrow t (\lambda s. 0) = (\lambda s. 0)
 \langle proof \rangle
The first significant result is that healthiness is preserved by equivalence:
lemma healthy-equivI:
 fixes t::('s \Rightarrow real) \Rightarrow 's \Rightarrow real and u
 assumes equiv: equiv-trans t u
     and healthy: healthy t
 shows healthy u
\langle proof \rangle
lemma healthy-equiv:
 equiv-trans t u \Longrightarrow healthy t \longleftrightarrow healthy u
  \langle proof \rangle
lemma healthy-scale:
 fixes t::('s \Rightarrow real) \Rightarrow 's \Rightarrow real
 assumes ht: healthy t and nc: 0 \le c and bc: c \le 1
 shows healthy (\lambda P s. c * t P s)
\langle proof \rangle
lemma healthy-top[iff]:
 healthy (\lambda P s. bound-of P)
 \langle proof \rangle
lemma healthy-bot[iff]:
 healthy (\lambda P s. 0)
 \langle proof \rangle
```

This weaker healthiness condition is for the liberal (wlp) semantics. We only insist that the transformer preserves *unitarity* (bounded by 1), and drop scaling (it is unnecessary in establishing the lattice structure here, unlike for the strict semantics).

```
definition
```

```
\begin{array}{l} \textit{nearly-healthy} :: ((\textit{'s} \Rightarrow \textit{real}) \Rightarrow (\textit{'s} \Rightarrow \textit{real})) \Rightarrow \textit{bool} \\ \textbf{where} \\ \textit{nearly-healthy} \ t \longleftrightarrow (\forall \textit{P. unitary} \ \textit{P} \longrightarrow \textit{unitary} \ (\textit{t} \ \textit{P})) \land \\ (\forall \textit{P} \ \textit{Q. unitary} \ \textit{P} \longrightarrow \textit{unitary} \ \textit{Q} \longrightarrow \textit{P} \Vdash \textit{Q} \longrightarrow \textit{t} \ \textit{P} \Vdash \textit{t} \ \textit{Q}) \\ \textbf{lemma} \ \textit{nearly-healthyI}[\textit{intro}]: \\ \llbracket \ \land \textit{P. unitary} \ \textit{P} \Longrightarrow \textit{unitary} \ (\textit{t} \ \textit{P}); \\ \land \textit{P} \ \textit{Q.} \ \llbracket \ \textit{unitary} \ \textit{P}; \ \textit{unitary} \ \textit{Q}; \ \textit{P} \Vdash \textit{Q} \ \rrbracket \Longrightarrow \textit{t} \ \textit{P} \Vdash \textit{t} \ \textit{Q} \ \rrbracket \Longrightarrow \textit{nearly-healthy} \ \textit{t} \\ \langle \textit{proof} \ \rangle \end{array}
```

3.2.3 Sublinearity

As already mentioned, the core healthiness property (aside from feasibility and continuity) for transformers is *sublinearity*: The transformation of a quasi-linear combination of sound expectations is greater than the same combination applied to the transformation of the expectations themselves. The term $x \ominus y$ represents truncated subtraction i.e. max(x - y) 0 (see Section 4.13.1).

```
definition sublinear ::
 (('s \Rightarrow real) \Rightarrow ('s \Rightarrow real)) \Rightarrow bool
where
 sublinear t \longleftrightarrow (\forall a \ b \ c \ P \ Q \ s. \ (sound \ P \land sound \ Q \land 0 \le a \land 0 \le b \land 0 \le c) \longrightarrow
                  a * t P s + b * t Q s \ominus c
                  \leq t (\lambda s'. a * P s' + b * Q s' \ominus c) s)
lemma sublinearI[intro]:
  \llbracket \land a \ b \ c \ P \ Q \ s. \ \llbracket \ sound \ P; \ sound \ Q; \ 0 \le a; \ 0 \le b; \ 0 \le c \ \rrbracket \Longrightarrow
     a * t P s + b * t Q s \ominus c \le
     t (\lambda s'. \ a * P \ s' + b * Q \ s' \ominus c) \ s ] \Longrightarrow sublinear \ t
  \langle proof \rangle
lemma sublinearD[dest]:
  \llbracket \text{ sublinear } t; \text{ sound } P; \text{ sound } Q; 0 \leq a; 0 \leq b; 0 \leq c \rrbracket \Longrightarrow
  a * t P s + b * t Q s \ominus c \le
  t (\lambda s'. a * P s' + b * Q s' \ominus c) s
  \langle proof \rangle
```

It is easier to see the relevance of sublinearity by breaking it into several component properties, as in the following sections.

Sub-additivity

 $\textbf{definition} \ sub\text{-}add ::$

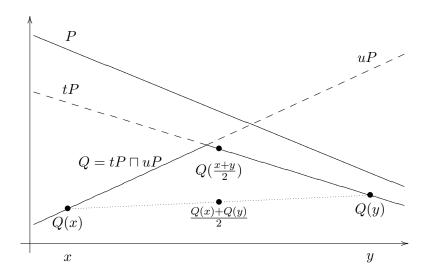


Figure 3.4: A graphical depiction of sub-additivity as convexity.

$$(('s \Rightarrow real) \Rightarrow ('s \Rightarrow real)) \Rightarrow bool$$

where
 $sub\text{-}add\ t \longleftrightarrow (\forall P\ Q\ s.\ (sound\ P \land sound\ Q) \longrightarrow$
 $t\ P\ s + t\ Q\ s \le t\ (\lambda s'.\ P\ s' + Q\ s')\ s)$

Sub-additivity, together with scaling (Section 3.2.2) gives the *linear* portion of sub-linearity. Together, these two properties are equivalent to *convexity*, as Figure 3.4 illustrates by analogy.

Here P is an affine function (expectation) $real \Rightarrow real$, restricted to some finite interval. In practice the state space (the left-hand type) is typically discrete and multi-dimensional, but on the reals we have a convenient geometrical intuition. The lines tP and uP represent the effect of two healthy transformers (again affine). Neither monotonicity nor scaling are represented, but both are feasible: Both lines are bounded above by the greatest value of P.

The curve Q is the pointwise minimum of tP and tQ, written $tP \sqcap tQ$. This is, not coincidentally, the syntax for a binary nondeterministic choice in pGCL: The probability that some property is established by the choice between programs a and b cannot be guaranteed to be any higher than either the probability under a, or that under b.

The original curve, P, is trivially convex—it is linear. Also, both t and u, and the operator \sqcap preserve convexity. A probabilistic choice will also preserve it. The preservation of convexity is a property of sub-additive transformers that respect scaling. Note the form of the definition of convexity:

$$\forall x, y. \frac{Q(x) + Q(y)}{2} \le Q(\frac{x+y}{2})$$

Were we to replace Q by some sub-additive transformer v, and x and y by expectations R and S, the equivalent expression:

$$\frac{vR+vS}{2} \leq v(\frac{R+S}{2})$$

Can be rewritten, using scaling, to:

$$\frac{1}{2}(vR + vS) \le \frac{1}{2}v(R + S)$$

Which holds everywhere exactly when v is sub-additive i.e.:

$$vR + vS \le v(R + S)$$

```
lemma sub-addI[intro]:
```

```
\llbracket \bigwedge P Q \text{ s. } \llbracket \text{ sound } P; \text{ sound } Q \rrbracket \Longrightarrow t P \text{ s} + t Q \text{ s} \le t (\lambda s'. P \text{ s}' + Q \text{ s}') \text{ s} \rrbracket \Longrightarrow \text{sub-add } t \land \text{proof}
```

lemma sub-addI2:

```
[\![ \land P Q. [\![ sound P; sound Q ]\!] \Longrightarrow \lambda s. t P s + t Q s \vdash\!\!\!\vdash t (\lambda s. P s + Q s) ]\!] \Longrightarrow sub-add t \langle proof \rangle
```

lemma *sub-addD*[*dest*]:

```
\llbracket \text{ sub-add } t; \text{ sound } P; \text{ sound } Q \rrbracket \Longrightarrow t P s + t Q s \le t (\lambda s'. P s' + Q s') s \langle proof \rangle
```

lemma equiv-sub-add:

```
fixes t::('s \Rightarrow real) \Rightarrow 's \Rightarrow real

assumes eq: equiv\text{-}trans\ t\ u

and sa: sub\text{-}add\ t

shows sub\text{-}add\ u

\langle proof \rangle
```

Sublinearity and feasibility imply sub-additivity.

lemma sublinear-subadd:

```
fixes t::('s \Rightarrow real) \Rightarrow 's \Rightarrow real

assumes slt: sublinear t

and ft: feasible t

shows sub-add t

\langle proof \rangle
```

A few properties following from sub-additivity:

lemma *standard-negate*: **assumes** *ht*: *healthy t*

and sat: sub-add t

```
shows t \ll P \gg s + t \ll \mathcal{N} P \gg s \leq 1
\langle proof \rangle
lemma sub-add-sum:
 fixes t::'s trans and S::'a set
 assumes sat: sub-add t
      and ht: healthy t
     and sP: \bigwedge x. sound (P x)
 shows (\lambda x. \sum y \in S. \ t \stackrel{\frown}{(P \ y)} x) \le t \ (\lambda x. \sum y \in S. \ P \ y \ x)
\langle proof \rangle
lemma sub-add-guard-split:
 fixes t::'s::finite trans and P::'s expect and s::'s
 assumes sat: sub-add t
      and ht: healthy t
     and sP: sound P
 shows (\sum y \in \{s. G s\}. P y * t \ll \lambda z. z = y * s) +
        (\sum y \in \{s. \neg G s\}. P y * t « \lambda z. z = y » s) \le t P s
\langle proof \rangle
Sub-distributivity
definition sub-distrib ::
  (('s \Rightarrow real) \Rightarrow ('s \Rightarrow real)) \Rightarrow bool
where
 sub-distrib t \longleftrightarrow (\forall P \ s. \ sound \ P \longrightarrow t \ P \ s \ominus 1 \le t \ (\lambda s'. \ P \ s' \ominus 1) \ s)
lemma sub-distribI[intro]:
  \llbracket \bigwedge P \text{ s. sound } P \Longrightarrow t P \text{ s} \ominus 1 \leq t \ (\lambda s'. P \text{ s'} \ominus 1) \text{ s} \ \rrbracket \Longrightarrow \text{sub-distrib } t
  \langle proof \rangle
lemma sub-distribI2:
  \llbracket \bigwedge P. \text{ sound } P \Longrightarrow \lambda s. \ t \ P \ s \ominus 1 \Vdash t \ (\lambda s. \ P \ s \ominus 1) \ \rrbracket \Longrightarrow \text{sub-distrib} \ t
  \langle proof \rangle
lemma sub-distribD[dest]:
  \llbracket \text{ sub-distrib } t; \text{ sound } P \stackrel{!}{\rrbracket} \Longrightarrow t P s \ominus 1 \leq t (\lambda s'. P s' \ominus 1) s
  \langle proof \rangle
lemma equiv-sub-distrib:
 fixes t::('s \Rightarrow real) \Rightarrow 's \Rightarrow real
 assumes eq: equiv-trans t u
      and sd: sub-distrib t
 shows sub-distrib u
\langle proof \rangle
Sublinearity implies sub-distributivity:
lemma sublinear-sub-distrib:
 fixes t::('s \Rightarrow real) \Rightarrow 's \Rightarrow real
```

```
assumes slt: sublinear t

shows sub-distrib t

⟨proof⟩
```

Healthiness, sub-additivity and sub-distributivity imply sublinearity. This is how we usually show sublinearity.

```
lemma sd-sa-sublinear:

fixes t::('s \Rightarrow real) \Rightarrow 's \Rightarrow real

assumes sdt: sub-distrib t and sat: sub-add t and ht: healthy t

shows sublinear t

\langle proof \rangle
```

Sub-conjunctivity

```
definition
```

```
sub\text{-}conj :: (('s \Rightarrow real) \Rightarrow 's \Rightarrow real) \Rightarrow bool
where
sub\text{-}conj \ t \equiv \forall P \ Q. \ (sound \ P \land sound \ Q) \longrightarrow t \ P \ \&\& \ t \ Q \Vdash t \ (P \ \&\& \ Q)
```

```
lemma sub-conjI[intro]:
```

lemma *sub-conjD*[*dest*]:

```
\llbracket \text{ sub-conj } t; \text{ sound } P; \text{ sound } Q \rrbracket \Longrightarrow t P \&\& t Q \Vdash t \ (P \&\& Q) \land proof \rangle
```

```
lemma sub-conj-wp-twice:
```

```
fixes f::'s \Rightarrow (('s \Rightarrow real) \Rightarrow 's \Rightarrow real)

assumes all: \forall s. sub\text{-}conj (f s)

shows sub\text{-}conj (\lambda P s. f s P s)

\langle proof \rangle
```

Sublinearity implies sub-conjunctivity:

```
lemma sublinear-sub-conj:

fixes t::('s \Rightarrow real) \Rightarrow 's \Rightarrow real

assumes slt: sublinear t

shows sub-conj t

\langle proof \rangle
```

Sublinearity under equivalence

Sublinearity is preserved by equivalence.

```
lemma equiv-sublinear:
```

```
\llbracket equiv\text{-}trans\ t\ u; sublinear\ t; healthy\ t\ \rrbracket \Longrightarrow sublinear\ u \ \langle proof \rangle
```

3.2.4 Determinism

Transformers which are both additive, and maximal among those that satisfy feasibility are *deterministic*, and will turn out to be maximal in the refinement order.

Additivity

Full additivity is not generally satisfied. It holds for (sub-)probabilistic transformers however.

```
definition
```

```
additive :: (('a \Rightarrow real) \Rightarrow 'a \Rightarrow real) \Rightarrow bool
where
additive t \equiv \forall P \ Q. \ (sound \ P \land sound \ Q) \longrightarrow t \ (\lambda s. \ P \ s + Q \ s) = (\lambda s. \ t \ P \ s + t \ Q \ s)
```

lemma additiveD:

```
\llbracket additive\ t; sound\ P; sound\ Q\ \rrbracket \Longrightarrow t\ (\lambda s.\ P\ s+Q\ s) = (\lambda s.\ t\ P\ s+t\ Q\ s) \ \langle proof\ \rangle
```

lemma *additiveI*[*intro*]:

```
\llbracket \bigwedge P \ Q \ s. \ \llbracket \ sound \ P; \ sound \ Q \ \rrbracket \Longrightarrow t \ (\lambda s. \ P \ s + Q \ s) \ s = t \ P \ s + t \ Q \ s \ \rrbracket \Longrightarrow additive \ t \ \langle proof \rangle
```

Additivity is strictly stronger than sub-additivity.

```
lemma additive-sub-add: additive t \Longrightarrow sub-add t \land proof \rangle
```

The additivity property extends to finite summation.

```
lemma additive-sum:
```

```
fixes S::'s set

assumes additive: additive t

and healthy: healthy t

and finite: finite S

and sPz: \quad \bigwedge z. sound (Pz)

shows t \ (\lambda x. \ \sum y \in S. \ P \ y \ x) = (\lambda x. \ \sum y \in S. \ t \ (Py) \ x)

\langle proof \rangle
```

An additive transformer (over a finite state space) is linear: it is simply the weighted sum of final expectation values, the weights being the probability of reaching a given final state. This is useful for reasoning using the forward, or "gambling game" interpretation.

```
lemma additive-delta-split:

fixes t::('s::finite \Rightarrow real) \Rightarrow 's \Rightarrow real

assumes additive: additive t

and ht: healthy t
```

```
and sP: sound P
shows tPx = (\sum y \in UNIV. Py * t « <math>\lambda z. z = y » x)
\langle proof \rangle
```

We can group the states in the linear form, to split on the value of a predicate (guard).

```
lemma additive-guard-split:

fixes t::('s::finite \Rightarrow real) \Rightarrow 's \Rightarrow real

assumes additive: additive t

and ht: healthy t

and sP: sound P

shows tP \ x = (\sum y \in \{s. \ G \ s\}. \ P \ y * t \ «\lambda z. \ z = y» \ x) + (\sum y \in \{s. \ \neg G \ s\}. \ P \ y * t \ «\lambda z. \ z = y» \ x)

\langle proof \rangle
```

Maximality

```
definition
```

 $\langle proof \rangle$

```
maximal :: (('a \Rightarrow real) \Rightarrow 'a \Rightarrow real) \Rightarrow bool

where

maximal t \equiv \forall c. \ 0 \le c \longrightarrow t \ (\lambda -. \ c) = (\lambda -. \ c)
```

lemma *maximalI*[intro]:

```
 [\![ \bigwedge c. \ 0 \le c \Longrightarrow t \ (\lambda -. \ c) = (\lambda -. \ c) \ ]\!] \Longrightarrow \textit{maximal } t  \langle proof \rangle
```

```
lemma maximalD[dest]:
```

```
 \llbracket \textit{maximal } t; 0 \le c \ \rrbracket \implies t \ (\lambda \text{--}. \ c) = (\lambda \text{--}. \ c)  \langle \textit{proof} \rangle
```

A transformer that is both additive and maximal is deterministic:

```
definition determ :: (('a \Rightarrow real) \Rightarrow 'a \Rightarrow real) \Rightarrow bool
where
determ t \equiv additive \ t \land maximal \ t

lemma determl[intro]:
\llbracket additive \ t; maximal \ t \ \rrbracket \implies determ \ t
\langle proof \rangle

lemma determ-additiveD[intro]:
determ \ t \implies additive \ t
\langle proof \rangle

lemma determ-maximalD[intro]:
determ \ t \implies maximal \ t
```

For a fully-deterministic transformer, a transformed standard expectation, and its transformed negation are complementary.

```
lemma determ-negate:

assumes determ: determ t

shows t «P» s + t «N P» s = 1

\langle proof \rangle
```

3.2.5 Modular Reasoning

The emphasis of a mechanised logic is on automation, and letting the computer tackle the large, uninteresting problems. However, as terms generally grow exponentially in the size of a program, it is still essential to break up a proof and reason in a modular fashion.

The following rules allow proof decomposition, and later will be incorporated into a verification condition generator.

```
lemma entails-combine:
```

```
assumes wp1: P \Vdash tR

and wp2: Q \Vdash tS

and sc: sub\text{-}conj t

and sR: sound R

and sS: sound S

shows P \&\& Q \Vdash t (R \&\& S)

\langle proof \rangle
```

These allow mismatched results to be composed

```
lemma entails-strengthen-post:
```

```
\llbracket P \Vdash t \ Q; \ healthy \ t; \ sound \ R; \ Q \Vdash R; \ sound \ Q \ \rrbracket \Longrightarrow P \Vdash t \ R \ \langle proof \rangle
```

```
lemma entails-weaken-pre:
```

```
 [\![ Q \Vdash t R; P \Vdash Q ]\!] \Longrightarrow P \Vdash t R 
 \langle proof \rangle
```

This rule is unique to pGCL. Use it to scale the post-expectation of a rule to 'fit under' the precondition you need to satisfy.

```
lemma entails-scale:
```

```
assumes wp: P \Vdash t Q and h: healthy t and sQ: sound Q and pos: 0 \le c shows (\lambda s. c * P s) \Vdash t (\lambda s. c * Q s) \langle proof \rangle
```

3.2.6 Transforming Standard Expectations

Reasoning with *standard* expectations, those obtained by embedding a predicate, is often easier, as the analogues of many familiar boolean rules hold in modified form.

One may use a standard pre-expectation as an assumption:

lemma use-premise:

3.3. INDUCTION 45

```
assumes h: healthy t and wP: \bigwedge s. P s \Longrightarrow 1 \le t \ll Q \gg s
 shows «P» \vdash t «Q»
\langle proof \rangle
The other direction works too.
lemma fold-premise:
 assumes ht: healthy t
 and wp: \ll P \gg \vdash t \ll Q \gg
 shows \forall s. Ps \longrightarrow 1 \leq t \ll Q \gg s
\langle proof \rangle
Predicate conjunction behaves as expected:
lemma conj-post:
 \llbracket P \Vdash t \ll \lambda s. \ Q \ s \wedge R \ s \Rightarrow healthy \ t \ \rrbracket \Longrightarrow P \Vdash t \ll Q \Rightarrow
 \langle proof \rangle
Similar to [healthy ?t; \land s. ?P s \Longrightarrow 1 \le ?t « ?Q » s] \Longrightarrow « ?P » \vdash ?t « ?Q », but
more general.
lemma entails-pconj-assumption:
 assumes f: feasible t and wP: \bigwedge s. P s \Longrightarrow Q s \le t R s
     and uQ: unitary Q and uR: unitary R
 shows «P» && Q \vdash t R
  \langle proof \rangle
```

3.3 Induction

end

theory Induction imports Expectations Transformers begin

3.3.1 The Lattice of Expectations

Defining recursive (or iterative) programs requires us to reason about fixed points on the semantic objects, in this case expectations. The complication here, compared to the standard Knaster-Tarski theorem (for example, as shown in *HOL.Inductive*), is that we do not have a complete lattice.

Finding a lower bound is easy (it's λ -. 0), but as we do not insist on any global bound on expectations (and work directly in HOL's real type, rather than extending it with a point at infinity), there is no top element. We solve the problem by defining the least (greatest) fixed point, restricted to an internally-bounded set, allowing us to substitute this bound for the top element. This works as long as the set contains at least one fixed point, which appears as an extra assumption in all the theorems.

This also works semantically, thanks to the definition of healthiness. Given a healthy transformer parameterised by some sound expectation: t. Imagine that we

wish to find the least fixed point of t P. In practice, t is generally doubly healthy, that is $\forall P$. sound $P \longrightarrow healthy$ (t P) and $\forall Q$. sound $Q \longrightarrow healthy$ (λP . t P Q). Thus by feasibility, t P Q must be bounded by bound-of P. Thus, as by definition $x \le t$ P x for any fixed point, all must lie in the set of sound expectations bounded above by λ -. bound-of P.

```
definition Inf-exp :: 's expect set \Rightarrow 's expect
where Inf-exp\ S = (\lambda s.\ Inf\ \{fs\ | f.f \in S\})
lemma Inf-exp-lower:
  \llbracket P \in S; \forall P \in S. \ nneg \ P \ \rrbracket \Longrightarrow Inf-exp \ S \leq P
  \langle proof \rangle
lemma Inf-exp-greatest:
  [\![S \neq \{\}; \forall P \in S. \ Q \leq P]\!] \Longrightarrow Q \leq Inf-exp \ S
  \langle proof \rangle
definition Sup-exp :: 's expect set \Rightarrow 's expect
where Sup\text{-}exp\ S = (if\ S = \{\}\ then\ \lambda s.\ 0\ else\ (\lambda s.\ Sup\ \{f\ s\ | f.\ f \in S\}))
lemma Sup-exp-upper:
  \llbracket P \in S; \forall P \in S. \ bounded-by \ b \ P \rrbracket \Longrightarrow P \leq Sup-exp \ S
  \langle proof \rangle
lemma Sup-exp-least:
  \llbracket \forall P \in S. \ P \leq Q; nneg \ Q \ \rrbracket \Longrightarrow Sup\text{-exp } S \leq Q
  \langle proof \rangle
lemma Sup-exp-sound:
  assumes sS: \bigwedge P. P \in S \Longrightarrow sound P
     and bS: \bigwedge P. P \in S \Longrightarrow bounded-by b P
 shows sound (Sup-exp S)
\langle proof \rangle
definition lfp-exp :: 's trans \Rightarrow 's expect
where lfp-exp t = Inf-exp \{P. sound P \land t P \leq P\}
lemma lfp-exp-lowerbound:
 \llbracket t P \leq P ; sound P \rrbracket \Longrightarrow lfp\text{-}exp \ t \leq P
  \langle proof \rangle
lemma lfp-exp-greatest:
  \llbracket \land P. \ \llbracket t \ P \leq P; sound \ P \ \rrbracket \Longrightarrow Q \leq P; sound \ Q; t \ R \Vdash R; sound \ R \ \rrbracket \Longrightarrow Q \leq lfp\text{-exp } t
  \langle proof \rangle
lemma feasible-lfp-exp-sound:
 feasible t \Longrightarrow sound (lfp-exp t)
  \langle proof \rangle
```

3.3. INDUCTION 47

```
lemma lfp-exp-sound:
 assumes fR: tR \Vdash R and sR: sound R
 shows sound (lfp-exp t)
\langle proof \rangle
lemma lfp-exp-bound:
 (\bigwedge P. unitary P \Longrightarrow unitary (t P)) \Longrightarrow bounded-by 1 (lfp-exp t)
 \langle proof \rangle
lemma lfp-exp-unitary:
 (\bigwedge P. \ unitary \ P \Longrightarrow unitary \ (t \ P)) \Longrightarrow unitary \ (lfp\text{-}exp \ t)
\langle proof \rangle
lemma lfp-exp-lemma2:
 fixes t:: 's trans
 assumes st: \bigwedge P. sound P \Longrightarrow sound\ (t\ P)
    and mt: mono-trans t
     and fR: tR \Vdash R and sR: sound R
 shows t (lfp-exp t) \leq lfp-exp t
\langle proof \rangle
lemma lfp-exp-lemma3:
 assumes st: \bigwedge P. sound P \Longrightarrow sound (t P)
    and mt: mono-trans t
    and fR: tR \vdash R and sR: sound R
 shows lfp-exp t \le t (lfp-exp t)
  \langle proof \rangle
lemma lfp-exp-unfold:
 assumes nt: \bigwedge P. sound P \Longrightarrow sound (t P)
    and mt: mono-trans t
    and fR: t R \vdash R and sR: sound R
 shows lfp-exp t = t (lfp-exp t)
  \langle proof \rangle
definition gfp-exp :: 's trans \Rightarrow 's expect
where gfp-exp t = Sup-exp \{P. unitary <math>P \land P \le t P\}
lemma gfp-exp-upperbound:
  \llbracket P \le t \ P; unitary P \ \rrbracket \Longrightarrow P \le gfp\text{-}exp \ t
 \langle proof \rangle
lemma gfp-exp-least:
  \llbracket \land P. \llbracket P \le t P; unitary P \rrbracket \Longrightarrow P \le Q; unitary Q \rrbracket \Longrightarrow gfp\text{-}exp \ t \le Q
  \langle proof \rangle
lemma gfp-exp-bound:
  (\bigwedge P. unitary P \Longrightarrow unitary (t P)) \Longrightarrow bounded-by 1 (gfp-exp t)
  \langle proof \rangle
```

```
lemma gfp-exp-nneg[iff]:
 nneg (gfp-exp t)
\langle proof \rangle
lemma gfp-exp-unitary:
 (\bigwedge P. unitary P \Longrightarrow unitary (t P)) \Longrightarrow unitary (gfp-exp t)
 \langle proof \rangle
lemma gfp-exp-lemma2:
 assumes ft: \bigwedge P. unitary P \Longrightarrow unitary (t P)
     and mt: \bigwedge PQ. \llbracket unitary P; unitary Q; P \Vdash Q \rrbracket \Longrightarrow tP \Vdash tQ
 shows gfp-exp t \le t (gfp-exp t)
\langle proof \rangle
lemma gfp-exp-lemma3:
 assumes ft: \bigwedge P. unitary P \Longrightarrow unitary (t P)
     and mt: \bigwedge P Q. [[unitary P; unitary Q; P \Vdash Q]] \Longrightarrow t P \Vdash t Q
 shows t (gfp-exp t) \leq gfp-exp t
  \langle proof \rangle
lemma gfp-exp-unfold:
 (\bigwedge P. unitary P \Longrightarrow unitary (t P)) \Longrightarrow (\bigwedge P Q. \llbracket unitary P; unitary Q; P \Vdash Q \rrbracket \Longrightarrow t P \Vdash
tQ) \Longrightarrow
  gfp-exp t = t (<math>gfp-exp t)
  \langle proof \rangle
```

3.3.2 The Lattice of Transformers

In addition to fixed points on expectations, we also need to reason about fixed points on expectation transformers. The interpretation of a recursive program in pGCL is as a fixed point of a function from transformers to transformers. In contrast to the case of expectations, *healthy* transformers do form a complete lattice, where the bottom element is λ - -. θ , and the top element is the greatest allowed by feasibility: λP -. *bound-of P*.

```
definition Inf-trans :: 's trans set \Rightarrow 's trans

where Inf-trans S = (\lambda P. Inf-exp \{t \ P \ | t. \ t \in S\})

lemma Inf-trans-lower:

\llbracket t \in S; \forall u \in S. \forall P. sound \ P \longrightarrow sound \ (u \ P) \ \rrbracket \Longrightarrow le\text{-trans} \ (Inf-trans \ S) \ t \ \langle proof \rangle

lemma Inf-trans-greatest:

\llbracket S \neq \{\}; \forall t \in S. \forall P. le\text{-trans} \ u \ t \ \rrbracket \Longrightarrow le\text{-trans} \ u \ (Inf-trans \ S) \ \langle proof \rangle

definition Sup-trans :: 's trans set \Rightarrow 's trans

where Sup-trans S = (\lambda P. Sup-exp \ \{t \ P \ | t. \ t \in S\})
```

3.3. INDUCTION 49

```
lemma Sup-trans-upper:
  \llbracket t \in S; \forall u \in S. \ \forall P. \ unitary \ P \longrightarrow unitary \ (u \ P) \ \rrbracket \Longrightarrow le\text{-}utrans \ t \ (Sup\text{-}trans \ S)
  \langle proof \rangle
lemma Sup-trans-upper2:
  \llbracket t \in S; \forall u \in S. \ \forall P. \ (nneg \ P \land bounded-by \ b \ P) \longrightarrow (nneg \ (u \ P) \land bounded-by \ b \ (u \ P));
    nneg P; bounded-by b P \parallel \Longrightarrow t P \Vdash Sup\text{-trans } S P
  \langle proof \rangle
lemma Sup-trans-least:
  \llbracket \ \forall \ t \in S. \ le-utrans t \ u; \ \bigwedge P. \ unitary \ P \Longrightarrow unitary \ (u \ P) \ \rrbracket \Longrightarrow le-utrans (Sup-trans S) \ u
  \langle proof \rangle
lemma Sup-trans-least2:
  \llbracket \ \forall \ t \in S. \ \forall \ P. \ nneg \ P \longrightarrow bounded-by \ b \ P \longrightarrow t \ P \Vdash u \ P;
    \forall u \in S. \ \forall P. \ (nneg\ P \land bounded-by\ b\ P) \longrightarrow (nneg\ (u\ P) \land bounded-by\ b\ (u\ P));
       nneg P; bounded-by b P; \bigwedge P. \llbracket nneg P; bounded-by b P \rrbracket \Longrightarrow nneg (u P) \rrbracket \Longrightarrow
Sup-trans SP \Vdash uP
   \langle proof \rangle
lemma feasible-Sup-trans:
 fixes S::'s trans set
 assumes fS: \forall t \in S. feasible t
 shows feasible (Sup-trans S)
\langle proof \rangle
definition lfp-trans :: ('s trans \Rightarrow 's trans) \Rightarrow 's trans
where lfp-trans T = Inf-trans \{t. (\forall P. sound P \longrightarrow sound (t P)) \land le-trans (T t) t\}
lemma lfp-trans-lowerbound:
  \llbracket le\text{-trans}(T t) t; \land P. sound P \Longrightarrow sound(t P) \rrbracket \Longrightarrow le\text{-trans}(lfp\text{-trans}T) t
  \langle proof \rangle
lemma lfp-trans-greatest:
  \llbracket \bigwedge t \ P. \ \llbracket \ le\text{-trans} \ (T \ t) \ t; \bigwedge P. \ sound \ P \Longrightarrow sound \ (t \ P) \ \rrbracket \Longrightarrow le\text{-trans} \ u \ t;
     \bigwedge P. sound P \Longrightarrow sound (v P); le-trans (T v) v \parallel \Longrightarrow
  le-trans u (lfp-trans T)
  \langle proof \rangle
lemma lfp-trans-sound:
 fixes P Q::'s expect
 assumes sP: sound P
     and fv: le-trans (Tv) v
     and sv: \bigwedge P. sound P \Longrightarrow sound (v P)
 shows sound (lfp\text{-}trans\ T\ P)
\langle proof \rangle
lemma lfp-trans-unitary:
```

```
fixes P Q::'s expect
 assumes uP: unitary P
     and fv: le-trans (T v) v
     and sv: \bigwedge P. sound P \Longrightarrow sound (v P)
     and fT: le-trans (T(\lambda P s. bound-of P))(\lambda P s. bound-of P)
 shows unitary (lfp-trans TP)
\langle proof \rangle
lemma lfp-trans-lemma2:
 fixes v::'s trans
 assumes mono: \bigwedge t u. \llbracket le-trans t u; \bigwedge P. sound P \Longrightarrow sound (t P);
                       \bigwedge P. sound P \Longrightarrow sound (u P) \parallel \Longrightarrow le\text{-trans} (T t) (T u)
     and nT: \bigwedge t P. \llbracket \bigwedge Q. sound Q \Longrightarrow sound (t Q); sound P \rrbracket \Longrightarrow sound (T t P)
     and fv: le-trans (Tv) v
     and sv: \bigwedge P. sound P \Longrightarrow sound (v P)
 shows le-trans (T (lfp-trans T)) (lfp-trans T)
\langle proof \rangle
lemma lfp-trans-lemma3:
 fixes v::'s trans
 assumes mono: \bigwedge t \ u. \llbracket \ le\text{-trans} \ t \ u; \bigwedge P. sound P \Longrightarrow sound \ (t \ P);
                       \bigwedge P. sound P \Longrightarrow sound (u P) \parallel \Longrightarrow le-trans (T t) (T u)
     and sT: \bigwedge t P. \llbracket \bigwedge Q. sound Q \Longrightarrow sound \ (t \ Q); sound P \ \rrbracket \Longrightarrow sound \ (T \ t \ P)
    and fv: le-trans (T v) v
     and sv: \bigwedge P. sound P \Longrightarrow sound (v P)
 shows le-trans (lfp-trans T) (T (lfp-trans T))
\langle proof \rangle
lemma lfp-trans-unfold:
 fixes P::'s expect
 assumes mono: \bigwedge t u. \llbracket le-trans t u; \bigwedge P. sound P \Longrightarrow sound (t P);
                      \bigwedge P. sound P \Longrightarrow sound (u P) \parallel \Longrightarrow le\text{-trans} (T t) (T u)
     and sT: \Lambda t P. \Lambda Q. sound Q \Longrightarrow sound (t Q); sound P \Longrightarrow sound (T t P)
     and fv: le-trans (Tv) v
     and sv: \bigwedge P. sound P \Longrightarrow sound (v P)
  shows equiv-trans (lfp-trans T) (T (lfp-trans T))
  \langle proof \rangle
definition gfp-trans :: ('s trans \Rightarrow 's trans) \Rightarrow 's trans
where gfp-trans T = Sup\text{-trans} \{t. (\forall P. unitary P \longrightarrow unitary (t P)) \land le\text{-utrans } t (T t)\}
lemma gfp-trans-upperbound:
 \llbracket le\text{-}utrans\ t\ (T\ t); \land P.\ unitary\ P \Longrightarrow unitary\ (t\ P)\ \rrbracket \Longrightarrow le\text{-}utrans\ t\ (gfp\text{-}trans\ T)
  \langle proof \rangle
lemma gfp-trans-least:
  \llbracket \bigwedge t. \llbracket le-utrans t (T t); \bigwedge P. unitary P \Longrightarrow unitary (t P) <math>\rrbracket \Longrightarrow le-utrans t u;
    \bigwedge P. unitary P \Longrightarrow unitary (u P) \parallel \Longrightarrow
  le-utrans (gfp-trans T) u
```

3.3. INDUCTION 51

```
\langle proof \rangle
lemma gfp-trans-unitary:
 fixes P::'s expect
 assumes uP: unitary P
 shows unitary (gfp-trans T P)
\langle proof \rangle
lemma gfp-trans-lemma2:
 assumes mono: \bigwedge t u. \llbracket le-utrans t u; \bigwedge P. unitary P \Longrightarrow unitary (t P);
                       \bigwedge P. unitary P \Longrightarrow unitary (u \ P) \ ] \Longrightarrow le-utrans (T \ t) \ (T \ u)
     and hT: \bigwedge t P. \llbracket \bigwedge Q. unitary Q \Longrightarrow unitary (t Q); unitary P \rrbracket \Longrightarrow unitary (T t P)
 shows le-utrans (gfp-trans\ T) (T\ (gfp-trans\ T))
\langle proof \rangle
lemma gfp-trans-lemma3:
 assumes mono: \bigwedge t u. \llbracket le-utrans t u; \bigwedge P. unitary P \Longrightarrow unitary (t P);
                       \bigwedge P. unitary P \Longrightarrow unitary (u P) \parallel \Longrightarrow le-utrans (T t) (T u)
     and hT: \bigwedge t P. \llbracket \bigwedge Q. unitary Q \Longrightarrow unitary (t Q); unitary P \rrbracket \Longrightarrow unitary (T t P)
 shows le-utrans (T(gfp-trans T))(gfp-trans T)
  \langle proof \rangle
lemma gfp-trans-unfold:
 assumes mono: \bigwedge t u. \llbracket le-utrans t u; \bigwedge P. unitary P \Longrightarrow unitary (t P);
                       \bigwedge P. unitary P \Longrightarrow unitary (u P) \parallel \Longrightarrow le-utrans (T t) (T u)
     and hT: \bigwedge t P. \llbracket \bigwedge Q. unitary Q \Longrightarrow unitary (t Q); unitary P \rrbracket \Longrightarrow unitary (T t P)
 shows equiv-utrans (gfp-trans\ T) (T\ (gfp-trans\ T))
  \langle proof \rangle
```

3.3.3 Tail Recursion

fixes P::'s expect and t::'s expect \Rightarrow 's trans

The least (greatest) fixed point of a tail-recursive expression on transformers is equivalent (given appropriate side conditions) to the least (greatest) fixed point on expectations.

```
lemma gfp-pulldown:
 fixes P::'s expect
 assumes tailcall: \bigwedge u P. unitary P \Longrightarrow T u P = t P (u P)
                       \bigwedge t P. \llbracket \bigwedge Q. unitary Q \Longrightarrow unitary (t Q); unitary P \rrbracket \Longrightarrow unitary (T t P)
     and fT:
     and ft:
                      \bigwedge PQ. unitary P \Longrightarrow unitary Q \Longrightarrow unitary (t PQ)
     and mt:
                        \bigwedge P Q R. \llbracket unitary P; unitary Q; unitary R; Q \Vdash R \rrbracket \Longrightarrow t P Q \Vdash t P R
     and uP:
                        unitary P
     and monoT:
                            \bigwedge t \ u. \ [ le\text{-utrans } t \ u; \bigwedge P. \ unitary \ P \Longrightarrow unitary \ (t \ P);
                           \bigwedge P. unitary P \Longrightarrow unitary (u P) \parallel \Longrightarrow le\text{-}utrans (T t) (T u)
 shows gfp-trans TP = gfp\text{-}exp(tP) (is ?XP = ?YP)
\langle proof \rangle
lemma lfp-pulldown:
```

end

```
and T::'s trans \Rightarrow 's trans
  assumes tailcall: \bigwedge u P. sound P \Longrightarrow T u P = t P (u P)
      and st:
                        \bigwedge PQ. sound P \Longrightarrow sound Q \Longrightarrow sound (tPQ)
     and mt:
                          \bigwedge P. sound P \Longrightarrow mono-trans\ (t\ P)
     and monoT: \bigwedge t u. \llbracket le\text{-trans } t \ u; \bigwedge P. sound \ P \Longrightarrow sound \ (t \ P);
                          \bigwedge P. sound P \Longrightarrow sound (u P) \parallel \Longrightarrow le\text{-trans} (T t) (T u)
     and nT: \bigwedge t P. \llbracket \bigwedge Q. sound Q \Longrightarrow sound \ (t \ Q); sound P \ \rrbracket \Longrightarrow sound \ (T \ t \ P)
     and fv: le-trans (T v) v
     and sv: \bigwedge P. sound P \Longrightarrow sound (v P)
and sP: sound P
 shows lfp-trans TP = lfp\text{-}exp(tP) (is ?XP = ?YP)
\langle proof \rangle
definition Inf-utrans :: 's trans set \Rightarrow 's trans
where Inf-utrans S = (if S = \{\} then \lambda P s. 1 else Inf-trans S)
lemma Inf-utrans-lower:
 \llbracket t \in S; \forall t \in S. \ \forall P. \ unitary \ P \longrightarrow unitary \ (t \ P) \ \rrbracket \Longrightarrow le\text{-}utrans \ (Inf\text{-}utrans \ S) \ t
 \langle proof \rangle
lemma Inf-utrans-greatest:
 \llbracket \bigwedge P. \text{ unitary } P \Longrightarrow \text{unitary } (t P); \forall u \in S. \text{ le-utrans } t \text{ u } \rrbracket \Longrightarrow \text{le-utrans } t \text{ (Inf-utrans } S)
 \langle proof \rangle
```

Chapter 4

The pGCL Language

4.1 A Shallow Embedding of pGCL in HOL

theory Embedding imports Misc Induction begin

4.1.1 Core Primitives and Syntax

A pGCL program is embedded directly as its strict or liberal transformer. This is achieved with an additional parameter, specifying which semantics should be obeyed.

```
type-synonym 's prog = bool \Rightarrow ('s \Rightarrow real) \Rightarrow ('s \Rightarrow real)
```

Abort either always fails, λP s. 0, or always succeeds, λP s. 1.

```
definition Abort :: 's prog

where Abort \equiv \lambda ab \ P \ s. if ab then 0 else 1
```

Skip does nothing at all.

```
definition Skip :: 's prog where Skip \equiv \lambda ab P. P
```

Apply lifts a state transformer into the space of programs.

```
definition Apply :: ('s \Rightarrow 's) \Rightarrow 's \ prog
where Apply f \equiv \lambda ab \ P \ s. \ P \ (f \ s)
```

Seq is sequential composition.

```
definition Seq :: 's \ prog \Rightarrow 's \ prog \Rightarrow 's \ prog  (infix) <;;>59) where Seq \ a \ b \equiv (\lambda ab. \ a \ ab \ o \ b \ ab)
```

PC is probabilistic choice between programs.

definition
$$PC :: 's \ prog \Rightarrow ('s \Rightarrow real) \Rightarrow 's \ prog \Rightarrow 's \ prog \Leftrightarrow 's \ prog \Rightarrow 's \ prog \Leftrightarrow 's \ prog \Rightarrow 's \ pr$$

```
where PC \ a \ P \ b \equiv \lambda ab \ Q \ s. P \ s * a \ ab \ Q \ s + (1 - P \ s) * b \ ab \ Q \ s
```

DC is demonic choice between programs.

```
definition DC :: 's \ prog \Rightarrow 's \ prog \Leftrightarrow 's \ prog \ (\leftarrow \square \rightarrow [58,57] \ 57)
where DC \ a \ b \equiv \lambda ab \ Q \ s. \ min \ (a \ ab \ Q \ s) \ (b \ ab \ Q \ s)
```

AC is angelic choice between programs.

```
definition AC :: 's \ prog \Rightarrow 's \ prog \Rightarrow 's \ prog \ (\leftarrow \bigsqcup \rightarrow [58,57] \ 57)
where AC \ a \ b \equiv \lambda ab \ Q \ s. \ max \ (a \ ab \ Q \ s) \ (b \ ab \ Q \ s)
```

Embed allows any expectation transformer to be treated syntactically as a program, by ignoring the failure flag.

```
definition Embed :: 's trans \Rightarrow 's prog where Embed t = (\lambda ab. t)
```

Mu is the recursive primitive, and is either then least or greatest fixed point.

```
definition Mu :: ('s prog \Rightarrow 's prog) \Rightarrow 's prog (binder < \mu > 50)

where Mu(T) \equiv (\lambda ab. if ab then lfp-trans (\lambda t. T (Embed t) ab)

else gfp-trans (\lambda t. T (Embed t) ab))
```

repeat expresses finite repetition

primrec

```
repeat :: nat \Rightarrow 'a \ prog \Rightarrow 'a \ prog

where

repeat 0 \ p = Skip \mid

repeat (Suc \ n) \ p = p ;; repeat n \ p
```

SetDC is demonic choice between a set of alternatives, which may depend on the state.

```
definition SetDC :: ('a \Rightarrow 's \ prog) \Rightarrow ('s \Rightarrow 'a \ set) \Rightarrow 's \ prog

where SetDC f S \equiv \lambda ab \ P \ s. \ Inf \ ((\lambda a. f \ a \ ab \ P \ s) \ `S \ s)
```

syntax -SetDC :: pttrn => ('s => 'a set) => 's prog => 's prog
$$(\langle \neg - \in -./ \rightarrow 100)$$

syntax-consts -SetDC == SetDC
translations $\neg x \in S$. $p == CONST SetDC (\%x. p) S$

The above syntax allows us to write $\prod x \in S$. Apply f

SetPC is probabilistic choice from a set. Note that this is only meaningful for distributions of finite support.

definition

```
SetPC :: ('a \Rightarrow 's \ prog) \Rightarrow ('s \Rightarrow 'a \Rightarrow real) \Rightarrow 's \ prog

where

SetPC f p \equiv \lambda ab \ P \ s. \sum a \in supp \ (p \ s). p \ s \ a * f \ a \ ab \ P \ s
```

Bind allows us to name an expression in the current state, and re-use it later.

definition

Bind ::
$$('s \Rightarrow 'a) \Rightarrow ('a \Rightarrow 's prog) \Rightarrow 's prog$$

where
Bind $g f ab \equiv \lambda P s$. let $a = g s$ in $f a ab P s$

This gives us something like let syntax

syntax -Bind ::
$$pttrn = > ('s = > 'a) = > 's prog = > 's prog (<-is - in -> [55,55,55]55)$$

syntax-consts -Bind == Bind
translations x is f in $a = > CONST$ Bind f (% x . a)
definition $flip$:: $('a \Rightarrow 'b \Rightarrow 'c) \Rightarrow 'b \Rightarrow 'a \Rightarrow 'c$
where $[simp]$: $flip$ $f = (\lambda b \ a. f \ a. b)$

The following pair of translations introduce let-style syntax for *SetPC* and *SetDC*, respectively.

syntax -PBind :: pttrn => ('s => real) => 's prog => 's prog (\dotsind - at - in -> [55,55,55]55)

syntax-consts -PBind == SetPC

translations bind x at p in a => CONST SetPC (%x. a) (CONST flip (%x. p))

syntax -DBind :: pttrn => ('s => 'a set)
$$\Rightarrow$$
 's prog => 's prog (\dotsind - from - in -> [55,55,55]55)

syntax-consts -DBind == SetDC

translations bind x from S in a => CONST SetDC (%x. a) S

The following syntax translations are for convenience when using a record as the state type.

syntax

```
-assign :: ident => 'a => 's prog (<- := -> [1000,900]900) \langle ML \rangle
```

syntax

-SetPC ::
$$ident => ('s => 'a => real) => 's prog$$

($< choose - at -> [66,66]66$)
syntax-consts
-SetPC \rightleftharpoons SetPC
($> ML$)

syntax

```
-set-dc :: ident => ('s => 'a set) => 's prog (<: \in -> [66,66]66) syntax-consts
-set-dc \rightleftharpoons SetDC \langle ML \rangle
```

These definitions instantiate the embedding as either weakest precondition (True) or weakest liberal precondition (False).

syntax

```
-set-dc-UNIV :: ident = > 's prog (\langle any \rightarrow [66]66)
syntax-consts
 -set-dc-UNIV == SetDC
translations
 -set-dc-UNIV x =  -set-dc x (%-. CONST UNIV)
definition
 wp :: 's prog \Rightarrow 's trans
where
 wp pr \equiv pr True
definition
 wlp :: 's prog \Rightarrow 's trans
where
 wlp pr \equiv pr False
If-Then-Else as a degenerate probabilistic choice.
abbreviation(input)
 if-then-else :: ['s \Rightarrow bool, 's prog, 's prog] \Rightarrow 's prog
    (If - Then - Else -> 58)
where
 If P Then a Else b == a_{\alpha P_{\infty}} \oplus b
Syntax for loops
abbreviation
 do-while :: ['s \Rightarrow bool, 's prog] \Rightarrow 's prog
          (\langle do - \longrightarrow // (4 -) //od \rangle)
where
 do-while P a \equiv \mu x. If P Then a : x Else Skip
```

4.1.2 Unfolding rules for non-recursive primitives

```
lemma eval-wp-Abort: wp Abort P = (\lambda s. 0) \langle proof \rangle
lemma eval-wlp-Abort: wlp Abort P = (\lambda s. 1) \langle proof \rangle
lemma eval-wp-Skip: wp Skip P = P \langle proof \rangle
lemma eval-wlp-Skip: wlp Skip P = P \langle proof \rangle
```

lemma eval-wp-Apply:

```
wp (Apply f) P = P o f
 \langle proof \rangle
lemma eval-wlp-Apply:
 wlp (Apply f) P = P o f
 \langle proof \rangle
lemma eval-wp-Seq:
 wp(a;;b) P = (wp a o wp b) P
 \langle proof \rangle
lemma eval-wlp-Seq:
 wlp(a ;; b) P = (wlp a o wlp b) P
 \langle proof \rangle
lemma eval-wp-PC:
 wp (a_Q \oplus b) P = (\lambda s. Q s * wp a P s + (1 - Q s) * wp b P s)
 \langle proof \widetilde{\rangle}
lemma eval-wlp-PC:
 wlp (a \bigcirc \oplus b) P = (\lambda s. Q s * wlp a P s + (1 - Q s) * wlp b P s)
 \langle proof \rangle
lemma eval-wp-DC:
 wp (a \sqcap b) P = (\lambda s. min (wp a P s) (wp b P s))
 \langle proof \rangle
lemma eval-wlp-DC:
 wlp(a \sqcap b) P = (\lambda s. min(wlp a P s) (wlp b P s))
 \langle proof \rangle
lemma eval-wp-AC:
 wp(a \sqcup b) P = (\lambda s. max(wp a P s) (wp b P s))
 \langle proof \rangle
lemma eval-wlp-AC:
 wlp(a \bigsqcup b) P = (\lambda s. max(wlp a P s) (wlp b P s))
 \langle proof \rangle
lemma eval-wp-Embed:
 wp (Embed t) = t
 \langle proof \rangle
lemma eval-wlp-Embed:
 wlp(Embed t) = t
 \langle proof \rangle
lemma eval-wp-SetDC:
 wp (SetDC \ p \ S) \ R \ s = Inf ((\lambda a. \ wp \ (p \ a) \ R \ s) \ `S \ s)
```

```
\langle proof \rangle
lemma eval-wlp-SetDC:
 wlp (SetDC \ p \ S) \ R \ s = Inf ((\lambda a. \ wlp \ (p \ a) \ R \ s) \ `S \ s)
 \langle proof \rangle
lemma eval-wp-SetPC:
 wp (SetPC f p) P = (\lambda s. \sum a \in supp (p s). p s a * wp (f a) P s)
 \langle proof \rangle
lemma eval-wlp-SetPC:
 wlp (SetPCfp) P = (\lambda s. \sum a \in supp (p s). p s a * wlp (f a) P s)
 \langle proof \rangle
lemma eval-wp-Mu:
 \textit{wp} \; (\mu \; \textit{t.} \; \textit{T} \; \textit{t}) = \textit{lfp-trans} \; (\lambda \textit{t.} \; \textit{wp} \; (\textit{T} \; (\textit{Embed} \; \textit{t})))
 \langle proof \rangle
lemma eval-wlp-Mu:
 wlp (\mu t. Tt) = gfp\text{-}trans (\lambda t. wlp (T (Embed t)))
 \langle proof \rangle
lemma eval-wp-Bind:
 wp (Bind g f) = (\lambda P s. wp (f (g s)) P s)
 \langle proof \rangle
lemma eval-wlp-Bind:
 wlp (Bind g f) = (\lambda P s. wlp (f (g s)) P s)
 \langle proof \rangle
Use simp add:wp_eval to fully unfold a program fragment
lemmas wp-eval = eval-wp-Abort eval-wlp-Abort eval-wp-Skip eval-wlp-Skip
             eval-wp-Apply eval-wlp-Apply eval-wp-Seq eval-wlp-Seq
             eval-wp-PC eval-wlp-PC eval-wp-DC eval-wlp-DC
             eval-wp-AC eval-wlp-AC
             eval-wp-Embed eval-wlp-Embed eval-wp-SetDC eval-wlp-SetDC
             eval-wp-SetPC eval-wlp-SetPC eval-wp-Mu eval-wlp-Mu
             eval-wp-Bind eval-wlp-Bind
lemma Skip-Seq:
 Skip ;; A = A
 \langle proof \rangle
lemma Seq-Skip:
 A :: Skip = A
 \langle proof \rangle
Use these as simp rules to clear out Skips
```

lemmas skip-simps = Skip-Seq Seq-Skip

end

4.2 Healthiness

theory Healthiness imports Embedding begin

4.2.1 The Healthiness of the Embedding

Healthiness is mostly derived by structural induction using the simplifier. *Abort*, *Skip* and *Apply* form base cases.

```
lemma healthy-wp-Abort:
 healthy (wp Abort)
\langle proof \rangle
lemma nearly-healthy-wlp-Abort:
 nearly-healthy (wlp Abort)
\langle proof \rangle
lemma healthy-wp-Skip:
 healthy (wp Skip)
 \langle proof \rangle
lemma nearly-healthy-wlp-Skip:
 nearly-healthy (wlp Skip)
 \langle proof \rangle
lemma healthy-wp-Seq:
 fixes t:: 's prog and u
 assumes ht: healthy (wp t) and hu: healthy (wp u)
 shows healthy (wp (t ;; u))
\langle proof \rangle
lemma nearly-healthy-wlp-Seq:
 fixes t::'s prog and u
 assumes ht: nearly-healthy (wlp t) and hu: nearly-healthy (wlp u)
 shows nearly-healthy (wlp\ (t\ ;;\ u))
\langle proof \rangle
lemma healthy-wp-PC:
 fixes f:: 's prog
 assumes hf: healthy (wp f) and hg: healthy (wp g)
    and uP: unitary P
 shows healthy (wp (f_P \oplus g))
\langle proof \rangle
lemma nearly-healthy-wlp-PC:
 fixes f:: 's prog
```

```
assumes hf: nearly-healthy (wlp f)
    and hg: nearly-healthy (wlp g)
    and uP: unitary P
 shows nearly-healthy (wlp (f P \oplus g))
\langle proof \rangle
lemma healthy-wp-DC:
 fixes f:: 's prog
 assumes hf: healthy (wp f) and hg: healthy (wp g)
 shows healthy (wp (f \square g))
\langle proof \rangle
lemma nearly-healthy-wlp-DC:
 fixes f::'s prog
 assumes hf: nearly-healthy (wlp f)
    and hg: nearly-healthy (wlp g)
 shows nearly-healthy (wlp (f \sqcap g))
\langle proof \rangle
lemma healthy-wp-AC:
 fixes f:: 's prog
 assumes hf: healthy (wp f) and hg: healthy (wp g)
 shows healthy (wp (f \bigsqcup g))
\langle proof \rangle
lemma nearly-healthy-wlp-AC:
 fixes f:: 's prog
 assumes hf: nearly-healthy (wlp f)
    and hg: nearly-healthy (wlp g)
 shows nearly-healthy (wlp (f \bigsqcup g))
\langle proof \rangle
lemma healthy-wp-Embed:
 healthy t \Longrightarrow healthy (wp (Embed t))
 \langle proof \rangle
lemma nearly-healthy-wlp-Embed:
 nearly-healthy t \Longrightarrow nearly-healthy (wlp \ (Embed \ t))
 \langle proof \rangle
lemma healthy-wp-repeat:
 assumes h-a: healthy (wp a)
 shows healthy (wp (repeat n a)) (is ?X n)
\langle proof \rangle
lemma nearly-healthy-wlp-repeat:
 assumes h-a: nearly-healthy (wlp a)
 shows nearly-healthy (wlp (repeat n a)) (is ?X n)
\langle proof \rangle
```

```
lemma healthy-wp-SetDC:
 fixes prog::'b \Rightarrow 'a prog \text{ and } S::'a \Rightarrow 'b set
 assumes healthy: \bigwedge x \ s. \ x \in S \ s \Longrightarrow healthy (wp (prog x))
    and nonempty: \bigwedge s. \exists x. x \in S s
 shows healthy (wp (SetDC prog S)) (is healthy ?T)
\langle proof \rangle
lemma nearly-healthy-wlp-SetDC:
 fixes prog::'b \Rightarrow 'a prog \text{ and } S::'a \Rightarrow 'b set
 assumes healthy: \bigwedge x \ s. \ x \in S \ s \Longrightarrow nearly-healthy (wlp (prog x))
     and nonempty: \bigwedge s. \exists x. x \in S s
 shows nearly-healthy (wlp (SetDC prog S)) (is nearly-healthy ?T)
\langle proof \rangle
lemma healthy-wp-SetPC:
 fixes p::'s \Rightarrow 'a \Rightarrow real
 and f::'a \Rightarrow 's prog
 assumes healthy: \bigwedge a \ s. \ a \in supp \ (p \ s) \Longrightarrow healthy \ (wp \ (f \ a))
    and sound: \bigwedge s. sound (p \ s)
    and sub-dist: \bigwedge s. (\sum a \in supp (p s). p s a) \leq 1
 shows healthy (wp (SetPC f p)) (is healthy ?X)
\langle proof \rangle
lemma nearly-healthy-wlp-SetPC:
 fixes p::'s \Rightarrow 'a \Rightarrow real
 and f::'a \Rightarrow 's prog
 assumes healthy: \bigwedge a \ s. \ a \in supp \ (p \ s) \Longrightarrow nearly-healthy \ (wlp \ (f \ a))
    and sound: \bigwedge s. sound (p \ s)
    and sub-dist: \bigwedge s. (\sum a \in supp (p s). p s a) \leq 1
 shows nearly-healthy (wlp (SetPCfp)) (is nearly-healthy ?X)
\langle proof \rangle
lemma healthy-wp-Apply:
 healthy (wp (Apply f))
 \langle proof \rangle
lemma nearly-healthy-wlp-Apply:
 nearly-healthy (wlp (Apply f))
 \langle proof \rangle
lemma healthy-wp-Bind:
 fixes f::'s \Rightarrow 'a
 assumes hsub: \bigwedge s. healthy (wp (p (f s)))
 shows healthy (wp (Bind f p))
\langle proof \rangle
lemma nearly-healthy-wlp-Bind:
 fixes f::'s \Rightarrow 'a
```

```
assumes hsub: \bigwedge s. nearly-healthy (wlp (p(fs)))
shows nearly-healthy (wlp (Bind f p))
\langle proof \rangle
```

4.2.2 **Healthiness for Loops**

```
lemma wp-loop-step-mono:
 fixes t u::'s trans
 assumes hb: healthy (wp body)
     and le: le-trans t u
    and ht: \bigwedge P. sound P \Longrightarrow sound (t P)
    and hu: \bigwedge P. sound P \Longrightarrow sound (u P)
 shows le-trans (wp (body ;; Embed t _{\ll G} _{\gg} \oplus Skip))
               (wp (body ;; Embed u _{\ll G}) \oplus Skip)
\langle proof \rangle
lemma wlp-loop-step-mono:
 fixes t u::'s trans
 assumes mb: nearly-healthy (wlp body)
    and le: le-utrans t u
    and ht: \bigwedge P. unitary P \Longrightarrow unitary (t P)
     and hu: \bigwedge P. unitary P \Longrightarrow unitary (u P)
 shows le-utrans (wlp (body ;; Embed t _{ <\!\! < G >\!\!\!>} \oplus Skip))
                (wlp\ (body\ ;; Embed\ u\ _{<\!\!\!<\!\!\!<\!\!\!\!<\!\!\!\!G\ >\!\!\!\!\!>} \oplus Skip))
\langle proof \rangle
```

For each sound expectation, we have a pre fixed point of the loop body. This lets us use the relevant fixed-point lemmas.

```
lemma lfp-loop-fp:
 assumes hb: healthy (wp body)
     and sP: sound P
 shows \lambda s. \ll G \gg s * wp \ body \ (\lambda s. \ bound-of \ P) \ s + \ll \mathcal{N} \ G \gg s * P \ s \Vdash \lambda s. \ bound-of \ P
\langle proof \rangle
lemma lfp-loop-greatest:
 fixes P:: 's expect
 assumes lb: \bigwedge R. \lambda s. \langle G \rangle s * wp \ body \ R \ s + \langle \mathcal{N} \ G \rangle s * P \ s \Vdash R \Longrightarrow sound \ R \Longrightarrow Q \Vdash R
     and hb: healthy (wp body)
     and sP: sound P
     and sQ: sound Q
 shows Q \Vdash lfp\text{-}exp \ (\lambda Q \ s. \ «G» \ s * wp \ body \ Q \ s + «\mathcal{N} \ G» \ s * P \ s)
  \langle proof \rangle
lemma lfp-loop-sound:
 fixes P::'s expect
 assumes hb: healthy (wp body)
     and sP: sound P
 shows sound (lfp-exp (\lambda Q \ s. \ «G» \ s*wp \ body \ Q \ s + «N \ G» \ s*P \ s))
  \langle proof \rangle
```

```
lemma wlp-loop-step-unitary:
 fixes t u::'s trans
 assumes hb: nearly-healthy (wlp body)
    and ht: \bigwedge P. unitary P \Longrightarrow unitary (t P)
    and uP: unitary P
 shows unitary (wlp (body ;; Embed t _{ <\!\!< G >\!\!\!>} \oplus Skip) P)
\langle proof \rangle
lemma wp-loop-step-sound:
 fixes t u::'s trans
 assumes hb: healthy (wp body)
    and ht: \bigwedge P. sound P \Longrightarrow sound (t P)
    and sP: sound P
 shows sound (wp (body ;; Embed t \ll G \gg Skip) P)
\langle proof \rangle
This gives the equivalence with the alternative definition for loops[McIver and
Morgan, 2004, §7, p. 198, footnote 23].
lemma wlp-Loop1:
 fixes body :: 's prog
 assumes unitary: unitary P
    and healthy: nearly-healthy (wlp body)
 shows wlp (do G \longrightarrow body od) P =
 gfp-exp(\lambda Q s. «G» <math>s * wlp \ body \ Q s + «N G» <math>s * P s)
 (is ?X = gfp\text{-}exp(?YP))
\langle proof \rangle
lemma wp-loop-sound:
 assumes sP: sound P
    and hb: healthy (wp body)
 shows sound (wp do G \longrightarrow body od P)
\langle proof \rangle
Likewise, we can rewrite strict loops.
lemma wp-Loop1:
 fixes body :: 's prog
 assumes sP: sound P
    and healthy: healthy (wp body)
 shows wp (do G \longrightarrow body od) P =
 lfp-exp (\lambda Q s. «G» s * wp body Q s + «\mathcal{N} G» s * P s)
 (is ?X = lfp\text{-}exp(?YP))
\langle proof \rangle
lemma nearly-healthy-wlp-loop:
 fixes body::'s prog
 assumes hb: nearly-healthy (wlp body)
 shows nearly-healthy (wlp (do G \longrightarrow body od))
\langle proof \rangle
```

We show healthiness by appealing to the properties of expectation fixed points, applied to the alternative loop definition.

```
lemma healthy-wp-loop:
fixes body::'s prog
assumes hb: healthy (wp body)
shows healthy (wp (do G \longrightarrow body od))
\langle proof \rangle
```

Use 'simp add:healthy_intros' or 'blast intro:healthy_intros' as appropriate to discharge healthiness side-contitions for primitive programs automatically.

lemmas healthy-intros =

healthy-wp-Abort nearly-healthy-wlp-Abort healthy-wp-Skip nearly-healthy-wlp-Skip healthy-wp-Seq nearly-healthy-wlp-Seq healthy-wp-PC nearly-healthy-wlp-PC healthy-wp-DC nearly-healthy-wlp-DC healthy-wp-AC nearly-healthy-wlp-AC healthy-wp-Embed nearly-healthy-wlp-Embed healthy-wp-Apply nearly-healthy-wlp-Apply healthy-wp-SetDC nearly-healthy-wlp-SetDC healthy-wp-SetPC nearly-healthy-wlp-SetPC healthy-wp-Bind nearly-healthy-wlp-Bind healthy-wp-repeat nearly-healthy-wlp-repeat healthy-wp-loop nearly-healthy-wlp-loop

end

4.3 Continuity

theory Continuity imports Healthiness begin

We rely on one additional healthiness property, continuity, which is shown here seperately, as its proof relies, in general, on healthiness. It is only relevant when a program appears in an inductive context i.e. inside a loop.

A continuous transformer preserves limits (or the suprema of ascending chains).

```
definition bd-cts: 's trans ⇒ bool

where bd-cts t = (\forall M. (\forall i. (M i \Vdash M (Suc i)) \land sound (M i)) \longrightarrow (\exists b. \forall i. bounded-by b (M i)) \longrightarrow t (Sup-exp (range M)) = Sup-exp (range (t o M)))

lemma bd-ctsD:

[ bd-cts t; \land i. M i \Vdash M (Suc i); \land i. sound (M i); \land i. bounded-by b (M i) ]] ⇒ t (Sup-exp (range M)) = Sup-exp (range (t o M)) <math>\land proof \land

lemma bd-ctsI:

(\land b M. (\land i. M i \Vdash M (Suc i)) \Longrightarrow (\land i. sound (M i)) \Longrightarrow (\land i. bounded-by b (M i)) \Longrightarrow t (Sup-exp (range M)) = Sup-exp (range (t o M))) \Longrightarrow bd-cts t <math>\land proof \land
```

A generalised property for transformers of transformers.

```
definition bd-cts-tr :: ('s trans <math>\Rightarrow 's trans) \Rightarrow bool
```

4.3. CONTINUITY 65

```
where bd\text{-}cts\text{-}tr\ T = (\forall M.\ (\forall i.\ le\text{-}trans\ (M\ i)\ (M\ (Suc\ i)) \land feasible\ (M\ i)) \longrightarrow equiv\text{-}trans\ (T\ (Sup\text{-}trans\ (M\ 'UNIV)))\ (Sup\text{-}trans\ ((T\ o\ M)\ 'UNIV)))

lemma bd\text{-}cts\text{-}tr\ D:

\llbracket bd\text{-}cts\text{-}tr\ T;\ \land i.\ le\text{-}trans\ (M\ i)\ (M\ (Suc\ i));\ \land i.\ feasible\ (M\ i)\ \rrbracket \Longrightarrow equiv\text{-}trans\ (T\ (Sup\text{-}trans\ (M\ 'UNIV)))\ (Sup\text{-}trans\ ((T\ o\ M)\ 'UNIV)))

lemma bd\text{-}cts\text{-}tr\ I:

(\land M.\ (\land i.\ le\text{-}trans\ (M\ i)\ (M\ (Suc\ i)))\Longrightarrow (\land i.\ feasible\ (M\ i))\Longrightarrow equiv\text{-}trans\ (T\ (Sup\text{-}trans\ (M\ 'UNIV)))\ (Sup\text{-}trans\ ((T\ o\ M)\ 'UNIV)))\Longrightarrow bd\text{-}cts\text{-}tr\ T

\langle proof \rangle
```

4.3.1 Continuity of Primitives

```
| lemma cts-wp-Abort:
| bd-cts (wp (Abort::'s prog))
| ⟨proof⟩
| lemma cts-wp-Skip:
| bd-cts (wp Skip)
| ⟨proof⟩
| lemma cts-wp-Apply:
| bd-cts (wp (Apply f))
| ⟨proof⟩
| lemma cts-wp-Bind:
| fixes a::'a ⇒ 's prog
| assumes ca: \( \lambda \) bd-cts (wp (a (f s)))
| shows bd-cts (wp (Bind f a))
| ⟨proof⟩
```

The first nontrivial proof. We transform the suprema into limits, and appeal to the continuity of the underlying operation (here infimum). This is typical of the remainder of the nonrecursive elements.

```
lemma cts-wp-DC:
fixes a b::'s prog
assumes ca: bd-cts (wp a)
and cb: bd-cts (wp b)
and ha: healthy (wp a)
and hb: healthy (wp b)
shows bd-cts (wp (a □ b))
⟨proof⟩

lemma cts-wp-Seq:
fixes a b::'s prog
assumes ca: bd-cts (wp a)
```

```
and cb: bd-cts (wp b)
and hb: healthy (wp b)
shows bd-cts (wp (a ;; b))
⟨proof⟩

lemma cts-wp-PC:
fixes a b::'s prog
assumes ca: bd-cts (wp a)
and cb: bd-cts (wp b)
and ha: healthy (wp a)
and hb: healthy (wp b)
and up: unitary p
shows bd-cts (wp (PC a p b))
⟨proof⟩
```

lemma cts-wp-SetPC-const:

Both set-based choice operators are only continuous for finite sets (probabilistic choice *can* be extended infinitely, but we have not done so). The proofs for both are inductive, and rely on the above results on binary operators.

```
lemma SetPC-Bind:
 SetPC a p = Bind p (\lambda p. SetPC a (\lambda -. p))
 \langle proof \rangle
lemma SetPC-remove:
 assumes nz: p x \neq 0 and n1: p x \neq 1
    and fsupp: finite (supp p)
 shows SetPC a(\lambda - p) = PC(ax)(\lambda - px) (SetPC a(\lambda - dist-remove px))
\langle proof \rangle
lemma cts-bot:
 bd-cts (\lambda(P::'s\ expect)\ (s::'s).\ 0::real)
\langle proof \rangle
lemma wp-SetPC-nil:
 wp (SetPC \ a \ (\lambda s \ a. \ 0)) = (\lambda P \ s. \ 0)
 \langle proof \rangle
lemma SetPC-sgl:
 supp \ p = \{x\} \Longrightarrow SetPC \ a \ (\lambda -. \ p) = (\lambda ab \ P \ s. \ p \ x * a \ x \ ab \ P \ s)
 \langle proof \rangle
lemma bd-cts-scale:
 fixes a::'s trans
 assumes ca: bd-cts a
    and ha: healthy a
    and nnc: 0 \le c
 shows bd-cts (\lambda P s. c * a P s)
\langle proof \rangle
```

4.3. CONTINUITY 67

```
fixes a::'a \Rightarrow 's prog
 assumes ca: \land x. \ x \in (supp \ p) \Longrightarrow bd\text{-}cts \ (wp \ (a \ x))
     and ha: \bigwedge x. \ x \in (supp \ p) \Longrightarrow healthy (wp (a \ x))
    and up: unitary p
    and sump: sum p (supp p) \leq 1
    and fsupp: finite (supp p)
 shows bd-cts (wp (SetPC a (\lambda-. p)))
\langle proof \rangle
lemma cts-wp-SetPC:
 fixes a::'a \Rightarrow 's prog
 assumes ca: \bigwedge x \ s. \ x \in (supp (p \ s)) \Longrightarrow bd\text{-}cts (wp (a \ x))
     and ha: \bigwedge x \ s. \ x \in (supp (p \ s)) \Longrightarrow healthy (wp (a \ x))
    and up: \bigwedge s. unitary (p \ s)
    and sump: \bigwedge s. sum (p \ s) \ (supp \ (p \ s)) \le 1
    and fsupp: \land s. finite (supp (p s))
 shows bd-cts (wp (SetPC ap))
\langle proof \rangle
lemma wp-SetDC-Bind:
 SetDC a S = Bind S (\lambda S. SetDC a (\lambda -. S))
  \langle proof \rangle
lemma SetDC-finite-insert:
 assumes fS: finite S
     and neS: S \neq \{\}
 shows SetDC a(\lambda - insert \times S) = a \times \bigcap SetDC \ a(\lambda - S)
lemma SetDC-singleton:
 SetDC a(\lambda - \{x\}) = ax
  \langle proof \rangle
lemma cts-wp-SetDC-const:
 fixes a::'a \Rightarrow 's prog
 assumes ca: \bigwedge x. \ x \in S \Longrightarrow bd\text{-}cts \ (wp \ (a \ x))
    and ha: \bigwedge x. \ x \in S \Longrightarrow healthy (wp (a x))
    and fS: finite S
    and neS: S \neq \{\}
 shows bd-cts (wp (SetDC a (\lambda-. S)))
\langle proof \rangle
lemma cts-wp-SetDC:
 fixes a::'a \Rightarrow 's prog
 assumes ca: \bigwedge x \ s. \ x \in S \ s \Longrightarrow bd\text{-}cts \ (wp \ (a \ x))
     and ha: \bigwedge x \ s. \ x \in S \ s \Longrightarrow healthy (wp (a \ x))
    and fS: \bigwedge s. finite (S s)
    and neS: \land s. S s \neq \{\}
 shows bd-cts (wp (SetDC a S))
```

```
\langle proof \rangle

lemma cts-wp-repeat:

bd-cts (wp\ a) \Longrightarrow healthy\ (wp\ a) \Longrightarrow bd-cts\ (wp\ (repeat\ n\ a))

\langle proof \rangle

lemma cts-wp-Embed:

bd-cts\ t \Longrightarrow bd-cts\ (wp\ (Embed\ t))

\langle proof \rangle
```

4.3.2 Continuity of a Single Loop Step

A single loop iteration is continuous, in the more general sense defined above for transformer transformers.

```
lemma cts-wp-loopstep: fixes body::'s prog assumes hb: healthy (wp body) and cb: bd-cts (wp body) shows bd-cts-tr (\lambda x. wp (body ;; Embed x « G » \oplus Skip)) (is bd-cts-tr ?F) \langle proof \rangle
```

end

4.4 Continuity and Induction for Loops

theory LoopInduction imports Healthiness Continuity begin

Showing continuity for loops requires a stronger induction principle than we have used so far, which in turn relies on the continuity of loops (inductively). Thus, the proofs are intertwined, and broken off from the main set of continuity proofs. This result is also essential in showing the sublinearity of loops.

A loop step is monotonic.

```
lemma wp-loop-step-mono-trans:
fixes body::'s prog
assumes sP: sound P
and hb: healthy (wp body)
shows mono-trans (\lambda Q s. « G » s * wp body Q s + « \mathcal{N} G » s * P s)
\langle proof \rangle
```

We can therefore apply the standard fixed-point lemmas to unfold it:

```
lemma lfp\text{-}wp\text{-}loop\text{-}unfold:
fixes body:: 's prog
assumes hb: healthy (wp body)
and sP: sound P
shows lfp\text{-}exp (\lambda Q s. \ll G \gg s * wp body Q s + \ll N G \gg s * P s) =
 (\lambda s. \ll G \gg s * wp \ body \ (lfp\text{-}exp\ (\lambda Q \ s. \ll G \gg s * wp \ body \ Q \ s + \ll N G \gg s * P \ s)) \ s +
```

From the lattice structure on transformers, we establish a transfinite induction principle for loops. We use this to show a number of properties, particularly subdistributivity, for loops. This proof follows the pattern of lemma lfp_ordinal_induct in HOL/Inductive.

```
lemma loop-induct:
 fixes body::'s prog
 assumes hwp: healthy (wp body)
    and hwlp: nearly-healthy (wlp body)
    — The body must be healthy, both in strict and liberal semantics.
    and Limit: \bigwedge S. \llbracket \forall x \in S. P (fst x) (snd x); \forall x \in S. feasible (fst x);
                     \forall x \in S. \ \forall Q. \ unitary \ Q \longrightarrow unitary \ (snd \ x \ Q) \ ] \Longrightarrow
                P (Sup-trans (fst 'S)) (Inf-utrans (snd 'S))
     — The property holds at limit points.
     and IH: \bigwedge t u. \llbracket P t u; feasible t; \bigwedge Q. unitary Q \Longrightarrow unitary (u Q) \rrbracket \Longrightarrow
                   P(wp (body ;; Embed t _{\ll G}) \oplus Skip))
                     (wlp\ (body\ ;; Embed\ u\ _{<\!\!<\!\!\!<\!\!\!<\!\!\!G\ >\!\!\!\!>} \oplus Skip))
     — The inductive step. The property is preserved by a single loop iteration.
    and P-equiv: \bigwedge t t' u u'. \llbracket P t u; equiv-trans t t'; equiv-utrans u u' \rrbracket \Longrightarrow P t' u'
      — The property must be preserved by equivalence
 shows P (wp (do G \longrightarrow body od)) (wlp (do G \longrightarrow body od))
   - The property can refer to both interpretations simultaneously. The unifier will happily
apply the rule to just one or the other, however.
\langle proof \rangle
```

4.4.1 The Limit of Iterates

The iterates of a loop are its sequence of finite unrollings. We show shortly that this converges on the least fixed point. This is enormously useful, as we can appeal to various properties of the finite iterates (which will follow by finite induction), which we can then transfer to the limit.

```
definition iterates :: 's prog \Rightarrow ('s \Rightarrow bool) \Rightarrow nat \Rightarrow 's trans
```

and sP: sound P

```
where iterates body G i = ((\lambda x. wp (body ;; Embed x _{\langle G \rangle} \oplus Skip)) \land i) (\lambda P s. 0)
lemma iterates-0[simp]:
 iterates body G 0 = (\lambda P s. 0)
 \langle proof \rangle
lemma iterates-Suc[simp]:
 iterates body G (Suc i) = wp (body ;; Embed (iterates body G i) {}_{\mathscr{C}} \oplus Skip)
 \langle proof \rangle
All iterates are healthy.
lemma iterates-healthy:
 healthy (wp \ body) \Longrightarrow healthy (iterates \ body \ G \ i)
 \langle proof \rangle
The iterates are an ascending chain.
lemma iterates-increasing:
 fixes body::'s prog
 assumes hb: healthy (wp body)
 shows le-trans (iterates body G(Suc(i)))
\langle proof \rangle
lemma wp-loop-step-bounded:
 fixes t::'s trans and Q::'s expect
 assumes nQ: nneg Q
    and bQ: bounded-by b Q
   and ht: healthy t
    and hb: healthy (wp body)
 shows bounded-by b (wp (body ;; Embed t \in G \to Skip) Q)
\langle proof \rangle
This is the key result: The loop is equivalent to the supremum of its iterates. This
proof follows the pattern of lemma continuous_lfp in HOL/Library/Continuity.
lemma lfp-iterates:
 fixes body::'s prog
 assumes hb: healthy (wp body)
    and cb: bd-cts (wp body)
 shows equiv-trans (wp (do G \longrightarrow body od)) (Sup-trans (range (iterates body G)))
     (is equiv-trans ?X ?Y)
\langle proof \rangle
Therefore, evaluated at a given point (state), the sequence of iterates gives a se-
quence of real values that converges on that of the loop itself.
corollary loop-iterates:
 fixes body::'s prog
 assumes hb: healthy (wp body)
    and cb: bd-cts (wp body)
```

lemma cts-iterates:

```
shows (\lambda i. iterates body G \ i \ P \ s) \longrightarrow wp \ (do \ G \longrightarrow body \ od) \ P \ s \ \langle proof \rangle
```

The iterates themselves are all continuous.

```
fixes body::'s prog
 assumes hb: healthy (wp body)
   and cb: bd-cts (wp body)
 shows bd-cts (iterates body G i)
\langle proof \rangle
Therefore so is the loop itself.
lemma cts-wp-loop:
 fixes body::'s prog
 assumes hb: healthy (wp body)
   and cb: bd-cts (wp body)
 shows bd-cts (wp do G \longrightarrow body od)
\langle proof \rangle
lemmas cts-intros =
 cts-wp-Abort cts-wp-Skip
 cts-wp-Seq cts-wp-PC
 cts-wp-DC cts-wp-Embed
 cts-wp-Apply cts-wp-SetDC
 cts-wp-SetPC cts-wp-Bind
```

end

cts-wp-repeat

4.5 Sublinearity

theory Sublinearity imports Embedding Healthiness LoopInduction begin

4.5.1 Nonrecursive Primitives

Sublinearity of non-recursive programs is generally straightforward, and follows from the alebraic properties of the underlying operations, together with healthiness.

```
| lemma sublinear-wp-Skip:
| sublinear (wp Skip)
| ⟨proof⟩
| lemma sublinear-wp-Abort:
| sublinear (wp Abort)
| ⟨proof⟩
| lemma sublinear-wp-Apply:
| sublinear (wp (Apply f))
```

```
\langle proof \rangle
lemma sublinear-wp-Seq:
 fixes x:: 's prog
 assumes slx: sublinear (wp x) and sly: sublinear (wp y)
    and hx: healthy (wp x) and hy: healthy (wp y)
 shows sublinear (wp (x ;; y))
\langle proof \rangle
lemma sublinear-wp-PC:
 fixes x:: 's prog
 assumes slx: sublinear (wp x) and sly: sublinear (wp y)
    and uP: unitary P
 shows sublinear (wp (x p \oplus y))
\langle proof \rangle
lemma sublinear-wp-DC:
 fixes x:: 's prog
 assumes slx: sublinear (wp x) and sly: sublinear (wp y)
 shows sublinear (wp (x \sqcap y))
\langle proof \rangle
As for continuity, we insist on a finite support.
lemma sublinear-wp-SetPC:
 fixes p::'a \Rightarrow 's prog
 assumes slp: \land s \ a. \ a \in supp \ (P \ s) \Longrightarrow sublinear \ (wp \ (p \ a))
    and sum: \bigwedge s. (\sum a \in supp (P s). P s a) \leq 1
    and nnP: \bigwedge s a. 0 \le P s a
    and fin: \bigwedge s. finite (supp (P s))
 shows sublinear (wp (SetPC p P))
\langle proof \rangle
lemma sublinear-wp-SetDC:
 fixes p::'a \Rightarrow 's prog
 assumes slp: \bigwedge s \ a. \ a \in S \ s \Longrightarrow sublinear (wp (p \ a))
    and hp: \land s \ a. \ a \in S \ s \Longrightarrow healthy (wp (p \ a))
    and ne: \bigwedge s. S s \neq \{\}
 shows sublinear (wp (SetDC p S))
\langle proof \rangle
lemma sublinear-wp-Embed:
 sublinear\ t \Longrightarrow sublinear\ (wp\ (Embed\ t))
 \langle proof \rangle
lemma sublinear-wp-repeat:
 \llbracket \text{ sublinear } (wp \ p); \text{ healthy } (wp \ p) \ \rrbracket \Longrightarrow \text{ sublinear } (wp \ (\text{repeat } n \ p))
 \langle proof \rangle
lemma sublinear-wp-Bind:
```

```
\llbracket \bigwedge s. \ sublinear \ (wp \ (a \ (f \ s))) \ \rrbracket \Longrightarrow sublinear \ (wp \ (Bind \ f \ a)) \ \langle proof \rangle
```

4.5.2 Sublinearity for Loops

We break the proof of sublinearity loops into separate proofs of sub-distributivity and sub-additivity. The first follows by transfinite induction.

```
lemma sub-distrib-wp-loop:

fixes body::'s prog

assumes sdb: sub-distrib (wp body)

and hb: healthy (wp body)

and nhb: nearly-healthy (wlp body)

shows sub-distrib (wp (do G \longrightarrow body od))

\langle proof \rangle
```

For sub-additivity, we again use the limit-of-iterates characterisation. Firstly, all iterates are sublinear:

```
lemma sublinear-iterates:
assumes hb: healthy (wp body)
and sb: sublinear (wp body)
shows sublinear (iterates body G i)
\( \proof \rangle \)
```

From this, sub-additivity follows for the limit (i.e. the loop), by appealing to the property at all steps.

```
lemma sub-add-wp-loop:
 fixes body::'s prog
 assumes sb: sublinear (wp body)
   and cb: bd-cts (wp body)
   and hwp: healthy (wp body)
 shows sub-add (wp (do G \longrightarrow body od))
\langle proof \rangle
lemma sublinear-wp-loop:
 fixes body::'s prog
 assumes hb: healthy (wp body)
   and nhb: nearly-healthy (wlp body)
   and sb: sublinear (wp body)
   and cb: bd-cts (wp body)
 shows sublinear (wp (do G \longrightarrow body od))
  \langle proof \rangle
lemmas sublinear-intros =
 sublinear-wp-Abort
 sublinear-wp-Skip
 sublinear-wp-Apply
 sublinear-wp-Seq
 sublinear-wp-PC
```

```
sublinear-wp-DC
sublinear-wp-SetPC
sublinear-wp-Embed
sublinear-wp-repeat
sublinear-wp-Bind
sublinear-wp-loop
```

end

4.6 Determinism

theory Determinism imports WellDefined begin

We provide a set of lemmas for establishing that appropriately restricted programs are fully additive, and maximal in the refinement order. This is particularly useful with data refinement, as it implies correspondence.

4.6.1 Additivity

```
lemma additive-wp-Abort:
 additive (wp (Abort))
 \langle proof \rangle
wlp Abort is not additive.
lemma additive-wp-Skip:
 additive (wp (Skip))
 \langle proof \rangle
lemma additive-wp-Apply:
 additive (wp (Apply f))
 \langle proof \rangle
lemma additive-wp-Seq:
 fixes a::'s prog
 assumes adda: additive (wp a)
    and addb: additive (wp b)
    and wb: well-def b
 shows additive (wp (a ;; b))
\langle proof \rangle
lemma additive-wp-PC:
 \llbracket additive (wp a); additive (wp b) \rrbracket \Longrightarrow additive (wp (a p \oplus b))
 \langle proof \rangle
DC is not additive.
lemma additive-wp-SetPC:
 \llbracket \bigwedge x \ s. \ x \in supp \ (p \ s) \Longrightarrow additive \ (wp \ (a \ x)); \bigwedge s. \ finite \ (supp \ (p \ s)) \ \rrbracket \Longrightarrow
```

```
additive\ (wp\ (SetPC\ a\ p))
  \langle proof \rangle
lemma additive-wp-Bind:
 \llbracket \bigwedge x. \ additive \ (wp \ (a \ (f \ x))) \ \rrbracket \Longrightarrow additive \ (wp \ (Bind \ f \ a))
  \langle proof \rangle
lemma additive-wp-Embed:
  \llbracket additive\ t\ \rrbracket \Longrightarrow additive\ (wp\ (Embed\ t))
  \langle proof \rangle
lemma additive-wp-repeat:
 additive\ (wp\ a) \Longrightarrow well-def\ a \Longrightarrow additive\ (wp\ (repeat\ n\ a))
  \langle proof \rangle
lemmas fa-intros =
 additive-wp-Abort additive-wp-Skip
 additive-wp-Apply additive-wp-Seq
 additive-wp-PC additive-wp-SetPC
 additive-wp-Bind additive-wp-Embed
 additive-wp-repeat
4.6.2
            Maximality
lemma max-wp-Skip:
 maximal (wp Skip)
 \langle proof \rangle
lemma max-wp-Apply:
 maximal(wp(Apply f))
 \langle proof \rangle
lemma max-wp-Seq:
  \llbracket maximal\ (wp\ a); maximal\ (wp\ b)\ \rrbracket \Longrightarrow maximal\ (wp\ (a\ ;;\ b))
  \langle proof \rangle
lemma max-wp-PC:
  \llbracket maximal\ (wp\ a); maximal\ (wp\ b)\ \rrbracket \Longrightarrow maximal\ (wp\ (a\ _{P}\oplus\ b))
 \langle proof \rangle
lemma max-wp-DC:
 [\![\!] \mathit{maximal} \; (\mathit{wp} \; a); \mathit{maximal} \; (\mathit{wp} \; b) \; ]\!] \Longrightarrow \mathit{maximal} \; (\mathit{wp} \; (a \; \lceil \; b))
  \langle proof \rangle
lemma max-wp-SetPC:
  \llbracket \land s \ a. \ a \in supp \ (P \ s) \Longrightarrow maximal \ (wp \ (p \ a)); \land s. \ (\sum a \in supp \ (P \ s). \ P \ s \ a) = 1 \ \rrbracket \Longrightarrow
 maximal (wp (SetPC p P))
  \langle proof \rangle
```

```
lemma max-wp-SetDC:
 fixes p::'a \Rightarrow 's prog
 assumes mp: \bigwedge s \ a. \ a \in S \ s \Longrightarrow maximal \ (wp \ (p \ a))
    and ne: \bigwedge s. S s \neq \{\}
 shows maximal (wp (SetDC p S))
\langle proof \rangle
lemma max-wp-Embed:
 maximal\ t \Longrightarrow maximal\ (wp\ (Embed\ t))
 \langle proof \rangle
lemma max-wp-repeat:
 maximal\ (wp\ a) \Longrightarrow maximal\ (wp\ (repeat\ n\ a))
 \langle proof \rangle
lemma max-wp-Bind:
 assumes ma: \land s. maximal (wp (a (f s)))
 shows maximal (wp (Bind f a))
\langle proof \rangle
lemmas max-intros =
 max-wp-Skip max-wp-Apply
 max-wp-Seq max-wp-PC
 max-wp-DC max-wp-SetPC
 max-wp-SetDC max-wp-Embed
 max-wp-Bind max-wp-repeat
A healthy transformer that terminates is maximal.
lemma healthy-term-max:
 assumes ht: healthy t
    and trm: \lambda s. 1 \vdash t (\lambda s. 1)
 shows maximal t
\langle proof \rangle
4.6.3 Determinism
lemma det-wp-Skip:
 determ (wp Skip)
 \langle proof \rangle
lemma det-wp-Apply:
 determ(wp(Applyf))
 \langle proof \rangle
lemma det-wp-Seq:
 determ(wp\ a) \Longrightarrow determ(wp\ b) \Longrightarrow well-def\ b \Longrightarrow determ(wp\ (a\ ;;\ b))
 \langle proof \rangle
lemma det-wp-PC:
```

```
determ\ (wp\ a) \Longrightarrow determ\ (wp\ b) \Longrightarrow determ\ (wp\ (a\ P\oplus b))
  \langle proof \rangle
lemma det-wp-SetPC:
  (\bigwedge x \ s. \ x \in supp \ (p \ s) \Longrightarrow determ \ (wp \ (a \ x))) \Longrightarrow
  (\land s. finite (supp (p s))) \Longrightarrow
  (\bigwedge s. sum (p s) (supp (p s)) = 1) \Longrightarrow
  determ(wp(SetPCap))
  \langle proof \rangle
lemma det-wp-Bind:
  (\bigwedge x. determ (wp (a (f x)))) \Longrightarrow determ (wp (Bind f a))
  \langle proof \rangle
lemma det-wp-Embed:
 determ\ t \Longrightarrow determ\ (wp\ (Embed\ t))
  \langle proof \rangle
lemma det-wp-repeat:
 determ\ (wp\ a) \Longrightarrow well-def\ a \Longrightarrow determ\ (wp\ (repeat\ n\ a))
  \langle proof \rangle
lemmas determ-intros =
 det-wp-Skip det-wp-Apply
 det-wp-Seq det-wp-PC
 det-wp-SetPC det-wp-Bind
 det-wp-Embed det-wp-repeat
```

4.7 Well-Defined Programs.

theory WellDefined imports
Healthiness
Sublinearity
LoopInduction
begin

end

The definition of a well-defined program collects the various notions of healthiness and well-behavedness that we have so far established: healthiness of the strict and liberal transformers, continuity and sublinearity of the strict transformers, and two new properties. These are that the strict transformer always lies below the liberal one (i.e. that it is at least as *strict*, recalling the standard embedding of a predicate), and that expectation conjunction is distributed between then in a particular manner, which will be crucial in establishing the loop rules.

4.7.1 Strict Implies Liberal

and wp-u-b: wp-under-wlp b

This establishes the first connection between the strict and liberal interpretations (wp and wlp).

```
definition
 wp-under-wlp :: 's prog \Rightarrow bool
where
 wp-under-wlp prog \equiv \forall P. unitary P \longrightarrow wp prog P \Vdash wlp prog P
lemma wp-under-wlpI[intro]:
 \llbracket \bigwedge P. \text{ unitary } P \Longrightarrow wp \text{ prog } P \Vdash wlp \text{ prog } P \rrbracket \Longrightarrow wp\text{-under-wlp prog}
 \langle proof \rangle
lemma wp-under-wlpD[dest]:
 \llbracket wp\text{-under-wlp prog}; unitary P \rrbracket \Longrightarrow wp prog P \Vdash wlp prog P
 \langle proof \rangle
lemma wp-under-le-trans:
 wp-under-wlp \ a \Longrightarrow le-utrans (wp \ a) \ (wlp \ a)
 \langle proof \rangle
lemma wp-under-wlp-Abort:
 wp-under-wlp Abort
 \langle proof \rangle
lemma wp-under-wlp-Skip:
 wp-under-wlp Skip
 \langle proof \rangle
lemma wp-under-wlp-Apply:
 wp-under-wlp(Applyf)
 \langle proof \rangle
lemma wp-under-wlp-Seq:
 assumes h-wlp-a: nearly-healthy (wlp a)
    and h-wp-b: healthy (wp \ b)
    and h-wlp-b: nearly-healthy (wlp b)
    and wp-u-a: wp-under-wlp a
    and wp-u-b: wp-under-wlp b
 shows wp-under-wlp (a :; b)
\langle proof \rangle
lemma wp-under-wlp-PC:
 assumes h-wp-a: healthy (wp a)
    and h-wlp-a: nearly-healthy (wlp a)
    and h-wp-b: healthy (wp b)
    and h-wlp-b: nearly-healthy (wlp b)
    and wp-u-a: wp-under-wlp a
```

```
and uP:
                  unitary P
 shows wp-under-wlp (a p \oplus b)
\langle proof \rangle
lemma wp-under-wlp-DC:
 assumes wp-u-a: wp-under-wlp a
    and wp-u-b: wp-under-wlp b
 shows wp-under-wlp (a \sqcap b)
\langle proof \rangle
lemma wp-under-wlp-SetPC:
 assumes wp-u-f: \bigwedge s \ a. \ a \in supp \ (P \ s) \Longrightarrow wp-under-wlp \ (f \ a)
    and nP: \bigwedge s \ a. \ a \in supp \ (P \ s) \Longrightarrow 0 \le P \ s \ a
 shows wp-under-wlp (SetPCfP)
\langle proof \rangle
lemma wp-under-wlp-SetDC:
 assumes wp-u-f: \bigwedge s \ a. \ a \in S \ s \Longrightarrow wp-under-wlp (f \ a)
    and hf:
                \bigwedge s \ a. \ a \in S \ s \Longrightarrow healthy (wp (f \ a))
    and nS:
                 \bigwedge s. \ S \ s \neq \{\}
 shows wp-under-wlp (SetDC f S)
\langle proof \rangle
lemma wp-under-wlp-Embed:
 wp-under-wlp (Embed t)
 \langle proof \rangle
lemma wp-under-wlp-loop:
 fixes body::'s prog
 assumes hwp: healthy (wp body)
    and hwlp: nearly-healthy (wlp body)
    and wp-under: wp-under-wlp body
 shows wp-under-wlp (do G \longrightarrow body od)
\langle proof \rangle
lemma wp-under-wlp-repeat:
 \llbracket healthy (wp a); nearly-healthy (wlp a); wp-under-wlp a \rrbracket \Longrightarrow
  wp-under-wlp (repeat n a)
 \langle proof \rangle
lemma wp-under-wlp-Bind:
 [\![ \bigwedge \! s. \ wp\text{-under-wlp} \ (a \ (f \ s)) \ ]\!] \Longrightarrow wp\text{-under-wlp} \ (Bind \ f \ a)
 \langle proof \rangle
lemmas wp-under-wlp-intros =
 wp-under-wlp-Abort wp-under-wlp-Skip
 wp-under-wlp-Apply wp-under-wlp-Seq
 wp-under-wlp-PC wp-under-wlp-DC
 wp-under-wlp-SetPC wp-under-wlp-SetDC
```

wp-under-wlp-Embed wp-under-wlp-loop wp-under-wlp-repeat wp-under-wlp-Bind

4.7.2 Sub-Distributivity of Conjunction

```
definition
 sub-distrib-pconj :: 's prog <math>\Rightarrow bool
where
 sub-distrib-pconj prog <math>\equiv
 \forall P Q. unitary P \longrightarrow unitary Q \longrightarrow
       wlp prog P \&\& wp prog Q \vdash wp prog (P \&\& Q)
lemma sub-distrib-pconjI[intro]:
 \llbracket \bigwedge P \ Q. \ \llbracket \ unitary \ P; \ unitary \ Q \ \rrbracket \implies wlp \ prog \ P \ \&\& \ wp \ prog \ Q \vdash wp \ prog \ (P \ \&\& \ Q) \ \rrbracket
   sub-distrib-pconj prog
 \langle proof \rangle
lemma sub-distrib-pconjD[dest]:
 \bigwedge PQ. \llbracket sub-distrib-pconj prog; unitary P; unitary Q \rrbracket \Longrightarrow
  wlp prog P \&\& wp prog Q \vdash wp prog (P \&\& Q)
 \langle proof \rangle
lemma sdp-Abort:
 sub-distrib-pconj Abort
 \langle proof \rangle
lemma sdp-Skip:
 sub-distrib-pconj Skip
 \langle proof \rangle
lemma sdp-Seq:
 fixes a and b
 assumes sdp-a: sub-distrib-pconj a
    and sdp-b: sub-distrib-pconj b
    and h-wp-a: healthy (wp \ a)
    and h-wp-b: healthy (wp \ b)
    and h-wlp-b: nearly-healthy (wlp b)
 shows sub-distrib-pconj(a;;b)
\langle proof \rangle
lemma sdp-Apply:
 sub-distrib-pconj(Apply f)
 \langle proof \rangle
lemma sdp-DC:
 fixes a:: 's prog and b
 assumes sdp-a: sub-distrib-pconj a
    and sdp-b: sub-distrib-pconj b
```

```
and h-wp-a: healthy (wp \ a)
    and h-wp-b: healthy (wp b)
    and h-wlp-b: nearly-healthy (wlp b)
 shows sub-distrib-pconj (a \sqcap b)
\langle proof \rangle
lemma sdp-PC:
 fixes a::'s prog and b
 assumes sdp-a: sub-distrib-pconj a
    and sdp-b: sub-distrib-pconj b
    and h-wp-a: healthy (wp a)
    and h-wp-b: healthy (wp b)
    and h-wlp-b: nearly-healthy (wlp b)
    and uP:
                   unitary P
 shows sub-distrib-pconj (a p \oplus b)
\langle proof \rangle
lemma sdp-Embed:
 \llbracket \bigwedge P Q. \llbracket \text{ unitary } P; \text{ unitary } Q \rrbracket \Longrightarrow t P \&\& t Q \Vdash t (P \&\& Q) \rrbracket \Longrightarrow
  sub-distrib-pconj (Embed t)
 \langle proof \rangle
lemma sdp-repeat:
 fixes a::'s prog
 assumes sdpa: sub-distrib-pconj a
     and hwp: healthy (wp a) and hwlp: nearly-healthy (wlp a)
 shows sub-distrib-pconj (repeat n a) (is ?X n)
\langle proof \rangle
lemma sdp-SetPC:
 fixes p::'a \Rightarrow 's prog
 assumes sdp: \bigwedge s a. a \in supp(P s) \Longrightarrow sub-distrib-pconj(p a)
    and fin: \bigwedge s. finite (supp (P s))
    and nnp: \bigwedge s \ a. \ 0 \le P \ s \ a
    and sub: \bigwedge s. sum (P s) (supp (P s)) \le 1
 shows sub-distrib-pconj (SetPC p P)
\langle proof \rangle
lemma sdp-SetDC:
 fixes p::'a \Rightarrow 's prog
 assumes sdp: \land s \ a. \ a \in S \ s \Longrightarrow sub-distrib-pconj \ (p \ a)
     and hwp: \bigwedge s \ a. \ a \in S \ s \Longrightarrow healthy (wp (p \ a))
    and hwlp: \bigwedge s \ a. \ a \in S \ s \Longrightarrow nearly-healthy (wlp <math>(p \ a))
    and ne: \bigwedge s. S s \neq \{\}
 shows sub-distrib-pconj (SetDC p S)
\langle proof \rangle
lemma sdp-Bind:
 \llbracket \land s. \ sub-distrib-pconj\ (p\ (f\ s))\ \rrbracket \Longrightarrow sub-distrib-pconj\ (Bind\ f\ p)
```

```
\langle proof \rangle
```

lemma sdp-loop:

For loops, we again appeal to our transfinite induction principle, this time taking advantage of the simultaneous treatment of both strict and liberal transformers.

```
fixes body::'s prog
 assumes sdp-body: sub-distrib-pconj body
    and hwlp: nearly-healthy (wlp body)
    and hwp: healthy (wp body)
 shows sub-distrib-pconj (do G \longrightarrow body od)
\langle proof \rangle
lemmas sdp-intros =
 sdp-Abort sdp-Skip sdp-Apply
 sdp-Seq sdp-DC sdp-PC
 sdp-SetPC sdp-SetDC sdp-Embed
 sdp-repeat sdp-Bind sdp-loop
4.7.3
         The Well-Defined Predicate.
definition
 well-def :: 's prog \Rightarrow bool
where
 well-def\ prog \equiv healthy\ (wp\ prog) \land nearly-healthy\ (wlp\ prog)
           \land wp-under-wlp prog \land sub-distrib-pconj prog
           \land sublinear (wp prog) \land bd-cts (wp prog)
lemma well-defI[intro]:
 [ healthy (wp prog); nearly-healthy (wlp prog);
   wp-under-wlp prog; sub-distrib-pconj prog; sublinear (wp prog);
   well-def prog
 \langle proof \rangle
lemma well-def-wp-healthy[dest]:
 well-def\ prog \Longrightarrow healthy\ (wp\ prog)
 \langle proof \rangle
lemma well-def-wlp-nearly-healthy[dest]:
 well-def\ prog \Longrightarrow nearly-healthy\ (wlp\ prog)
 \langle proof \rangle
lemma well-def-wp-under[dest]:
 well-def\ prog \Longrightarrow wp-under-wlp prog
 \langle proof \rangle
lemma well-def-sdp[dest]:
 well-def prog \Longrightarrow sub-distrib-pconj prog
 \langle proof \rangle
```

```
lemma well-def-wp-sublinear[dest]:
 well-def\ prog \Longrightarrow sublinear\ (wp\ prog)
  \langle proof \rangle
lemma well-def-wp-cts[dest]:
 well-def prog \Longrightarrow bd-cts (wp prog)
  \langle proof \rangle
lemmas wd-dests =
  well-def-wp-healthy well-def-wlp-nearly-healthy
  well-def-wp-under well-def-sdp
 well-def-wp-sublinear well-def-wp-cts
lemma wd-Abort:
  well-def Abort
  \langle proof \rangle
lemma wd-Skip:
 well-def Skip
  \langle proof \rangle
lemma wd-Apply:
  well-def(Apply f)
  \langle proof \rangle
lemma wd-Seq:
  \llbracket well\text{-}def \ a; well\text{-}def \ b \ \rrbracket \Longrightarrow well\text{-}def \ (a ;; b)
  \langle proof \rangle
lemma wd-PC:
  \llbracket \text{ well-def } a; \text{ well-def } b; \text{ unitary } P \rrbracket \Longrightarrow \text{ well-def } (a P \oplus b)
  \langle proof \rangle
lemma wd-DC:
 \llbracket well\text{-}def \ a; well\text{-}def \ b \ \rrbracket \Longrightarrow well\text{-}def \ (a \ \square \ b)
  \langle proof \rangle
lemma wd-SetDC:
  \llbracket \bigwedge x \ s. \ x \in S \ s \Longrightarrow well\text{-}def \ (a \ x); \bigwedge s. \ S \ s \neq \{\};
    \land s. finite (S s)  \implies well-def (SetDC a S)
\langle proof \rangle
lemma wd-SetPC:
  \llbracket \bigwedge x \ s. \ x \in (supp \ (p \ s)) \Longrightarrow well-def \ (a \ x); \bigwedge s. \ unitary \ (p \ s); \bigwedge s. \ finite \ (supp \ (p \ s));
    \land s. \ sum \ (p \ s) \ (supp \ (p \ s)) \le 1 \ ] \Longrightarrow well-def \ (SetPC \ a \ p)
  \langle proof \rangle
```

```
lemma wd-Embed:
 fixes t::'s trans
 assumes ht: healthy t and st: sublinear t and ct: bd-cts t
 shows well-def (Embed t)
\langle proof \rangle
lemma wd-repeat:
 well-def a \Longrightarrow well-def (repeat n a)
 \langle proof \rangle
lemma wd-Bind:
 \llbracket \bigwedge s. \ well\text{-def} \ (a \ (f \ s)) \ \rrbracket \Longrightarrow well\text{-def} \ (Bind \ f \ a)
 \langle proof \rangle
lemma wd-loop:
 well-def\ body \Longrightarrow well-def\ (do\ G \longrightarrow body\ od)
 \langle proof \rangle
lemmas wd-intros =
 wd-Abort wd-Skip wd-Apply
 wd-Embed wd-Seq wd-PC
 wd-DC wd-SetPC wd-SetDC
 wd-Bind wd-repeat wd-loop
```

4.8 The Loop Rules

theory Loops imports WellDefined begin

Given a well-defined body, we can annotate a loop using an invariant, just as in the classical setting.

4.8.1 Liberal and Strict Invariants.

A probabilistic invariant generalises a boolean one: it *entails* itself, given the loop guard.

definition

end

```
wp-inv :: ('s \Rightarrow bool) \Rightarrow 's \ prog \Rightarrow ('s \Rightarrow real) \Rightarrow bool
where
wp-inv G \ body \ I \longleftrightarrow (\forall s. \ «G» \ s*I \ s \leq wp \ body \ I \ s)
```

lemma wp-invI:

$$\bigwedge I. (\bigwedge s. «G» s * I s \le wp \ body \ I s) \Longrightarrow wp\text{-inv } G \ body \ I \ \langle proof \rangle$$

definition

```
wlp-inv :: ('s \Rightarrow bool) \Rightarrow 's prog \Rightarrow ('s \Rightarrow real) \Rightarrow bool
```

```
where wlp\text{-}inv\ G\ body\ I \longleftrightarrow (\forall\ s.\ «G»\ s*I\ s \le wlp\ body\ I\ s)
\begin{array}{l} \textbf{lemma}\ wlp\text{-}invI: \\ \bigwedge I.\ (\bigwedge s.\ «G»\ s*I\ s \le wlp\ body\ I\ s) \Longrightarrow wlp\text{-}inv\ G\ body\ I \\ \bigvee proof \rangle \\ \\ \textbf{lemma}\ wlp\text{-}invD: \\ wlp\text{-}inv\ G\ body\ I \Longrightarrow «G»\ s*I\ s \le wlp\ body\ I\ s \\ \end{array}
```

For standard invariants, the multiplication reduces to conjunction.

```
lemma wp-inv-stdD:

assumes inv: wp-inv G body «I»

and hb: healthy (wp\ body)

shows «G» && «I» \vdash wp\ body «I»

\langle proof \rangle
```

4.8.2 Partial Correctness

Partial correctness for loops[McIver and Morgan, 2004, Lemma 7.2.2, §7, p. 185].

```
lemma wlp-Loop:

assumes wd: well-def body

and uI: unitary I

and inv: wlp-inv G body I

shows I \leq wlp \ do \ G \longrightarrow body \ od \ (\lambda s. \ll N \ G \gg s * I \ s)

(is I \leq wlp \ do \ G \longrightarrow body \ od \ ?P)

\langle proof \rangle
```

4.8.3 Total Correctness

The first total correctness lemma for loops which terminate with probability 1[McIver and Morgan, 2004, Lemma 7.3.1, §7, p. 186].

```
lemma wp-Loop:
assumes wd: well-def body
and inv: wlp-inv G body I
and unit: unitary I
shows I && wp (do G \longrightarrow body od) (\lambda s. 1) \vdash wp (do G \longrightarrow body od) (\lambda s. \ll N G \gg s * I s)
(is I && ?T \vdash wp ?loop ?X)
\langle proof \rangle
```

4.8.4 Unfolding

```
lemma wp-loop-unfold:
fixes body :: 's prog
assumes sP: sound P
and h: healthy (wp body)
```

end

```
shows wp\ (do\ G \longrightarrow body\ od)\ P = (\lambda s.\ «N\ G»\ s * P\ s + «G»\ s * wp\ body\ (wp\ (do\ G \longrightarrow body\ od)\ P)\ s) ⟨proof⟩

lemma wp\text{-loop-nguard}:

\llbracket\ healthy\ (wp\ body);\ sound\ P;\ \neg\ G\ s\ \rrbracket\implies wp\ do\ G \longrightarrow body\ od\ P\ s = P\ s ⟨proof⟩

lemma wp\text{-loop-guard}:

\llbracket\ healthy\ (wp\ body);\ sound\ P;\ G\ s\ \rrbracket\implies wp\ do\ G \longrightarrow body\ od\ P\ s = wp\ (body\ ;;\ do\ G \longrightarrow body\ od)\ P\ s ⟨proof⟩
```

4.9 The Algebra of pGCL

theory Algebra imports WellDefined begin

Programs in pGCL have a rich algebraic structure, largely mirroring that for GCL. We show that programs form a lattice under refinement, with $a \sqcap b$ and $a \sqcup b$ as the meet and join operators, respectively. We also take advantage of the algebraic structure to establish a framwork for the modular decomposition of proofs.

4.9.1 Program Refinement

Refinement in pGCL relates to refinement in GCL exactly as probabilistic entailment relates to implication. It turns out to have a very similar algebra, the rules of which we establish shortly.

definition

```
refines :: 's prog \Rightarrow 's prog \Rightarrow bool (infix \triangleleft \sqsubseteq > 70)
where
prog \sqsubseteq prog' \equiv \forall P. sound P \longrightarrow wp \ prog \ P \Vdash wp \ prog' P

lemma refinesI[intro]:
 \llbracket \bigwedge P. \ sound \ P \Longrightarrow wp \ prog \ P \Vdash wp \ prog' P \ \rrbracket \Longrightarrow prog \ \sqsubseteq prog' \land proof \land

lemma refinesD[dest]:
 \llbracket prog \sqsubseteq prog'; \ sound \ P \ \rrbracket \Longrightarrow wp \ prog \ P \vdash wp \ prog' P \land proof \land
```

The equivalence relation below will turn out to be that induced by refinement. It is also the application of *equiv-trans* to the weakest precondition.

definition

```
pequiv :: 's prog \Rightarrow 's prog \Rightarrow bool (infix < \simeq > 70) where
```

```
prog \simeq prog' \equiv \forall P. \ sound \ P \longrightarrow wp \ prog \ P = wp \ prog' \ P
 \begin{aligned} & \textbf{lemma} \ pequiv I[intro]: \\ & \parallel \bigwedge P. \ sound \ P \Longrightarrow wp \ prog \ P = wp \ prog' \ P \ \parallel \Longrightarrow prog \simeq prog' \\ & \langle proof \rangle \end{aligned} 
 \begin{aligned} & \textbf{lemma} \ pequiv D[dest, simp]: \\ & \parallel prog \simeq prog'; \ sound \ P \ \parallel \Longrightarrow wp \ prog \ P = wp \ prog' \ P \\ & \langle proof \rangle \end{aligned} 
 \begin{aligned} & \textbf{lemma} \ pequiv-equiv-trans: \\ & a \simeq b \longleftrightarrow equiv-trans \ (wp \ a) \ (wp \ b) \\ & \langle proof \rangle \end{aligned}
```

4.9.2 Simple Identities

The following identities involve only the primitive operations as defined in Section 4.1.1, and refinement as defined above.

Laws following from the basic arithmetic of the operators seperately

```
lemma DC-comm[ac-simps]:
 a \sqcap b = b \sqcap a
 \langle proof \rangle
lemma DC-assoc[ac-simps]:
 a \sqcap (b \sqcap c) = (a \sqcap b) \sqcap c
 \langle proof \rangle
lemma DC-idem:
 a \sqcap a = a
 \langle proof \rangle
lemma AC-comm[ac-simps]:
 a \bigsqcup b = b \bigsqcup a
 \langle proof \rangle
lemma AC-assoc[ac-simps]:
 a \bigsqcup (b \bigsqcup c) = (a \bigsqcup b) \bigsqcup c
 \langle proof \rangle
lemma AC-idem:
 a \mid a = a
 \langle proof \rangle
lemma PC-quasi-comm:
 a p \oplus b = b (\lambda s. 1 - p s) \oplus a
  \langle proof \rangle
```

```
lemma PC-idem:
 a p \oplus a = a
 \langle proof \rangle
lemma Seq-assoc[ac-simps]:
 A : (B : C) = A : B : C
 \langle proof \rangle
lemma Abort-refines[intro]:
 well-def a \Longrightarrow Abort \sqsubseteq a
 \langle proof \rangle
Laws relating demonic choice and refinement
lemma left-refines-DC:
 (a \sqcap b) \sqsubseteq a
 \langle proof \rangle
lemma right-refines-DC:
 (a \sqcap b) \sqsubseteq b
 \langle proof \rangle
lemma DC-refines:
 fixes a::'s prog and b and c
 assumes rab: a \sqsubseteq b and rac: a \sqsubseteq c
 shows a \sqsubseteq (b \sqcap c)
\langle proof \rangle
lemma DC-mono:
 fixes a::'s prog
 assumes rab: a \sqsubseteq b and rcd: c \sqsubseteq d
```

Laws relating angelic choice and refinement

```
lemma left-refines-AC: a \sqsubseteq (a \bigsqcup b) \langle proof \rangle

lemma right-refines-AC: b \sqsubseteq (a \bigsqcup b) \langle proof \rangle

lemma AC-refines: fixes a::'s prog and b and c assumes rac: a \sqsubseteq c and rbc: b \sqsubseteq c shows (a \bigsqcup b) \sqsubseteq c \langle proof \rangle
```

shows $(a \sqcap c) \sqsubseteq (b \sqcap d)$

 $\langle proof \rangle$

```
lemma AC-mono:
 fixes a::'s prog
 assumes rab: a \sqsubseteq b and rcd: c \sqsubseteq d
 shows (a \bigsqcup c) \sqsubseteq (b \bigsqcup d)
\langle proof \rangle
Laws depending on the arithmetic of a p \oplus b and a \sqcap b together
lemma DC-refines-PC:
 assumes unit: unitary p
 shows (a \sqcap b) \sqsubseteq (a \not p \oplus b)
\langle proof \rangle
Laws depending on the arithmetic of a p \oplus b and a \bigsqcup b together
lemma PC-refines-AC:
 assumes unit: unitary p
 shows (a p \oplus b) \sqsubseteq (a \bigsqcup b)
\langle proof \rangle
Laws depending on the arithmetic of a \bigsqcup b and a \bigcap b together
lemma DC-refines-AC:
 (a \sqcap b) \sqsubseteq (a \sqcup b)
 \langle proof \rangle
Laws Involving Refinement and Equivalence
lemma pr-trans[trans]:
 fixes A::'a prog
 assumes prAB: A \sqsubseteq B
    and prBC: B \sqsubseteq C
 shows A \sqsubseteq C
\langle proof \rangle
lemma pequiv-refl[intro!,simp]:
 a \simeq a
 \langle proof \rangle
lemma pequiv-comm[ac-simps]:
 a \simeq b \longleftrightarrow b \simeq a
 \langle proof \rangle
lemma pequiv-pr[dest]:
 a \simeq b \Longrightarrow a \sqsubseteq b
 \langle proof \rangle
lemma pequiv-trans[intro,trans]:
 \llbracket a \simeq b; b \simeq c \rrbracket \Longrightarrow a \simeq c
  \langle proof \rangle
```

```
lemma pequiv-pr-trans[intro,trans]:
  \llbracket a \simeq b; b \sqsubseteq c \rrbracket \Longrightarrow a \sqsubseteq c
  \langle proof \rangle
lemma pr-pequiv-trans[intro,trans]:
  \llbracket a \sqsubseteq b; b \simeq c \rrbracket \Longrightarrow a \sqsubseteq c
  \langle proof \rangle
Refinement induces equivalence by antisymmetry:
lemma pequiv-antisym:
  \llbracket a \sqsubseteq b; b \sqsubseteq a \rrbracket \Longrightarrow a \simeq b
  \langle proof \rangle
lemma pequiv-DC:
  [\![ \ a \simeq c; b \simeq d \ ]\!] \Longrightarrow (a \ {\textstyle \bigcap} \ b) \simeq (c \ {\textstyle \bigcap} \ d)
  \langle proof \rangle
lemma pequiv-AC:
  \llbracket a \simeq c; b \simeq d \rrbracket \Longrightarrow (a \bigsqcup b) \simeq (c \bigsqcup d)
  \langle proof \rangle
```

4.9.3 Deterministic Programs are Maximal

Any sub-additive refinement of a deterministic program is in fact an equivalence. Deterministic programs are thus maximal (under the refinement order) among sub-additive programs.

```
lemma refines-determ:
fixes a::'s prog
assumes da: determ (wp a)
and wa: well-def a
and wb: well-def b
and dr: a \sqsubseteq b
shows a \simeq b

Proof by contradiction.
\langle proof \rangle
```

4.9.4 The Algebraic Structure of Refinement

Well-defined programs form a half-bounded semilattice under refinement, where Abort is bottom, and $a \sqcap b$ is inf. There is no unique top element, but all fully-deterministic programs are maximal.

The type that we construct here is not especially useful, but serves as a convenient way to express this result.

```
quotient-type 's program = 
's prog / partial : \lambda a \ b. \ a \simeq b \land well-def \ a \land well-def \ b
```

```
\langle proof \rangle
instantiation program :: (type) semilattice-inf begin
lift-definition
 less-eq-program :: 'a program \Rightarrow 'a program \Rightarrow bool is refines
\langle proof \rangle
lift-definition
 less-program :: 'a program \Rightarrow 'a program \Rightarrow bool
 is \lambda a b. a \sqsubseteq b \land \neg b \sqsubseteq a
\langle proof \rangle
lift-definition
 inf-program :: 'a program \Rightarrow 'a program \Rightarrow 'a program is DC
\langle proof \rangle
instance
\langle proof \rangle
end
instantiation program :: (type) bot begin
lift-definition
 bot-program :: 'a program is Abort
 \langle proof \rangle
instance \langle proof \rangle
end
lemma eq-det: \bigwedge a \ b :: 's \ prog. \ [a \simeq b; determ (wp a)] \Longrightarrow determ (wp b)
\langle proof \rangle
lift-definition
 pdeterm :: 's program \Rightarrow bool
 is \lambda a. determ (wp a)
\langle proof \rangle
lemma determ-maximal:
  \llbracket pdeterm \ a; a \leq x \rrbracket \Longrightarrow a = x
```

4.9.5 Data Refinement

A projective data refinement construction for pGCL. By projective, we mean that the abstract state is always a function (φ) of the concrete state. Refinement may be predicated (G) on the state.

definition

 $\langle proof \rangle$

```
drefines :: ('b \Rightarrow 'a) \Rightarrow ('b \Rightarrow bool) \Rightarrow 'a \ prog \Rightarrow 'b \ prog \Rightarrow bool where
```

```
drefines \varphi G A B \equiv \forall P Q. (unitary P \land unitary Q \land (P \Vdash wp A Q)) \longrightarrow
                       ( \ll G \gg \&\& (P \circ \varphi) \vdash wp B (Q \circ \varphi) )
lemma drefinesD[dest]:
 \llbracket drefines \varphi G A B; unitary P; unitary Q; P \Vdash wp A Q \rrbracket \Longrightarrow
  ^{-} «G» && (P \circ \varphi) \vdash wp B (Q \circ \varphi)
  \langle proof \rangle
We can alternatively use G as an assumption:
lemma drefinesD2:
 assumes dr: drefines \varphi G A B
    and uP: unitary P
    and uQ: unitary Q
    and wpA: P \Vdash wp A Q
     and G: G s
 shows (P \circ \varphi) s \leq wp B (Q \circ \varphi) s
This additional form is sometimes useful:
lemma drefinesD3:
 assumes dr: drefines \varphi G a b
     and G: G s
    and uQ: unitary Q
    and wa: well-def a
 shows wp \ a \ Q \ (\varphi \ s) \le wp \ b \ (Q \ o \ \varphi) \ s
\langle proof \rangle
lemma drefinesI[intro]:
 \llbracket \bigwedge P \ Q . \ \llbracket \ unitary \ P ; unitary \ Q ; P \Vdash wp \ A \ Q \ \rrbracket \Longrightarrow
          \text{$<$G$>> && (P \circ \varphi) \Vdash wp \ B \ (Q \circ \varphi) \ ]]} \Longrightarrow
  \textit{drefines} \ \varphi \ \textit{GAB}
  \langle proof \rangle
Use G as an assumption, when showing refinement:
lemma drefinesI2:
 fixes A::'a prog
   and B::'b prog
   and \varphi:: b \Rightarrow a
   and G::'b \Rightarrow bool
 assumes wB: well-def B
     and withAs:
      \bigwedge P Q s. \llbracket unitary P; unitary Q;
              G s; P \Vdash wp A Q \implies (P \circ \varphi) s \leq wp B (Q \circ \varphi) s
 shows drefines \varphi G A B
\langle proof \rangle
lemma dr-strengthen-guard:
 fixes a::'s prog and b::'t prog
 assumes fg: \bigwedge s. F s \Longrightarrow G s
```

```
and drab: drefines \varphi G a b shows drefines \varphi F a b \langle proof \rangle
```

Probabilistic correspondence, *pcorres*, is equality on distribution transformers, modulo a guard. It is the analogue, for data refinement, of program equivalence for program refinement.

definition

```
pcorres :: ('b \Rightarrow 'a) \Rightarrow ('b \Rightarrow bool) \Rightarrow 'a \ prog \Rightarrow 'b \ prog \Rightarrow bool
where
pcorres \varphi \ G \ A \ B \longleftrightarrow
(\forall Q. \ unitary \ Q \longrightarrow \ "G" \&\& \ (wp \ A \ Q \ o \ \varphi) = \ "G" \&\& \ wp \ B \ (Q \ o \ \varphi))
```

lemma pcorresI:

Often easier to use, as it allows one to assume the precondition.

```
lemma pcorresI2[intro]:
```

```
fixes A: 'a prog and B: 'b prog assumes with G: \bigwedge Q s. [\![\![ unitary\ Q; G\ s\ ]\!]] \Longrightarrow wp\ A\ Q\ (\varphi\ s) = wp\ B\ (Q\ o\ \varphi)\ s and wA: well-def\ A and wB: well-def\ B shows pcorres \varphi\ G\ A\ B \langle\ proof\ \rangle
```

lemma *pcorresD*:

Again, easier to use if the precondition is known to hold.

lemma pcorresD2:

```
assumes pc: pcorres \varphi GAB
and uQ: unitary Q
and wA: well-def A and wB: well-def B
and G: Gs
shows wp A Q (\varphi s) = wp B (Q o \varphi) s
\langle proof \rangle
```

4.9.6 The Algebra of Data Refinement

Program refinement implies a trivial data refinement:

```
lemma refines-drefines:
fixes a::'s prog
```

```
fixes a:: 's prog assumes rab: a \sqsubseteq b and wb: well-def b shows drefines (\lambda s. s) G a b \langle proof \rangle
```

Data refinement is transitive:

```
lemma dr-trans[trans]:
 fixes A::'a prog and B::'b prog and C::'c prog
 assumes drAB: drefines \varphi GAB
    and drBC: drefines \varphi'G'BC
    and Gimp: \bigwedge s. G's \Longrightarrow G(\varphi's)
 shows drefines (\varphi \circ \varphi') G'AC
\langle proof \rangle
Data refinement composes with program refinement:
lemma pr-dr-trans[trans]:
 assumes prAB: A \sqsubseteq B
    and drBC: drefines \varphi GBC
 shows drefines \varphi GAC
\langle proof \rangle
lemma dr-pr-trans[trans]:
 assumes drAB: drefines \varphi GAB
 assumes prBC: B \sqsubseteq C
 shows drefines \varphi G A C
\langle proof \rangle
If the projection \varphi commutes with the transformer, then data refinement is reflex-
ive:
lemma dr-refl:
 assumes wa: well-def a
    and comm: \bigwedge Q. unitary Q \Longrightarrow wp \ a \ Q \ o \ \varphi \vdash wp \ a \ (Q \ o \ \varphi)
 shows drefines \varphi G a a
\langle proof \rangle
```

Correspondence implies data refinement

```
lemma pcorres-drefine:
assumes corres: pcorres φ G A C
and wC: well-def C
shows drefines φ G A C
⟨proof⟩
```

Any *data* refinement of a deterministic program is correspondence. This is the analogous result to that relating program refinement and equivalence.

```
lemma drefines-determ:
fixes a::'a prog and b::'b prog
assumes da: determ (wp a)
and wa: well-def a
and wb: well-def b
and dr: drefines φ G a b
shows pcorres φ G a b
```

The proof follows exactly the same form as that for program refinement: Assuming that correspondence doesn't hold, we show that wp b is not feasible, and thus not healthy, contradicting the assumption.

 $\langle proof \rangle$

4.9.7 Structural Rules for Correspondence

```
lemma pcorres-Skip:
pcorres \varphi G Skip Skip \langle proof \rangle
```

Correspondence composes over sequential composition.

```
lemma pcorres-Seq:
fixes A::'b prog and B::'c prog
and C::'b prog and D::'c prog
and \varphi::'c \Rightarrow 'b
assumes pcAB: pcorres \varphi G A B
and pcCD: pcorres \varphi H C D
and wA: well-def A and wB: well-def B
and wC: well-def C and wD: well-def D
and p3p2: \land Q. unitary Q \Longrightarrow \ll I \gg \&\& wp \ B \ Q = wp \ B \ (\ll H \gg \&\& \ Q)
and p1p3: \land s. G s \Longrightarrow 1 s
shows pcorres \varphi G (A;;C) (B;;D)
\langle proof \rangle
```

4.9.8 Structural Rules for Data Refinement

```
lemma dr-Skip:
 fixes \varphi:: c \Rightarrow b
 shows drefines \varphi G Skip Skip
\langle proof \rangle
lemma dr-Abort:
 fixes \varphi:: c \Rightarrow b
 shows drefines \varphi G Abort Abort
\langle proof \rangle
lemma dr-Apply:
 fixes \varphi:: c \Rightarrow b
 assumes commutes: f \circ \varphi = \varphi \circ g
 shows drefines \varphi G (Apply f) (Apply g)
\langle proof \rangle
lemma dr-Seq:
 assumes drAB: drefines \varphi P A B
    and drBC: drefines \varphi Q C D
    and wpB: \ll P \gg \Vdash wp \ B \ll Q \gg
    and wB: well-def B
    and wC: well-def C
```

4.10 Structured Reasoning

theory StructuredReasoning imports Algebra begin

By linking the algebraic, the syntactic, and the semantic views of computation, we derive a set of rules for decomposing expectation entailment proofs, firstly over the syntactic structure of a program, and secondly over the refinement relation. These rules also form the basis for automated reasoning.

4.10.1 Syntactic Decomposition

```
lemma wp-Abort:
 (\lambda s. 0) \vdash wp Abort Q
 \langle proof \rangle
lemma wlp-Abort:
 (\lambda s. 1) \vdash wlp Abort Q
  \langle proof \rangle
lemma wp-Skip:
 P \Vdash wp Skip P
 \langle proof \rangle
lemma wlp-Skip:
 P \Vdash wlp Skip P
 \langle proof \rangle
lemma wp-Apply:
 Q \ of \Vdash wp \ (Apply f) \ Q
 \langle proof \rangle
lemma wlp-Apply:
 Q \ of \vdash wlp \ (Apply f) \ Q
```

```
\langle proof \rangle
lemma wp-Seq:
 assumes ent-a: P \vdash wp \ a \ Q
    and ent-b: Q \Vdash wp \ b \ R
    and wa: well-def a
    and wb: well-def b
    and s-Q: sound Q
    and s-R: sound R
 shows P \vdash wp(a;;b) R
\langle proof \rangle
lemma wlp-Seq:
 assumes ent-a: P \vdash wlp \ a \ Q
    and ent-b: Q \vdash wlp \ b \ R
    and wa: well-def a
    and wb: well-def b
    and u-Q: unitary Q
    and u-R: unitary R
 shows P \vdash wlp(a;;b) R
\langle proof \rangle
lemma wp-PC:
 (\lambda s. P s * wp a Q s + (1 - P s) * wp b Q s) \vdash wp (a p \oplus b) Q
 \langle proof \rangle
lemma wlp-PC:
 (\lambda s. P s * wlp a Q s + (1 - P s) * wlp b Q s) \vdash wlp (a p \oplus b) Q
 \langle proof \rangle
A simpler rule for when the probability does not depend on the state.
lemma PC-fixed:
 assumes wpa: P \Vdash a \ ab \ R
    and wpb: Q \Vdash b \ ab \ R
    and np: 0 \le p and bp: p \le 1
 shows (\lambda s. p * P s + (1-p) * Q s) \Vdash (a_{(\lambda s. p)} \oplus b) ab R
 \langle proof \rangle
lemma wp-PC-fixed:
 \llbracket P \Vdash wp \ a \ R; \ Q \vdash wp \ b \ R; \ 0 \le p; \ p \le 1 \ \rrbracket \Longrightarrow
 (\lambda s. \ p * P \ s + (1-p) * Q \ s) \vdash wp \ (a_{(\lambda s. \ p)} \oplus b) \ R
 \langle proof \rangle
lemma wlp-PC-fixed:
 \llbracket P \Vdash wlp \ a \ R; Q \Vdash wlp \ b \ R; 0 \le p; p \le 1 \ \rrbracket \Longrightarrow
 (\lambda s. p * P s + (1 - p) * Q s) \vdash wlp (a_{(\lambda s. p)} \oplus b) R
 \langle proof \rangle
lemma wp-DC:
```

```
(\lambda s. min (wp \ a \ Q \ s) (wp \ b \ Q \ s)) \vdash wp (a \sqcap b) Q
  \langle proof \rangle
lemma wlp-DC:
  (\lambda s. min (wlp \ a \ Q \ s) (wlp \ b \ Q \ s)) \vdash wlp (a \sqcap b) \ Q
Combining annotations for both branches:
lemma DC-split:
 fixes a::'s prog and b
 assumes wpa: P \Vdash a \ ab \ R
     and wpb: Q \Vdash b \ ab \ R
  shows (\lambda s. min (P s) (Q s)) \vdash (a \sqcap b) ab R
  \langle proof \rangle
lemma wp-DC-split:
  \llbracket P \Vdash wp \ prog \ R; Q \Vdash wp \ prog' R \rrbracket \Longrightarrow
 (\lambda s. min (P s) (Q s)) \vdash wp (prog \sqcap prog') R
  \langle proof \rangle
lemma wlp-DC-split:
  \llbracket P \Vdash wlp \ prog \ R; \ Q \vdash wlp \ prog' \ R \ \rrbracket \Longrightarrow
  (\lambda s. min (P s) (Q s)) \vdash wlp (prog \sqcap prog') R
  \langle proof \rangle
lemma wp-DC-split-same:
 \llbracket P \Vdash wp \ prog \ Q; P \vdash wp \ prog' \ Q \ \rrbracket \Longrightarrow P \vdash wp \ (prog \ \sqcap \ prog') \ Q
 \langle proof \rangle
lemma wlp-DC-split-same:
 \llbracket P \Vdash wlp \ prog \ Q; P \vdash wlp \ prog' \ Q \ \rrbracket \Longrightarrow P \vdash wlp \ (prog \ \sqcap \ prog') \ Q
  \langle proof \rangle
lemma SetPC-split:
 fixes f::'x \Rightarrow 'y prog
   and p::'y \Rightarrow 'x \Rightarrow real
 assumes rec: \bigwedge x \ s. \ x \in supp \ (p \ s) \Longrightarrow P \ x \Vdash f \ x \ ab \ Q
     and nnp: \land s. nneg (p s)
  shows (\lambda s. \sum x \in supp (p s). p s x * P x s) \vdash SetPC f p ab Q
  \langle proof \rangle
lemma wp-SetPC-split:
  \llbracket \bigwedge x \ s. \ x \in supp \ (p \ s) \Longrightarrow P \ x \vdash wp \ (f \ x) \ Q; \ \bigwedge s. \ nneg \ (p \ s) \ \rrbracket \Longrightarrow
  (\lambda s. \sum x \in supp (p s). p s x * P x s) \vdash wp (SetPCfp) Q
  \langle proof \rangle
```

 $\llbracket \bigwedge x \ s. \ x \in supp \ (p \ s) \Longrightarrow P \ x \vdash wlp \ (f \ x) \ Q; \bigwedge s. \ nneg \ (p \ s) \ \rrbracket \Longrightarrow$

 $(\lambda s. \sum x \in supp (p s). p s x * P x s) \vdash wlp (SetPC f p) Q$

lemma wlp-SetPC-split:

```
\langle proof \rangle
lemma wp-SetDC-split:
  [\![ \bigwedge s \ x. \ x \in S \ s \Longrightarrow P \Vdash wp \ (f \ x) \ Q; \bigwedge s. \ S \ s \neq \{\} ]\!] \Longrightarrow
  P \Vdash wp (SetDC f S) Q
  \langle proof \rangle
lemma wlp-SetDC-split:
  \llbracket \land s \ x. \ x \in S \ s \Longrightarrow P \Vdash wlp (f \ x) \ Q; \land s. \ S \ s \neq \{\} \rrbracket \Longrightarrow
  P \Vdash wlp (SetDCfS) Q
  \langle proof \rangle
lemma wp-SetDC:
 assumes wp: \bigwedge s \ x. \ x \in S \ s \Longrightarrow P \ x \Vdash wp \ (f \ x) \ Q
     and ne: \land s. S s \neq \{\}
     and sP: \bigwedge x. sound (P x)
 shows (\lambda s. Inf ((\lambda x. P x s) `S s)) \vdash wp (SetDC f S) Q
  \langle proof \rangle
lemma wlp-SetDC:
 assumes wp: \bigwedge s \ x. \ x \in S \ s \Longrightarrow P \ x \Vdash wlp \ (f \ x) \ Q
     and ne: \bigwedge s. S s \neq \{\}
      and sP: \bigwedge x. sound (P x)
 shows (\lambda s. Inf ((\lambda x. P x s) `S s)) \vdash wlp (SetDC f S) Q
  \langle proof \rangle
lemma wp-Embed:
 P \Vdash t Q \Longrightarrow P \Vdash wp (Embed t) Q
 \langle proof \rangle
lemma wlp-Embed:
 P \Vdash t Q \Longrightarrow P \vdash wlp (Embed t) Q
  \langle proof \rangle
lemma wp-Bind:
 \llbracket \bigwedge s. \ P \ s \leq wp \ (a \ (f \ s)) \ Q \ s \ \rrbracket \Longrightarrow P \Vdash wp \ (Bind f \ a) \ Q
  \langle proof \rangle
lemma wlp-Bind:
  \llbracket \land s. \ P \ s \leq wlp \ (a \ (f \ s)) \ Q \ s \ \rrbracket \Longrightarrow P \vdash wlp \ (Bind \ f \ a) \ Q
  \langle proof \rangle
lemma wp-repeat:
  \llbracket P \Vdash wp \ a \ Q; \ Q \vdash wp \ (repeat \ n \ a) \ R;
    well-def a; sound Q; sound R \rrbracket \Longrightarrow P \Vdash wp (repeat (Suc n) a) R
  \langle proof \rangle
lemma wlp-repeat:
  \llbracket P \Vdash wlp \ a \ Q; \ Q \vdash wlp \ (repeat \ n \ a) \ R;
```

```
well-def a; unitary Q; unitary R \rrbracket \Longrightarrow P \Vdash wlp (repeat (Suc n) a) R \langle proof \rangle
```

Note that the loop rules presented in section Section 4.8 are of the same form, and would belong here, had they not already been stated.

The following rules are specialisations of those for general transformers, and are easier for the unifier to match.

```
lemmas wp-strengthen-post[where t=wp a for a]

lemma wlp-strengthen-post:

P \Vdash wlp \ a \ Q \Longrightarrow nearly-healthy \ (wlp \ a) \Longrightarrow unitary \ R \Longrightarrow Q \Vdash R \Longrightarrow unitary \ Q \Longrightarrow P \Vdash wlp \ a \ R \ \langle proof \rangle

lemmas wp-weaken-pre=
entails-weaken-pre[where t=wp a for a]

lemmas wlp-weaken-pre[where t=wlp a for a]

lemmas wp-scale=
entails-scale[where t=wp a for a, OF - well-def-wp-healthy]
```

4.10.2 Algebraic Decomposition

Refinement is a powerful tool for decomposition, belied by the simplicity of the rule. This is an *axiomatic* formulation of refinement (all annotations of the a are annotations of b), rather than an operational version (all traces of b are traces of a.

```
lemma wp-refines:  \llbracket a \sqsubseteq b; P \Vdash wp \ a \ Q; \ sound \ Q \ \rrbracket \Longrightarrow P \Vdash wp \ b \ Q \\ \langle proof \rangle
```

 $\textbf{lemmas} \ \textit{wp-drefines} = \textit{drefines} D$

4.10.3 Hoare triples

The Hoare triple, or validity predicate, is logically equivalent to the weakest-precondition entailment form. The benefit is that it allows us to define transitivity rules for computational (also/finally) reasoning.

```
definition
```

```
wp-valid :: ('a \Rightarrow real) \Rightarrow 'a \ prog \Rightarrow ('a \Rightarrow real) \Rightarrow bool ( < \{ - \} - \{ - \} p > )
where
wp-valid P \ prog \ Q \equiv P \Vdash wp \ prog \ Q

lemma wp-valid P \ prog \ Q \Longrightarrow \{ P \} \ prog \ \{ Q \} p
```

```
\begin{array}{l} \langle proof \rangle \\ \\ \textbf{lemma} \ wp\text{-}validD\text{:} \\ \{P\} \ prog} \ \{Q\}p \Longrightarrow P \Vdash wp \ prog \ Q \\ \langle proof \rangle \\ \\ \textbf{lemma} \ valid\text{-}Seq\text{:} \\ \mathbb{F} \ \{P\} \ a \ \{Q\}p; \ \{Q\} \ b \ \{R\}p; \ well\text{-}def \ a; \ well\text{-}def \ b; \ sound \ Q; \ sound \ R \ \} \Longrightarrow \\ \{P\} \ a \ ; \ b \ \{R\}p \\ \langle proof \rangle \\ \\ \textbf{We make it available to the computational reasoner:} \\ \\ \textbf{declare} \ valid\text{-}Seq[trans] \\ \\ \textbf{end} \\ \end{array}
```

4.11 Loop Termination

theory Termination imports Embedding StructuredReasoning Loops begin

Termination for loops can be shown by classical means (using a variant, or a measure function), or by probabilistic means: We only need that the loop terminates with probability one.

4.11.1 Trivial Termination

A maximal transformer (program) doesn't affect termination. This is essentially saying that such a program doesn't abort (or diverge).

```
lemma maximal-Seq-term:

fixes r::'s prog and s::'s prog

assumes mr: maximal (wp \ r)

and ws: well-def s

and ts: (\lambda s. \ 1) \vdash wp \ s \ (\lambda s. \ 1)

shows (\lambda s. \ 1) \vdash wp \ (r \ ;; \ s) \ (\lambda s. \ 1)

\langle proof \rangle
```

From any state where the guard does not hold, a loop terminates in a single step.

```
lemma term-onestep:

assumes wb: well-def body

shows \ll N G \gg \Vdash wp \ do \ G \longrightarrow body \ od \ (\lambda s. \ 1)

\langle proof \rangle
```

4.11.2 Classical Termination

The first non-trivial termination result is quite standard: If we can provide a naturalnumber-valued measure, that decreases on every iteration, and implies termination on reaching zero, the loop terminates.

```
lemma loop-term-nat-measure-noinv:

fixes m :: 's \Rightarrow nat and body :: 's prog

assumes wb : well-def body

and guard: \bigwedge s. \ m \ s = 0 \longrightarrow \neg G \ s

and variant: \bigwedge n. \ «\lambda s. \ m \ s = Suc \ n» \Vdash wp \ body \ «\lambda s. \ m \ s = n»

shows \lambda s. \ l \Vdash wp \ do \ G \longrightarrow body \ od \ (\lambda s. \ l)

\langle proof \rangle
```

This version allows progress to depend on an invariant. Termination is then determined by the invariant's value in the initial state.

```
lemma loop-term-nat-measure:

fixes m:: 's \Rightarrow nat and body:: 's prog

assumes wb: well-def body

and guard: \bigwedge s. m s = 0 \longrightarrow \neg G s

and variant: \bigwedge n. «\lambda s. m s = Suc n» && «I» \Vdash wp body «\lambda s. m s = n»

and inv: wp-inv G body «I»

shows «I» \Vdash wp do G \longrightarrow body od (\lambda s. 1)

\langle proof \rangle
```

4.11.3 Probabilistic Termination

Any loop that has a non-zero chance of terminating after each step terminates with probability 1.

```
lemma termination-0-1:
fixes body:: 's prog
assumes wb: well-def body

— The loop terminates in one step with nonzero probability
and onestep: (\lambda s. p) \Vdash wp \ body \ll \mathcal{N} \ G»
and nzp: 0 < p

— The body is maximal i.e. it terminates absolutely.
and mb: maximal \ (wp \ body)
shows \lambda s. \ 1 \Vdash wp \ do \ G \longrightarrow body \ od \ (\lambda s. \ 1)
\langle proof \rangle
```

end

4.12 Automated Reasoning

```
theory Automation imports StructuredReasoning begin
```

This theory serves as a container for automated reasoning tactics for pGCL, implemented in ML. At present, there is a basic verification condition generator (VCG).

```
named-theorems wd
theorems to automatically establish well—definedness
named-theorems pwp-core
core probabilistic wp rules, for evaluating primitive terms
```

```
named-theorems pwp user-supplied probabilistic <math>wp rules named-theorems pwlp user-supplied probabilistic <math>wlp rules \langle ML \rangle
```

declare wd-intros[wd]

```
lemmas core-wp-rules =
wp-Skip wlp-Skip
wp-Abort wlp-Abort
wp-Apply wlp-Apply
wp-Seq wlp-Seq
wp-DC-split wlp-DC-split
wp-PC-fixed wlp-PC-fixed
wp-SetDC wlp-SetDC
wp-SetPC-split wlp-SetPC-split
```

declare *core-wp-rules*[*pwp-core*]

end

Additional Material

4.13 Miscellaneous Mathematics

```
theory Misc
imports
 HOL-Analysis.Multivariate-Analysis
begin lemma sum-UNIV:
 fixes S::'a::finite set
 assumes complete: \bigwedge x. x \notin S \Longrightarrow fx = 0
 shows sum f S = sum f UNIV
\langle proof \rangle
lemma cInf-mono:
 fixes A::'a::conditionally-complete-lattice set
 assumes lower: \bigwedge b.\ b \in B \Longrightarrow \exists a \in A.\ a \leq b
    and bounded: \bigwedge a.\ a \in A \Longrightarrow c \leq a
    and ne: B \neq \{\}
 shows Inf A \leq Inf B
\langle proof \rangle
lemma max-distrib:
 fixes c::real
 assumes nn: 0 \le c
 shows c * max \ a \ b = max \ (c * a) \ (c * b)
\langle proof \rangle
lemma mult-div-mono-left:
 fixes c::real
 assumes nnc: 0 \le c and nzc: c \ne 0
    and inv: a < inverse \ c * b
 shows c * a \le b
\langle proof \rangle
lemma mult-div-mono-right:
 fixes c::real
 assumes nnc: 0 \le c and nzc: c \ne 0
    and inv: inverse c * a \le b
 shows a \le c * b
\langle proof \rangle
```

```
lemma min-distrib:
 fixes c::real
 assumes nnc: 0 \le c
 shows c * min \ a \ b = min \ (c * a) \ (c * b)
lemma finite-set-least:
 fixes S::'a::linorder set
 assumes finite: finite S
     and ne: S \neq \{\}
 shows \exists x \in S. \ \forall y \in S. \ x \leq y
\langle proof \rangle
lemma cSup-add:
 fixes c::real
 assumes ne: S \neq \{\}
    and bS: \bigwedge x. \ x \in S \Longrightarrow x \le b
 shows Sup S + c = Sup \{x + c \mid x. x \in S\}
\langle proof \rangle
lemma cSup-mult:
 fixes c::real
 assumes ne: S \neq \{\}
    and bS: \bigwedge x. \ x \in S \Longrightarrow x \le b
     and nnc: 0 \le c
 shows c * Sup S = Sup \{c * x | x. x \in S\}
\langle proof \rangle
lemma closure-contains-Sup:
 fixes S :: real set
 assumes neS: S \neq \{\} and bS: \forall x \in S. x \leq B
 shows Sup S \in closure S
\langle proof \rangle
lemma tendsto-min:
 fixes x y::real
 assumes ta: a \longrightarrow x and tb: b \longrightarrow y
 shows (\lambda i. min (a i) (b i)) \longrightarrow min x y
\langle proof \rangle
definition supp :: ('s \Rightarrow real) \Rightarrow 's set
where supp f = \{x. fx \neq 0\}
definition dist-remove :: ('s \Rightarrow real) \Rightarrow 's \Rightarrow 's \Rightarrow real
where dist-remove p x = (\lambda y. if y=x then 0 else p y / (1 - p x))
lemma supp-dist-remove:
```

$$p \ x \neq 0 \Longrightarrow p \ x \neq 1 \Longrightarrow supp \ (dist-remove \ p \ x) = supp \ p - \{x\} \ \langle proof \rangle$$

lemma *supp-empty*:

$$supp f = \{\} \Longrightarrow f x = 0$$
$$\langle proof \rangle$$

lemma nsupp-zero:

$$x \notin supp f \Longrightarrow fx = 0$$

\langle proof \rangle

lemma sum-supp:

fixes
$$f::'a::finite \Rightarrow real$$

shows $sum f (supp f) = sum f UNIV$
 $\langle proof \rangle$

4.13.1 Truncated Subtraction

definition

$$tminus :: real \Rightarrow real \Rightarrow real \ (\mathbf{infixl} \Longleftrightarrow 60)$$
 where

$$x\ominus y=max\ (x-y)\ 0$$

$$a - b \le a \ominus b$$

 $\langle proof \rangle$

lemma *tminus-cancel-1*:

$$0 \le a \Longrightarrow a + 1 \ominus 1 = a$$

 $\langle proof \rangle$

lemma *tminus-zero-imp-le*:

$$\begin{array}{l}
x \ominus y \le 0 \Longrightarrow x \le y \\
\langle proof \rangle
\end{array}$$

lemma *tminus-zero*[*simp*]:

$$0 \le x \Longrightarrow x \ominus 0 = x$$
$$\langle proof \rangle$$

lemma *tminus-left-mono*:

$$a \le b \Longrightarrow a \ominus c \le b \ominus c$$

\(\langle proof \rangle

lemma tminus-less:

$$\llbracket \ 0 \leq a; 0 \leq b \ \rrbracket \Longrightarrow a \ominus b \leq a \\ \langle proof \rangle$$

lemma tminus-left-distrib:

assumes
$$nna: 0 \le a$$

end

shows
$$a*(b \ominus c) = a*b \ominus a*c$$
 ⟨proof⟩

lemma tminus-le[simp]: $b \le a \Longrightarrow a \ominus b = a - b$ ⟨proof⟩

lemma tminus-le-alt[simp]: $a \le b \Longrightarrow a \ominus b = 0$ ⟨proof⟩

lemma tminus-nle[simp]: $\neg b \le a \Longrightarrow a \ominus b = 0$ ⟨proof⟩

lemma tminus-add-mono: $(a+b) \ominus (c+d) \le (a \ominus c) + (b \ominus d)$ ⟨proof⟩

lemma tminus-sum-mono: assumes fS: finite S shows sum f S \ominus sum g S \le sum $(\lambda x. fx \ominus gx)$ S (is ?X S) ⟨proof⟩

lemma tminus-nneg[simp,intro]: $0 \le a \ominus b$ ⟨proof⟩

lemma tminus-right-antimono: assumes $clb: c \le b$ shows $a \ominus b \le a \ominus c$ ⟨proof⟩

lemma min-tminus-distrib: min $ab \ominus c = min (a \ominus c) (b \ominus c)$ ⟨proof⟩

Bibliography

- David Cock. Verifying probabilistic correctness in Isabelle with pGCL. In *Proceedings of the 7th Systems Software Verification*, pages 1–10, Sydney, Australia, November 2012. doi: 10.4204/EPTCS.102.15.
- David Cock. Practical probability: Applying pGCL to lattice scheduling. In *Proceedings of the 4th International Conference on Interactive Theorem Proving*, pages 1–16, Rennes, France, July 2013. doi: 10.1007/978-3-642-39634-2_23.
- David Cock. From probabilistic operational semantics to information theory side channels with pGCL in isabelle. In *Proceedings of the 5th International Conference on Interactive Theorem Proving*, pages 1–15, Vienna, Austria, July 2014a. Springer.
- David Cock. *Leakage in Trustworthy Systems*. PhD thesis, University of New South Wales, 2014b.
- Edsger W. Dijkstra. Guarded commands, nondeterminacy and formal derivation of programs. *Communications of the ACM*, 18(8):453–457, August 1975. ISSN 0001-0782. doi: 10.1145/360933.360975.
- Joe Hurd, Annabelle McIver, and Carroll Morgan. Probabilistic guarded commands mechanized in hol. *Theoretical Computer Science*, 346(1):96 112, 2005. ISSN 0304-3975. doi: 10.1016/j.tcs.2005.08.005. URL http://www.sciencedirect.com/science/article/pii/S0304397505004767.
- Annabelle McIver and Carroll Morgan. *Abstraction, Refinement and Proof for Probabilistic Systems*. Springer, 2004.
- Steve Selvin. A problem in probability (letter to the editor). *American Statistician*, 29(1):67, Feb 1975.