pGCL for Isabelle

David Cock

March 17, 2025

ii

Contents

1 Overview

2 Introduction to pGCL
Language Primitives

2.1

2.2

2.3

2.1.1 TheBasics
2.1.2 Assertion and Annotation
2.1.3 Probability
2.1.4 Nondeterminism
2.1.5 Properties of Expectations
Loops« o
2.2.1 Guaranteed Termination
2.2.2 Probabilistic Termination
The Monty Hall Problem
23.1 TheStateSpace.
232 TheGame.
2.3.3 ABruteForce Solution
234 AModular Approach oL

3 Semantic Structures

3.1

3.2

Expectations
3.1.1 Bounded Functions
3.1.2 Non-Negative Functions.
3.1.3 Sound Expectations
3.1.4 Unitary expectationso ...
3.1.5 Standard Expectations
3.1.6 Entailment
3.1.7 Expectation Conjunction
3.1.8 Rules Involving Conjunction.
3.1.9 Rules Involving Entailment and Conjunction Together

Expectation Transformers
3.2.1 Comparing Transformers
3.2.2 Healthy Transformers
323 Sublinearity

1ii

[

O O 00 NN Wi i AW W W

v

CONTENTS

324 Determinismo 56

3.2.5 ModularReasoning oL 59

3.2.6 Transforming Standard Expectations 60

33 Induction 62
3.3.1 The Lattice of Expectations 62

3.3.2 The Lattice of Transformers 66

333 TailRecursion 71

The pGCL Language 75
4.1 A Shallow Embedding of pPGCLinHOL 75
4.1.1 Core Primitivesand Syntax 75

4.1.2 Unfolding rules for non-recursive primitives 79

42 Healthiness 81
4.2.1 The Healthiness of the Embedding 81

4.2.2 Healthiness forLoops 94

43 Continuity oL 104
4.3.1 Continuity of Primitives 105

4.3.2 Continuity of a Single LoopStep 122

4.4 Continuity and Induction for Loops 125
4.4.1 TheLimitof Iterates 133

4.5 Sublinearity e 142
4.5.1 Nonrecursive Primitives 143

4.5.2 Sublinearity forLoops 148

4.6 DeterminiSml e e e 152
4.6.1 Additivityo 152

4.6.2 Maximality o 153

4.6.3 Determinism e 155

47 Well-Defined Programs. 156
4.7.1 Strict Implies Liberal 156

4.7.2 Sub-Distributivity of Conjunction 161

473 The Well-Defined Predicate. 170

48 TheLoopRules 173
4.8.1 Liberal and Strict Invariants. 173

4.8.2 Partial Correctness 174

483 Total Correctness« ..o v 174

484 Unfolding, 175

4.9 The Algebraof pGCL, . 176
49.1 Program Refinement 176

49.2 Simple Identities 177

4.9.3 Deterministic Programs are Maximal 182

4.9.4 The Algebraic Structure of Refinement 184

49.5 DataRefinement 187

49.6 The Algebra of Data Refinement 191

4.9.7 Structural Rules for Correspondence 198

CONTENTS v

4.9.8 Structural Rules for Data Refinement 199

4.10 Structured Reasoning 201
4.10.1 Syntactic Decomposition 202
4.10.2 Algebraic Decomposition 206
4.10.3 Hoaretriples 207

4.11 Loop Termination v v v v e 207
4.11.1 Trivial Termination 207
4.11.2 Classical Termination. 208
4.11.3 Probabilistic Termination 211

4.12 Automated Reasoning 214
Additional Material 217
4.13 Miscellaneous Mathematics 217

4.13.1 Truncated Subtraction 223

vi

CONTENTS

Chapter 1

Overview

pGCL is both a programming language and a specification language that incorpo-
rates both probabilistic and nondeterministic choice, in a unified manner. Program
verification is by refinement or annotation (or both), using either Hoare triples, or
weakest-precondition entailment, in the style of GCL [, 1.

This document is divided into three parts: Chapter 2 gives a tutorial-style intro-
duction to pGCL, and demonstrates the tools provided by the package; Chapter 3
covers the development of the semantic interpretation: expectation transformers;
and Chapter 4 covers the formalisation of the language primitives, the associated
healthiness results, and the tools for structured and automated reasoning. This sec-
ond part follows the technical development of the pGCL theory package, in detail.
It is not a great place to start learning pGCL. For that, see either the tutorial or

[2004].

This formalisation was first presented (as an overview) in []. The lan-
guage has previously been formalised in HOL4 by []. Two sub-
stantial results using this package were presented in [1, []

and [].

CHAPTER 1. OVERVIEW

Chapter 2

Introduction to pGCL

2.1 Language Primitives
theory Primitives imports ../pGCL begin

Programs in pGCL are probabilistic automata. They can do anything a traditional
program can, plus, they may make truly probabilistic choices.

2.1.1 The Basics

Imagine flipping a pair of fair coins: a and b. Using a record type for the state
allows a number of syntactic niceties, which we describe shortly:

datatype coin = Heads | Tails

record coins =
a:: coin
b :: coin

The primitive state operation is Apply, which takes a state transformer as an argu-
ment, constructs the pGCL equivalent. Thus Apply (a-update (\-. Heads)) sets the
value of coin a to Heads. As records are so common as state types, we introduce
syntax to make these update neater: The same program may be defined more sim-
ply as Apply (a-update (A-. Heads)) (note that the syntax translation involved does
not apply to Latex output, and thus this lemma appears trivial):

lemma
Apply (As. s (| a := Heads |)) = (a := (\s. Heads))
by (simp)

We can treat the record’s fields as the names of variables. Note that the right-hand
side of an assignment is always a function of the current state. Thus we may use a
record accessor directly, for example Apply (As. s(a := b s|)), which updates a with
the current value of b. If we wish to formally establish that the previous statement

3

4 CHAPTER 2. INTRODUCTION TO PGCL

is correct i.e. that in the final state, a really will have whatever value b had in the
initial state, we must first introduce the assertion language.

2.1.2 Assertion and Annotation

Assertions in pGCL are real-valued functions of the state, which are often inter-
preted as a probability distribution over possible outcomes. These functions are
termed expectations, for reasons which shortly be clear. Initially, however, we
need only consider standard expectations: those derived from a binary predicate.
A predicate P::’s = bool is embedded as « P »::’s = real, such that P s — « P »
s=1N-"Ps— «P»s=0.

An annotation consists of an assertion on the initial state and one on the final state,
which for standard expectations may be interpreted as ‘if P holds in the initial state,
then Q will hold in the final state’. These are in weakest-precondition form: we
assert that the precondition implies the weakest precondition: the weakest assertion
on the initial state, which implies that the postcondition must hold on the final
state. So far, this is identical to the standard approach. Remember, however, that
we are working with real-valued assertions. For standard expectations, the logic
is nevertheless identical, if the implication Vs. P s — Q s is substituted with the
equivalent expectation entailment « P » = « O », [« 2P » = « 2Q »; ?P ?s] = ?Q
?s. Thus a valid specification of Apply (As. s(a := b s))) is:

lemma
Nx. «As.bs=x»twp (a:=b) «\s.as=x»
by (pvcg, simp add:o-def)

Any ordinary computation and its associated annotation can be expressed in this
form.

2.1.3 Probability

Next, we introduce the syntax x ;; y for the sequential composition of x and y, and
also demonstrate that one can operate directly on a real-valued (and thus infinite)
state space:

lemma
«Aszreal. s # 0> = wp (Apply ((%) 2) ;; Apply (As. s [/ s)) «As. s = I»
by(pvcg, simp add:o-def)

So far, we haven’t done anything that required probabilities, or expectations other
than 0 and 1. As an example of both, we show that a single coin toss is fair. We in-
troduce the syntax x & y for a probabilistic choice between x and y. This program
behaves as x with probability p, and as y with probability / — p. The probabil-
ity may depend on the state, and is therefore of type ‘s = real. The following
annotation states that the probability of heads is exactly 1/2:

definition

2.1. LANGUAGE PRIMITIVES 5

flip-a :: real = coins prog
where
flip-a p = a := (\-. Heads) (As.p) @@= (\-. Tails)

lemma
(As. 1/2) =wp (flip-a (1/2)) «\s. a s = Heads»
unfolding flip-a-def

Sufficiently small problems can be handled by the simplifier, by symbolic evaluation.

by (simp add:wp-eval o-def)

2.1.4 Nondeterminism

We can also under-specify a program, using the nondeterministic choice operator,
x [y. This is interpreted demonically, giving the pointwise minimum of the pre-
expectations for x and y: the chance of seeing heads, if your opponent is allowed
choose between a pair of coins, one biased 2/3 heads and one 2/3 tails, and then
flips it, is at least 1/3, but we can make no stronger statement:

lemma
As. 1/3 % wp (flip-a (2/3) [] flip-a (1/3)) «As. a s = Heads»
unfolding flip-a-def
by pvcg

2.1.5 Properties of Expectations

The probabilities of independent events combine as usual, by multiplying: The
chance of getting heads on two separate coins is 1 / (4::'a).

definition
flip-b :: real = coins prog
where

fip-bp = b := (\-. Heads) (s p) B b= (A-. Tails)

As. p

lemma
(As. 1/4) = wp (flip-a (1/2) ;; flip-b (1/2))
«As. as = Heads \ b s = Heads»
unfolding flip-a-def flip-b-def
by (simp add:wp-eval o-def)

If, rather than two coins, we use two dice, we can make some slightly more in-
volved calculations. We see that the weakest pre-expectation of the value on the
face of the die after rolling is its expected value in the initial state, which justifies
the use of the term expectation.

record dice =
red :: nat
blue :: nat

6 CHAPTER 2. INTRODUCTION TO PGCL

definition Puniform :: 'a set = ('a = real)
where Puniform S = (\x. if x € Sthen 1 / card S else 0)

lemma Puniform-in:
x € S = PuniformSx=1/ card §
by (simp add:Puniform-def)

lemma Puniform-out:
x ¢ S = PuniformSx=0
by (simp add:Puniform-def)

lemma supp-Puniform:
finite S = supp (Puniform S) = §
by (auto simp:Puniform-def supp-def)

The expected value of a roll of a six-sided die is (7::'a) / (2::'a):

lemma
(Xs. 7/2) = wp (bind v at (As. Puniform {1..6} v) in red := (\-.v)) red
by (simp add:wp-eval supp-Puniform sum.atLeast-Suc-atMost Puniform-in)

The expectations of independent variables add:

lemma
(As. 7) = wp ((bind v at (As. Puniform {1..6} v) in red := (Xs. v)) ;;
(bind v at (As. Puniform {1..6} v) in blue := (\s. v)))
(As. red s + blue s)
by (simp add:wp-eval supp-Puniform sum.atLeast-Suc-atMost Puniform-in)

end

2.2 Loops

theory LoopExamples imports ../pGCL begin

Reasoning about loops in pGCL is mostly familiar, in particular in the use of in-
variants. Proving termination for truly probabilistic loops is slightly different: We
appeal to a O—1 law to show that the loop terminates with probability I. In our se-
mantic model, terminating with certainty and with probability 1 are exactly equiv-
alent.

2.2.1 Guaranteed Termination

We start with a completely classical loop, to show that standard techniques apply.
Here, we have a program that simply decrements a counter until it hits zero:

definition countdown :: int prog
where
countdown = do (Mx. 0 < x) — Apply (As.s — 1) od

2.2. LOOPS 7

Clearly, this loop will only terminate from a state where 0 < x. This is, in fact, also
a loop invariant.

definition inv-count :: int = bool
where
inv-count = (Ax. 0 < x)

Read wp-inv G body I as: I is an invariant of the loop ux. body ;; x . G P Skip, or
«G» && It wp body I.

lemma wp-inv-count:
wp-inv (Ax. 0 < x) (Apply (As. s — 1)) «inv-count»
unfolding wp-inv-def inv-count-def wp-eval o-def
proof(clarify, cases)
fix x::int
assume 0 < x
then show «\x. 0 < x» x % «Ax. 0 < x> x < «Xx. 0 <x» (x — 1)
by (simp add:embed-bool-def)
next
fix x::int
assume — 0 < x
then show «\x. 0 < x» x % «Ax. 0 <> x < «Xx. 0 <x» (x — 1)
by (simp add:embed-bool-def)
qed

This example is contrived to give us an obvious variant, or measure function: the
counter itself.

lemma term-countdown:
«inv-count» = wp countdown (As. 1)
unfolding countdown-def

proof(intro loop-term-nat-measure[where m=\x. nat (max x 0)] wp-inv-count)
let ?p = Apply (Mx. x — 1::inr)

As usual, well-definedness is trivial.

show well-def ?p
by (rule wd-intros)

A measure of 0 imples termination.

show Ax. nat (maxx0)=0— - 0<x
by (auto)

This is the meat of the proof: that the measure must decrease, whenever the invariant holds.
Note that the invariant is essential here, as if x < 0, the measure will not decrease.

This is the kind of proof that the VCG is good at. It leaves a purely logical goal, which we
can solve with auto.

show An. «\x. nat (max x 0) = Suc n» && «inv-count»
wp ?p «\x. nat (max x 0) = n»
unfolding inv-count-def
by(pvcg,

8 CHAPTER 2. INTRODUCTION TO PGCL

auto simp: o-def exp-conj-std-split|symmetric]
intro: implies-entails)
qed

2.2.2 Probabilistic Termination

Loops need not terminate deterministically: it is sufficient to terminate with proba-
bility 1. Here we show the intuitively obvious result that by flipping a coin repeat-
edly, you will eventually see heads.

type-synonym coin = bool
definition Heads = True
definition Tuils = False

definition

flip :: coin prog

where

Slip = Apply (\-. Heads) (As. 1/2)® Apply (\-. Tails)

We can’t define a measure here, as we did previously, as neither of the two possible
states guarantee termination.

definition
wait-for-heads :: coin prog
where
wait-for-heads = do ((#) Heads) — flip od

Nonetheless, we can show termination .

lemma wait-for-heads-term:
As. 1+ wp wait-for-heads (As. 1)
unfolding wait-for-heads-def

We use one of the zero-one laws for termination, specifically that if, from every state there
is a nonzero probability of satisfying the guard (and thus terminating) in a single step, then
the loop terminates from any state, with probability 1.

proof(rule termination-0-1)
show well-def flip
unfolding flip-def
by (auto intro:wd-intros)

We must show that the loop body is deterministic, meaning that it cannot diverge by itself.

show maximal (wp flip)
unfolding flip-def by(auto intro:max-intros)

The verification condition for the loop body is one-step-termination, here shown to hold
with probability 1/2. As usual, this result falls to the VCG.

show As. 1/2 wp flip «N ((+£) Heads)»

unfolding flip-def
by(pveg, simp add:o-def Heads-def Tails-def)

2.3. THE MONTY HALL PROBLEM 9

Finally, the one-step escape probability is non-zero.

show (0::real) < 1/2 by(simp)
qed

end

2.3 The Monty Hall Problem

theory Monty imports ../pGCL begin

We now tackle a more substantial example, allowing us to demonstrate the tools
for compositional reasoning and the use of invariants in non-recursive programs.
Our example is the well-known Monty Hall puzzle in statistical inference [,
].

The setting is a game show: There is a prize hidden behind one of three doors,
and the contestant is invited to choose one. Once the guess is made, the host than
opens one of the remaining two doors, revealing a goat and showing that the prize
is elsewhere. The contestent is then given the choice of switching their guess to the
other unopened door, or sticking to their first guess.

The puzzle is whether the contestant is better off switching or staying put; or indeed
whether it makes a difference at all. Most people’s intuition suggests that it make

no difference, whereas in fact, switching raises the chance of success from 1/3 to
2/3.

2.3.1 The State Space

The game state consists of the prize location, the guess, and the clue (the door the
host opens). These are not constrained a priori to the range {/, 2, 3}, but are simply
natural numbers: We instead show that this is in fact an invariant.

record game =

prize :: nat
guess :: nat
clue ::nat

The victory condition: The player wins if they have guessed the correct door, when
the game ends.

definition player-wins :: game = bool

where player-wins g = guess g = prize g

Invariants

We prove explicitly that only valid doors are ever chosen.

definition inv-prize :: game = bool
where inv-prize g = prize g € {1,2,3}

10 CHAPTER 2. INTRODUCTION TO PGCL

definition inv-clue :: game = bool
where inv-clue g = clue g € {1,2,3}

definition inv-guess :: game = bool
where inv-guess g = guess g € {1,2,3}

2.3.2 The Game

Hide the prize behind door D.

definition hide-behind :: nat = game prog
where hide-behind D = Apply (prize-update (Ax. D))

Choose door D.

definition guess-behind :: nat = game prog
where guess-behind D = Apply (guess-update (Ax. D))

Open door D and reveal what’s behind.

definition open-door :: nat = game prog
where open-door D = Apply (clue-update (Ax. D))

Hide the prize behind door 1, 2 or 3, demonically i.e. according to any probability
distribution (or none).

definition hide-prize :: game prog

where hide-prize = hide-behind 1 || hide-behind 2] hide-behind 3

Guess uniformly at random.

definition make-guess :: game prog
where make-guess = guess-behind 1 (As. 1/ 3)69

guess-behind 2 (As. 1/2)® guess-behind 3

Open one of the two doors that doesn’t hide the prize.

definition reveal :: game prog
where reveal = [|de()s. {1,2,3} — {prize s, guess s}). open-door d

Switch your guess to the other unopened door.

definition switch-guess :: game prog
where switch-guess = [|de(Xs. {1,2,3} — {clue s, guess s}). guess-behind d

The complete game, either with or without switching guesses.

definition monty :: bool = game prog

where
monty switch = hide-prize ;;
make-guess ;;
reveal ;;

(if switch then switch-guess else Skip)

2.3. THE MONTY HALL PROBLEM 11

2.3.3 A Brute Force Solution

For sufficiently simple programs, we can calculate the exact weakest pre-expectation
by unfolding.
lemma eval-win[simp]:

p = g = «player-wins» (s(prize :== p, guess := g, clue :==c|)) =1

by (simp add:embed-bool-def player-wins-def)

lemma eval-loss[simp]:
p # g = «player-wins» (s(prize :== p, guess := g, clue :==c|)) =0
by (simp add:embed-bool-def player-wins-def)

If they stick to their guns, the player wins with p = 1/3.

lemma wp-monty-noswitch:
(As. 1/3) = wp (monty False) «player-wins»
unfolding monty-def hide-prize-def make-guess-def reveal-def
hide-behind-def guess-behind-def open-door-def
switch-guess-def
by (simp add:wp-eval insert-Diff-if o-def)

lemma swap-upd:
s(prize := p, clue :== ¢, guess := g |) =
s(| prize := p, guess := g, clue :=c |
by (simp)

If they switch, they win with p = 2/3. Brute force here takes longer, but is still
feasible. On larger programs, this will rapidly become impossible, as the size of
the terms (generally) grows exponentially with the length of the program.

lemma wp-monty-switch-bruteforce:
(As. 2/3) = wp (monty True) «player-wins»
unfolding monty-def hide-prize-def make-guess-def reveal-def
hide-behind-def guess-behind-def open-door-def
switch-guess-def
— Note that this is getting slow
by (simp add: wp-eval insert-Diff-if swap-upd o-def cong del: INF-cong-simp)

2.3.4 A Modular Approach

We can solve the problem more efficiently, at the cost of a little more user effort, by
breaking up the problem and annotating each step of the game separately. While
this is not strictly necessary for this program, it will scale to larger examples, as
the work in annotation only increases linearly with the length of the program.

Healthiness

We first establish healthiness for each step. This follows straightforwardly by ap-
plying the supplied rulesets.

12 CHAPTER 2. INTRODUCTION TO PGCL

lemma wd-hide-prize:
well-def hide-prize
unfolding hide-prize-def hide-behind-def
by (simp add:wd-intros)

lemma wd-make-guess:
well-def make-guess
unfolding make-guess-def guess-behind-def
by (simp add:wd-intros)

lemma wd-reveal:
well-def reveal
proof —

Here, we do need a subsidiary lemma: that there is always a ‘fresh’ door available. The
rest of the healthiness proof follows as usual.

have A\s. {1, 2,3} — {prize s, guess s} # {}
by (auto simp:insert-Diff-if)
thus ?thesis
unfolding reveal-def open-door-def
by (intro wd-intros, auto)
qed

lemma wd-switch-guess:
well-def switch-guess
proof —
have A\s. {1, 2, 3} — {clue s, guess s} # {}
by (auto simp:insert-Diff-if)
thus ?thesis
unfolding switch-guess-def guess-behind-def
by (intro wd-intros, auto)
qed

lemmas monty-healthy =
wd-switch-guess wd-reveal wd-make-guess wd-hide-prize

Annotations

We now annotate each step individually, and then combine them to produce an
annotation for the entire program.

hide-prize chooses a valid door.

lemma wp-hide-prize:
(As. 1) & wp hide-prize «inv-prize»
unfolding hide-prize-def hide-behind-def wp-eval o-def
by (simp add:embed-bool-def inv-prize-def)

Given the prize invariant, make-guess chooses a valid door, and guesses incorrectly
with probability at least 2/3.

2.3. THE MONTY HALL PROBLEM 13

lemma wp-make-guess:
(As. 2/3 % «\g. inv-prize g» s) -
wp make-guess «\g. guess g # prize g N inv-prize g N\ inv-guess g»
unfolding make-guess-def guess-behind-def wp-eval o-def
by (auto simp:embed-bool-def inv-prize-def inv-guess-def)

lemma /ast-one:
assumes a # b and a € {I::nat,2,3} and b € {1,2,3}
shows Jlc. {1,2,3} — {b,a} = {c}
apply (simp add:insert-Diff-if)
using assms by (auto intro:assms)

Given the composed invariants, and an incorrect guess, reveal will give a clue that
is neither the prize, nor the guess.

lemma wp-reveal:
«\g. guess g # prize g N inv-prize g N inv-guess g»
wp reveal «\g. guess g #* prize g \
clue g # prize g \
clue g # guess g \
inv-prize g A inv-guess g N inv-clue g»
(is ?X I~ wp reveal ?Y)
proof(rule use-premise, rule well-def-wp-healthy|OF wd-reveal), clarify)
fix s
assume guess s 7 prize s
and inv-prize s
and inv-guess s
moreover then obtain ¢
where singleton: {Suc 0,2,3} — {prize s, guess s} = {c}
and ¢ # prize s
and ¢ # guess s
and ¢ € {Suc 0,2,3}
unfolding inv-prize-def inv-guess-def
by (force dest:last-one elim!:exIE)
ultimately show / < wp reveal ?Y s
by (simp add:reveal-def open-door-def wp-eval singleton o-def
embed-bool-def inv-prize-def inv-guess-def inv-clue-def’)
qed

Showing that the three doors are all district is a largeish first-order problem, for
which sledgehammer gives us a reasonable script.

lemma distinct-game:
[guess g # prize g; clue g # prize g; clue g # guess g;
inv-prize g; inv-guess g; inv-clue g | =
{1, 2, 3} = {guess g, prize g, clue g}
unfolding inv-prize-def inv-guess-def inv-clue-def
apply(rule set-eql)
apply rule iffT)
apply(clarify)
apply (metis (full-types) empty-iff insert-iff’)

14 CHAPTER 2. INTRODUCTION TO PGCL

apply (metis insert-iff)
done

Given the invariants, switching from the wrong guess gives the right one.

lemma wp-switch-guess:
«\g. guess g # prize g N clue g # prize g N clue g # guess g N
inv-prize g A inv-guess g N\ inv-clue g»
wp switch-guess «player-wins»
proof(rule use-premise, safe)
from wd-switch-guess show healthy (wp switch-guess) by(auto)

fix s
assume guess s 7 prize s and clue s = prize s
and clue s # guess s and inv-prize s
and inv-guess s and inv-clue s
note state = this
hence ! < Inf ((Aa. « player-wins » (s(guess := al))) *
({guess s, prize s, clue s} — {clue s, guess s}))
by (auto simp:insert-Diff-if player-wins-def’)
also from state
have ... = Inf ((\a. « player-wins » (s(guess := al)))
({1, 2,3} — {clue s, guess s}))
by (simp add:distinct-game[symmetric])
also have ... = wp switch-guess «player-wins» s
by (simp add:switch-guess-def guess-behind-def wp-eval o-def)
finally show / < wp switch-guess « player-wins » s .
qed

Given componentwise specifications, we can glue them together with calculational
reasoning to get our result.

lemma wp-monty-switch-modular:
(As. 2/3) & wp (monty True) «player-wins»
proof(rule wp-validD) — Work in probabilistic Hoare triples
note wp-validl[OF wp-scale, OF wp-hide-prize, simplified)
— Here we apply scaling to match our pre-expectation
also note wp-validl|OF wp-make-guess]
also note wp-validl[OF wp-reveal
also note wp-validl[OF wp-switch-guess|
finally show {\s. 2/3[} monty True {«player-wins»|p
unfolding monty-def
by (simp add:wd-intros sound-intros monty-healthy)
qed

Using the VCG

lemmas scaled-hide = wp-scale|OF wp-hide-prize, simplified)
declare scaled-hide[pwp| wp-make-guess|pwp| wp-reveal[pwp| wp-switch-guess[pwp]
declare wd-hide-prize[wd] wd-make-guess|wd] wd-reveal[wd) wd-switch-guess[wd)

Alternatively, the VCG will get this using the same annotations.

2.3. THE MONTY HALL PROBLEM

lemma wp-monty-switch-vcg:
(Xs. 2/3) b= wp (monty True) «player-wins»
unfolding monty-def
by (simp, pvcg)

end

15

16

CHAPTER 2. INTRODUCTION TO PGCL

Chapter 3

Semantic Structures

3.1 Expectations
theory Expectations imports Misc begin type-synonym ’s expect = 's = real

Expectations are a real-valued generalisation of boolean predicates: An expectation
on state s is a function s = real. A predicate P on s is embedded as an expectation
by mapping True to 1 and False to 0. Under this embedding, implication becomes
comparison, as the truth tables demonstrate:

a b a—=blzx y z<y
F F T 0 0 T
F T T 0 1 T
T F F 1 0 F
T T T 1 1 T

For probabilistic automata, an expectation gives the current expected value of some
expression, if it were to be evaluated in the final state. For example, consider
the automaton of Figure 3.1, with transition probabilities affixed to edges. Let
P b=2.0and P c = 3.0. Both states b and c are final (accepting) states, and thus
the ‘final expected value’ of P in state b is 2.0 and in state c is 3.0. The expected
value from state a is the weighted sum of these, or 0.7 x 2.0 + 0.3 x 3.0 = 2.3.

Figure 3.1: A probabilistic automaton

17

18 CHAPTER 3. SEMANTIC STRUCTURES

All expectations must be non-negative and bounded i.e. Vs.0 < P sand 3b.Vs.P s <
b. Note that although every expectation must have a bound, there is no bound on
all expectations; In particular, the following series has no global bound, although
each element is clearly bounded:

P, =MXs.i wherei € N

3.1.1 Bounded Functions

definition bounded-by :: real = ('a = real) = bool
where bounded-byb P=Vx.Px<b

By instantiating the classical reasoner, both establishing and appealing to bound-
edness is largely automatic.

lemma bounded-byl|intro|:
[Ax. Px <b] = bounded-by b P
by (simp add:bounded-by-def)

lemma bounded-byI2[intro:
P < (Xs. b) = bounded-by b P
by (blast dest:le-funD)

lemma bounded-byD|dest]:
bounded-by b P — Px <b
by (simp add:bounded-by-def)

lemma bounded-byD?2[dest|:
bounded-by b P =—> P < ()s. b)
by (blast intro:le-funl)

A function is bounded if there exists at least one upper bound on it.

definition bounded :: (‘a = real) = bool
where bounded P = (3b. bounded-by b P)

In the reals, if there exists any upper bound, then there must exist a least upper
bound.

definition bound-of :: ('a = real) = real
where bound-of P = Sup (P < UNIV)

lemma bounded-bdd-above[intro):

assumes bP: bounded P

shows bdd-above (range P)
proof

fix x assume x € range P

with bP show x < Inf {b. bounded-by b P}

unfolding bounded-def by(auto intro:cInf-greatest)

qed

3.1. EXPECTATIONS

The least upper bound has the usual properties:

lemma bound-of-least[intro]:
assumes bP: bounded-by b P
shows bound-of P < b
unfolding bound-of-def
using bP by (intro cSup-least, auto)

lemma bounded-by-bound-of [intro!]:
fixes P::'a = real
assumes bP: bounded P
shows bounded-by (bound-of P) P
unfolding bound-of-def
using bP by (intro bounded-byl cSup-upper bounded-bdd-above, auto)

lemma bound-of-greater|intro]:
bounded P —> P x < bound-of P
by (blast intro:bounded-byD)

lemma bounded-by-mono:
[bounded-by a P; a < b | = bounded-by b P
unfolding bounded-by-def by(blast intro:order-trans)

lemma bounded-by-imp-bounded|intro):
bounded-by b P —> bounded P
unfolding bounded-def by (blast)

This is occasionally easier to apply:

lemma bounded-by-bound-of-alt:
[bounded P; bound-of P = a | = bounded-by a P
by (blast)

lemma bounded-const|[simp):
bounded (Ax. c)
by (blast)

lemma bounded-by-const|intro]:
¢ < b= bounded-by b (\x. c)
by (blast)

lemma bounded-by-mono-alt[intro]:
[bounded-by b Q; P < Q | = bounded-by b P
by (blast intro:order-trans dest:le-funD)

lemma bound-of-const[simp, intro|:
bound-of (Ax. ¢) = (c::real)
unfolding bound-of-def

by (intro antisym cSup-least cSup-upper bounded-bdd-above bounded-const, auto)

lemma bound-of-lel:

19

20 CHAPTER 3. SEMANTIC STRUCTURES

assumes A\x. P x < (c::real)

shows bound-of P < ¢

unfolding bound-of-def

using assms by (intro cSup-least, auto)

lemma bound-of-monolintro|:
[P < Q; bounded P; bounded Q | = bound-of P < bound-of Q
by (blast intro:order-trans dest:le-funD)

lemma bounded-by-olintro,simp|:
A\b. bounded-by b P —> bounded-by b (P o f)
unfolding o-def by(blast)

lemma le-bound-of [intro):
N\x. bounded f —> fx < bound-of f
by (blast)

3.1.2 Non-Negative Functions.

The definitions for non-negative functions are analogous to those for bounded func-
tions.

definition

nneg :: ('a = 'b:{zero,order}) = bool
where

nneg P +— (Vx.0 < Px)

lemma nnegl|intro|:
[Ax.0<Px] = nnegP
by (simp add:nneg-def)

lemma nnegl2[intro:
(As. 0) < P=>nneg P
by (blast dest:le-funD)

lemma nnegD|dest|:
nnegP—0<Px
by (simp add:nneg-def)

lemma nnegD2[dest|:
nneg P = (As.0) <P
by (blast intro:le-funl)

lemma nneg-bdd-below|intro|:
nneg P => bdd-below (range P)
by (auto)

lemma nneg-const|iff]:
nneg (Ax.c) +— 0<c
by (simp add:nneg-def)

3.1. EXPECTATIONS 21

lemma nneg-olintro,simp|:
nneg P =—> nneg (P o f)
by (force)

lemma nneg-bound-nneg[introl:
[bounded P; nneg P | = 0 < bound-of P
by (blast intro:order-trans)

lemma nneg-bounded-by-nneg|dest):
[bounded-by b P; nneg P | = 0 < (b::real)
by (blast intro:order-trans)

lemma bounded-by-nneg[dest]:
fixes P::'s = real
shows [bounded-by b P; nneg P]| = 0 <b
by (blast intro:order-trans)

3.1.3 Sound Expectations

definition sound :: ('s = real) = bool
where sound P = bounded P N\ nneg P

Combining nneg and Expectations.bounded, we have sound expectations. We set
up the classical reasoner and the simplifier, such that showing soundess, or deriving
a simple consequence (e.g. sound P =—> 0 < P s) will usually follow by blast, force
or simp.

lemma soundl:

[bounded P; nneg P | = sound P
by (simp add:sound-def)

lemma soundI2]intro):
[bounded-by b P; nneg P | = sound P
by (blast intro:soundl)

lemma sound-bounded|dest):
sound P —> bounded P
by (simp add:sound-def)

lemma sound-nneg|dest|:
sound P —> nneg P
by (simp add:sound-def)

lemma bound-of-sound|intro]:
assumes sP: sound P
shows 0 < bound-of P
using assms by (auto)

This proof demonstrates the use of the classical reasoner (specifically blast), to

22 CHAPTER 3. SEMANTIC STRUCTURES

both introduce and eliminate soundness terms.

lemma sound-sum|[simp intro|:
assumes sP: sound P and sQ: sound Q
shows sound (As. Ps + Q' s)
proof
from sP have \s. P s < bound-of P by(blast)
moreover from sQ have As. O s < bound-of Q by(blast)
ultimately have As. P s + Q s < bound-of P + bound-of Q
by (rule add-mono)
thus bounded-by (bound-of P + bound-of Q) (As. Ps + Q's)
by (blast)

from sP have /\s. 0 < P s by(blast)
moreover from sQ have A\s. 0 < Q s by(blast)
ultimately have As. 0 < P s + Q s by(simp add:add-mono)
thus nneg (A\s. P s + Q s) by(blast)
qed

lemma mult-sound:
assumes sP: sound P and sQ: sound Q
shows sound (As. Ps x Q's)
proof
from sP have A\s. P s < bound-of P by(blast)
moreover from sQ have As. O s < bound-of Q by(blast)
ultimately have As. P s Q s < bound-of P * bound-of Q
using sP and sQ by(blast intro:mult-mono)
thus bounded-by (bound-of P x bound-of Q) (As. P s x Q s) by(blast)

from sP and sQ show nneg (As. P s * Q s)
by (blast intro:mult-nonneg-nonneg)
qed

lemma div-sound:
assumes sP: sound P and cpos: 0 < ¢
shows sound (As. Ps / ¢)
proof
from sP and cpos have As. Ps / ¢ < bound-of P / ¢
by (blast intro:divide-right-mono less-imp-le)
thus bounded-by (bound-of P / ¢) (As. Ps / ¢) by(blast)
from assms show nneg (As. Ps / ¢)
by (blast intro:divide-nonneg-pos)
qed

lemma tminus-sound:
assumes sP: sound P and nnc: 0 < ¢
shows sound (As. P s © ¢)
proof(rule soundl)
from sP have A\s. P s < bound-of P by(blast)
with nnc have A\s. P s © ¢ < bound-of P © ¢

3.1. EXPECTATIONS 23

by (blast intro:tminus-left-mono)
thus bounded (\s. P s © ¢) by(blast)
show nneg (As. P s © ¢) by(blast)
qed

lemma const-sound:
0 < ¢ = sound ()s. ¢)
by (blast)

lemma sound-olintro,simp:
sound P = sound (P o f)
unfolding o-def by(blast)

lemma sc-bounded-by[intro,simp]:
[sound P; 0 < ¢ | = bounded-by (c * bound-of P) (Ax. ¢ x P x)
by (blast introl:mult-left-mono)

lemma sc-bounded|intro,simp):
assumes sP: sound P and pos: 0 < ¢
shows bounded (M\x. ¢ * P x)
using assms by(blast)

lemma sc-bound|simp):
assumes sP: sound P
and cnn: 0 <c
shows ¢ x bound-of P = bound-of (M\x. ¢ * P x)
proof(cases ¢ = 0)
case True then show ?thesis by (simp)
next
case Fualse with cnn have cpos: 0 < ¢ by(auto)
show ?thesis
proof (rule antisym)
from sP and cnn have bounded (Ax. ¢ * P x) by(simp)
hence A\x. ¢ * P x < bound-of (Ax. ¢ * P x)
by (rule le-bound-of)
with cpos have Ax. P x < inverse ¢ x bound-of (Ax. ¢ x P x)
by (force intro:mult-div-mono-right)
hence bound-of P < inverse ¢ x bound-of (A\x. ¢ * P x)
by (blast)
with cpos show ¢ x bound-of P < bound-of (A\x. ¢ * P x)
by (force intro:mult-div-mono-left)
next
from sP and cpos have \x. ¢ x P x < ¢ * bound-of P
by (blast intro:mult-left-mono less-imp-le)
thus bound-of (Ax. ¢ * P x) < ¢ * bound-of P
by (blast)
qed
qed

24 CHAPTER 3. SEMANTIC STRUCTURES

lemma sc-sound:
[sound P; 0 < ¢]| = sound (As.c x Ps)
by (blast intro:mult-nonneg-nonneg)

lemma bounded-by-mult:
assumes sP: sound P and bP: bounded-by a P
and sQ: sound Q and bQ: bounded-by b Q
shows bounded-by (a x b) (As. Ps* Q s)
using assms by (intro bounded-byl, auto intro:mult-mono)

lemma bounded-by-add:
fixes P::’s = real and Q
assumes bP: bounded-by a P
and bQ: bounded-by b Q
shows bounded-by (a + b) (As. Ps+ Q's)
using assms by (intro bounded-byl, auto intro:add-mono)

lemma sound-unit[intro!,simp):
sound (Xs. 1)
by (auto)

lemma unit-mult|intro):
assumes sP: sound P and bP: bounded-by 1 P
and sQ: sound Q and bQ: bounded-by 1 Q
shows bounded-by 1 (As. P s * Q's)
proof(rule bounded-bylI)
fix s
have Psx Qs <1 x1
using assms by(blast dest:bounded-by-mult)
thus P s x Q s < I by(simp)
qed

lemma sum-sound:
assumes sP: Vx€S. sound (P x)
shows sound (As. " x€S. P xs)
proof(rule soundI2)
from sP show bounded-by (> x€S. bound-of (P x)) (As. > x€S. Pxs)
by (auto intro!:sum-mono)
from sP show nneg (A\s. > x€S. Px s)
by (auto intro!:sum-nonneg)
qed

3.1.4 Unitary expectations

A unitary expectation is a sound expectation that is additionally bounded by one.
This is the domain on which the liberal (partial correctness) semantics operates.

definition unitary :: 's expect = bool
where unitary P <— sound P A\ bounded-by 1 P

3.1. EXPECTATIONS 25

lemma unitaryl[intro):
[sound P; bounded-by 1 P | = unitary P
by (simp add:unitary-def’)

lemma unitaryl2:
[nneg P; bounded-by 1 P | = unitary P
by (auto)

lemma unitary-sound|dest]:
unitary P = sound P
by (simp add:unitary-def)

lemma unitary-bound|dest]:
unitary P —> bounded-by 1 P
by (simp add:unitary-def)

3.1.5 Standard Expectations

definition

embed-bool :: ('s = bool) = s = real (<« - »> 1000)
where

«P» = (As. if P s then 1 else 0)

Standard expectations are the embeddings of boolean predicates, mapping False to
0 and True to 1. We write « P » rather than [P] (the syntax employed by

[]) for boolean embedding to avoid clashing with the HOL syntax
for lists.

lemma embed-bool-nneg[simp,intro):
nneg «P»
unfolding embed-bool-def by (force)

lemma embed-bool-bounded-by-1[simp,intro]:
bounded-by 1 «P»
unfolding embed-bool-def by(force)

lemma embed-bool-bounded|[simp intro:
bounded «P»
by (blast)

Standard expectations have a number of convenient properties, which mostly fol-
low from boolean algebra.

lemma embed-bool-idem:
«P» s % «P» s =«P»s
by (simp add:embed-bool-def)

lemma eval-embed-true[simp):
Ps=— «P»s=1
by (simp add:embed-bool-def)

26 CHAPTER 3. SEMANTIC STRUCTURES

lemma eval-embed-false|simp):
“Ps=—= «P»s=0
by (simp add:embed-bool-def)

lemma embed-ge-0[simp ,intro:
0<«G»s
by (simp add:embed-bool-def)

lemma embed-le-1[simp,intro):
«G» s <]
by (simp add:embed-bool-def)

lemma embed-le-1-alt[simp,intro):
0<1—«G»s
by (subst add-le-cancel-right[where c=«G» s, symmetric|, simp)

lemma expect-1-1:
Px=—1<«P»x

by (simp)

lemma standard-sound|intro,simp):
sound «P»
by (blast)

lemma embed-o|simp]:
«P»of =«Pof»
unfolding embed-bool-def o-def by (simp)

Negating a predicate has the expected effect in its embedding as an expectation:

definition negate :: ('s = bool) = 's = bool (N>)
where negate P = (As. = Ps)

lemma negatel:
~Ps=NPs
by (simp add:negate-def’)

lemma embed-split:
fs=«P»sxfs—+ «N P» s xfs
by (simp add:negate-def embed-bool-def)

lemma negate-embed:
AN Prs=1—«P»s
by (simp add:embed-bool-def negate-def)

lemma eval-nembed-true[simp|:
Ps= «NPrs=0
by (simp add:embed-bool-def negate-def)

lemma eval-nembed-false[simp|:

3.1. EXPECTATIONS 27

—Ps= «N Prs=1
by (simp add:embed-bool-def negate-def)

lemma negate-Not|[simp]:
N Not = (\x. x)
by (simp add:negate-def)

lemma negate-negate[simp|:
NNP) =P
by (simp add:negate-def)

lemma embed-bool-cancel:
«G» sx «N G»s=0
by(cases G s, simp-all)

3.1.6 Entailment

Entailment on expectations is a generalisation of that on predicates, and is defined
by pointwise comparison:

abbreviation entails :: (s = real) = ('s = real) = bool («- & - 50)
where P-Q =P < Q

lemma entailsl|intro):
[Ns-Ps<QOs]=PFQ
by (simp add:le-funI)

lemma entailsD]dest]:
PHFO=—Ps<Qs
by (simp add:le-funD)

lemma eqg-entails|intro]:
P=0=PFQ
by (blast)

lemma entails-trans(trans):
[PFQ;QFR]=>PFR

by (blast intro:order-trans)

For standard expectations, both notions of entailment coincide. This result justifies
the above claim that our definition generalises predicate entailment:

lemma implies-entails:
[As-Ps= Qs] = «P» - «0O»
by (rule entailsl, case-tac P s, simp-all)

lemma entails-implies:
NAs. [«Pr - «O» Ps]= Qs

by (rule ccontr, drule-tac s=s in entailsD, simp)

28 CHAPTER 3. SEMANTIC STRUCTURES

3.1.7 Expectation Conjunction

definition
peonj :: real = real = real (infixl <.&> 71)
where

p&q=p+qol

definition
exp-conj :: (s = real) = ('s = real) = (s = real) (infixl «&&> 71)
where a && b= Xs. (as .& bs)

Expectation conjunction likewise generalises (boolean) predicate conjunction. We
show that the expected properties are preserved, and instantiate both the classical
reasoner, and the simplifier (in the case of associativity and commutativity).

lemma pconj-lzerolintro,simp:
b<I1=0.&b=0
by (simp add:pconj-def tminus-def’)

lemma pconj-rzerolintro,simp):
b<I=b.&ks0=0
by (simp add:pconj-def tminus-def’)

lemma pconj-lonelintro,simp|:
0<b=1.&b=0>
by (simp add:pconj-def tminus-def’)

lemma pconj-ronelintro,simp|:
0<b=b.&l=b
by (simp add:pconj-def tminus-def’)

lemma pconj-bconj:
«a» s & «b» s =«As.as ANbs»s
unfolding embed-bool-def pconj-def tminus-def by(force)

lemma pconj-comm[ac-simps|:
akb=>b.&ka
by (simp add:pconj-def ac-simps)

lemma pconj-assoc:
[0<a;a<1;0<b;b<1;0<c¢;c<I]]=
a.&(b.&c)=(a.kb).&c
unfolding pconj-def tminus-def by(simp)

lemma pconj-mono:
[a<b;c<d]=a.&c<b.&kd
unfolding pconj-def tminus-def by(simp)

lemma pconj-nneglintro,simp|:
0<a.kb

3.1. EXPECTATIONS 29

unfolding pconj-def tminus-def by (auto)

lemma min-pconj:
(minab) .& (mincd) <min (a .& ¢) (b .& d)
by(cases a < b,
(cases ¢ < d,
simp-all add:min.absorbl min.absorb2 pconj-mono)|],
(cases ¢ < d,
simp-all add:min.absorbl min.absorb2 pconj-mono))

lemma pconj-less-one[simp):
a+b<l=a.&b=0
unfolding pconj-def by(simp)

lemma pconj-ge-one[simp:
I1<a+b=alkb=a+b—-1
unfolding pconj-def by(simp)

lemma pconj-idem|[simp):
«P» s .& «P» s = «P» s
unfolding pconj-def by(cases P s, simp-all)

3.1.8 Rules Involving Conjunction.

lemma exp-conj-mono-left:
PHQ=— P&& Rt Q &&R
unfolding exp-conj-def pconj-def
by (auto intro:tminus-left-mono add-right-mono)

lemma exp-conj-mono-right:
OFR—P&& QF P &&R
unfolding exp-conj-def pconj-def
by (auto intro:tminus-left-mono add-left-mono)

lemma exp-conj-comm|ac-simps):
a&k&b=>b&&a
by (simp add:exp-conj-def ac-simps)

lemma exp-conj-bounded-bylintro,simp):
assumes bP: bounded-by 1 P
and bQ: bounded-by 1 Q
shows bounded-by 1 (P && Q)
proof(rule bounded-byl, unfold exp-conj-def pconj-def’)
fix x
from bP have P x < I by(blast)
moreover from »Q have Q x < I by(blast)
ultimately have P x + O x < 2 by(auto)
thusPx+Qxc 1<
unfolding tminus-def by (simp)

30 CHAPTER 3. SEMANTIC STRUCTURES

qed

lemma exp-conj-o-distrib[simp:
(P&&Q)of =(Pof)&&(Qof)
unfolding exp-conj-def o-def by(simp)

lemma exp-conj-assoc:
assumes unitary P and unitary Q and unitary R
shows P && (Q && R) = (P && Q) && R
unfolding exp-conj-def

proof(rule ext)
fix s
from assms have 0 < P s by(blast)
moreover from assms have 0 < Q s by(blast)
moreover from assms have 0 < R s by(blast)
moreover from assms have P s < I by(blast)
moreover from assms have Q s < I by(blast)
moreover from assms have R s < 1 by(blast)
ultimately
show Ps .& (Qs . & Rs)=(Ps.& Qs) .&Rs

by (simp add:pconj-assoc)
qed

lemma exp-conj-top-left[simp]:
sound P —> «\-. True» && P = P
unfolding exp-conj-def by(force)

lemma exp-conj-top-right|simp|:
sound P => P && «A-. True» = P
unfolding exp-conj-def by(force)

lemma exp-conj-idem[simp:
«P» && «P» = «P»
unfolding exp-conj-def
by (rule ext, cases P s, simp-all)

lemma exp-conj-nneg|intro,simp):
(As. 0) <P&& Q
unfolding exp-conj-def
by (blast intro:le-funl)

lemma exp-conj-sound|intro,simp):
assumes s-P: sound P
and s-Q: sound Q
shows sound (P && Q)
unfolding exp-conj-def
proof(rule soundl)

from s-P and s-Q have As. 0 < P s + Q s by(blast intro:add-nonneg-nonneg)

hence \s. Ps & Qs <Ps+ Qs

3.1. EXPECTATIONS 31

unfolding pconj-def by(force intro:tminus-less)

also from assms have As. ... s < bound-of P + bound-of Q
by (blast intro:add-mono)

finally have bounded-by (bound-of P + bound-of Q) (As. Ps .& Q's)
by (blast)

thus bounded (Xs. P s .& Q s) by(blast)

show nneg (As. Ps .& Q's)
unfolding pconj-def tminus-def by (force)
qed

lemma exp-conj-rzero[simp|:
bounded-by 1 P = P && (Xs. 0) = (As. 0)
unfolding exp-conj-def by(force)

lemma exp-conj-1-right[simp):

assumes nn: nneg A

shows A && (A-. 1) =A

unfolding exp-conj-def pconj-def tminus-def
proof(rule ext, simp)

fix s

from nn have 0 < A s by(blast)

thus max (A s) 0 = A s by(force)
qed

lemma exp-conj-std-split:
«As. P s A\ Q s» = «P» && «QO»
unfolding exp-conj-def embed-bool-def pconj-def
by (auto)

3.1.9 Rules Involving Entailment and Conjunction Together

Meta-conjunction distributes over expectaton entailment, becoming expectation
conjunction:

lemma entails-frame:
assumes ¢PR: P - R
and eQS: QS
shows P && O+ R && S
proof(rule le-funl)
fix s
from e¢PR have P s < R s by(blast)
moreover from ¢QS have Q s < S s by(blast)
ultimately have P s + Q s < R s + S s by(rule add-mono)
hence Ps + Qs © 1 <Rs+ Ss S Iby(rule tminus-left-mono)
thus (P && Q) s < (R&& S) s
unfolding exp-conj-def pconj-def .
qed

This rule allows something very much akin to a case distinction on the pre-expectation.

32 CHAPTER 3. SEMANTIC STRUCTURES

lemma pentails-cases:
assumes PQe: Ax. Pxt Qx
and exhaust: \s. Ix. P (xs)s=1
and framed: \x. Px && Rt Qx && S
and sR: sound R and sS: sound S
and bQ: A\x. bounded-by I (Q x)
shows R - S
proof(rule le-funl)
fix s
from exhaust obtain x where P-xs: P x s = 1 by(blast)
moreover {
hence / = P x s by(simp)
also from PQe have P x s < Q x s by(blast dest:le-funD)
finally have Q x s = 1
using bQ by(blast intro:antisym)
}
moreover note le-funD[OF framed|where x=x|, where x=s]
moreover from sR have 0 < R s by(blast)
moreover from sS have 0 < S s by(blast)
ultimately show R s < S s by(simp add:exp-conj-def)
qed

lemma unitary-bot[iff]:
unitary (As. 0::real)
by (auto)

lemma unitary-topliff]:
unitary (As. 1::real)
by (auto)

lemma unitary-embed|iff]:
unitary «P»
by (auto)

lemma unitary-const[iff]:
[0<c;c<1] = unitary (Xs.c)
by (auto)

lemma unitary-mult:
assumes uA: unitary A and uB: unitary B
shows unitary (As. A s x B s)
proof(intro unitaryI2 nnegl bounded-byl)
fix s
from assms have nnA: 0 < A s and nnB: 0 < B s by(auto)
thus 0 < A s x B s by(rule mult-nonneg-nonneg)
from assms have A s < I and B s < I by(auto)
with nnB have A s x B s < I * I by(intro mult-mono, auto)
also have ... = 1 by(simp)
finally showA s+« Bs < 1.

3.2. EXPECTATION TRANSFORMERS 33

qed

lemma exp-conj-unitary:
[unitary P; unitary Q | = unitary (P && Q)
by (intro unitaryl2 nnegl2, auto)

lemma unitary-comp[simp):
unitary P = unitary (P o f)
by (intro unitaryl2 nnegl bounded-byl, auto simp:o-def)

lemmas unitary-intros =
unitary-bot unitary-top unitary-embed unitary-mult exp-conj-unitary
unitary-comp unitary-const

lemmas sound-intros =
mult-sound div-sound const-sound sound-o sound-sum
tminus-sound sc-sound exp-conj-sound sum-sound

end

3.2 Expectation Transformers

theory Transformers imports Expectations begin type-synonym ’s trans = 's expect =
's expect

Transformers are functions from expectations to expectations i.e. (s = real) = s

= real.

The set of healthy transformers is the universe into which we place our seman-
tic interpretation of pGCL programs. In its standard presentation, the healthiness
condition for pGCL programs is sublinearity, for demonic programs, and super-
linearity for angelic programs. We extract a minimal core property, consisting of
monotonicity, feasibility and scaling to form our healthiness property, which holds
across all programs. The additional components of sublinearity are broken out
separately, and shown later. The two reasons for this are firstly to avoid the effort
of establishing sub-(super-)linearity globally, and to allow us to define primitives
whose sublinearity, and indeed healthiness, depend on context.

Consider again the automaton of Figure 3.1. Here, the effect of executing the
automaton from its initial state (a) until it reaches some final state (b or c¢) is to
transform the expectation on final states (P), into one on initial states, giving the
expected value of the function on termination. Here, the transformation is linear:
Prrior(a) = 0.7 % Ppogi(b) 4 0.3 % Ppogi(c), but this need not be the case.

Consider the automaton of Figure 3.2. Here, we have extended that of Figure 3.1
with two additional states, d and e, and a pair of silent (unlabelled) transitions.
From the initial state, e, this automaton is free to transition either to the original
starting state (a), and thence behave exactly as the previous automaton did, or to
d, which has the same set of available transitions, now with different probabilities.

34 CHAPTER 3. SEMANTIC STRUCTURES

©

0.7 0.5

a 0.3 0.5 @

Figure 3.2: A nondeterministic-probabilistic automaton.

©

Figure 3.3: A diverging automaton.

Where previously we could state that the automaton would terminate in state b with
probability 0.7 (and in ¢ with probability 0.3), this now depends on the outcome of
the nondeterministic transition from e to either a or d. The most we can now say is
that we must reach b with probability at least 0.5 (the minimum from either a or d)
and c with at least probability 0.3. Note that these probabilities do not sum to one
(although the sum will still always be less than one). The associated expectation
transformer is now sub-linear: Pyrior(€) = 0.5 % Pyost(b) + 0.3 % Poost(C).

Finally, Figure 3.3 shows the other way in which strict sublinearity arises: diver-
gence. This automaton transitions with probability 0.5 to state d, from which it
never escapes. Once there, the probability of reaching any terminating state is
zero, and thus the probabilty of terminating from the initial state (e) is no higher
than 0.5. If it instead takes the edge to state a, we again see a self loop, and thus
in theory an infinite trace. In this case, however, every time the automaton reaches
state a, with probability 0.5 4+ 0.3 = 0.8, it transitions to a terminating state. An
infinite trace of transitions a — a — ... thus has probability 0, and the automaton
terminates with probability 1. We formalise such probabilistic termination argu-

3.2. EXPECTATION TRANSFORMERS 35

ments in Section 4.11.

Having reached a, the automaton will proceed to b with probability 0.5 (1/(0.5+
0.3)) = 0.625, and to ¢ with probability 0.375. As a is in turn reached half the
time, the final probability of ending in b is 0.3125, and in ¢, 0.1875, which sum
to only 0.5. The remaining probability is that the automaton diverges via d. We
view nondeterminism and divergence demonically: we take the least probability of
reaching a given final state, and use it to calculate the expectation. Thus for this
automaton, Ppyrior(€) = 0.3125 % Ppost(b) + 0.1875 * Ppogt(c). The end result is the
same as for nondeterminism: a sublinear transformation (the weights sum to less
than one). The two outcomes are thus unified in the semantic interpretation, al-
though as we will establish in Section 4.6, the two have slightly different algebraic
properties.

This pattern holds for all pGCL programs: probabilistic choices are always linear,
while struct sublinearity is introduced both nondeterminism and divergence.

Healthiness, again, is the combination of three properties: feasibility, monotonicity
and scaling. Feasibility requires that a transformer take non-negative expectations
to non-negative expectations, and preserve bounds. Thus, starting with an expecta-
tion bounded between 0 and some bound, b, after applying any number of feasible
transformers, the result will still be bounded between 0 and b. This closure prop-
erty allows us to treat expectations almost as a complete lattice. Specifically, for
any b, the set of expectations bounded by b is a complete lattice (L = (As.0),
T = (As.b)), and is closed under the action of feasible transformers, including
M and LI, which are themselves feasible. We are thus able to define both least and
greatest fixed points on this set, and thus give semantics to recursive programs built
from feasible components.

3.2.1 Comparing Transformers

Transformers are compared pointwise, but only on sound expectations. From the
preorder so generated, we define equivalence by antisymmetry, giving a partial
order.

definition

le-trans :: s trans = s trans = bool
where

le-trans tu =V P. sound P — t P <u P

We also need to define relations restricted to unitary transformers, for the liberal
(wlp) semantics.

definition
le-utrans :: 's trans = s trans = bool
where
le-utrans t u «— (¥ P. unitary P — t P < u P)

lemma /e-transl|intro|:

36 CHAPTER 3. SEMANTIC STRUCTURES

[AP sound P =t P <uP] = le-trans tu
by (simp add:le-trans-def)

lemma le-utransl|intro|:
[\P. unitary P =t P <u P] = le-utrans tu
by (simp add:le-utrans-def)

lemma le-transD[dest]:
[le-trans t u; sound P —>tP <u P
by (simp add:le-trans-def)

lemma le-utransD[dest]:
[le-utrans t u; unitary P] =t P <u P
by (simp add:le-utrans-def)

lemma le-trans-trans(trans):
[le-trans x y; le-trans y 7 | = le-trans x 7
unfolding le-trans-def by(blast dest.order-trans)

lemma le-utrans-trans(trans:
[le-utrans x y; le-utrans y z | = le-utrans x z
unfolding le-utrans-def by(blast dest.order-trans)

lemma le-trans-refi[iff):
le-trans x x
by (simp add:le-trans-def)

lemma le-utrans-refl[iff]:
le-utrans x x
by (simp add:le-utrans-def)

lemma le-frans-le-utrans|dest|:
le-trans t u = le-utrans t u
unfolding le-trans-def le-utrans-def by (auto)

definition

I-trans :: 's trans = s trans = bool
where

I-trans t u <— le-trans t u N\ — le-trans u t

Transformer equivalence is induced by comparison:

definition

equiv-trans :: 's trans = 's trans = bool
where

equiv-trans t u <— le-trans t u N\ le-trans u t

definition
equiv-utrans :: 's trans = s trans = bool
where

3.2. EXPECTATION TRANSFORMERS 37

equiv-utrans t u <— le-utrans t u A le-utrans u t

lemma equiv-transl|intro|:
[AP. sound P =t P = u P | = equiv-trans t u
unfolding equiv-trans-def by(force)

lemma equiv-utransl|intro):
[AP. sound P =>t P = u P | = equiv-utrans t u
unfolding equiv-utrans-def by(force)

lemma equiv-transD[dest]:
[equiv-trans t u; sound P] —t P =u P
unfolding equiv-trans-def by (blast intro:antisym)

lemma equiv-utransD|dest):
[equiv-utrans t u; unitary P| =t P=u P
unfolding equiv-utrans-def by(blast intro:antisym)

lemma equiv-trans-refl[iff]:
equiv-trans t t
by (blast)

lemma equiv-utrans-refl[iff]:
equiv-utrans t t
by (blast)

lemma le-trans-antisym:
[le-trans x y; le-trans y x | = equiv-trans x y
unfolding equiv-trans-def by (simp)

lemma le-utrans-antisym:
[le-utrans x y; le-utrans y x | = equiv-utrans x y
unfolding equiv-utrans-def by(simp)

lemma equiv-trans-comm|ac-simps|:
equiv-trans t u <— equiv-trans u t
unfolding equiv-trans-def by (blast)

lemma equiv-utrans-comm[ac-simps):
equiv-utrans t u <— equiv-utrans u t
unfolding equiv-utrans-def by(blast)

lemma equiv-imp-le[intro:
equiv-trans t u = le-trans t u
unfolding equiv-trans-def by(clarify)

lemma equivu-imp-lelintro|:
equiv-utrans t u = le-utrans t u
unfolding equiv-utrans-def by(clarify)

38 CHAPTER 3. SEMANTIC STRUCTURES

lemma equiv-imp-le-alt:
equiv-trans t u = le-trans u t
by (force simp:ac-simps)

lemma equiv-uimp-le-alt:
equiv-utrans t u = le-utrans u t
by (force simp:ac-simps)

lemma le-trans-equiv-rsp|simp:
equiv-trans t u = le-trans t v <— le-trans u v
unfolding equiv-trans-def by(blast intro:le-trans-trans)

lemma le-utrans-equiv-rsp[simp|:
equiv-utrans t u = le-utrans t v <— le-utrans u v
unfolding equiv-utrans-def by(blast intro:le-utrans-trans)

lemma equiv-trans-le-trans(trans):
[equiv-trans t u; le-trans u v | = le-trans t v

by(simp)

lemma equiv-utrans-le-utrans(trans):
[equiv-utrans t u; le-utrans u v | = le-utrans t v
by (simp)

lemma le-trans-equiv-rsp-right|[simp):
equiv-trans t u = le-trans v t <— le-trans v u
unfolding equiv-trans-def by(blast intro:le-trans-trans)

lemma le-utrans-equiv-rsp-right[simp|:
equiv-utrans t u = le-utrans v t <— le-utrans v u
unfolding equiv-utrans-def by(blast intro:le-utrans-trans)

lemma le-trans-equiv-trans(trans):
[le-trans t u; equiv-trans u v | = le-trans t v

by(simp)

lemma le-utrans-equiv-utrans(trans):
[le-utrans t u; equiv-utrans u v | = le-utrans t v
by (simp)

lemma equiv-trans-trans|trans|:

assumes xy: equiv-trans x y
and yz: equiv-trans y z

shows equiv-trans x z

proof(rule le-trans-antisym)
from xy have le-trans x y by(blast)
also from yz have le-trans y z by(blast)
finally show le-trans x z .

3.2. EXPECTATION TRANSFORMERS 39

from yz have le-trans z y by(force simp:ac-simps)
also from xy have le-trans y x by(force simp:ac-simps)
finally show le-trans z x .

qed

lemma equiv-utrans-trans|trans):
assumes xy: equiv-utrans xy
and yz: equiv-utrans y z
shows equiv-utrans x z
proof(rule le-utrans-antisym)
from xy have le-utrans x y by(blast)
also from yz have le-utrans y z by(blast)
finally show le-utrans x z .
from yz have le-utrans z y by(force simp:ac-simps)
also from xy have le-utrans y x by(force simp:ac-simps)
finally show le-utrans z x .
qed

lemma equiv-trans-equiv-utrans|dest|:
equiv-trans t u = equiv-utrans t u
by (auto)

3.2.2 Healthy Transformers
Feasibility

definition feasible :: ((‘a = real) = (‘a = real)) = bool
where feasible t < (VP b. bounded-by b P \ nneg P —
bounded-by b (t P) A nneg (t P))

A feasible transformer preserves non-negativity, and bounds. A feasible trans-
former always takes its argument ‘closer to 0’ (or leaves it where it is). Note that
any particular value of the expectation may increase, but no element of the new
expectation may exceed any bound on the old. This is thus a relatively weak con-
dition.
lemma feasiblel[intro):

[Ab P. [bounded-by b P; nneg P | = bounded-by b (t P);

/D P. [bounded-by b P; nneg P | = nneg (t P) | = feasible t
by (force simp:feasible-def)

lemma feasible-boundedD|dest):
[feasible t; bounded-by b P; nneg P | = bounded-by b (t P)
by (simp add:feasible-def)

lemma feasible-nnegD|[dest):
[feasible t; bounded-by b P; nneg P | = nneg (¢ P)
by (simp add:feasible-def)

lemma feasible-sound|[dest]:

40 CHAPTER 3. SEMANTIC STRUCTURES

[feasible t; sound P | = sound (t P)
by (rule soundl, unfold sound-def, (blast)+)

lemma feasible-pr-O[simp]:
fixes 1::('s = real) = 's = real
assumes fi: feasible t
shows 7 (\x. 0) = (\x. 0)
proof(rule ext, rule antisym)
fix s

have bounded-by 0 (\-::'s. O::real) by (blast)
with ft have bounded-by 0 (t (A-. 0)) by(blast)
thus ¢ (A-. 0) s < 0 by(blast)

have nneg (\-::'s. 0::real) by(blast)
with f# have nneg (¢ (\-. 0)) by(blast)
thus 0 <7 (A-. 0) s by(blast)

qed

lemma feasible-id:
Seasible (\x. x)
unfolding feasible-def by (blast)

lemma feasible-bounded-by|dest):
[feasible t; sound P; bounded-by b P | = bounded-by b (t P)
by (auto)

lemma feasible-fixes-top:
feasible t =t (As. 1) < (As. (1::real))
by (drule bounded-byD2|OF feasible-bounded-by|, auto)

lemma feasible-fixes-bot:
assumes fi: feasible t
shows 7 (As. 0) = (As. 0)
proof(rule antisym)
have sb: sound ()\s. 0) by(auto)
with ft show (\s. 0) <1 ()\s. 0) by(auto)
thm bound-of-const
from sb have bounded-by (bound-of ()\s. O::real)) (As. 0) by(auto)
hence bounded-by 0 (Xs. 0::real) by (simp add:bound-of-const)
with fi have bounded-by 0 (t (\s. 0)) by(auto)
thus 7 (As. 0) < (As. 0) by(auto)
qed

lemma feasible-unitaryD[dest):
assumes ft: feasible t and uP: unitary P
shows unitary (t P)

proof(rule unitaryl)
from uP have sound P by(auto)

3.2. EXPECTATION TRANSFORMERS 41

with ft show sound (¢ P) by(auto)
from assms show bounded-by 1 (t P) by(auto)
qed

Monotonicity

definition
mono-trans :: (('s = real) = (s = real)) = bool
where
mono-trans t =Y P Q. (sound P N\ sound Q NP < Q) — tP <t Q

Monotonicity allows us to compose transformers, and thus model sequential com-
putation. Recall the definition of predicate entailment (Section 3.1.6) as less-than-
or-equal. The statement Q i ¢ R means that Q is everywhere below ¢ R. For stan-
dard expectations (Section 3.1.5), this simply means that Q implies t R, the weakest
precondition of R under ¢.

Given another, monotonic, transformer u, we have that u Q = u (¢ R), or that the
weakest precondition of Q under u entails that of R under the composition u o 7. If
we additionally know that P i~ u Q, then by transitivity we have P { u (1 R). We
thus derive a probabilistic form of the standard rule for sequential composition:
[mono-trans t; Pt-u Q; Q& t R = Pt u (tR).

lemma mono-transl|intro|:
[AP Q. [sound P; sound Q; P < Q | = t P <t Q] = mono-trans t
by (simp add:mono-trans-def)

lemma mono-transD|dest|:
[mono-trans t; sound P; sound Q; P < Q] =tP <tQ
by (simp add:mono-trans-def)

Scaling

A healthy transformer commutes with scaling by a non-negative constant.

definition
scaling :: (('s = real) = (s = real)) = bool
where
scalingt =VPcx.sound PNO<c—c*xtPx=t(M.cxPx)x

The scaling and feasibility properties together allow us to treat transformers as a
complete lattice, when operating on bounded expectations. The action of a trans-
former on such a bounded expectation is completely determined by its action on
unitary expectations (those bounded by 1): t P s = bound-of P x t (As. P s /
bound-of P) s. Feasibility in turn ensures that the lattice of unitary expectations is
closed under the action of a healthy transformer. We take advantage of this fact in
Section 3.3, in order to define the fixed points of healthy transformers.

lemma scalingl[intro):
[APcx. [sound P;0<c]=c*xtPx=1t(M\.c*Px)x] = scaling t

42 CHAPTER 3. SEMANTIC STRUCTURES

by (simp add:scaling-def)

lemma scalingD|dest|:
[scaling t; sound P;0 < c¢] = cxtPx=1t(MA.c*xPx)x
by (simp add:scaling-def’)

lemma right-scalingD:
assumes st: scaling t
and sP: sound P
and nnc: 0 < ¢
showstPsxc=t(As.Psx*c)s

proof —
have 7 P s x ¢ = ¢ x t P s by(simp add:algebra-simps)
also from assms have ... =t (As. ¢ * P s) s by(rule scalingD)

also have ... =1 (\s. P s * ¢) s by(simp add:algebra-simps)
finally show ?thesis .
qed

Healthiness

Healthy transformers are feasible and monotonic, and respect scaling

definition

healthy :: (('s = real) = ('s = real)) = bool
where

healthy t <— feasible t \ mono-trans t A\ scaling t

lemma healthyl[intro]:
[feasible t; mono-trans t; scaling t | = healthy t
by (simp add:healthy-def)

lemmas healthy-parts = healthyl|OF feasiblel mono-transl scalingl)

lemma healthy-monoDdest]:
healthy t => mono-trans t
by (simp add:healthy-def)

lemmas healthy-monoD2 = mono-transD[OF healthy-monoD]

lemma healthy-feasibleD|dest]:
healthy t = feasible t
by (simp add:healthy-def)

lemma healthy-scalingD|dest]:
healthy t = scaling t
by (simp add:healthy-def)

lemma healthy-bounded-byDlintro|:
[healthy t; bounded-by b P; nneg P | => bounded-by b (t P)
by (blast)

3.2. EXPECTATION TRANSFORMERS 43

lemma healthy-bounded-byD2:
[healthy t; bounded-by b P; sound P | = bounded-by b (t P)
by (blast)

lemma healthy-boundedD|dest,simp]:
[healthy t; sound P | = bounded (t P)
by (blast)

lemma healthy-nnegD|dest,simp):
[healthy t; sound P | = nneg (t P)
by (blast intro!:feasible-nnegD)

lemma healthy-nnegD2|dest,simp|:
[healthy t; bounded-by b P; nneg P | = nneg (t P)
by (blast)

lemma healthy-sound|intro):
[healthy t; sound P | = sound (t P)
by (rule soundl, blast, blast intro:feasible-nnegD)

lemma healthy-unitary[intro:
[healthy t; unitary P | = unitary (t P)
by (blast introl:unitaryl dest.unitary-bound healthy-bounded-byD)

lemma healthy-id[simpintro]:
healthy id
by (simp add:healthyl feasiblel mono-transl scalingl)

lemmas healthy-fixes-bot = feasible-fixes-bot|OF healthy-feasibleD]

Some additional results on le-trans, specific to healthy transformers.

lemma le-trans-bot|intro,simp|:
healthy t => le-trans (AP 5. 0) t
by (blast intro:le-funl)

lemma le-trans-top[intro,simp|:
healthy t = le-trans t (AP s. bound-of P)
by (blast intro!:le-transl|OF le-funl))

lemma healthy-pr-bot|[simp):
healthy t =>t (As. 0) = (Xs. 0)
by (blast intro:feasible-pr-0)

The first significant result is that healthiness is preserved by equivalence:

lemma healthy-equivl:
fixes t::('s = real) = 's = real and u
assumes equiv: equiv-transt u
and healthy: healthy t

44 CHAPTER 3. SEMANTIC STRUCTURES

shows healthy u
proof
have le-t-u: le-trans t u by (blast intro:equiv)
have le-u-t: le-trans u t by(simp add:equiv-imp-le ac-simps equiv)
from equiv have eq-u-t: equiv-trans u t by(simp add:ac-simps)

show feasible u
proof
fix b and P::'s = real
assume bP: bounded-by b P and nP: nneg P
hence sP: sound P by(blast)
with healthy have As. 0 <t P s by(blast)
also from sP and le-t-u have As. ... s < u P s by(blast)
finally show nneg (u P) by(blast)

from sP and le-u-t have As. u P s <t P s by(blast)
also from healthy and sP and bP have As. t P s < b by(blast)
finally show bounded-by b (u P) by(blast)

qed

show mono-trans u
proof
fix P::'s = real and Q::'s = real
assume sP: sound P and sQ: sound Q
and le: P+ Q
from sP and le-u-t have u Pt ¢ P by(blast)
also from sP and sQ and le and healthy have ¢ P t t Q by(blast)
also from sQ and le-t-u have r Q & u Q by(blast)
finally show u PHu Q.
qed

show scaling u
proof
fix P::'s = real and c::real and x::'s
assume sound: sound P
and pos: 0<c

hence bounded-by (c * bound-of P) (Ax. ¢ x P x)
by (blast intro!:mult-left-mono dest!:less-imp-le)

hence sc-bounded: bounded (\x. ¢ x P x)
by (blast)

moreover from sound and pos have sc-nneg: nneg (Ax. ¢ * P x)
by (blast intro:mult-nonneg-nonneg less-imp-le)

ultimately have sc-sound: sound (\x. ¢ * P x) by(blast)

showcxu Px=u(Mx.c*xPx)x
proof —
from sound have c x u Px=c*tPx
by (simp add:equiv-transD|OF eq-u-t])

3.2. EXPECTATION TRANSFORMERS 45

alsohave ... =7 (\x.cx Px) x
using healthy and sound and pos
by (blast intro: scalingD)

also from sc-sound and equiv have ... = u (Ax. ¢ * P x) x
by (blast intro:fun-cong)

finally show ’thesis .
qed
qed
qed

lemma healthy-equiv:
equiv-trans t u => healthy t <— healthy u
by (rule iff1, rule healthy-equivl, assumption+,
simp add:healthy-equivl ac-simps)

lemma healthy-scale:
fixes 1::('s = real) = 's = real
assumes ht: healthy t and nc: 0 < cand bc: ¢ < 1
shows healthy (AP s. ¢ %t P s)
proof
show feasible (AP s. c xt P s)
proof
fix b and P::'s = real
assume nnP: nneg P and bP: bounded-by b P

from it nnP bP have \\s. t P s < b by(blast)
with nc have As. ¢ x t P s < ¢ * b by(blast intro:mult-left-mono)
also {
from nnP and bP have 0 < b by(auto)
with bc have ¢ x b < I x b by(blast intro:mult-right-mono)
hence ¢ x b < b by(simp)

}
finally show bounded-by b (As. ¢ x t P s) by(blast)

from Az nnP bP have \s. 0 <t P s by(blast)
with nc have As. 0 < ¢ * t P s by(rule mult-nonneg-nonneg)
thus nneg (\s. ¢ * t P s) by(blast)
qed
show mono-trans (AP s. ¢ x t P s)
proof
fix P::’s = real and Q
assume sP: sound P and sQ: sound Q and le: P+~ Q
with /it have As. t P s <t Q s by(auto intro:le-funD)
with nc have As.cxtPs<cxtQs
by (blast intro:mult-left-mono)
thus As. ¢ xt P st As. ¢ x t Q s by(blast)

46 CHAPTER 3. SEMANTIC STRUCTURES

qed
from At show scaling (AP s.c xt P's)
by (auto simp:scalingD healthy-scalingD ht)
qed

lemma healthy-top|iff]:
healthy (AP s. bound-of P)
by (auto intro!:healthy-parts)

lemma healthy-bot[iff]:
healthy (AP s. 0)
by (auto intro!:healthy-parts)

This weaker healthiness condition is for the liberal (wlp) semantics. We only insist
that the transformer preserves unitarity (bounded by 1), and drop scaling (it is un-
necessary in establishing the lattice structure here, unlike for the strict semantics).

definition
nearly-healthy :: (('s = real) = ('s = real)) = bool
where
nearly-healthy t <— (¥ P. unitary P — unitary (t P)) N\
(VP Q. unitary P — unitary Q — P+ Q — t P11 Q)

lemma nearly-healthyl|intro):
[\P. unitary P = unitary (t P);
AP Q. [unitary P; unitary Q; P+ Q] =t P+t Q | = nearly-healthy t
by (simp add:nearly-healthy-def’)

lemma nearly-healtly-monoD|[dest):
[nearly-healthy t; P = Q; unitary P; unitary Q] =t P+t Q
by (simp add:nearly-healthy-def)

lemma nearly-healthy-unitaryD|[dest):
[nearly-healthy t; unitary P | = unitary (¢ P)
by (simp add:nearly-healthy-def)

lemma healthy-nearly-healthy[dest]:
assumes ht: healthy t
shows nearly-healthy t
by (intro nearly-healthyl, auto intro:mono-transD[OF healthy-monoD, OF hi] ht)

lemmas nearly-healthy-id[iff] =
healthy-nearly-healthy[|OF healthy-id, unfolded id-def]

3.2.3 Sublinearity

As already mentioned, the core healthiness property (aside from feasibility and
continuity) for transformers is sublinearity: The transformation of a quasi-linear
combination of sound expectations is greater than the same combination applied

3.2. EXPECTATION TRANSFORMERS 47

to the transformation of the expectations themselves. The term x © y represents
truncated subtraction i.e. max (x — y) O (see Section 4.13.1).

definition sublinear ::
(('s = real) = ('s = real)) = bool
where
sublineart +— (Vabc P Qs. (sound PN\ sound QNO<aANO<bAO<c)—
axtPs+bxtQsSc
<t(Asl.axPs'+bxQs'©c)s)

lemma sublinearl[intro:
[AabcPQs. | sound P; sound 0;0<a;0<b;0<c] =
axtPs+bxtQsoc<
t(AsaxPs'+bxQs ©c)s]| = sublinear t
by (simp add:sublinear-def)

lemma sublinearD|dest|:
[sublinear t; sound P; sound Q; 0 < a; 0 < b; 0 < ¢]| =
axtPs+bxtQsoc<
t(As".axPs'"+bxQs'©c)s
by (simp add:sublinear-def)

Itis easier to see the relevance of sublinearity by breaking it into several component
properties, as in the following sections.

Sub-additivity

definition sub-add ::
(('s = real) = ('s = real)) = bool
where
sub-add t <— (VP Q' s. (sound P A sound Q) —
tPs+tQs<t(As".Ps'+Qs’)s)

Sub-additivity, together with scaling (Section 3.2.2) gives the linear portion of sub-
linearity. Together, these two properties are equivalent to convexity, as Figure 3.4
illustrates by analogy.

Here P is an affine function (expectation) real = real, restricted to some finite
interval. In practice the state space (the left-hand type) is typically discrete and
multi-dimensional, but on the reals we have a convenient geometrical intuition.
The lines ¢t P and u P represent the effect of two healthy transformers (again affine).
Neither monotonicity nor scaling are represented, but both are feasible: Both lines
are bounded above by the greatest value of P.

The curve () is the pointwise minimum of ¢P and ¢, written ¢ P M tQ). This is,
not coincidentally, the syntax for a binary nondeterministic choice in pGCL: The
probability that some property is established by the choice between programs a
and b cannot be guaranteed to be any higher than either the probability under a, or
that under b.

48 CHAPTER 3. SEMANTIC STRUCTURES

Figure 3.4: A graphical depiction of sub-additivity as convexity.

The original curve, P, is trivially convex—it is linear. Also, both ¢ and u, and the
operator 'l preserve convexity. A probabilistic choice will also preserve it. The
preservation of convexity is a property of sub-additive transformers that respect
scaling. Note the form of the definition of convexity:

Q) + Qy)
2

r+y

< Q(5

)

vV, y.

Were we to replace () by some sub-additive transformer v, and x and y by expec-
tations R and .S, the equivalent expression:

vR+vS §U(R+S
2 2

)

Can be rewritten, using scaling, to:
1 1

Which holds everywhere exactly when v is sub-additive i.e.:

vR+vS <v(R+S)

lemma sub-addl[intro):
[AP Qs. [sound P; sound Q | =
tPs+tQs<t(M\s".Ps'+Qs')s] = sub-addt
by (simp add:sub-add-def)

lemma sub-addI2:

3.2. EXPECTATION TRANSFORMERS

[AP Q. [sound P; sound Q | =
As.tPs+tQstt(As. Ps+ Qs)] =

sub-add t

by (auto)

lemma sub-addD|dest):
[sub-add t; sound P; sound Q| = tPs+tQs<t(As".Ps'+Qs')s
by (simp add:sub-add-def)

lemma equiv-sub-add:
fixes 1::('s = real) = 's = real
assumes eq: equiv-trans t u
and sa: sub-add t
shows sub-add u
proof
fix P::'s = real and Q::'s = real and s::'s
assume sP: sound P and sQ: sound Q

witheqhave u Ps +uQs=tPs+1tQs
by (simp add:equiv-transD)

also from sP sQ sahave tPs+1tQs<t(As.Ps+Qs)s
by (auto)

also {
from sP sQ have sound (As. P s + Q s) by(auto)
with eq havet (A\s. Ps+ QO s)s=u (As.Ps+ QOs) s

by (simp add:equiv-transD)
}
finally showu Ps +u Qs <u(As.Ps+Qs)s.
qged

Sublinearity and feasibility imply sub-additivity.

lemma sublinear-subadd.:
fixes t::('s = real) = 's = real
assumes sit: sublinear t
and f: feasible t
shows sub-add t
proof
fix P::’s = real and Q::'s = real and s::'s
assume sP: sound P and sQ: sound Q

with ft have sound (¢ P) sound (t Q) by(auto)
hence 0 <P sand 0 <t Q s by(auto)
hence 0 <1 P s+ 1 Q s by(auto)

hence ... = ...& 0 by(simp)

also from sP sQ
have ... <t (As. Ps+ Q0s©0)s
by (rule sublinearD[OF slt, where a=1 and b=1 and ¢=0, simplified))

49

50 CHAPTER 3. SEMANTIC STRUCTURES

also {
from sP sQ have As. 0 < P sand As. 0 < Q s by(auto)
hence \s. 0 < P s+ Q s by(auto)
hencet (A\s. Ps+ Q56 0)s=t(As.Ps+Qs)s
by (simp)
}

finally show t P s +1Qs<t(As. Ps+ Q) s.
qed

A few properties following from sub-additivity:

lemma standard-negate:
assumes ht: healthy t
and sat: sub-add t
shows 1 «P» s + t «N P» s < |
proof —
from sat have 1 «P» s +t <N P» s <t (As. «P» s + «N P» s) s by(auto)
also have ... =7 (\s. 1) s by(simp add:negate-embed)
also {
from /it have bounded-by I (¢ (As. 1)) by(auto)
hence 7 (As. 1) s < 1 by(auto)
}
finally show ?thesis .
qed

lemma sub-add-sum:
fixes r::'s trans and S::'a set
assumes sat: sub-add t
and ht: healthy t
and sP: Ax. sound (P x)
shows (Ax. Y yeS. ¢t (Py)x) <t (M. Y yeS. Pyx)
proof(cases infinite S, simp-all add:ht)
assume fS: finite S
show ’thesis
proof(rule finite-induct|OF fS le-funl le-funl), simp-all)
fix s::'s
from £t have sound (¢ (\s. 0)) by(auto)
thus 0 <1 (\s. 0) s by(auto)

fix F::'a set and x::'a
assume [H: ha. Y yeF.t (Py)att (M. > yeF. Pyx)
hence s (Px) s+ (D yeF.t(Py)s) <
t(Px)s+t (M. Y yeF.Pyx)s

by (auto intro:add-left-mono)
also from sat sP
have ... <t (Axa. Pxxa+ (> yEF.Pyxa))s

by (auto introl:sub-addD|OF sat] sum-sound)
finally
show t (Px) s+ (D yeF.t(Py)s) <

3.2. EXPECTATION TRANSFORMERS 51

t(Axa.Pxxa+ (D yeF.Pyuxa))s.
qed
qed

lemma sub-add-guard-split:
fixes 7::s::finite trans and P::'s expect and s::'s
assumes sat: sub-add t
and ht: healthy t
and sP: sound P
shows (> ye{s.Gs}. Pyxt«dz.z=y»s)+
O-ye{s."Gs}. Pyxt«Az.z=y»s)<tPs
proof —
have {s. G s} N {s. =G s} = {} by(blast)
hence (> ye{s.Gs}. Pyxt«dz.z2=y»s)+
(3o ye{s. =Gs}. Pyxt«dz.z=y»s) =
Ooye({s.Gs}U{s.=Gs}).Pyxt«Az.2=y»s)
by (auto intro: sum.union-disjoint[symmetric))
also {
have {s. G s} U {s. =G s} = UNIV by (blast)
hence (D> _ye({s. Gs}U{s. 7Gs}). Py*xt«Az.2=y»s) =
(M. > y€UNIV. Pyt (Ax. «Az.2=y» x) x) §
by (simp)
}
also {
from sP have Ay. 0 < Py by(auto)
with healthy-scalingD[OF hi|
have (\x. > yeUNIV. Py xt (Ax. «A\z.2=y» x) x) s =
(M. Y yeUNIV.t (Ax. Py * «Az. 2=y» x) X) §
by (simp add:scalingD)
}
also {
from sat ht sP
have (Ax. > yeUNIV.t (Ax. Py x «Az.z=y» x) x) <
t ()\x. ZyEUN]V. Py*«Az.2=y» x)
by (intro sub-add-sum sound-intros, auto)
hence (Ax. > yeUNIV.t (Ax. Py «Az.2=y» x) x) s <
t (Ax. SSyEUNIV. Py x «\z. 7 = y» x) s by(auto)
}
also {
have rwi: (Ax. Y yeUNIV. Py x «Az.z2=y» x) =
(Ax. > yeUNIV. ify = x then Py else 0)
by (rule ext [OF sum.cong)) auto
also from sP have ... - P
by (cases finite (UNIV::'s set), auto simp:sum.delta)
finally have leP: Ax. > yeUNIV.Pyx«Az.z=y»x P.
moreover have sound (Ax. Y ,yeUNIV. Py % «Az. 2 = y» x)
proof(intro soundI2 bounded-byl nnegl sum-nonneg balll)
fix x
from leP have (> yeUNIV. Py x « A\z. 2=y » x) < P x by(auto)

52 CHAPTER 3. SEMANTIC STRUCTURES

also from sP have ... < bound-of P by(auto)
finally show (D" yeUNIV. Py * « Az. z =y » x) < bound-of P .
fix y
from sPshow 0 < Pyx « A z.2=y»x
by (auto intro:mult-nonneg-nonneg)
qed
ultimately have 7 (\x. > yeUNIV. Py« «A\z.z=y»x) s <tPs
using sP by(auto intro:le-funD[OF mono-transD, OF healthy-monoD, OF ht))
}
finally show ?thesis .
qed

Sub-distributivity

definition sub-distrib ::
(("s = real) = ('s = real)) = bool
where
sub-distrib t <— (VP s.sound P — tPs O 1<t(As'.Ps'©1)ys)

lemma sub-distribl[intro):
[APs.soundP=tPsc1<t(\s'.Ps'©1)s]| = sub-distribt
by (simp add:sub-distrib-def’)

lemma sub-distribl2:
[AP sound P = Xs.tPs© 1+t (As. Ps© 1)]| = sub-distrib t
by (auto)

lemma sub-distribD|[dest):
[sub-distrib t; sound P = tPs© 1<t (As’. Ps'O1)s
by (simp add:sub-distrib-def)

lemma equiv-sub-distrib:
fixes t::('s = real) = 's = real
assumes eq: equiv-trans t u

and sd: sub-distrib t

shows sub-distrib u

proof
fix P::'s = real and s::'s
assume sP: sound P

with eqghave u P s © 1 =1 P s © 1 by(simp add:equiv-transD)
also from sP sd have ... <7 (As. P s © 1) s by(auto)
also from sP eqhave ... =u (A\s. Ps S I) s
by (simp add:equiv-transD tminus-sound)
finally show u Pso 1 <u (As.Pso1)s.
qed

Sublinearity implies sub-distributivity:

lemma sublinear-sub-distrib:

3.2. EXPECTATION TRANSFORMERS 53

fixes 1::('s = real) = 's = real

assumes sit: sublinear t

shows sub-distrib t
proof

fix P::’s = real and s::'s

assume sP: sound P

moreover have sound (\-. 0) by(auto)

ultimately show rPs© I <t (A\s. PsS 1) s

by (rule sublinearD|OF slt, where a=1 and b=0 and c=1, simplified))

qed

Healthiness, sub-additivity and sub-distributivity imply sublinearity. This is how
we usually show sublinearity.

lemma sd-sa-sublinear:
fixes 1::('s = real) = 's = real
assumes sdt: sub-distrib t and sat: sub-add t and ht: healthy t
shows sublinear t
proof
fix P::'s = real and Q::'s = real and s::'s
and a::real and b::real and c::real
assume sP: sound P and sQ: sound Q
and nna: 0 < aand nnb: 0 < b and nnc: 0 < ¢

from ht sP sQ nna nnb
have saP: sound ()s. a P s) and staP: sound (As. a xt P s)
and sbQ: sound (As. b x Q s) and stbQ: sound (As. b *t Q s)
by (auto intro:sc-sound)
hence sabPQ: sound (A\s.a*xPs+bxQs)
and stabPQ: sound (As.axtPs+bx1Qs)
by (auto intro:sound-sum)

from At sP sQ nna nnb
haveaxtPs+bxtQs=t(As.axPs)s+1t(As.bxQs)s
by (simp add:scalingD healthy-scalingD)
also from saP sbQ sat
havet (As.axPs)s+t(As.bxQs)s<
t (As.a*xPs+bxQs)sby(blast)
finally
have notrm: a xtPs+bxtQs<t(As.axPs+bxQs)s.

showaxtPs+bxtQsoc<t(As"axPs'+bxQs'Oc)s
proof(cases ¢ = 0)
case True note z = this
from stabPQ have A\s. 0 < axtP s+ bxtQ sby(auto)
moreover from sabPQ
have A\s. 0 <ax P s+ bx Q sby(auto)
ultimately show ?thesis by (simp add:z notm)
next
case False note nz = this

54 CHAPTER 3. SEMANTIC STRUCTURES

from nz and nnc have nni: 0 < inverse ¢ by(auto)

have As. (inverse ¢ x a) * P s + (inverse ¢ x b) x Q s =
inversecx (a* Ps+DbxQs)
by (simp add: divide-simps)
with sabPQ and nni
have si: sound ()s. (inverse ¢ x a) x P s + (inverse ¢ * b) * Q s)
by (auto intro:sc-sound)
hence sim: sound (\s. (inverse ¢ x a) * P s + (inverse c x b) x Q s © 1)
by (auto intro!:tminus-sound)

from nz
haveaxtPs+bxtQsOSc=
(¢ xinversec) xaxtPs+
(¢ xinversec) xbxtQsOSc
by (simp)
also
have ... = ¢ (inverse c xa %t P s) +
cx (inversecxbxtQs) 6 c
by (simp add:field-simps)
also from nnc

have ... = ¢ x (inverse c x a x t P s + inversec x bx t Qs © 1)
by (simp add:distrib-left tminus-left-distrib)
also {

have X: A\s. (inverse c xa) xt P s + (inverse c x b) x t Q s =
inverse ¢ x (axt P s+ bxtQs)by(simp add: divide-simps)
also from nni and notm
have inverse c x (axtPs+bxtQs) <
inverse ¢ * (t (As.axPs+bx*Qs)s)
by (blast intro:mult-left-mono)
also from nni ht sabPQ
have ... =t (\s. (inverse ¢ x a) * P s + (inverse ¢ x b) x Q's) s
by (simp add:scalingD|OF healthy-scalingD, OF ht] algebra-simps)
finally
have (inverse ¢ x a) x t Ps + (inverse c xb) st Q s © 1 <
t (As. (inverse ¢ x a) * P s + (inverse c xb) * Q s) s © 1
by (rule tminus-left-mono)
also {
from sdt si
have ¢ (As. (inverse ¢ x a) x P s + (inverse c x b) * 0 5) s © 1 <
t (As. (inverse ¢ x a) x P s + (inversec *b) *x Qs © 1) s
by (blast)
}
finally
have ¢ * (inverse c x axt P s + inversec x bxt Qs © 1) <
c#t(Ns.inversecxaxPs+ inversecxbxQsS1)s
using nnc by (blast intro:mult-left-mono)

}

also from nnc ht sim

3.2. EXPECTATION TRANSFORMERS

have c * 1 (\s. inverse c xa* P s + inversecxbx Qs O 1) s
=1 (As. c* (inverse c xax P s+ inversecxbx Qs 1)) s
by (simp add:scalingD healthy-scalingD)
also from nnc
have ... =1 (As. ¢ x (inverse c x a x P s) +
cx (inversecxbx Qs)Sc) s
by (simp add:distrib-left tminus-left-distrib)

also have ... =t (\s. (¢ * inversec) xa* P s +
(c*inversec) *bxQsEc)s

by (simp add:field-simps)

finally

showaxtPs+bxtQsOc<t(As.axPs'+bxQs'©Oc)s
using nz by (simp)

qed
qed

Sub-conjunctivity

definition

sub-conj :: (('s = real) = 's = real) = bool
where

sub-conj t =Y P Q. (sound P \ sound Q) —

tP&&t Okt (P&& Q)

lemma sub-conjl|intro):
[AP Q. [sound P; sound Q | =
tP&&tQFt (P && Q)] = sub-conjt
unfolding sub-conj-def by(simp)

lemma sub-conjD|[dest):
[sub-conj t; sound P; sound Q]| =t P && t Q 1t (P && Q)
unfolding sub-conj-def by(simp)

lemma sub-conj-wp-twice:
fixes f::'s = (('s = real) = 's = real)
assumes all: V' s. sub-conj (f's)
shows sub-conj (AP s.fs Ps)
proof(rule sub-conjl, rule le-funl)
fix P::'s = real and Q::'s = real and s
assume sP: sound P and sQ: sound Q

have ((As. fs Ps) && (Ms.fs Qs))s=(fsP&&fs Q) s
by (simp add:exp-conj-def)
also {
from all have sub-conj (f s) by(blast)
with sP and sQ have (fs P && fs Q) s <fs (P && Q) s
by (blast)

}
finally show ((As. fs Ps) && (As.fs Q) s <fs(P&& Q) s.

56 CHAPTER 3. SEMANTIC STRUCTURES

qed

Sublinearity implies sub-conjunctivity:

lemma sublinear-sub-conj:

fixes 1::('s = real) = 's = real

assumes sit: sublinear t

shows sub-conj t
proof (rule sub-conjl, rule le-funl, unfold exp-conj-def pconj-def’)

fix P::’s = real and Q::'s = realand s::'s

assume sP: sound P and sQ: sound Q

thustPs+tQ0so1<t(As.Ps+QsSI)s

by (rule sublinearD|OF slit, where a=1 and b=1 and c=1, simplified])

qed

Sublinearity under equivalence

Sublinearity is preserved by equivalence.

lemma equiv-sublinear:
[equiv-trans t u; sublinear t; healthy t | = sublinear u
by (iprover intro:sd-sa-sublinear healthy-equivl
dest:equiv-sub-distrib equiv-sub-add
sublinear-sub-distrib sublinear-subadd
healthy-feasibleD)

3.2.4 Determinism

Transformers which are both additive, and maximal among those that satisfy fea-
sibility are deterministic, and will turn out to be maximal in the refinement order.

Additivity

Full additivity is not generally satisfied. It holds for (sub-)probabilistic transform-
ers however.

definition
additive :: (('a = real) = 'a = real) = bool
where
additive t =Y P Q. (sound P N\ sound Q) —
t(As.Ps+Qs)=(Ns.tPs+1Qs)

lemma additiveD:
[additive t; sound P; sound Q| =t (As. Ps+ Qs)=(As.tPs+1Qs)
by (simp add:additive-def)

lemma additivelintro]:
[AP Qs. [sound P; sound Q] =t (As. Ps+ Qs)s=tPs+tQ0s] =
additive t
unfolding additive-def by(blast)

3.2. EXPECTATION TRANSFORMERS 57

Additivity is strictly stronger than sub-additivity.

lemma additive-sub-add.:
additive t —> sub-add t
by (simp add:sub-addl additiveD)

The additivity property extends to finite summation.

lemma additive-sum:
fixes S::'s set
assumes additive: additive t
and healthy: healthy t
and finite: finite S
and sPz: Az. sound (P z)
shows ¢ (Ax. > yeS. Pyx) = (Ax. Y yeS. t (Py) x)
proof(rule finite-induct, simp-all add:assms)
fix z::’s and T::'s set
assume finT": finite T
and /H: t (\x. > yeT. Pyx) = (MAx. Y yeT. t (Py) x)

from additive sPz
havet (M. Pzx+ (D yeT.Pyx)) =
(M.t (Pz)x+ t (. Y yeT. Pyx) x)

by (auto intro!:sum-sound additiveD)

also from /H

have ... = (Ax.t (Pz) x+ (O yeT.t (Py) x))
by (simp)

finally show t (M\x. Pzx + (D yeT. Pyx)) =

(M.t (Pz)x+ (D_yeT. t(Py)x)).
qed

An additive transformer (over a finite state space) is linear: it is simply the weighted
sum of final expectation values, the weights being the probability of reaching a
given final state. This is useful for reasoning using the forward, or “gambling
game” interpretation.

lemma additive-delta-split:
fixes t::('s::finite = real) = 's = real
assumes additive: additive t
and ht: healthy t
and sP: sound P
showst Px = (D yeUNIV. Py *t «\z.2=y» X)
proof —
have Ax. (D yeUNIV. Py x «\z. 2=y» x) =
(3_yeUNIV. ify = x then P y else 0)
by (rule sum.cong) auto
also have Ax. ... x=Px
by (simp add:sum.delta)
finally
haverPx =t ()\x ZyGUNIV. Py*«Az.z=y» x) X
by (simp)

58 CHAPTER 3. SEMANTIC STRUCTURES

also {
from sP have A\z. sound (Aa. Pz x « \za. za = z7» a)
by (auto introl:mult-sound)
hence r (Ax. > yeUNIV. Py * «Az.z=y»x) x =
(3" yeUNIV. 1 (Ax. Py % «A\z. 2= y» X) X)
by (subst additive-sum, simp-all add:assms)
}
also from sP
have (> yeUNIV.t (Ax. Py % «\z. 2=y» x) X) =
(ZyEUNIV. Pyxt«\z.2=y»X)
by (subst scalingD|OF healthy-scalingD, OF ht], auto)
finally show ¢t Px = (> yeUNIV. Py «t « AZ. 2=y » X) .
qed

We can group the states in the linear form, to split on the value of a predicate
(guard).

lemma additive-guard-split:
fixes t::('s::finite = real) = 's = real
assumes additive: additive t
and ht: healthy t
and sP: sound P
showst Px= (D ye{s. Gs}.Pyxt«dz.z=y»x)+
Ooyef{s. ~Gs}.Pyxt«dz. z=y»x)
proof —
from assms
havet Px = (D yeUNIV.Pyxt «\z. 2= y» X)
by (rule additive-delta-split)
also {
have UNIV = {s. Gs} U {s. - G s}
by (auto)
hence (> yeUNIV. Py xt «Az.2=y» x) =
O ye{s.Gs}U{s. 7 Gs}. Py*t«hz.z=y»X)
by (simp)
}
also
have (> ye{s.Gs} U{s. " Gs}. Pyxt«dz.z=y»x) =
(O-yefls. Gs}.Py*xt«dz.z=y»x)+
(ZyE{S. -G s}. Pysxt«hz.z=1y» x)
by (auto intro:sum.union-disjoint)
finally show ?thesis .
qed

Maximality

definition

maximal :: (('a = real) = 'a = real) = bool
where

maximal t =Vc¢. 0 <c—t (M. ¢c) = (M. ¢)

3.2. EXPECTATION TRANSFORMERS 59

lemma maximallintro):
[Ac.0<c=1(I.¢c)=(\.c)] = maximal t
by (simp add:maximal-def)

lemma maximalD|[dest):
[maximalt; 0 <c] =t (M.c)=(A-.¢)
by (simp add:maximal-def)

A transformer that is both additive and maximal is deterministic:

definition determ :: (('a = real) = 'a = real) = bool
where
determ t = additive t \ maximal t

lemma determl[intro]:
[additive t; maximal t | = determ t
by (simp add:determ-def’)

lemma determ-additiveD|intro):
determ t = additive t
by (simp add:determ-def’)

lemma determ-maximalDlintro):
determ t = maximal t
by (simp add:determ-def’)

For a fully-deterministic transformer, a transformed standard expectation, and its
transformed negation are complementary.

lemma determ-negate:
assumes determ: determ t
shows t «P» s+t «N P» s =1
proof —
have 1 «P» s+t «N P» s =1 (As. «P» s + «N P»s) s
by (simp add:additiveD determ determ-additiveD)
also {
have /\s. «P» s+ «N P»s=1
by(case-tac P s, simp-all)
hence 7 (As. «P» s + «N P»s) =1 ()s. 1)
by (simp)
}
also have t (As. 1) = (As.)
by (simp add:maximalD determ determ-maximalD)
finally show ’thesis .
qed

3.2.5 Modular Reasoning

The emphasis of a mechanised logic is on automation, and letting the computer
tackle the large, uninteresting problems. However, as terms generally grow expo-

60 CHAPTER 3. SEMANTIC STRUCTURES

nentially in the size of a program, it is still essential to break up a proof and reason
in a modular fashion.

The following rules allow proof decomposition, and later will be incorporated into
a verification condition generator.

lemma entails-combine:
assumes wpl: Pt R
and wp2: Q¢S
and sc: sub-conj t
and sR: sound R
and sS: sound S
shows P && Ot 1 (R && S)
proof —
from wpl and wp2 have P && Ot tR && t S
by (blast intro:entails-frame)
also from sc and sR and sS have ... <1 (R && S)
by (rule sub-conjD)
finally show ?thesis .
qed

These allow mismatched results to be composed

lemma entails-strengthen-post:
[Pt t Q; healthy t; sound R; Q = R; sound Q| = P+t R
by (blast intro:entails-trans)

lemma entails-weaken-pre:
[QF R PHQ] = PHIR
by (blast intro:entails-trans)

This rule is unique to pGCL. Use it to scale the post-expectation of a rule to ’fit
under’ the precondition you need to satisfy.

lemma entails-scale:
assumes wp: P it Q and h: healthy t
and sQ: sound Q and pos: 0 < ¢
shows (As.cx Ps) 1 (As.cx Q)
proof(rule le-funl)
fix s
from posand wphavecx Ps<cxtQs
by (auto intro:mult-left-mono)
with sQ pos hshowcx Ps <t (As.cxQs)s
by (simp add:scalingD healthy-scalingD)
qed

3.2.6 Transforming Standard Expectations

Reasoning with standard expectations, those obtained by embedding a predicate,
is often easier, as the analogues of many familiar boolean rules hold in modified
form.

3.2. EXPECTATION TRANSFORMERS 61

One may use a standard pre-expectation as an assumption:

lemma use-premise:
assumes h: healthy t and wP: \s. Ps = 1 <t «Q» s
shows «P» -t «O»
proof(rule entailsI)
fix s show «P» s <t «Q» s
proof(cases P s)
case True with wP show ?thesis by(auto)
next
case Fulse with h show ?thesis by(auto)
qed
qed

The other direction works too.

lemma fold-premise:
assumes ht: healthy t
and wp: «P» -t «O»
showsVs. Ps — 1 <t «Q»s
proof(clarify)
fix s assume P s
hence / = «P» s by(simp)
also from wp have ... <7 «Q» s by(auto)
finally show / <7 «QO»s.
qed

Predicate conjunction behaves as expected:

lemma conj-post:
[Pt t«As. Qs ARs» healthyt] = Pt t «O»
by (blast intro:entails-strengthen-post implies-entails)

Similar to [healthy ?t; N\s. 2P s = 1 < 2t « 2Q » 5] = « ?P » = ?t « 2Q », but
more general.

lemma entails-pconj-assumption:
assumes f: feasible t and wP: \s. Ps = Qs <tRs
and uQ: unitary Q and uR: unitary R
shows «P» && QO+t R
unfolding exp-conj-def
proof(rule entailsI)
fix s show «P» s & Qs <tRs
proof(cases P s)
case True
moreover from uQ have 0 < Q s by(auto)
ultimately show ?thesis by (simp add:pconj-lone wP)
next
case False
moreover from uQ have Q s < I by(auto)
ultimately show ?thesis using assms by auto
qed

62 CHAPTER 3. SEMANTIC STRUCTURES

qed

end

3.3 Induction

theory Induction
imports Expectations Transformers
begin

3.3.1 The Lattice of Expectations

Defining recursive (or iterative) programs requires us to reason about fixed points

on the semantic objects, in this case expectations. The complication here, com-
pared to the standard Knaster-Tarski theorem (for example, as shown in HOL.Inductive),
is that we do not have a complete lattice.

Finding a lower bound is easy (it’s A-. 0), but as we do not insist on any global
bound on expectations (and work directly in HOL’s real type, rather than extending
it with a point at infinity), there is no top element. We solve the problem by defining
the least (greatest) fixed point, restricted to an internally-bounded set, allowing us
to substitute this bound for the top element. This works as long as the set contains
at least one fixed point, which appears as an extra assumption in all the theorems.

This also works semantically, thanks to the definition of healthiness. Given a
healthy transformer parameterised by some sound expectation: ¢. Imagine that we
wish to find the least fixed point of ¢ P. In practice, ¢ is generally doubly healthy,
that is V P. sound P — healthy (t P) and ¥ Q. sound Q — healthy (A\P. t P Q).
Thus by feasibility, ¢ P Q must be bounded by bound-of P. Thus, as by definition
x <t P x for any fixed point, all must lie in the set of sound expectations bounded
above by \-. bound-of P.

definition Inf-exp :: s expect set = 's expect
where Inf-exp S = (As. Inf {fs|f.f € S})

lemma Inf-exp-lower:
[Pe€S;VPES. nneg P| = Inf-exp S < P
unfolding /nf-exp-def
by (intro le-funl cInf-lower bdd-belowl[where m=0|, auto)

lemma Inf-exp-greatest:
[S#{};VPES.QO<P]= Q<InfexpS
unfolding Inf-exp-def by(auto intro!:le-funl[OF cInf-greatest))

definition Sup-exp :: s expect set = s expect
where Sup-exp S = (if S = {} then \s. 0 else (As. Sup {fs |f.f € S}))

lemma Sup-exp-upper:
[P € S;VPES. bounded-by b P | —> P < Sup-exp S

3.3. INDUCTION

unfolding Sup-exp-def

by (cases S={}, simp-all, intro le-funl cSup-upper bdd-abovel where M=b|, auto)

lemma Sup-exp-least:
[VPES. P < Q;nneg Q] = Sup-exp S < Q
unfolding Sup-exp-def
by (cases S={}, auto intro!:le-funl |OF cSup-least])

lemma Sup-exp-sound:
assumes sS: \P. P€S = sound P
and bS: \P. P€S = bounded-by b P
shows sound (Sup-exp S)
proof(cases S={}, simp add:Sup-exp-def, blast,
intro soundI2 bounded-byI2 nnegl2)
assume neS: S # {}
then obtain P where Pin: P € S by(auto)
with sS bS have nP: nneg P bounded-by b P by (auto)
hence nb: 0 < b by(auto)

from bS nb show Sup-exp S+ As. b
by (auto intro:Sup-exp-least)

from nP have \s. 0 = P by(auto)
also from Pin bS have P I Sup-exp S
by (auto intro:Sup-exp-upper)
finally show As. O+ Sup-exp S .
qed

definition [fp-exp :: 's trans = 's expect
where [fp-exp t = Inf-exp {P. sound P Nt P < P}

lemma [fp-exp-lowerbound:
[tP<P;sound P| = lfp-expt < P
unfolding [fp-exp-def by(auto intro:Inf-exp-lower)

lemma [fp-exp-greatest:

63

[AP.[tP < P;sound P]| = Q < P; sound Q; t RF R; sound R| = Q < lfp-exp t

unfolding [fp-exp-def by (auto intro:Inf-exp-greatest)

lemma feasible-Ifp-exp-sound:
feasible t = sound (Ilfp-exp t)

by (intro soundI2 bounded-bylI2 nnegl2, auto intro\:lfp-exp-lowerbound Ifp-exp-greatest)

lemma [fp-exp-sound:
assumes fR: ¢ R - R and sR: sound R
shows sound (Ifp-exp t)
proof(intro soundI2)
from fR sR have [fp-exp t + R
by (auto intro:lfp-exp-lowerbound)

64 CHAPTER 3. SEMANTIC STRUCTURES

also from sR have R + \s. bound-of R by (auto)

finally show bounded-by (bound-of R) (Ifp-exp t) by(auto)

from fR sR show nneg (Ifp-exp t) by(auto intro:lfp-exp-greatest)
qed

lemma [fp-exp-bound:
(A\P. unitary P = unitary (t P)) = bounded-by 1 (lfp-exp t)
by (auto intro!:lfp-exp-lowerbound)

lemma [fp-exp-unitary:
(A\P. unitary P = unitary (t P)) = unitary (Ifp-exp t)
proof(intro unitaryl [OF Ifp-exp-sound lfp-exp-bound), simp-all)
assume [H: \P. unitary P = unitary (t P)
have unitary (As. 1) by(auto)
with /H have unitary (¢t (As. 1)) by(auto)
thus 7 (\s. 1) F As. 1 by(auto)
show sound (As. I) by(auto)
qed

lemma [fp-exp-lemma2:
fixes r::'s trans
assumes st: \P. sound P = sound (t P)
and mt: mono-trans t
and fR: t R+ R and sR: sound R
shows 7 (Ifp-exp 1) < lfp-exp t
proof(rule lfp-exp-greatest|of t, OF - - fR sR))
from fR sR show sound (¢ (Ifp-exp t)) by(auto intro:lfp-exp-sound st)

fix P::'s expect
assume fP: ¢t P+ P and sP: sound P
hence Ifp-exp t & P by(rule Ifp-exp-lowerbound)
with fP sP have ¢ (Ifp-exp t) & t P by(auto intro:mono-transD]|OF mt| lfp-exp-sound)
also note fP
finally show ¢ (Ifp-expt) = P.
qed

lemma [fp-exp-lemma3:
assumes st: A\P. sound P = sound (t P)
and mt: mono-trans t
and fR: t R+ R and sR: sound R
shows Ilfp-exp t <t (Ifp-exp t)
by (iprover intro:Ilfp-exp-lowerbound lfp-exp-sound lfp-exp-lemma?2 assms
mono-transD|OF mt])

lemma [fp-exp-unfold:
assumes nt: \P. sound P => sound (t P)
and mt: mono-trans t
and fR: t R~ R and sR: sound R

shows [fp-exp t = 1 (Ifp-exp 1)

3.3. INDUCTION 65

by (iprover intro:antisym I[fp-exp-lemma? lfp-exp-lemma3 assms)

definition gfp-exp :: 's trans = 's expect
where gfp-exp t = Sup-exp {P. unitary P\ P <t P}

lemma gfp-exp-upperbound:
[P<tP;unitaryP]| = P < gfp-exp t
by (auto simp:gfp-exp-def intro:Sup-exp-upper)

lemma gfp-exp-least:
[AP. [P <tP;unitary P]| = P < Q; unitary Q | = gfp-expt < Q
unfolding gfp-exp-def by(auto intro:Sup-exp-least)

lemma gfp-exp-bound.:
(A\P. unitary P = unitary (t P)) = bounded-by 1 (gfp-exp t)
unfolding gfp-exp-def
by (rule bounded-byI2|OF Sup-exp-least], auto)

lemma gfp-exp-nneg[iff]:
nneg (gfp-exp 1)
proof(intro nnegl2, simp add:gfp-exp-def , cases)
assume empty: {P. unitary P APt t P} = {}
show As. O b Sup-exp {P. unitary P A P+ t P}
by (simp only:empty Sup-exp-def , auto)
next
assume {P. unitary P AN P+t P} # {}
then obtain Q where Qin: Q € {P. unitary P A\ P It P} by(auto)
hence \s. 0 = Q by(auto)
also from Qin have Q + Sup-exp {P. unitary P \ P } ¢ P}
by (auto intro:Sup-exp-upper)
finally show \s. O+ Sup-exp {P. unitary P\ Pt t P} .
qed

lemma gfp-exp-unitary:
(A\P. unitary P = unitary (t P)) = unitary (gfp-exp t)
by (iprover intro:gfp-exp-nneg gfp-exp-bound unitaryl2)

lemma gfp-exp-lemma2:
assumes ft: A\P. unitary P = unitary (t P)
and mr: \P Q. [unitary P; unitary Q; P+ Q| = tPFtQ
shows gfp-exp t <t (gfp-exp 1)
proof(rule gfp-exp-least)
show unitary (t (gfp-exp t)) by(auto intro:gfp-exp-unitary ft)
fix P
assume fp: P < t P and uP: unitary P
with fi have P < gfp-exp t by(auto intro:gfp-exp-upperbound)
with uP gfp-exp-unitary ft
have ¢ P < t (gfp-exp 1) by(blast intro: mt)
with fp show P < t (gfp-exp t) by(auto)

66 CHAPTER 3. SEMANTIC STRUCTURES

qed

lemma gfp-exp-lemma3:
assumes ft: A\P. unitary P => unitary (t P)
and mr: \P Q. [unitary P; unitary Q; P+ Q] = tPF1tQ
shows 7 (gfp-exp t) < gfp-exp t
by (iprover intro:gfp-exp-upperbound unitary-sound
gfp-exp-unitary gfp-exp-lemma2 assms)

lemma gfp-exp-unfold:

(A\P. unitary P => unitary (t P)) = (AP Q. [unitary P; unitary Q; P+ Q] =P}
Q) =

gfp-expt =t (gfp-exp t)

by (iprover intro:antisym gfp-exp-lemma2 gfp-exp-lemma3)

3.3.2 The Lattice of Transformers

In addition to fixed points on expectations, we also need to reason about fixed
points on expectation transformers. The interpretation of a recursive program in
pGCL is as a fixed point of a function from transformers to transformers. In con-
trast to the case of expectations, healthy transformers do form a complete lattice,
where the bottom element is A- -. 0, and the top element is the greatest allowed by
feasibility: AP -. bound-of P.

definition Inf-trans :: 's trans set = 's trans
where Inf-trans S = (\P. Inf-exp {t P |t.t € S})

lemma Inf-trans-lower:
[t€S;YueS. v P. sound P — sound (u P) | = le-trans (Inf-trans S) t
unfolding Inf-trans-def
by (rule le-transI[OF Inf-exp-lower], blast+)

lemma Inf-trans-greatest:
[S+#{}; VteS. VP. le-trans u t | = le-trans u (Inf-trans S)
unfolding Inf-trans-def by(auto intro\:le-transI|OF Inf-exp-greatest])

definition Sup-trans :: 's trans set = s trans
where Sup-trans S = (AP. Sup-exp {t P |t. t € S})

lemma Sup-trans-upper:
[t € S;YueS. vV P. unitary P — unitary (u P) | = le-utrans t (Sup-trans S)
unfolding Sup-trans-def
by (intro le-utransI|OF Sup-exp-upper)|, auto intro:unitary-bound)

lemma Sup-trans-upper2:
[t € S;Vues. VP. (nneg P A\ bounded-by b P) — (nneg (u P) A bounded-by b (u P));
nneg P; bounded-by b P| = t P\ Sup-trans S P
unfolding Sup-trans-def by (blast intro:Sup-exp-upper)

3.3. INDUCTION 67

lemma Sup-trans-least:
[Vt€S. le-utrans t u; \P. unitary P = unitary (u P) | = le-utrans (Sup-trans S) u
unfolding Sup-trans-def
by (auto intro!:sound-nneg|OF unitary-sound) le-utransI[OF Sup-exp-least))

lemma Sup-trans-least2:
[Vt€S. V P. nneg P — bounded-by b P — t Pt u P;
Y u€eS.V P. (nneg P A\ bounded-by b P) — (nneg (u P) A bounded-by b (u P));
nneg P; bounded-by b P; \P. | nneg P; bounded-by b P | = nneg (u P) | =
Sup-trans S P+ u P
unfolding Sup-trans-def by (blast intro!:Sup-exp-least)

lemma feasible-Sup-trans:
fixes S::'s trans set
assumes fS: V t€S. feasible t
shows feasible (Sup-trans S)
proof(cases S={}, simp add:Sup-trans-def Sup-exp-def, blast, intro feasiblel)
fix b::real and P::'s expect
assume bP: bounded-by b P and nP: nneg P
and neS: S # {}

from neS obtain ¢ where rin: t € S by(auto)
with /S have ft: feasible t by (auto)
with bP nP have As. 0 i~ ¢ P by(auto)
also {
from bP nP have sound P by(auto)
with zin fS have t P = Sup-trans S P
by (auto intro!:Sup-trans-upper2)

}
finally show nneg (Sup-trans S P) by (auto)

from fS bP nP
show bounded-by b (Sup-trans S P)
by (auto introl:bounded-byI2|OF Sup-trans-least2])
qed

definition [fp-trans :: ('s trans = 's trans) = s trans
where lfp-trans T = Inf-trans {t. (¥ P. sound P — sound (t P)) A le-trans (T't) t}

lemma [fp-trans-lowerbound:
[le-trans (T't) t; \P. sound P = sound (t P) | = le-trans (Ifp-trans T) t
unfolding [fp-trans-def
by (auto intro:Inf-trans-lower)

lemma [fp-trans-greatest:
[At P. [le-trans (T t) t; \P. sound P => sound (t P) | = le-trans u t;
N\P. sound P = sound (v P); le-trans (Tv) v] =
le-trans u (lfp-trans T)
unfolding [fp-trans-def by(rule Inf-trans-greatest, auto)

68 CHAPTER 3. SEMANTIC STRUCTURES

lemma [fp-trans-sound:
fixes P Q::'s expect
assumes sP: sound P
and fv: le-trans (T v) v
and sv: \P. sound P = sound (v P)
shows sound (Ifp-trans T P)
proof(intro soundI2 bounded-byI2 nnegl2)
from fv sv have le-trans (lfp-trans T) v
by (iprover intro:lfp-trans-lowerbound)
with sP have [fp-trans T P %~ v P by(auto)
also {
from sv sP have sound (v P) by(iprover)
hence v P = \s. bound-of (v P) by(auto)

}
finally show [fp-trans T Pt As. bound-of (v P) .

have le-trans (AP s. 0) (Ifp-trans T)
proof(intro lfp-trans-greatest)
fix t::'s trans
assume AP. sound P = sound (t P)
hence \P. sound P => \s. 0+ t P by(auto)
thus le-trans (AP s. 0) t by(auto)
next
fix P::'s expect
assume sound P thus sound (v P) by(rule sv)
next
show le-trans (T v) v by (rule fv)
qed
with sP show \s. 0 i Ifp-trans T P by(auto)
qed

lemma [fp-trans-unitary:
fixes P Q::'s expect
assumes uP: unitary P
and fv: le-trans (T v) v
and sv: AP. sound P = sound (v P)
and fT: le-trans (T (AP s. bound-of P)) (AP s. bound-of P)
shows unitary (Ifp-trans T P)
proof(rule unitaryl)
from unitary-sound[OF uP] fv sv show sound (Ifp-trans T P)
by (rule Ifp-trans-sound)

show bounded-by 1 (Ifp-trans T P)
proof(rule bounded-byl2)
from /T have le-trans (Ifp-trans T) (AP s. bound-of P)
by (auto intro: lfp-trans-lowerbound)
with uP have [fp-trans T P = As. bound-of P by(auto)
also from uP have ... = As. I by(auto)

3.3. INDUCTION 69

finally show [fp-trans TPt Xs. I .
qed
qed

lemma [fp-trans-lemma2:
fixes v::'s trans
assumes mono: A\t u. [le-trans t u; \P. sound P —> sound (t P);
NP. sound P => sound (u P) | = le-trans (T't) (T u)
and nT: At P. [AQ. sound Q = sound (t Q); sound P | = sound (T t P)
and fv: le-trans (Tv) v
and sv: AP. sound P => sound (v P)
shows le-trans (T (lfp-trans T)) (Ifp-trans T)
proof(rule lfp-trans-greatestjwhere T=T and v=v|, simp-all add:assms)
fix 7::'s trans and P::’s expect
assume ft: le-trans (T't) t and st: \P. sound P = sound (t P)
hence le-trans (lfp-trans T) t by(auto intro\:lfp-trans-lowerbound)
with ft st have le-trans (T (Ifp-trans T)) (T't)
by (iprover intro:mono Ifp-trans-sound fv sv)
also note ft
finally show le-trans (T (Ifp-trans T)) t .
qed

lemma [fp-trans-lemma3:
fixes v::'s trans
assumes mono: \t u. [le-trans t u; \P. sound P —> sound (t P);
AP sound P = sound (u P) | = le-trans (T't) (T u)
and sT: At P. [\Q. sound Q = sound (t Q); sound P | = sound (T t P)
and fv: le-trans (Tv) v
and sv: AP. sound P = sound (v P)
shows le-trans (Ifp-trans T) (T (Ifp-trans T))
proof(rule lfp-trans-lowerbound)
fix P::’s expect
assume sP: sound P
have nl: AP. sound P => sound (Ilfp-trans T P)
by (iprover intro:lfp-trans-sound fv sv)
with sP have n2: sound (Ifp-trans T P)
by (iprover intro:lfp-trans-sound fv sv sT)
with nl sP show n3: sound (T (Ifp-trans T) P)
by (iprover intro: sT)
next
show le-trans (T (T (lfp-trans T))) (T (lfp-trans T))
by (rule mono|OF Ifp-trans-lemma2, OF monol,
(iprover intro:assms lfp-trans-sound)+)
qed

lemma Ifp-trans-unfold:
fixes P::'s expect
assumes mono: \t u. [le-trans t u; \P. sound P => sound (t P);
NAP. sound P = sound (u P) | = le-trans (T't) (T u)

70 CHAPTER 3. SEMANTIC STRUCTURES

and sT: At P. [AQ. sound Q = sound (t Q); sound P | = sound (Tt P)
and fv: le-trans (Tv) v
and sv: AP. sound P => sound (v P)
shows equiv-trans (Ifp-trans T) (T (lfp-trans T))
by(rule le-trans-antisym,
rule lfp-trans-lemma3|OF mono), (iprover intro:assms)+,
rule lfp-trans-lemma2|OF monol, (iprover intro:assms)+)

definition gfp-rrans :: ('s trans = 's trans) = s trans
where gfp-trans T = Sup-trans {t. (¥ P. unitary P — unitary (t P)) N le-utrans t (T 1)}

lemma gfp-trans-upperbound:
[le-utrans t (T t); \P. unitary P = unitary (t P) | = le-utrans t (gfp-trans T)
unfolding gfp-trans-def by(auto intro:Sup-trans-upper)

lemma gfp-trans-least:
[At. [le-utrans t (T t); A\P. unitary P = unitary (t P) | = le-utrans t u;
\P. unitary P = unitary (u P) | =
le-utrans (gfp-trans T) u
unfolding gfp-trans-def by(auto intro:Sup-trans-least)

lemma gfp-trans-unitary:
fixes P::'s expect
assumes uP: unitary P
shows unitary (gfp-trans T P)
proof(intro unitaryl2 nnegl2 bounded-byI2)
show gfp-trans T P+ Xs. 1
unfolding gfp-trans-def Sup-trans-def
proof(rule Sup-exp-least, clarify)
fix t::'s trans
assume Y P. unitary P — unitary (t P)
with uP have unitary (¢t P) by(auto)
thus 7 P + As. 1 by(auto)
next
show nneg (\s. I::real) by(auto)
qed
let 7S = {t P |t. t € {t. (VY P. unitary P — unitary (t P)) N le-utrans t (T t)}}
show \s. Ot gfp-trans T P
unfolding gfp-trans-def Sup-trans-def
proof(cases)
assume empty: ?S = {}
show \s. 0t~ Sup-exp ?S
by (simp only:empty Sup-exp-def , auto)
next
assume S # {}
then obtain Q where Qin: Q € ?S by(auto)
with uP have unitary Q by(auto)
hence \s. 0 = Q by(auto)
also with uP Qin have Q I Sup-exp 7S

3.3. INDUCTION 71

proof(intro Sup-exp-upper, blast, clarify)
fix r::'s trans
assume V Q. unitary Q — unitary (t Q)
with uP show bounded-by 1 (t P) by(auto)

qed

finally show As. O - Sup-exp ?S .

qed
qed

lemma gfp-trans-lemma?2:
assumes mono: \t u. [le-utrans t u; \P. unitary P = unitary (¢ P);
NP. unitary P = unitary (u P) | = le-utrans (T t) (T u)
and hT: At P. [\Q. unitary Q = unitary (t Q); unitary P | => unitary (T t P)
shows le-utrans (gfp-trans T) (T (gfp-trans T))
proof(rule gfp-trans-least, simp-all add:hT gfp-trans-unitary)
fix
assume fp: le-utrans t (T t) and ht: A\P. unitary P = unitary (t P)

note fp
also {

from fp ht have le-utrans t (gfp-trans T)by(rule gfp-trans-upperbound)
moreover note ht gfp-trans-unitary
ultimately have le-utrans (T t) (T (gfp-trans T)) by(rule mono)
}
finally show le-utrans t (T (gfp-trans T)) .
qed

lemma gfp-trans-lemma3:
assumes mono: A\t u. [le-utrans t u; \P. unitary P = unitary (t P);
N\P. unitary P = unitary (u P) | = le-utrans (T t) (T u)
and hT: At P. [AQ. unitary Q = unitary (¢ Q); unitary P | = unitary (T t P)
shows le-utrans (T (gfp-trans T)) (gfp-trans T)
by (blast intro\:mono gfp-trans-unitary gfp-trans-upperbound gfp-trans-lemma2 mono
hT)

lemma gfp-trans-unfold:
assumes mono: \t u. [le-utrans t u; \P. unitary P = unitary (t P);
NP. unitary P = unitary (u P) | = le-utrans (T t) (T u)
and hT: At P. [\Q. unitary Q = unitary (¢ Q); unitary P | = unitary (T t P)
shows equiv-utrans (gfp-trans T) (T (gfp-trans T))
using assms by (auto intro!: le-utrans-antisym gfp-trans-lemma?2 gfp-trans-lemma3)

3.3.3 Tail Recursion

The least (greatest) fixed point of a tail-recursive expression on transformers is
equivalent (given appropriate side conditions) to the least (greatest) fixed point on
expectations.

lemma gfp-pulldown:

72 CHAPTER 3. SEMANTIC STRUCTURES

fixes P::'s expect
assumes tailcall: A\u P. unitaryP=—=TuP=1tP (uP)
and fT: Nt P. [NQ. unitary Q = unitary (t Q); unitary P | = unitary (T t P)
and f1: AP Q. unitary P — unitary Q = unitary (t P Q)
and mr: AP O R. [unitary P; unitary Q; unitary R; Q- R] = tP QO+t PR
and uP: unitary P
and monoT: A\t u. [le-utrans t u; \P. unitary P = unitary (t P);
NP. unitary P = unitary (u P) | = le-utrans (T t) (T u)
shows gfp-trans T P = gfp-exp (t P) (is 72X P = ?Y P)
proof(rule antisym)
show ?X P < ?Y P
proof(rule gfp-exp-upperbound)
from monoT fT uP have (gfp-trans T) P < (T (gfp-trans T)) P
by (auto intro!: le-utransD[OF gfp-trans-lemma?2))
also from uP have (T (gfp-trans T)) P =t P (gfp-trans T P) by(rule tailcall)
finally show gfp-trans T Pt t P (gfp-trans T P) .
from uP gfp-trans-unitary show unitary (gfp-trans T P) by (auto)
qed
show ?Y P < ?X P
proof(rule le-utransD|OF gfp-trans-upperbound), simp-all add:assms)
show le-utrans (\a. gfp-exp (t a)) (T (\a. gfp-exp (ta)))
proof(rule le-utransl)
fix Q::'s expect assume uQ: unitary Q
with ft have AR. unitary R => unitary (¢t Q R) by(auto)
with mt[OF uQ] have gfp-exp (1 Q) =t Q (gfp-exp (¢ Q)) by(blast intro:gfp-exp-unfold)
also from uQ have ... = T (\a. gfp-exp (t a)) Q by(rule tailcall[symmetric])
finally show gfp-exp (t Q) < T (Aa. gfp-exp (t a)) O by(simp)
qed
fix Q::'s expect assume unitary Q
with ft have A\R. unitary R = unitary (t Q R) by(auto)
thus unitary (gfp-exp (t Q)) by(rule gfp-exp-unitary)
qed
qed

lemma Ifp-pulldown:
fixes P::'s expect and t::'s expect = s trans
and T::'s trans = 's trans
assumes tailcall: A\u P. sound P—=Tu P =1tP (uP)
and sz: AP Q. sound P = sound Q = sound (¢t P Q)
and mt: A\P. sound P = mono-trans (t P)
and monoT: N\t u. [le-trans t u; \P. sound P = sound (t P);
AP sound P = sound (u P) | = le-trans (T't) (T u)
and nT: At P. [A\OQ. sound Q = sound (t Q); sound P | = sound (T t P)
and fv: le-trans (Tv) v
and sv: AP. sound P = sound (v P)
and sP: sound P
shows Ilfp-trans T P = lfp-exp (¢t P) (is ?X P = ?Y P)
proof(rule antisym)
show ?Y P < ?X P

3.3. INDUCTION 73

proof(rule lfp-exp-lowerbound)
from sP have ¢ P (Ifp-trans T P) = (T (Ifp-trans T)) P by(rule tailcall[symmetric])
also have (T (Ifp-trans T)) P < (lfp-trans T) P
by (rule le-transD|OF Ifp-trans-lemma2|OF monoT)], (iprover intro:assms)+)
finally show ¢ P (Ifp-trans T P) < Ifp-trans TP .
from sP show sound (lfp-trans T P)
by (iprover intro:lfp-trans-sound assms)
qed

have A\P. sound P =>t P (v P) = T'v P by(simp add:tailcall)

also have AP. sound P = ... P & v P by(auto intro:le-transD[OF fv])
finally have fvP: AP. sound P—tP (vP)F v P.

have svP: A\P. sound P = sound (v P) by(rule sv)

show ?X P < ?Y P
proof(rule le-transD[OF Ifp-trans-lowerbound, OF - - sP))
show le-trans (T (Aa. lfp-exp (t a))) (Aa. lfp-exp (t a))
proof(rule le-transI)
fix P::'s expect
assume sP: sound P

from sP have T (\a. lfp-exp (ta)) P =t P (lfp-exp (t P)) by(rule tailcall)
also have ¢ P (Ifp-exp (t P)) = lfp-exp (¢ P)
by (iprover intro: lfp-exp-unfold[symmetric] sP st mt fvP svP)

finally show T (\a. lfp-exp (t a)) Pt lfp-exp (¢t P) by(simp)

qed

fix P::'s expect

assume sound P

with fvP svP show sound (Ifp-exp (t P))
by (blast intro:lfp-exp-sound)

qed
qed

definition Inf-utrans :: s trans set = 's trans
where Inf-utrans S = (if S = {} then \P s. I else Inf-trans S)

lemma Inf-utrans-lower:
[t € S;VteS. VY P. unitary P — unitary (t P) | = le-utrans (Inf-utrans S) t
unfolding Inf-utrans-def
by(cases S={},
auto intro':le-utransl Inf-exp-lower sound-nneg unitary-sound
simp:Inf-trans-def)

lemma Inf-utrans-greatest:
[\P. unitary P = unitary (t P); Vu€S. le-utrans t u | = le-utrans t (Inf-utrans S)
unfolding Inf-utrans-def Inf-trans-def
by (cases S={}, simp-all, (blast intro!:le-utransl Inf-exp-greatest)+)

end

74

CHAPTER 3. SEMANTIC STRUCTURES

Chapter 4

The pGCL Language

4.1 A Shallow Embedding of pGCL in HOL

theory Embedding imports Misc Induction begin

4.1.1 Core Primitives and Syntax

A pGCL program is embedded directly as its strict or liberal transformer. This
is achieved with an additional parameter, specifying which semantics should be
obeyed.

type-synonym s prog = bool = ('s = real) = (s = real)

Abort either always fails, AP s. 0, or always succeeds, AP s. I.

definition Abort :: 's prog
where Abort = \ab P s. if ab then 0 else 1

Skip does nothing at all.

definition Skip :: 's prog
where Skip = Xab P. P

Apply lifts a state transformer into the space of programs.

definition Apply :: ('s = 's) = 's prog
where Applyf=XabPs. P (fs)

Seq is sequential composition.

definition Seq :: 's prog = 's prog = 's prog
(infixl ;> 59)
where Seqab = (\ab.aabob ab)
PC is probabilistic choice between programs.
definition PC :: s prog = (s = real) = 's prog = 's prog
(- . - [58,57,57] 57)

75

76 CHAPTER 4. THE PGCL LANGUAGE

where PCaPb=MXabQs.PsxaabQs+ (I —Ps)xbabQs

DC is demonic choice between programs.

definition DC :: 's prog = 's prog = s prog («-[| - [58,57] 57)
where DCab=MXabQs.min(aabQs) (babQs)

AC is angelic choice between programs.

definition AC :: s prog = s prog = 's prog («<- || - [58,57] 57)
where ACab=MXabQs.max(aabQs) (babQs)

Embed allows any expectation transformer to be treated syntactically as a program,
by ignoring the failure flag.

definition Embed :: 's trans = 's prog
where Embed t = (\ab. 1)

Mu is the recursive primitive, and is either then least or greatest fixed point.

definition Mu :: ('s prog = 's prog) = 's prog (binder <«u> 50)
where Mu(T) = (\ab. if ab then lfp-trans (M\t. T (Embed t) ab)
else gfp-trans (A\t. T (Embed t) ab))

repeat expresses finite repetition

primrec

repeat :: nat = 'a prog = 'a prog
where

repeat 0 p = Skip |

repeat (Suc n) p =p ;; repeat n p

SetDC is demonic choice between a set of alternatives, which may depend on the
state.

definition SetDC :: (‘a = s prog) = ('s = 'a set) = 's prog
where SetDC fS = Xab Ps. Inf (Aa.faab Ps) ‘Ss)

syntax -SetDC :: ptirn => ('s => 'a set) => 's prog => 's prog

({1-€-./ - 100)
syntax-consts -SetDC == SetDC
translations [|x€S. p == CONST SetDC (%x. p) S

The above syntax allows us to write [|x€S. Apply f

SetPC is probabilistic choice from a set. Note that this is only meaningful for
distributions of finite support.

definition

SetPC :: ('a = 's prog) = ('s = 'a = real) = 's prog
where

SetPCfp=MXabPs.> acsupp (ps).psa*xfaabPs

Bind allows us to name an expression in the current state, and re-use it later.

4.1. A SHALLOW EMBEDDING OF PGCL IN HOL 77

definition
Bind :: ('s = 'a) = (‘a = 's prog) = 's prog
where
Bindgfab=MPs.leta=gsinfaabPs

This gives us something like let syntax

syntax -Bind :: pttrn => ('s => 'a) => s prog => 's prog
(- is - in - [55,55,55]55)

syntax-consts -Bind == Bind

translations x is f in a => CONST Bind f (%x. a)

definition flip :: ('la= b= "c)= b= "a="c
where [simp): flip f = (\b a.fab)

The following pair of translations introduce let-style syntax for SetPC and SetDC,
respectively.

syntax -PBind :: pttrn => (s => real) => 's prog => 's prog
(<bind - at - in > [55,55,55]55)
syntax-consts -PBind == SetPC
translations bind x at p in a => CONST SetPC (%x. a) (CONST flip (%x. p))

syntax -DBind :: pttrn => (s => 'a set) = 's prog => s prog
(<bind - from - in - [55,55,55]55)

syntax-consts -DBind == SetDC

translations bind x from S in a => CONST SetDC (%x. a) S

The following syntax translations are for convenience when using a record as the
state type.

syntax
-assign :: ident => 'a => 's prog («- := - [1000,900]900)
ML «
fun assign-tr - [Const (name,-), arg] =
Const (Embedding Apply, dummyT) $
Abs (s, dummyT,
Syntax.const (suffix Record.updateN name) $
Abs (Name.uu-, dummyT , arg $ Bound 1) $ Bound 0)
| assign-tr - ts = raise TERM (assign-tr, ts)
>

parse-translation <[(Q{syntax-const -assign}, assign-tr))>

syntax

-SetPC :: ident => ('s => 'a => real) => 's prog

(<choose - at -> [66,66]66)

syntax-consts

-SetPC = SetPC
ML «

fun set-pc-tr - [Const (f,-), P] =

Const (SetPC, dummyT) $

78 CHAPTER 4. THE PGCL LANGUAGE

Abs (v, dummyT,
(Const (Embedding Apply, dummyT) $
Abs (s, dummyT,
Syntax.const (suffix Record.updateN f) $
Abs (Name.uu-, dummyT, Bound 2) $ Bound 0))) $
P
| set-pc-tr - ts = raise TERM (set-pc-tr, ts)
>
parse-translation <[(Q{syntax-const -SetPC}, set-pc-tr)]>

syntax
-set-dc :: ident => ('s => 'a set) => 's prog (« :€ -> [66,66]66)
syntax-consts
-set-dc = SetDC
ML «
fun set-de-tr - [Const (f,-),] =
Const (SetDC, dummyT) $
Abs (v, dummyT,
(Const (Embedding.Apply, dummyT) $
Abs (s, dummyT,
Syntax.const (suffix Record.updateN f) $
Abs (Name.uu-, dummyT , Bound 2) $ Bound 0))) $
S
| set-dc-tr - ts = raise TERM (set-dc-tr, ts)
>
parse-translation <[(Q{synrax-const -set-dc}, set-dc-tr)]>

These definitions instantiate the embedding as either weakest precondition (True)
or weakest liberal precondition (False).

syntax

-set-dc-UNIV :: ident => 's prog (<any -> [66]66)
syntax-consts

-set-dc-UNIV == SetDC
translations

-set-dc-UNIV x => -set-dc x (%-. CONST UNIV)

definition

wp :: s prog = 's trans
where

wp pr = pr True

definition

wlp :: 's prog = 's trans
where

wlp pr = pr False

If-Then-Else as a degenerate probabilistic choice.

abbreviation(inpur)
if-then-else :: ['s = bool, 's prog, 's prog|] = 's prog

4.1. A SHALLOW EMBEDDING OF PGCL IN HOL

(dIf - Then - Else -> 58)
where
If PThen a Else b ==a p,® b

Syntax for loops

abbreviation
do-while :: ['s = bool, 's prog] = 's prog
(do-—/](4-) []od)
where

do-while P a = p x. If P Then a ;; x Else Skip

4.1.2 Unfolding rules for non-recursive primitives

lemma eval-wp-Abort:
wp Abort P = (As. 0)
unfolding wp-def Abort-def by (simp)

lemma eval-wip-Abort:
wip Abort P = ()As. 1)
unfolding wip-def Abort-def by(simp)

lemma eval-wp-Skip:
wp Skip P =P
unfolding wp-def Skip-def by (simp)

lemma eval-wilp-Skip:
wlp Skip P = P
unfolding wip-def Skip-def by (simp)

lemma eval-wp-Apply:

wp (Apply f) P=Pof
unfolding wp-def Apply-def by(simp add:o-def)

lemma eval-wip-Apply:

wip (Apply f) P=Pof
unfolding wip-def Apply-def by(simp add:o-def)

lemma eval-wp-Seq:
wp (a;;b) P=(wpaowpb) P
unfolding wp-def Seq-def by (simp)

lemma eval-wlp-Seq:
wip (a;;b) P= (wipaowlpb) P
unfolding wip-def Seq-def by (simp)

lemma eval-wp-PC:
wp(ag®b)P=(Xs.Qs*xwpaPs+ (I —Qs)xwpbPs)
unfolding wp-def PC-def by (simp)

79

80 CHAPTER 4. THE PGCL LANGUAGE

lemma eval-wip-PC:
wip (a 9 b) P=(Xs. Qs*wlpaPs+ (1 —Qs) xwipbPs)
unfolding wip-def PC-def by (simp)

lemma eval-wp-DC:
wp (a[] b)P=(As.min(wpaPs)(wpbPs))
unfolding wp-def DC-def by (simp)

lemma eval-wip-DC:
wip (a[] b) P= (As. min (wipa P s) (wip b P s))
unfolding wip-def DC-def by (simp)

lemma eval-wp-AC:
wp (a| | b) P= (As.max (wpaPs) (wpbPs))
unfolding wp-def AC-def by(simp)

lemma eval-wip-AC:
wip (a || b) P = (\s. max (wlpa P s) (wlp b Ps))
unfolding wip-def AC-def by(simp)

lemma eval-wp-Embed:
wp (Embed t) =t
unfolding wp-def Embed-def by (simp)

lemma eval-wilp-Embed:
wip (Embed t) = t
unfolding wip-def Embed-def by(simp)

lemma eval-wp-SetDC:
wp (SetDCp S) Rs =Inf (Aa.wp (pa) Rs) ‘S's)
unfolding wp-def SetDC-def by(simp)

lemma eval-wlp-SetDC:
wip (SetDCp S)R s = Inf (Aa.wilp (pa) Rs) “S's)
unfolding wip-def SetDC-def by (simp)

lemma eval-wp-SetPC:

wp (SetPCfp) P= (As. > acsupp (ps).psaxwp (fa) Ps)
unfolding wp-def SetPC-def by(simp)

lemma eval-wlp-SetPC:

wip (SetPCfp) P = (Xs. Y acsupp (ps).psa*wlp (fa) Ps)
unfolding wip-def SetPC-def by(simp)

lemma eval-wp-Mu:
wp (ut. T't) = lfp-trans (A\t. wp (T (Embed t)))
unfolding wp-def Mu-def by(simp)

lemma eval-wip-Mu:

4.2. HEALTHINESS 81

wip (pt. T't) = gfp-trans (At. wip (T (Embed t)))
unfolding wip-def Mu-def by (simp)

lemma eval-wp-Bind.:

wp (Bind gf) = (AP s.wp (f (gs)) Ps)
unfolding Bind-def wp-def Let-def by(simp)

lemma eval-wip-Bind:

wip (Bind gf) = (AP s.wip (f (gs)) Ps)
unfolding Bind-def wip-def Let-def by(simp)

Use simp add:wp_eval to fully unfold a program fragment

lemmas wp-eval = eval-wp-Abort eval-wlp-Abort eval-wp-Skip eval-wlp-Skip
eval-wp-Apply eval-wlp-Apply eval-wp-Seq eval-wlp-Seq
eval-wp-PC eval-wlp-PC eval-wp-DC eval-wlp-DC
eval-wp-AC eval-wilp-AC
eval-wp-Embed eval-wlp-Embed eval-wp-SetDC eval-wip-SetDC
eval-wp-SetPC eval-wlp-SetPC eval-wp-Mu eval-wlp-Mu
eval-wp-Bind eval-wlp-Bind

lemma Skip-Seq:
Skip ;A=A
unfolding Skip-def Seq-def o-def by(rule refl)

lemma Seq-Skip:

A;; Skip=A

unfolding Skip-def Seq-def o-def by(rule refl)
Use these as simp rules to clear out Skips

lemmas skip-simps = Skip-Seq Seq-Skip

end

4.2 Healthiness

theory Healthiness imports Embedding begin

4.2.1 The Healthiness of the Embedding

Healthiness is mostly derived by structural induction using the simplifier. Abort,
Skip and Apply form base cases.

lemma healthy-wp-Abort:
healthy (wp Abort)
proof(rule healthy-parts)
fix b and P::'a = real
assume nP: nneg P and bP: bounded-by b P
thus bounded-by b (wp Abort P)

82 CHAPTER 4. THE PGCL LANGUAGE

unfolding wp-eval by (blast)
show nneg (wp Abort P)
unfolding wp-eval by(blast)
next
fix P Q::'a expect
show wp Abort P = wp Abort Q
unfolding wp-eval by(blast)
next
fix P and ¢ and s::a
show ¢ « wp Abort P s = wp Abort (As. c x Ps) s
unfolding wp-eval by (auto)
qed

lemma nearly-healthy-wlp-Abort:
nearly-healthy (wlp Abort)
proof(rule nearly-healthyl)
fix P::'s = real
show unitary (wlp Abort P)
by (simp add:wp-eval)
next
fix P Q :: 's expect
assume P - Q and unitary P and unitary Q
thus wip Abort P = wip Abort Q
unfolding wp-eval by(blast)
qed

lemma healthy-wp-Skip:
healthy (wp Skip)
by (force intro':healthy-parts simp:wp-eval)

lemma nearly-healthy-wip-Skip:
nearly-healthy (wip Skip)
by (auto simp:wp-eval)

lemma healthy-wp-Seq:
fixes r::'s prog and u
assumes ht: healthy (wp t) and hu: healthy (wp u)
shows healthy (wp (t ;; u))
proof(rule healthy-parts, simp-all add:wp-eval)
fix b and P::'s = real
assume bounded-by b P and nneg P
with hu have bounded-by b (wp u P) and nneg (wp u P) by(auto)
with At show bounded-by b (wp t (wp u P))
and nneg (wp t (wp u P)) by(auto)
next
fix P::’s = real and Q
assume sound P and sound Q and P~ Q
with hu have sound (wp u P) and sound (wp u Q)
and wp u P + wp u Q by(auto)

4.2. HEALTHINESS 83

with At show wp ¢ (wp u P) = wp t (wp u Q) by(auto)
next
fix P::'s = real and c::real and s
assume pos: 0 < ¢ and sP: sound P
with /7 and hu have c x wp t (wpu P)s=wpt (As.cxwpuPs)s
by (auto introl:scalingD)
also with /u and pos and sP have ... = wp t (wpu (As. c x Ps)) s
by (simp add:scalingD[OF healthy-scalingD])
finally show ¢ x wpt (wpu P)s=wpt (wpu (As.cxPs))s.
qed

lemma nearly-healthy-wlp-Seq:
fixes 1::'s prog and u
assumes ht: nearly-healthy (wlp t) and hu: nearly-healthy (wlp u)
shows nearly-healthy (wip (t ;; u))
proof(rule nearly-healthyl, simp-all add:wp-eval)
fix b and P::'s = real
assume unitary P
with hu have unitary (wlp u P) by(auto)
with &t show unitary (wip t (wlp u P)) by(auto)
next
fix P Q::'s = real
assume unitary P and unitary Q and P Q
with i have unitary (wlp u P) and unitary (wilp u Q)
and wip u P+ wip u Q by(auto)
with £z show wip t (wlp u P) = wip t (wip u Q) by(auto)
qed

lemma healthy-wp-PC:
fixes f::'s prog
assumes /f: healthy (wp f) and hg: healthy (wp g)
and uP: unitary P
shows healthy (wp (f p® g))
proof(intro healthy-parts bounded-byl nnegl le-funl, simp-all add:wp-eval)
fix b and Q::'s = real and s::'s
assume nQ: nneg Q and bQ: bounded-by b Q

Non-negative:

from nQ and bQ and if have 0 < wp f Q s by(auto)
with uP have 0 < P s * ... by(auto intro:mult-nonneg-nonneg)
moreover {
from uPhave0 <1 —Ps
by auto
with nQ and bQ and hghave 0 < ... xwp g QO s
by (metis healthy-nnegD2 mult-nonneg-nonneg nneg-def’)
}
ultimately show 0 < Ps«wpfQs+ (I —Ps)«wpgQs
by (auto intro:mult-nonneg-nonneg)

Bounded:

84 CHAPTER 4. THE PGCL LANGUAGE

from nQ bQ hf have wp f Q s < b by(auto)
with uP nQ bQ hf have Psx wp fQs < Psxb
by (blast introl:mult-mono)
moreover {
from nQ bQ hg uP
havewp g Qs<band0<]—Ps
by auto
with nQ bQ hghave (I — Ps)xwpgQs<(l —Ps)*b
by (blast intro!:mult-mono)
}
ultimately have P s « wp fQ s+ (I — Ps) xwp g Qs <
Psxb+ (I —Ps)*b
by (blast intro:add-mono)

also have ... = b by(auto simp:algebra-simps)

finally show P s« wpfQs+ (I —Ps)«wpgQs<b.
next
Monotonic:

fix Q R::'s = real and s
assume sQ: sound Q and sR: sound R and le: Q + R

with /if have wp f Q s < wp f R s by(blast dest:mono-transD)
with uPhave Ps« wp fQs < PsxwpfRs
by (auto intro:mult-left-mono)
moreover {
from sQ sR le hg
have wp g O s < wp g R s by(blast dest:mono-transD)
moreover from uP have0 <] — Ps
by auto
ultimately have (I — Ps)xwpgQs< (I —Ps)*wpgRs
by (auto intro:mult-left-mono)
}
ultimately show P s xwpfQs+ (I —Ps)«wpg Qs <
PsxwpfRs+ (I —Ps)*wpgR sby(auto)
next

Scaling:

fix Q::'s = real and c::real and s::'s
assume sQ: sound Q and pos: 0 < ¢
havec« (PsxwpfQs+ (I —Ps)xwpgQs)=
Psx(cxwpfQs)+(I—Ps)x(cxwpgQs)
by (simp add:distrib-left)
alsohave ... =Psxwpf (As. cxQs)s+
(I—Ps)xwpg(As.cxQs)s
using hf hg sQ pos
by (simp add:scalingD[OF healthy-scalingD))
finally show ¢« (Ps*xwpfQs+ (I —Ps)xwpgQs) =
Psxwpf(MAs.cxQs)s+ (I —Ps)xwpg(As.cxQs)s.
qed

4.2. HEALTHINESS

lemma nearly-healthy-wip-PC:
fixes f::'s prog
assumes /f : nearly-healthy (wlp)
and hg: nearly-healthy (wip g)
and uP: unitary P
shows nearly-healthy (wip (f p® g))
proof(intro nearly-healthyl unitaryl2 nnegl bounded-byl le-funl
simp-all add:wp-eval)
fix Q::'s expect and s::'s
assume uQ: unitary Q
from uQ hf hg have urQ: unitary (wip f Q) unitary (wilp g Q) by(auto)
from uP have nnP: 0 <Ps0<1—Ps
by auto
moreover from urQ have 0 < wip fQ s 0 < wip g Q s by(auto)
ultimately show 0 < PsxwlpfQs+ (I —Ps)«wlpg Qs
by (auto intro:add-nonneg-nonneg mult-nonneg-nonneg)

from urQ have wip fQ s < 1 wip g Q s < 1 by(auto)

with nnPhave Ps«wip fQs+ (I — Ps)«wlpgQs<Psx1+ (Il —Ps)x*1
by (blast intro:add-mono mult-left-mono)

thus Ps«wipfQs+ (I —Ps)+wipg Qs <1by(simp)

fix R::'s expect
assume uR: unitary R and le: Q + R
with uQ have wip fQ s <wlp fR s
by (auto intro:le-funD|OF nearly-healthy-monoD, OF hf))
with nnP have Psxwlp fQ s < PsxwlpfR s
by (auto intro:mult-left-mono)
moreover {
from uQ uR lehave wlp g Qs <wlp gR s
by (auto intro:le-funD|OF nearly-healthy-monoD, OF hg))
with nnP have (1 — Ps)«wlpg Qs < (I —Ps)xwlpgRs
by (auto intro:mult-left-mono)
}
ultimately show P s x wip fQ s+ (I — Ps) «wlpg Qs <
PsxwlpfRs+ (I —Ps)xwlpgRs
by (auto)
qed

lemma healthy-wp-DC:
fixes f::'s prog
assumes if: healthy (wp f) and hg: healthy (wp g)
shows healthy (wp (f[] g))
proof(intro healthy-parts bounded-byl nnegl le-funl, simp-all only:wp-eval)
fix b and P::’s = real and s::'s
assume nP: nneg P and bP: bounded-by b P

with 4f have bounded-by b (wp f P) by(auto)

85

86 CHAPTER 4. THE PGCL LANGUAGE

hence wp f P s < b by(blast)
thus min (wp fPs) (wp g P s) < b by(auto)

from nP bP assms show 0 < min (wp f P s) (wp g P s) by(auto)
next
fix P::'s = real and Q and s::'s
from assms have mf: mono-trans (wp f) and mg: mono-trans (wp g) by(auto)
assume sP: sound P and sQ: sound Q and le: P - Q
hencewp fPs<wpfQsandwpgPs<wpgQs
by (auto intro:le-funD[OF mono-transD|OF mf]| le-funD[OF mono-transD[OF mg]])
thus min (wp fP s) (wp g Ps) <min (wpfQs) (wp g Qs) by(auto)
next
fix P::’s = real and c::real and s::'s
assume sP: sound P and pos: 0 < ¢
from assms have sf: scaling (wp f) and sg: scaling (wp g) by(auto)
from pos have ¢ x min (wpfPs) (wpgPs) =
min (¢ * wpfPs) (cxwpgPs)
by (simp add:min-distrib)
also from sP and pos
have ... = min (wpf (As.c* Ps)s) (wp g (As.cx Ps)s)
by (simp add:scalingD|OF sf] scalingD[OF sg|)
finally show ¢ * min (wp fPs) (wp g P s) =
min (wpf (As.c*Ps)s) (wpg(As.cxPs)s).
qed

lemma nearly-healthy-wilp-DC:
fixes f::'s prog
assumes /f : nearly-healthy (wip f)
and hg: nearly-healthy (wip g)
shows nearly-healthy (wip (f] g))
proof(intro nearly-healthyl bounded-byl nnegl le-funl unitaryl2,
simp-all add:wp-eval, safe)
fix P::’s = real and s::'s
assume uP: unitary P
with &f hg have utP: unitary (wip f P) unitary (wilp g P) by(auto)
thus 0 < wip fP s 0 < wip g P s by(auto)

have min (wip f P s) (wip g P s) < wlp f P s by(auto)
also from uzP have ... < I by(auto)
finally show min (wlp fPs) (wlp g Ps) < 1.

fix Q::'s = real
assume uQ: unitary Q and le: P+ Q
have min (wip f P s) (wip g P s) < wlp f P s by(auto)
also from uP uQ le have ... < wlp fQ s
by (auto intro:le-funD|OF nearly-healthy-monoD, OF hf])
finally show min (wip fPs) (wlp g Ps) <wlpfQs.

have min (wip f P s) (wip g P s) < wilp g P s by(auto)

4.2. HEALTHINESS 87

also from uP uQ le have ... <wlp g Qs
by (auto intro:le-funD[OF nearly-healthy-monoD, OF hg)
finally show min (wlp fPs) (wlp g Ps) <wlpgQs.
qed

lemma healthy-wp-AC:
fixes f::'s prog
assumes /if: healthy (wp f) and hg: healthy (wp g)
shows healthy (wp (f || g))
proof(intro healthy-parts bounded-byl nnegl le-funl, simp-all only:wp-eval)
fix b and P::’s = real and s::'s
assume nP: nneg P and bP: bounded-by b P

with &f have bounded-by b (wp f P) by(auto)

hence wp f P s < b by(blast)

moreover {
from bP nP hg have bounded-by b (wp g P) by(auto)
hence wp g P s < b by(blast)

}
ultimately show max (wp f P s) (wp g P s) < b by(auto)

from nP bP assms have 0 < wp f P s by(auto)
thus 0 < max (wpfPs) (wp g P s) by(auto)
next
fix P::’s = real and Q and s::'s
from assms have mf: mono-trans (wp f) and mg: mono-trans (wp g) by(auto)
assume sP: sound P and sQ: sound Q and le: Pt~ Q
hencewp fPs<wpfQsandwpgPs<wpgQs
by (auto intro:le-funD[OF mono-transD, OF mf| le-funD[OF mono-transD, OF mg))
thus max (wp fPs) (wp g Ps) <max (wpfQs) (wp g Q s) by(auto)
next
fix P::'s = real and c::real and s::'s
assume sP: sound P and pos: 0 < ¢
from assms have sf: scaling (wp f) and sg: scaling (wp g) by(auto)
from pos have ¢ « max (wpfPs) (wpgPs) =
max (¢ *wpfPs)(cxwpgPs)
by (simp add:max-distrib)
also from sP and pos
have ... = max (wpf (As.c* Ps)s) (wpg(As.cxPs)s)
by (simp add:scalingD|OF sf] scalingD[OF sg|)
finally show ¢ * max (wpfPs) (wp g P s) =
max (wpf (As.cxPs)s) (wpg(As.cxPs)s).
qed

lemma nearly-healthy-wip-AC:
fixes f::'s prog
assumes /f : nearly-healthy (wlp)
and hg: nearly-healthy (wip g)
shows nearly-healthy (wip (f | | g))

88 CHAPTER 4. THE PGCL LANGUAGE

proof(intro nearly-healthyl bounded-byl nnegl unitaryl2 le-funl, simp-all only:wp-eval)
fix b and P::'s = real and s::’s
assume uP: unitary P

with /f have wip f P s < I by(auto)

moreover from uP hg have unitary (wlp g P) by(auto)
hence wip g P s < I by(auto)

ultimately show max (wlp f P s) (wlp g P s) < 1 by(auto)

from uP hf have unitary (wip f P) by(auto)

hence 0 < wip f P s by(auto)

thus 0 < max (wip f P s) (wip g P s) by(auto)
next

fix P::’s = real and Q and s::'s

assume uP: unitary P and uQ: unitary Q and le: P+ Q

hence wlp fPs <wlpfQsandwlpgPs<wlpgQs

by (auto intro:le-funD[OF nearly-healthy-monoD, OF hf]
le-funD|OF nearly-healthy-monoD, OF hg|)

thus max (wlp fP s) (wlp g P s) < max (wlp f Q' s) (wlp g Q s) by(auto)

qed

lemma healthy-wp-Embed:
healthy t = healthy (wp (Embed 1))
unfolding wp-def Embed-def by (simp)

lemma nearly-healthy-wilp-Embed:
nearly-healthy t = nearly-healthy (wlp (Embed t))
unfolding wip-def Embed-def by(simp)

lemma healthy-wp-repeat:

assumes /i-a: healthy (wp a)

shows healthy (wp (repeat n a)) (is ?X n)
proof(induct n)

show ?X 0 by(auto simp:wp-eval)
next

fix n assume /H: ?X n

thus ?X (Suc n) by(simp add:healthy-wp-Seq h-a)
qed

lemma nearly-healthy-wlp-repeat:

assumes /i-a: nearly-healthy (wip a)

shows nearly-healthy (wlp (repeat n a)) (is ?X n)
proof(induct n)

show ?X 0 by(simp add:wp-eval)
next

fix n assume [H: ?X n

thus ?X (Suc n) by(simp add:nearly-healthy-wlp-Seq h-a)
qed

4.2. HEALTHINESS 89

lemma healthy-wp-SetDC:
fixes prog::'b = 'a prog and S::'a = 'b set
assumes healthy: N\xs.x € Ss = healthy (wp (prog x))
and nonempty: \s. 3x.x € S's
shows healthy (wp (SetDC prog S)) (is healthy ?T)
proof(intro healthy-parts bounded-byl nnegl le-funl, simp-all only:wp-eval)
fix b and P::'a = real and s::'a
assume bP: bounded-by b P and nP: nneg P
hence sP: sound P by(auto)

from nonempty obtain x where xin: x € (Aa. wp (prog a) P s) ‘S s by(blast)
moreover from sP and healthy
have V xc(\a. wp (prog a) Ps) S s. 0 < x by(auto)
ultimately have Inf ((Aa. wp (proga) Ps) ‘Ss) <x
by (intro cInf-lower bdd-belowl, auto)
also from xin and healthy and sP and bP have x < b by(blast)
finally show Inf ((Aa. wp (proga) Ps) ‘Ss) <b.

from xin and sP and healthy

show 0 < Inf ((Aa. wp (prog a) P s) ‘S s) by(blast intro:cInf-greatest)
next

fix P::'a = real and Q and s::'a

assume sP: sound P and sQ: sound Q and le: P = Q

from nonempty obtain x where xin: x € (Aa. wp (prog a) P s) ‘S s by(blast)
moreover from sP and healthy
have Vxe(\a. wp (prog a) P s) S s. 0 < x by(auto)
moreover
have Vx€(\a. wp (prog a) Qs) ‘S s. 3ye(Aa. wp (proga) Ps) “Ss.y <x
proof(rule balll, clarify, rule bexI)
fix x and g assume ain: a € S s
with healthy and sP and sQ and le show wp (prog a) P s < wp (proga) Qs
by (auto dest:mono-transD|OF healthy-monoD))
from ain show wp (prog a) P s € (Aa. wp (prog a) P s) ‘S s by(simp)
qed
ultimately
show Inf ((Aa. wp (prog a) P s) S s) < Inf ((Aa. wp (proga) Qs) ‘Ss)
by (intro cInf-mono, blast+)
next
fix P::'a = real and c::real and s::'a
assume sP: sound P and pos: 0 < ¢
from nonempty obtain x where xin: x € (Aa. wp (prog a) P s) ‘S s by(blast)
have ¢ * Inf ((Aa. wp (prog a) Ps) “Ss) =
Inf ((x) ¢ “ ((Aa. wp (prog a) Ps) ‘Ss)) (is ?2U = ?V)
proof(rule antisym)
show ?U < ?V
proof(rule cInf-greatest)
from nonempty show () ¢ < (Aa. wp (prog a) P s) ‘S s # {} by(auto)
fix x assume x € (%) ¢ (Aa. wp (proga) Ps) ‘S's

90 CHAPTER 4. THE PGCL LANGUAGE

then obtain y where yin: y € (Aa. wp (prog a) P s) ‘S s and rwx: x = ¢ % y by(auto)
have Inf ((Aa. wp (proga) Ps) ‘Ss) <y
proof(intro cInf-lower[OF yin] bdd-belowI)
fix z assume zin: z € (\a. wp (prog a) Ps) *S's
then obtain « where a € S s and z = wp (prog a) P s by(auto)
with sP show 0 < z by(auto dest:healthy)
qed
with pos rwx show ¢ x Inf ((Aa. wp (prog a) P s) ‘S s) < x by(auto intro:mult-left-mono)
qed
show ?V < ?U
proof(cases)
assume cz: ¢ =0
moreover {
from nonempty obtain ¢ where ¢ € S s by(auto)
hence 3x. 3xacS s. x = wp (prog xa) P s by(auto)
}
ultimately show ?hesis by(simp add:image-def)
next
assume ¢ # 0
from nonempty have S s # {} by blast
then have inverse ¢ * (INF x€S s. ¢ * wp (prog x) P s) < (INF a€S s. wp (prog a) P s)
proof (rule cINF-greatest)
fix x
assume x € S's
have bdd-below ((M\x. ¢ x wp (prog x) P s) ‘S s)
proof (rule bdd-belowl [of - 0])
fix z
assume z € (Ax. ¢ x wp (progx) Ps) “Ss
then obtain b where b € S s and rwz: z = ¢ * wp (prog b) P s by auto
with sP have 0 < wp (prog b) P s by (auto dest: healthy)
with pos show 0 < z by (auto simp: rwz intro: mult-nonneg-nonneg)
qed
then have (INF x€S s. ¢ x wp (prog x) P s) < ¢ x wp (prog x) P s
using « € S s> by (rule cINF-lower)
with <« # 0> show inverse ¢ * (INF x€S s. ¢ x wp (prog x) Ps) < wp (progx) P s
by (simp add: mult-div-mono-left pos)
qed
with «c # 0> have inverse ¢ x ?V < inverse ¢ * 2U
by (simp add: mult.assoc [symmetric] image-comp)
with pos have ¢ x (inverse ¢ x ?V) < ¢ * (inverse ¢ x ?U)
by (auto intro:mult-left-mono)
with <« # 0> show ?thesis by (simp add:mult.assoc [symmetric))
qed
qed
also have ... = Inf ((A\a. ¢ * wp (prog a) Ps) ‘S's)
by (simp add: image-comp)
also from sP and pos have ... = Inf ((Aa. wp (prog a) (As.c x P s)s) ‘Ss)
by (simp add:scalingD|OF healthy-scalingD, OF healthy| cong:image-cong)
finally show ¢ Inf ((\a. wp (prog a) Ps) “Ss) =

4.2. HEALTHINESS 91

Inf ((Ma. wp (prog a) (As.cxPs)s) ‘Ss).
qed

lemma nearly-healthy-wlp-SetDC:
fixes prog::'b = 'a prog and S::'a = 'b set
assumes healthy: \xs.x € S s = nearly-healthy (wlp (prog x))
and nonempty: \s. 3x.x € S's
shows nearly-healthy (wip (SetDC prog S)) (is nearly-healthy ?T)
proof(intro nearly-healthyl unitaryl2 bounded-byl nnegl le-funl, simp-all only:wp-eval)
fix b and P::'a = real and s::'a
assume uP: unitary P

from nonempty obtain x where xin: x € (\a. wip (prog a) P s) ‘S s by(blast)
moreover {
from uP healthy
have Vxe(\a. wip (prog a) P) ‘S s. unitary x by (auto)
hence Vx€(Aa. wip (prog a) P) S s. 0 < x s by(auto)
hence V yc(\a. wip (prog a) Ps) ‘S s. 0 <y by(auto)
}
ultimately have Inf ((Aa. wip (prog a) P s) *S's) < x by(intro cInf-lower bdd-belowl
auto)
also from xin healthy uP have x < I by(blast)
finally show Inf ((Aa. wip (proga) Ps) ‘Ss) <1.

from xin uP healthy
show 0 < Inf ((Aa. wip (prog a) P s) ‘S s)
by (blast dest!:unitary-sound|OF nearly-healthy-unitaryD[OF - uP]]
intro:cInf-greatest)
next
fix P::’a = real and Q and s::'a
assume uP: unitary P and uQ: unitary Q and le: P+ Q

from nonempty obtain x where xin: x € (Aa. wip (prog a) P s) ‘S s by(blast)
moreover {

from uP healthy

have Vxe(\a. wip (prog a) P) S s. unitary x by(auto)

hence Vxe(Aa. wip (prog a) P) * S 's. 0 < x s by(auto)

hence Vy<(Aa. wip (prog a) Ps) ‘S s. 0 <y by(auto)
}
moreover
have Vxe(\a. wip (prog a) Q' s) *Ss. dye(Xa. wip (proga) Ps) *Ss.y <x
proof(rule balll, clarify, rule bexI)

fix x and a assume ain: a € S's

from uP uQ le show wip (prog a) P s < wip (prog a) Q s

by (auto intro:le-funD[OF nearly-healthy-monoD|OF healthy, OF ain]])

from ain show wip (prog a) P s € (Aa. wlp (prog a) P s) * S s by(simp)
qed
ultimately
show Inf ((Aa. wip (prog a) Ps) ‘S's) < Inf ((Aa. wip (proga) Qs) ‘Ss)

92 CHAPTER 4. THE PGCL LANGUAGE

by (intro cInf-mono, blast+)
qed

lemma healthy-wp-SetPC:
fixes p::'s = ‘a = real
and f::'a = 's prog
assumes healthy: \a s. a € supp (p s) = healthy (wp (f a))
and sound: \s. sound (p s)
and sub-dist: N\s. (> acsupp (ps).psa) <1
shows healthy (wp (SetPC f p)) (is healthy ?X)
proof(intro healthy-parts bounded-byl nnegl le-funl, simp-all add:wp-eval)
fix b and P::’s = real and s::'s
assume bP: bounded-by b P and nP: nneg P
hence sP: sound P by(auto)

from sP and bP and healthy have A\as. a € supp (p s) = wp (fa) Ps <b
by (blast dest:healthy-bounded-byD)
with sound have (> acsupp (ps).psaxwp (fa) Ps) < (> acsupp (ps).psaxb)
by (blast intro:sum-mono mult-left-mono)
also have ... = (> _acsupp (ps).psa) b
by (simp add:sum-distrib-right)
also {
from bP and nP have 0 < b by(blast)
with sub-dist have (3" acsupp (ps).psa)*b<1xb
by (rule mult-right-mono)
}
also have / x b = b by(simp)
finally show (> acsupp (ps).psaxwp (fa) Ps) <b.

show 0 < (>~ acsupp (ps).psaxwp (fa) Ps)
proof(rule sum-nonneg |OF mult-nonneg-nonneg|)
fix x
from sound show 0 < p s x by(blast)
assume x € supp (p s) with sP and healthy
show 0 < wp (fx) P s by(blast)
qed
next
fix P::'s = real and Q::'s = real and s
assume s-P: sound P and s-Q: sound Q and ent: P Q
with healthy have Aa. a € supp (p s) = wp (fa) Ps <wp (fa) Qs
by (blast)
with sound show (3> ac€supp (p s).psaxwp (fa) Ps) <
(> a€supp (ps).psaxwp (fa)Qs)
by (blast intro:sum-mono mult-left-mono)
next
fix P::'s = real and c::real and s::'s
assume sound: sound P and pos: 0 < ¢

have ¢ « (> acsupp (ps).psa*xwp (fa) Ps) =
(> aesupp (ps).psax(cxwp (fa) Ps))

4.2. HEALTHINESS 93

(is A = ?B)
by (simp add:sum-distrib-left ac-simps)
also from sound and pos and healthy
have ... = (D> acsupp (ps).psaxwp (fa) (As.cx Ps)s)
by (auto simp:scalingD|OF healthy-scalingD))
finally show ?A = ...
qed

lemma nearly-healthy-wlp-SetPC:
fixes p::'s = 'a = real
and f::'a='s prog
assumes healthy: \a s. a € supp (p s) = nearly-healthy (wilp (f a))
and sound: \\s. sound (p s)
and sub-dist: N\s. (> acsupp (ps).psa) <1
shows nearly-healthy (wip (SetPC f p)) (is nearly-healthy ?X)
proof(intro nearly-healthyl unitaryl2 bounded-byl nnegl le-funl, simp-all only:wp-eval)
fix b and P::’s = real and s::'s
assume uP: unitary P

from uP healthy have A\a. a € supp (p s) = unitary (wip (f a) P) by(auto)
hence Aa. a € supp (p s) = wip (fa) P s < I by(auto)
with sound have (>_ a€supp (ps).psaxwip (fa) Ps) < (Y. acsupp (ps).psax1)
by (blast intro:sum-mono mult-left-mono)
also have ... = (3 _acsupp (ps).psa)
by (simp add:sum-distrib-right)
also note sub-dist
finally show (> acsupp (ps).psaxwip (fa) Ps) < 1.
show 0 < (>~ acsupp (ps).psaxwlp (fa) Ps)
proof(rule sum-nonneg [OF mult-nonneg-nonneg|)
fix x
from sound show 0 < p s x by(blast)
assume x € supp (p s) with uP healthy
show 0 < wip (fx) P s by(blast)
qed
next
fix P::'s expect and Q::'s expect and s
assume uP: unitary P and uQ: unitary Q and le: P Q
hence Aa. a € supp (ps) = wip (fa) Ps <wlp (fa) Qs
by (blast intro:le-funD]OF nearly-healthy-monoD, OF healthy))
with sound show (> a€supp (ps).psaxwlp (fa) Ps) <
(> a€supp (ps).psaxwlp (fa) Qs)
by (blast intro:sum-mono mult-left-mono)
qed

lemma healthy-wp-Apply:
healthy (wp (Apply f))
unfolding Apply-def wp-def by (blast)

lemma nearly-healthy-wip-Apply:

94 CHAPTER 4. THE PGCL LANGUAGE

nearly-healthy (wlp (Apply f))
by (intro nearly-healthyl unitaryl2 nnegl bounded-byl, auto simp:o-def wp-eval)

lemma healthy-wp-Bind:

fixes f::'s = a

assumes hsub: \s. healthy (wp (p (fs)))

shows healthy (wp (Bind fp))
proof(intro healthy-parts nnegl bounded-byl le-funl, simp-all only:wp-eval)

fix b and P::’s expect and s::'s

assume bP: bounded-by b P and nP: nneg P

with hsub have bounded-by b (wp (p (fs)) P) by(auto)

thus wp (p (fs)) Ps < b by(auto)

from bP nP hsub have nneg (wp (p (fs)) P) by(auto)

thus 0 < wp (p (fs)) P s by(auto)
next

fix P Q::'s expect and s::'s

assume sound P sound Q Pt~ Q

thus wp (p (fs)) Ps<wp (p (fs)) Os

by (rule le-funD|OF mono-transD, OF healthy-monoD, OF hsub))

next

fix P::’s expect and c::real and s::'s

assume sound P and 0 < ¢

thuscxwp (p (fs)) Ps=wp (p (fs)) (As.cx Ps)s

by (simp add:scalingD[OF healthy-scalingD, OF hsub))

qed

lemma nearly-healthy-wlp-Bind:
fixes f::'s = a
assumes iisub: [\s. nearly-healthy (wip (p (fs)))
shows nearly-healthy (wlp (Bind f p))
proof(intro nearly-healthyl unitaryl2 nnegl bounded-byl le-funl, simp-all only:wp-eval)
fix P::'s expect and s::'s assume uP: unitary P
with Asub have unitary (wip (p (f's)) P) by(auto)
thus 0 < wlip (p (fs)) Pswip (p (fs)) Ps < I by(auto)

fix Q::'s expect
assume unitary Q P+ Q
with uP show wip (p (fs)) Ps <wip (p (fs)) Qs
by (blast intro:le-funD]OF nearly-healthy-monoD, OF hsub))
qed

4.2.2 Healthiness for Loops

lemma wp-loop-step-mono:
fixes 7 u::'s trans
assumes hb: healthy (wp body)
and le: le-trans t u
and ht: \P. sound P => sound (t P)
and hu: \P. sound P = sound (u P)

4.2. HEALTHINESS 95

shows le-trans (wp (body ;; Embed t ¢ ,&® Skip))
(wp (body ;; Embed u i ,® Skip))
proof(intro le-transl le-funl, simp add:wp-eval)
fix P::'s expect and s::'s
assume sP: sound P
with le have ¢ P I~ u P by(auto)
moreover from sP ht hu have sound (t P) sound (u P) by(auto)
ultimately have wp body (¢t P) s < wp body (u P) s
by (auto intro:le-funD[OF mono-transD, OF healthy-monoD, OF hb))
thus «G» s * wp body (t P) s < «G» s *x wp body (u P) s
by (auto intro:mult-left-mono)
qed

lemma wip-loop-step-mono:
fixes 1 u::’s trans
assumes mb: nearly-healthy (wlp body)
and le: le-utrans t u
and ht: \P. unitary P = unitary (t P)
and hu: \P. unitary P => unitary (u P)
shows le-utrans (wlp (body ;; Embed t ¢ ,® Skip))
(wlp (body ;; Embed u ¢; ,@ Skip))
proof(intro le-utransl le-funl, simp add:wp-eval)
fix P::’s expect and s::'s
assume uP: unitary P
with /e have ¢t P i~ u P by(auto)
moreover from uP ht hu have unitary (t P) unitary (u P) by(auto)
ultimately have wip body (t P) s < wlp body (u P) s
by (rule le-funD|OF nearly-healthy-monoD[OF mb)))
thus «G» s x wip body (t P) s < «G» s * wip body (u P) s
by (auto intro:mult-left-mono)
qed

For each sound expectation, we have a pre fixed point of the loop body. This lets
us use the relevant fixed-point lemmas.

lemma [fp-loop-fp:
assumes hb: healthy (wp body)
and sP: sound P
shows \s. «G» s * wp body (Xs. bound-of P) s + «N G» s * P s = As. bound-of P
proof(rule le-funl)
fix s
from sP have sound (\s. bound-of P) by(auto)
moreover hence bounded-by (bound-of P) (As. bound-of P) by(auto)
ultimately have bounded-by (bound-of P) (wp body (As. bound-of P))
using b by(auto)
hence wp body (\s. bound-of P) s < bound-of P by(auto)
moreover from sP have P s < bound-of P by(auto)
ultimately have «G» s x wp body (Aa. bound-of P) s + (I — «G» s) x P s <
«G» s x bound-of P + (I — «G» s) * bound-of P
by (blast intro:add-mono mult-left-mono)

96 CHAPTER 4. THE PGCL LANGUAGE

thus «G» s * wp body (Aa. bound-of P) s + «N G» s x P s < bound-of P
by (simp add:algebra-simps negate-embed)
qed

lemma [fp-loop-greatest:

fixes P::’s expect

assumes /b: A\R. \s. «G» s * wp body Rs + «N G» s * P st R = sound R=— Q+ R
and hb: healthy (wp body)
and sP: sound P
and sQ: sound Q

shows Q = Ifp-exp (AQ s. «G» s x wp body Q s + «N G» s x Ps)

using sP by (auto intro!:lfp-exp-greatest|OF Ib sQ] sP Ifp-loop-fp hb)

lemma [fp-loop-sound:
fixes P::'s expect
assumes hb: healthy (wp body)
and sP: sound P
shows sound (lfp-exp (AQ s. «G» s x wp body Q s + «N G» s % P s))
using assms by (auto intro!:lfp-exp-sound lfp-loop-fp)

lemma wip-loop-step-unitary:

fixes 7 u::'s trans

assumes hb: nearly-healthy (wlp body)

and ht: \P. unitary P => unitary (t P)
and uP: unitary P

shows unitary (wlp (body ;; Embed t . ¢; ,©® Skip) P)
proof(intro unitaryl2 nnegl bounded-byl, simp-all add:wp-eval)

fix s::'s

from At uP have utP: unitary (t P) by(auto)

with /b have unitary (wlp body (t P)) by (auto)

hence 0 < wip body (t P) s by(auto)

with uP show 0 < « G» s x wlp body (t P) s+ (I — «G» s) % Ps

by (auto intro!:add-nonneg-nonneg mult-nonneg-nonneg)

from At uP have bounded-by 1 (¢ P) by(auto)

with utP hb have bounded-by 1 (wlp body (t P)) by(auto)

hence wip body (¢ P) s < 1 by(auto)

with uP have «G» s x wip body (t P) s + (I — «G» 5) * P s < «G» s x I + (I — «G» 5)
* [

by (blast intro:add-mono mult-left-mono)

also have ... =] by(simp)

finally show «G» s * wip body (t P) s + (I — «G» s) * Ps <.
qed

lemma wp-loop-step-sound:
fixes 7 u::'s trans
assumes hb: healthy (wp body)
and hr: \P. sound P => sound (t P)
and sP: sound P
shows sound (wp (body ;; Embed t . i ,,® Skip) P)

4.2. HEALTHINESS 97

proof(intro soundI2 nnegl bounded-byl, simp-all add:wp-eval)
fix s::'s
from At sP have stP: sound (t P) by(auto)
with b have 0 < wp body (¢t P) s by(auto)
with sP show 0 < « G» s« wp body (tP)s+ (I —«G»s)*Ps
by (auto intro!:add-nonneg-nonneg mult-nonneg-nonneg)

from At sP have sound (¢ P) by(auto)
moreover hence bounded-by (bound-of (t P)) (t P) by(auto)
ultimately have wp body (t P) s < bound-of (t P) using hb by(auto)
hence wp body (¢ P) s < max (bound-of P) (bound-of (t P)) by(auto)
moreover {
from sP have P s < bound-of P by(auto)
hence P s < max (bound-of P) (bound-of (t P)) by(auto)
}
ultimately
have «G» s« wp body (t P) s + (I — «G» s) * P s <
«G» s x max (bound-of P) (bound-of (t P)) +
(I — «G» s) * max (bound-of P) (bound-of (t P))
by (blast intro:add-mono mult-left-mono)
also have ... = max (bound-of P) (bound-of (t P)) by(simp add:algebra-simps)
finally show «G» s x wp body (t P) s + (I — «G» s) * P s <
max (bound-of P) (bound-of (t P)) .
qed

This gives the equivalence with the alternative definition for loops|
, , §7, p. 198, footnote 23].

lemma wip-Loop]:
fixes body :: 's prog
assumes unitary: unitary P
and healthy: nearly-healthy (wip body)
shows wip (do G — body od) P =
gfp-exp (AQ s. «G» s x wip body Q s + «N G» s x P s)
(is ?X = gfp-exp (?Y P))
proof —
let ?Z u = (body ;; Embed u i ,® Skip)
show ?thesis
proof(simp only: wp-eval, intro gfp-pulldown assms le-funl)
fix u P
show wip (?Z u) P = ?Y P (u P) by(simp add:wp-eval negate-embed)
next
fix t::'s trans and P::’s expect
assume ut: \Q. unitary Q = unitary (t Q) and uP: unitary P
thus unitary (wilp (?Zt) P)
by (rule wip-loop-step-unitary|OF healthy))
next
fix P Q::'s expect
assume uP: unitary P and uQ: unitary Q
show unitary (Aa. « G» a* wlp body Qa+ « N G » ax P a)

98 CHAPTER 4. THE PGCL LANGUAGE

proof(intro unitaryl2 nnegl bounded-byl)
fix s::'s
from healthy uQ
have unitary (wip body Q) by(auto)
hence 0 < wip body Q s by (auto)
with uP show 0 < «G» s x wip body Q s + «N G» s x P s
by (auto intro':add-nonneg-nonneg mult-nonneg-nonneg)

from healthy uQ have bounded-by 1 (wip body Q) by(auto)
with uP have «G» s « wip body Q s + (1 — «G» s) * Ps < «G» s x I + (I — «G» s)
* 1
by (blast intro:add-mono mult-left-mono)
also have ... =] by(simp)
finally show «G» s * wip body Q s + «N G» s x Ps < 1
by (simp add:negate-embed)
qed
next
fix P Q R::'s expect and s::'s
assume uP: unitary P and uQ: unitary Q and uR: unitary R
and le: OF R
hence wip body Q s < wlp body R s
by (blast intro:le-funD]OF nearly-healthy-monoD, OF healthy))
thus «G» s x wlp body Q s + «N G» s % P s <
«G» s x wip body Rs + «N G» s % P s
by (auto intro:mult-left-mono)
next
fix 7 u::'s trans
assume le-utrans t u
A\P. unitary P = unitary (t P)
N\P. unitary P = unitary (u P)
thus le-utrans (wip (?Z t)) (wip (?Z u))
by (blast introl:wlp-loop-step-mono[OF healthy))
qed
qed

lemma wp-loop-sound:
assumes sP: sound P
and hb: healthy (wp body)
shows sound (wp do G — body od P)
proof(simp only: wp-eval, intro lfp-trans-sound sP)
let ?v = AP s. bound-of P
show le-trans (wp (body ;; Embed ?v ¢ ,@® Skip)) ?v
by (intro le-transl, simp add:wp-eval Ifp-loop-fp[unfolded negate-embed) hb)
show AP. sound P = sound (?v P) by(auto)
qed

Likewise, we can rewrite strict loops.

lemma wp-Loop1:
fixes body :: 's prog

4.2. HEALTHINESS 99

assumes sP: sound P
and healthy: healthy (wp body)
shows wp (do G — body od) P =
Ifp-exp (AQ 5. «G» s % wp body Q s + «N G» s * P s)
(is ?X = lfp-exp (?Y P))
proof —
let ?Z u = (body ;; Embed u i ,® Skip)
show ?thesis
proof(simp only: wp-eval, intro lfp-pulldown assms le-funl sP mono-transI)
fixu P
show wp (?Z u) P = ?Y P (u P) by(simp add:wp-eval negate-embed)
next
fix t::'s trans and P::’s expect
assume ut: \Q. sound Q = sound (t Q) and uP: sound P
with healthy show sound (wp (?Z t) P) by(rule wp-loop-step-sound)
next
fix P Q::'s expect
assume sP: sound P and sQ: sound Q
show sound (Aa. « G» a*xwpbody Qa+ « N G»ax* P a)
proof(intro soundI2 nnegl bounded-byl)
fix s::'s
from sQ have nneg Q bounded-by (bound-of Q) Q by(auto)
with healthy have bounded-by (bound-of Q) (wp body Q) by(auto)
hence wp body Q s < bound-of Q by(auto)
hence wp body Q s < max (bound-of P) (bound-of Q) by(auto)
moreover {
from sP have P s < bound-of P by(auto)
hence P s < max (bound-of P) (bound-of Q) by(auto)
}
ultimately have «G» s x wp body Q s + «N G» s x P s <
«G» s * max (bound-of P) (bound-of Q) +
«N G» s * max (bound-of P) (bound-of Q)
by (auto intro!:add-mono mult-left-mono)
also have ... = max (bound-of P) (bound-of Q) by (simp add:algebra-simps negate-embed)
finally show «G» s x wp body Q s + «N G» s x P s < max (bound-of P) (bound-of Q)

from sP have 0 < P s by(auto)
moreover from sQ healthy have 0 < wp body Q s by(auto)
ultimately show 0 < «G» s * wp body Q s + «N G» s x P s
by (auto intro:add-nonneg-nonneg mult-nonneg-nonneg)
qed
next
fix P Q R::'s expect and s::'s
assume sQ: sound Q and sR: sound R
and le: O+ R
hence wp body Q s < wp body R s
by (blast intro:le-funD]|OF mono-transD, OF healthy-monoD, OF healthy))
thus «G» s x wp body Q s + «N G» s x Ps <

100 CHAPTER 4. THE PGCL LANGUAGE

«G» s x wpbody Rs + «N G» s Ps
by (auto intro:mult-left-mono)
next
fix 7 u::’s trans
assume le: le-trans t u
and st: \P. sound P = sound (t P)
and su: \P. sound P —> sound (u P)
with healthy show le-trans (wp (?Zt)) (wp (?Z u))
by (rule wp-loop-step-mono)
next
from healthy show le-trans (wp (?Z (AP s. bound-of P))) (AP s. bound-of P)
by (intro le-transl, simp add:wp-eval lfp-loop-fplunfolded negate-embed))
next
fix P::'s expect and s::'s
assume sound P
thus sound (\s. bound-of P) by (auto)
qed
qed

lemma nearly-healthy-wlip-loop:
fixes body::'s prog
assumes hb: nearly-healthy (wlp body)
shows nearly-healthy (wlp (do G — body od))
proof(intro nearly-healthyl unitaryl2 nnegl2 bounded-byl2, simp-all add:wlp-Loopl hb)
fix P::'s expect
assume uP: unitary P
let ’XR=X0s.«G»s*wlpbody Qs+ «N G»s*Rs

show As. Ot gfp-exp (?X P)
proof(rule gfp-exp-upperbound)
show unitary (As. 0::real) by(auto)
with /b have unitary (wip body (Xs. 0)) by(auto)
with uP show As. 0+ (?X P ()s. 0))
by (blast intro!:le-funl add-nonneg-nonneg mult-nonneg-nonneg)
qed

show gfp-exp (?X P) I~ Xs. 1
proof(rule gfp-exp-least)
show unitary (\s. 1::real) by(auto)
fix Q::'s expect
assume unitary Q
thus Q = As. I by(auto)
qed

fix Q::'s expect
assume uQ: unitary Q and le: P+ Q
show gfp-exp (?X P) I gfp-exp (?X Q)
proof(rule gfp-exp-least)

fix R::'s expect assume uR: unitary R

4.2. HEALTHINESS 101

assume fp: Rt ?X PR

also from /e have ... -+ ?X O R
by (blast intro:add-mono mult-left-mono le-funl)

finally show R I~ gfp-exp (?X Q)
using uR by (auto intro:gfp-exp-upperbound)

next

show unitary (gfp-exp (?X Q))

proof(rule gfp-exp-unitary, intro unitaryl2 nnegl bounded-bylI)
fix R::'s expect and s::’s assume uR: unitary R
with ib have ubP: unitary (wlp body R) by(auto)
with uQ show 0 < « G» s * wlp body Rs + « N G» s x Qs

by (blast intro:add-nonneg-nonneg mult-nonneg-nonneg)

from ubP uQ have wip body R s < 1 Q s < I by(auto)

hence « G» s * wlpbody Rs + « N G» s+ Qs < «G»s* 1+ «N G»sx 1
by (blast intro:add-mono mult-left-mono)

thus « G» s« wlp body Rs + « N G» s+ Qs <1
by (simp add:negate-embed)

qed
qed
qed

We show healthiness by appealing to the properties of expectation fixed points,
applied to the alternative loop definition.

lemma healthy-wp-loop:
fixes body::'s prog
assumes hb: healthy (wp body)
shows healthy (wp (do G — body od))
proof —
let 2X P = (AQ s. «G» s x wp body Q s + «N G» s % Ps)
show ?thesis
proof(intro healthy-parts bounded-byI2 nnegl2, simp-all add:wp-Loop1 hb soundI2 sound-intros)
fix P::'s expect and c::real and s::'s
assume sP: sound P and nnc: 0 < ¢
show ¢ x (Ifp-exp (?X P)) s = Ilfp-exp (?X (As.c* P s)) s
proof(cases)
assume c = 0 thus ’thesis
proof(simp, intro antisym)
from %b have fp: As. «G» s * wp body (A-. 0) s = As. 0 by(simp)
hence [fp-exp (AP 5. «G» s * wp body P s) F As. 0
by (auto intro:lfp-exp-lowerbound)
thus Ifp-exp (AP s. «G» s x wp body P s) s < 0 by(auto)
have \s. Ot Ifp-exp (AP s. «G» s * wp body P s)
by (auto intro:lfp-exp-greatest fp)
thus 0 < Ifp-exp (AP s. «G» s * wp body P s) s by(auto)
qed
next
have onesided: \P c. ¢ # 0 = 0 < ¢ = sound P =
Aa. ¢ x lfp-exp (Aa b. «G» b x wp body ab + «N G» b x Pb) alt

102 CHAPTER 4. THE PGCL LANGUAGE

Ifp-exp (Aa b. «G» b x wp body ab + «N G» b * (c * P D))
proof —
fix P::'s expect and c::real
assume cnz: ¢ # 0 and nnc: 0 < ¢ and sP: sound P
with nnc have cpos: 0 < ¢ by(auto)
hence nnic: 0 < inverse c by(auto)
show \a. ¢ x lfp-exp (Aa b. «G» b x wp body ab + «N G» b x Pb) a
Ifp-exp (Aa b. «G» b« wp body ab + «N G» b * (c * P b))
proof(rule lfp-exp-greatest)
fix Q::'s expect
assume sQ: sound Q
and fp: Ab. «G» b x wp body Qb+ «N G» b (c* Pb) - Q
hence /\s. «G» s * wp body Q s + «N G» s * (¢ x P s) < Q s by(auto)
with nnic
have As. inverse ¢ x («G» s x wp body Q s + «N G» s x (c x Ps)) <
inverse c x Qs
by (auto intro:mult-left-mono)
hence \s. «G» s * (inverse ¢ x wp body Q s) + (inverse c * ¢) * «N G» s * P s <
inverse c * Q s
by (simp add:algebra-simps)
hence A\s. «G» s x wp body ()s. inverse ¢ x Q s) s + «N G» s x P s <
inverse c x Qs
by (simp add:cnz scalingD[OF healthy-scalingD, OF hb sQ nnic])
hence \s. «G» s * wp body (Xs. inverse ¢ x Qs) s + «N G» s« P st
As. inverse ¢ x Q s by(rule le-funl)
moreover from nnic sQ have sound (\s. inverse ¢ * Q s)
by (iprover intro:sound-intros)
ultimately have [fp-exp (Aa b. «G» b * wp body ab + «N G» b x P b) I~
As. inverse ¢ x Q' s
by (rule Ifp-exp-lowerbound)
hence As. lfp-exp (Aa b. «G» b x wp body ab + «N G» b Pb) s < inversec* Qs
by (rule le-funD)
with nnc
have As. ¢ * lfp-exp (Aa b. «G» b x wp bodyab + «N G» b * Pb) s <
¢ * (inverse ¢ x Q')
by (auto intro:mult-left-mono)
also from cnz have As. ... s = Q s by(simp)
finally show \a. ¢ * [fp-exp (Aa b. «G» b x wp body ab + «N G» b * Pb) al- Q
by (rule le-funl)
next
from sP have sound (\s. bound-of P) by(auto)
with hb sP have sound (Ifp-exp (?X P))
by (blast intro:lfp-exp-sound lfp-loop-fp)
with nnc show sound (Xs. ¢ * Ifp-exp (?X P) s)
by (auto intro!:sound-intros)

from hb sP nnc
show \s. «G» s x wp body (As. bound-of (As.c* Ps)) s+
«N G» s % (c* Ps) = As. bound-of (As.c* Ps)

4.2. HEALTHINESS 103

by (iprover intro:lfp-loop-fp sound-intros)

from sP nnc show sound (As. bound-of (As. c % Ps))
by (auto intro!:sound-intros)
qed
qed

assume nzc: ¢ # 0
show ?thesis (is ?’XPcs=?YPcs)
proof(rule fun-cong[where x=s|, rule antisym)
from nzc nnc sP show ?X P ¢ b ?Y P ¢ by(rule onesided)

from nzc have nzic: inverse ¢ # 0 by(auto)
moreover with nnc have nnic: 0 < inverse ¢ by(auto)
moreover from nnc sP have scP: sound (As. ¢ x P s) by(auto intro:sound-intros)
ultimately have ?X (\s. ¢ x P s) (inverse ¢) & ?Y (As. ¢ x P s) (inverse ¢)
by (rule onesided)
with nnc have As. ¢ x ?X (As. ¢ x P s) (inverse ¢) s b
As. ¢ * 2Y (As. ¢ Ps) (inverse ¢) s
by (blast intro:mult-left-mono)
with nzc show ?Y P ¢ b ?X P ¢ by(simp add:mult.assoc[symmetric))
qed
qed
next
fix P::’s expect and b::real
assume bP: bounded-by b P and nP: nneg P
show Ifp-exp (AQ 5. «G» s x wp body Q s + «N G» s * Ps) I~ As. b
proof(intro lfp-exp-lowerbound le-funl)
fix s::'s
from bP nP hb have bounded-by b (wp body (Xs. b)) by(auto)
hence wp body (As. b) s < b by(auto)
moreover from bP have P s < b by(auto)
ultimately have «G» s * wp body (As. b) s + «N G» s x Ps < «G» s x b+ «N G» s
*b
by (auto intro!:add-mono mult-left-mono)
also have ... = b by(simp add:negate-embed field-simps)
finally show «G» s * wp body (As. b) s + «N G» s *x Ps < b.
from bP nP have 0 < b by(auto)
thus sound (\s. b) by(auto)
qed
from hb bP nP show \s. O b Ifp-exp (AQ s. «G» s x wp body Q s + «N G» s * P s)
by(auto dest!:sound-nneg introl:lfp-loop-greatest)
next
fix P Q::'s expect
assume sP: sound P and sQ: sound Q and le: P+~ Q
show Ifp-exp (?X P) t Ifp-exp (?X Q)
proof(rule lfp-exp-greatest)
fix R::'s expect
assume sR: sound R

104 CHAPTER 4. THE PGCL LANGUAGE

and fp: As. «G» s x wp body R s + «N G» s * Q st R
from le have \s. «G» s * wp body Rs + «N G» s * P s I+
As. «G» s x wpbody Rs + «N G» s x Q' s
by (auto intro:le-funl add-left-mono mult-left-mono)
also note fp
finally show [fp-exp (AR s. «G» s * wp body R s + «N G» s * P s) R
using sR by (auto intro:lfp-exp-lowerbound)
next
from hb sP show sound (Ifp-exp (AR s. «G» s % wp body R s + «N G» s x P s))
by (rule Ifp-loop-sound)
from hb sQ show As. «G» s * wp body (As. bound-of Q) s + «N G» s * Q s I As.
bound-of Q
by rule fp-loop-fp)
from sQ show sound (\s. bound-of Q) by(auto)
qed
qed
qed

Use ’simp add:healthy_intros’ or ’blast intro:healthy_intros’ as appropriate to dis-
charge healthiness side-contitions for primitive programs automatically.

lemmas healthy-intros =
healthy-wp-Abort nearly-healthy-wip-Abort healthy-wp-Skip nearly-healthy-wlp-Skip
healthy-wp-Seq nearly-healthy-wilp-Seq healthy-wp-PC nearly-healthy-wilp-PC
healthy-wp-DC nearly-healthy-wlp-DC healthy-wp-AC nearly-healthy-wlp-AC
healthy-wp-Embed nearly-healthy-wip-Embed healthy-wp-Apply nearly-healthy-wlp-Apply
healthy-wp-SetDC nearly-healthy-wlp-SetDC healthy-wp-SetPC nearly-healthy-wlp-SetPC
healthy-wp-Bind nearly-healthy-wlp-Bind healthy-wp-repeat nearly-healthy-wlp-repeat
healthy-wp-loop nearly-healthy-wlp-loop

end

4.3 Continuity

theory Continuity imports Healthiness begin

We rely on one additional healthiness property, continuity, which is shown here
seperately, as its proof relies, in general, on healthiness. It is only relevant when a
program appears in an inductive context i.e. inside a loop.

A continuous transformer preserves limits (or the suprema of ascending chains).

definition bd-cts :: 's trans = bool

where bd-ctst = (VM. (Vi. (M il M (Suc i)) A sound (M i)) —
(3b. Yi. bounded-by b (M i)) —
t (Sup-exp (range M)) = Sup-exp (range (t o M)))

lemma bd-ctsD:
[bd-cts t; Ni. M i+ M (Suc i); \i. sound (M i); \i. bounded-by b (M i) | =
t (Sup-exp (range M)) = Sup-exp (range (t o M))

4.3. CONTINUITY 105

unfolding bd-cts-def by(auto)

lemma bd-ctsl:
(ANbM. (Ni. M it M (Suci)) = (\i. sound (M i)) = (\i. bounded-by b (M i)) =
t (Sup-exp (range M)) = Sup-exp (range (t o M))) = bd-cts t
unfolding bd-cts-def by (auto)

A generalised property for transformers of transformers.

definition bd-cts-tr :: ('s trans = 's trans) = bool
where bd-cts-tr T = (VM. (Vi. le-trans (M i) (M (Suc i)) A feasible (M i)) —
equiv-trans (T (Sup-trans (M UNIV))) (Sup-trans ((T o M) * UNIV)))

lemma bd-cts-trD:
[bd-cts-tr T; \i. le-trans (M i) (M (Suc i)); \i. feasible (M i) | =
equiv-trans (T (Sup-trans (M ‘ UNIV))) (Sup-trans (T o M) * UNIV))
by (simp add:bd-cts-tr-def)

lemma bd-cts-trl:
(AM. (Ni. le-trans (M i) (M (Suc i))) = (\i. feasible (M i)) =
equiv-trans (T (Sup-trans (M UNIV))) (Sup-trans ((T o M) “ UNIV))) = bd-cts-tr
T
by (simp add:bd-cts-tr-def)

4.3.1 Continuity of Primitives

lemma cts-wp-Abort:

bd-cts (wp (Abort::’s prog))
proof —

have X: range (\(i::nat) (s::'s). 0) = {)s. 0} by(auto)

show ?thesis by (intro bd-ctsl, simp add:wp-eval o-def Sup-exp-def X)
qed

lemma cts-wp-Skip:
bd-cts (wp Skip)
by (rule bd-ctsl, simp add:wp-def Skip-def o-def)

lemma cts-wp-Apply:
bd-cts (wp (Apply f))

proof —
have X: AM s. {P (fs) |P. P € range M} = {P s |P. P € range (\i s. M i (fs))} by(auto)
show ?thesis by (intro bd-ctsI ext, simp add:wp-eval o-def Sup-exp-def X)

qed

lemma cts-wp-Bind:
fixes a::'a = 's prog
assumes ca: \s. bd-cts (wp (a (fs)))
shows bd-cts (wp (Bind f a))
proof(rule bd-ctsI)
fix M::nat = s expect and c::real

106 CHAPTER 4. THE PGCL LANGUAGE

assume chain: \i. M it M (Suc i) and sM: \i. sound (M i)
and bM: \i. bounded-by ¢ (M i)
with bd-ctsD[OF cal|
have As. wp (a (fs)) (Sup-exp (range M)) =
Sup-exp (range (wp (a (fs)) o M))
by (auto)
moreover have As. {fa s |fa. fa € range (A\x. wp (a (fs)) (M x))} =
{fa s |fa. fa € range (Axs. wp (a (fs)) (M x) s)}
by (auto)
ultimately show wp (Bind f a) (Sup-exp (range M)) =
Sup-exp (range (wp (Bind fa) o M))
by (simp add:wp-eval o-def Sup-exp-def)
qed

The first nontrivial proof. We transform the suprema into limits, and appeal to
the continuity of the underlying operation (here infimum). This is typical of the
remainder of the nonrecursive elements.

lemma cts-wp-DC:
fixes a b::'s prog
assumes ca: bd-cts (wp a)
and cb: bd-cts (wp b)
and ha: healthy (wp a)
and hb: healthy (wp b)
shows bd-cts (wp (a[] b))
proof(rule bd-ctsl, rule antisym)
fix M::nat = s expect and c::real
assume chain: \i. M it M (Suc i) and sM: \i. sound (M i)
and bM: \i. bounded-by ¢ (M i)

from ha hb have hab: healthy (wp (a[] b)) by(rule healthy-intros)
from bM have leSup: \i. M i b Sup-exp (range M) by(auto intro:Sup-exp-upper)
from sM bM have sSup: sound (Sup-exp (range M)) by(auto intro:Sup-exp-sound)

show Sup-exp (range (wp (a[| b) o M)) = wp (a[] D) (Sup-exp (range M))
proof(rule Sup-exp-least, clarsimp, rule le-funl)

fixis

from mono-transD]|OF healthy-monoD|OF hab)| leSup sM sSup

have wp (a[] b) (M i)t wp (a[] b) (Sup-exp (range M)) by(auto)

thus wp (a[] D) (Mi)s <wp (a[] b) (Sup-exp (range M)) s by(auto)

from hab sSup have sound (wp (a || b) (Sup-exp (range M))) by(auto)
thus nneg (wp (a[| b) (Sup-exp (range M))) by(auto)
qed

from sM bM ha have Ai. bounded-by ¢ (wp a (M i)) by(auto)
hence baM: \is. wp a (M i) s < ¢ by(auto)
from sM bM hb have Ai. bounded-by ¢ (wp b (M i)) by (auto)
hence bbM: N\is. wp b (M i) s < ¢ by(auto)

4.3. CONTINUITY 107

show wp (a[] b) (Sup-exp (range M)) t= Sup-exp (range (wp (a[] b) o M))
proof(simp add:wp-eval o-def , rule le-funl)
fix s::'s
from bd-ctsD|OF ca, of M, OF chain sM bM) bd-ctsD|OF cb, of M, OF chain sM bM]
have min (wp a (Sup-exp (range M)) s) (wp b (Sup-exp (range M)) s) =
min (Sup-exp (range (wp a o M)) s) (Sup-exp (range (wp b o M)) s) by(simp)
also {
have {fs |f.f € range (\x. wp a (M x))} = range (Mi. wp a (M i) s)
{fs|f.f €range Ax.wpb (Mx))} = range (Ni. wp b (M i) s)
by (auto)
hence min (Sup-exp (range (wp a o M)) s) (Sup-exp (range (wp b o M)) s) =
min (Sup (range (\i. wp a (M i) s))) (Sup (range (A\i. wp b (M i) s)))
by (simp add:Sup-exp-def o-def)
}
also {
have (\i. wp a (M i) s) ——— Sup (range (\i. wp a (M i) s))
proof(rule increasing-LIMSEQ)
fix n
from mono-transD]|OF healthy-monoD, OF ha) sM chain
show wp a (M n) s < wp a (M (Suc n)) s by(auto intro:le-funD)
from baM show wp a (M n) s < Sup (range (\i. wp a (M i) s))
by (intro cSup-upper bdd-abovel , auto)

fix e::real assume pe: 0 < e
from baM have cSup: Sup (range (\i. wp a (M i) 5)) € closure (range (\i. wp a (M
)s))
by (blast intro:closure-contains-Sup)
with pe obtain y where yin: y € (range (Ai. wp a (M i) s))
and dy: dist y (Sup (range (\i. wpa (M i) s))) <e
by (blast dest:iffD1[OF closure-approachable])
from yin obtain i where y = wp a (M i) s by(auto)
with dy have dist (wp a (M i) s) (Sup (range (Mi. wpa (M i) s))) <e
by (simp)
moreover from baM have wp a (M i) s < Sup (range (\i. wp a (M i) s))
by (intro cSup-upper bdd-abovel, auto)
ultimately have Sup (range (Ai. wpa (M i)s)) <wpa (Mi)s+e
by (simp add:dist-real-def)
thus 3i. Sup (range (M\i. wp a (M i) s)) <wpa (Mi) s+ eby(auto)
qed
moreover
have (\i. wp b (M i) s) — Sup (range (\i. wp b (M i) s))
proof(rule increasing-LIMSEQ)
fixn
from mono-transD]|OF healthy-monoD, OF hb] sM chain
show wp b (M n) s < wp b (M (Suc n)) s by(auto intro:le-funD)
from bbM show wp b (M n) s < Sup (range (Ni. wp b (M i) s))
by (intro cSup-upper bdd-abovel, auto)

fix e::real assume pe: 0 < e

108 CHAPTER 4. THE PGCL LANGUAGE

from bbM have cSup: Sup (range (\i. wp b (M i) 5)) € closure (range (Ni. wp b (M
i) 5))
by (blast intro:closure-contains-Sup)
with pe obtain y where yin: y € (range (Mi. wp b (M i) s))
and dy: dist y (Sup (range (A\i. wp b (M i) 5))) < e
by (blast dest:iffD1[OF closure-approachable))
from yin obtain i where y = wp b (M i) s by(auto)
with dy have dist (wp b (M i) s) (Sup (range (Mi. wp b (M i) s))) <e
by(simp)
moreover from bbM have wp b (M i) s < Sup (range (Ai. wp b (M i) s))
by (intro cSup-upper bdd-abovel , auto)
ultimately have Sup (range (Mi. wp b (M i)s)) <wpb (Mi)s+e
by (simp add:dist-real-def’)
thus 3i. Sup (range (M\i. wp b (M i) s)) <wp b (M i) s + e by(auto)
qed
ultimately have (\i. min (wpa (M i) s) (wp b (Mi)s)) ——
min (Sup (range (\i. wp a (M i) s))) (Sup (range (Mi. wp b (M i) s)))
by (rule tendsto-min)
moreover have bdd-above (range (Ai. min (wp a (M i) s) (wp b (M i) s)))
proof(intro bdd-abovel , clarsimp)
fix i
have min (wp a (M i) s) (wp b (M i) s) < wpa (Mi) s by(auto)
also {
from ha sM bM have bounded-by ¢ (wp a (M i)) by(auto)
hence wp a (M i) s < ¢ by(auto)
}
finally show min (wp a (M i) s) (wp b (Mi)s) <c.
qed
ultimately
have min (Sup (range (\i. wp a (M i) s))) (Sup (range (A\i. wp b (M i) 5))) <
Sup (range (Ai. min (wpa (M i) s) (wp b (M) s)))
by (blast intro:LIMSEQ-le-const2 cSup-upper min.mono[OF baM bbM))
}
also {
have range (\i. min (wp a (M i) s) (wp b (Mi)s)) =
{fs|f.f €range (Nis. min (wpa (Mi)s) (wpb (Mi)s))}
by (auto)
hence Sup (range (Ai. min (wp a (M i) s) (wp b (M i) s))) =
Sup-exp (range (Ai s. min (wp a (M i) s) (wp b (Mi)s))) s
by (simp add: Sup-exp-def cong del: SUP-cong-simp)
}
finally show min (wp a (Sup-exp (range M)) s) (wp b (Sup-exp (range M)) s) <
Sup-exp (range (Mi s. min (wp a (M i) s) (wp b (Mi)s)))s.
qed
qed

lemma cts-wp-Seq:
fixes a b::'s prog
assumes ca: bd-cts (wp a)

4.3. CONTINUITY 109

and cb: bd-cts (wp D)
and hb: healthy (wp b)
shows bd-cts (wp (a ;; b))
proof(rule bd-ctsl, simp add:o-def wp-eval)
fix M::nat = 's expect and c::real
assume chain: \i. M it M (Suc i) and sM: \i. sound (M i)
and bM: \i. bounded-by ¢ (M i)
hence wp a (wp b (Sup-exp (range M))) = wp a (Sup-exp (range (wp b o M)))
by (subst bd-ctsD[OF cb|, auto)
also {
from sM hb have Ai. sound ((wp b o M) i) by(auto)
moreover from chain sM
have \i. wpboM) it (wpboM) (Suci)
by (auto intro:mono-transD|OF healthy-monoD, OF hb))
moreover from sM bM hb have \i. bounded-by ¢ ((wp b o M) i) by(auto)
ultimately have wp a (Sup-exp (range (wp b o M))) =
Sup-exp (range (wp a o (wp b o M)))
by (subst bd-ctsD|OF cal, auto)
}
also have Sup-exp (range (wpa o (wpboM))) =
Sup-exp (range (M\i. wp a (wp b (M i))))
by (simp add:o-def)
finally show wp a (wp b (Sup-exp (range M))) =
Sup-exp (range (Mi. wp a (wp b (M i)))) .
qed

lemma cts-wp-PC:
fixes a b::'s prog
assumes ca: bd-cts (wp a)
and cb: bd-cts (wp b)
and ha: healthy (wp a)
and hb: healthy (wp b)
and up: unitary p
shows bd-cts (wp (PC ap b))
proof(rule bd-ctsl, rule ext, simp add:o-def wp-eval)
fix M::nat = s expect and c::real and s::'s
assume chain: \i. M it M (Suc i) and sM: \i. sound (M i)
and bM: \i. bounded-by ¢ (M i)

from sM have Ai. nneg (M i) by(auto)
with bM have nc: 0 < ¢ by(auto)

from chain sM bM have wp a (Sup-exp (range M)) = Sup-exp (range (wp a o M))
by (rule bd-ctsD|OF cal)
hence wp a (Sup-exp (range M)) s = Sup-exp (range (wpao M)) s
by (simp)
also {
have {fs |f.f € range (\x. wp a (M x))} = range (A\i. wp a (M i) s)
by (auto)

110 CHAPTER 4. THE PGCL LANGUAGE

hence Sup-exp (range (wp a o M)) s = Sup (range (Mi. wp a (M i) s))
by (simp add:Sup-exp-def o-def)
}
finally have p s * wp a (Sup-exp (range M)) s =
p s x Sup (range (A\i. wp a (M i) s)) by(simp)
also have ... = Sup {p s * x |x. x € range (\i. wp a (M i) 5)}
proof(rule cSup-mult, blast, clarsimp)
from up show 0 < p s by(auto)
fix i
from sM bM ha have bounded-by ¢ (wp a (M i)) by(auto)
thus wp a (M i) s < ¢ by(auto)
qed
also {
have {p s * x |x. x € range (\i. wpa (M i) s)} = range (Ni.p s+ wpa (Mi)s)
by (auto)
hence Sup {p s * x |x. x € range (N\i. wpa (M i) s)} =
Sup (range (Mi.p s« wp a (M i) s)) by(simp)
}
finally have p s * wp a (Sup-exp (range M)) s = Sup (range (\i.p s xwpa (M i) s)) .
moreover {
from chain sM bM have wp b (Sup-exp (range M)) = Sup-exp (range (wp b o M))
by (rule bd-ctsD|OF cb)
hence wp b (Sup-exp (range M)) s = Sup-exp (range (wpbo M)) s
by (simp)
also {
have {fs |f. f € range (Dx. wp b (M x))} = range (A\i. wp b (M i) s)
by (auto)
hence Sup-exp (range (wp b o M)) s = Sup (range (Mi. wp b (M i) s))
by (simp add:Sup-exp-def o-def)
}
finally have (I — p s) x wp b (Sup-exp (range M)) s =
(I —ps) = Sup (range (A\i. wp b (M i) s)) by(simp)
also have ... = Sup {(I — ps) *x |x. x € range (Mi. wp b (M i) s)}
proof(rule cSup-mult, blast, clarsimp)
fromupshow 0 <1 —ps
by auto
fix i
from sM bM hb have bounded-by ¢ (wp b (M i)) by(auto)
thus wp b (M i) s < ¢ by(auto)
qed
also {
have {(I — p s) *x |x. x € range (\i. wp b (M i) 5)} =
range (\i. (1 —p s) «xwp b (Mi) s)
by (auto)
hence Sup {(I — p s) xx |x. x € range (M\i. wp b (M i) s)} =
Sup (range (A\i. (1 —ps) xwp b (M i) 5)) by(simp)
}
finally have (I — p s) *x wp b (Sup-exp (range M)) s =
Sup (range (Ni. (I —ps)«wp b (Mi)s)).

4.3. CONTINUITY 111

}

ultimately
have p s « wp a (Sup-exp (range M)) s + (1 — p s) * wp b (Sup-exp (range M)) s =
Sup (range (Mi.p s*xwpa (M i) s)) + Sup (range (Ni. (1 —ps) xwp b (M) s))
by (simp)
also {
from bM sM ha have \i. bounded-by ¢ (wp a (M i)) by(auto)
hence Ai. wp a (M i) s < ¢ by(auto)
moreover from up have 0 < p s by(auto)
ultimately have Ai. p s x wp a (M i) s < p s * ¢ by(auto intro:mult-left-mono)
also from up nc have p s x ¢ < I x ¢ by(blast intro:mult-right-mono)
also have ... = ¢ by(simp)
finally have baM: N\i.psxwpa (Mi)s<c.

have lima: (\i.ps*wpa (Mi)s) —— Sup (range (Mi.ps+*wpa (M i) s))
proof(rule increasing-LIMSEQ)
fix n
from sM chain healthy-monoD[OF ha) have wp a (M n) = wp a (M (Suc n))
by (auto)
with up show p s xwpa (M n) s <ps+wpa (M (Sucn)) s
by (blast intro:mult-left-mono)
from baM show p s x wp a (M n) s < Sup (range (A\i.p s x wp a (M i) s))
by (intro cSup-upper bdd-abovel , auto)
next
fix e::real
assume pe: 0 < e
from baM have Sup (range (Mi.p s« wpa (Mi)s)) €
closure (range (Ni.p s x wp a (M i) s))
by (blast intro:closure-contains-Sup)
thm closure-approachable
with pe obtain y where yin: y € range (\i. p s xwp a (M i) s)
and dy: disty (Sup (range (Mi.ps+*wpa (Mi)s))) <e
by (blast dest:iffD1[OF closure-approachable))
from yin obtain i where y = p s * wp a (M i) s by(auto)
with dy have dist (p s « wp a (M i) s) (Sup (range (Mi.ps*wp a (Mi) s))) <e
by(simp)
moreover from baM have p s « wp a (M i) s < Sup (range (A\i.psxwpa (M i) s))
by (intro cSup-upper bdd-abovel , auto)
ultimately have Sup (range (Mi.ps*wpa (Mi)s)) <psswpa(Mi)s+e
by (simp add:dist-real-def’)
thus 3i. Sup (range (Mi.ps+«wpa (Mi)s)) <psxwpa (Mi)s+ eby(auto)
qed

from bM sM hb have Ai. bounded-by ¢ (wp b (M i)) by(auto)
hence Ai. wp b (M i) s < ¢ by(auto)
moreover from up have 0 < (1 — p s)
by auto
ultimately have \i. (1 — ps) xwp b (M i) s < (I — ps) * ¢ by(auto intro:mult-left-mono)
also {

112 CHAPTER 4. THE PGCL LANGUAGE

from up have I — p s < I by(auto)

with nc have (I — p s) * ¢ < I * ¢ by(blast intro:mult-right-mono)
}
also have / x ¢ = ¢ by(simp)
finally have bbM: \i. (I —ps)«wpb (Mi)s<c.

) l;e)we limb: (M\i. (1 —ps)«wpb (Mi)s) — Sup (range (\i. (I —ps) xwp b (M

proof(rule increasing-LIMSEQ)

fix n

from sM chain healthy-monoD[OF hb] have wp b (M n) = wp b (M (Suc n))
by (auto)

moreover from up have 0 < 1 —ps
by auto

ultimately show (I —ps)«xwpb (Mn) s < (I —ps) xwpb (M (Suc n)) s
by (blast intro:mult-left-mono)
from bbM show (I — p s) x wp b (M n) s < Sup (range (\i. (1 —ps) xwp b (M i) s))
by (intro cSup-upper bdd-abovel , auto)
next
fix e::real
assume pe: 0 < e
from bbM have Sup (range (\i. (I —ps) *wp b (M i) s)) €
closure (range (\i. (1 —ps) xwp b (M i) s))
by (blast intro:closure-contains-Sup)
with pe obtain y where yin: y € range (\i. (I —p s) xwp b (M i) s)
and dy: dist y (Sup (range (\i. (1 —ps)«wpb (M i) s))) <e
by (blast dest:iffDI1[OF closure-approachable))
from yin obtain i where y = (1 — p s) x wp b (M i) s by(auto)
with dy have dist (I —ps) «wp b (M) s)
(Sup (range (Mi. (1 —ps)xwpb (Mi)s))) <e
by (simp)
moreover from bbM
have (1 —ps) «wpb (Mi)s < Sup (range (\i. (I —p s) xwpb (M) s))
by (intro cSup-upper bdd-abovel , auto)
ultimately have Sup (range (\i. (1 —ps)*wpb (Mi)s)) < (I —ps)*wpb (Mi)s
+e
by (simp add:dist-real-def)
thus 3i. Sup (range (\i. (I —ps)xwpb (Mi)s)) < (I —ps)xwpb (Mi)s+e
by (auto)
qed

from lima limb have (A\i.ps«wpa (Mi)s+ (I —ps)«wpb (Mi)s) ——
Sup (range (Ni.p s« wpa (Mi)s)) + Sup (range (\i. (I —p s) * wp b (M i) s))
by (rule tendsto-add)

moreover from add-mono[OF baM bbM|

have Ni.psxwpa(Mi)s+ (I —ps)xwpb(Mi)s<

Sup (range (Mi.psxwpa (Mi)s+ (1 —ps)xwpb (Mi)s))

by (intro cSup-upper bdd-abovel , auto)

ultimately have Sup (range (\i.p s *xwpa (M i) s)) +

4.3. CONTINUITY 113

Sup (range (N\i. (I —ps)«wpb (Mi)s)) <
Sup (range Mi.psxwpa (Mi)s+ (1 —ps)xwpb (Mi)s))
by (blast intro: LIMSEQ-le-const2)
}
also {
have range (Mi.psxwpa (Mi)s+ (I —ps)«wpb (Mi)s) =
{fs|f-f €range (Mxs.psxwpa(Mx)s+ (I —ps)«wpb (Mx)s)}
by (auto)
hence Sup (range (Mi.psxwpa (Mi)s+ (I —ps)xwpb (Mi)s))=
Sup-exp (range (Mxs.psxwpa(Mx)s+ (I —ps)*xwpb (Mx)s))s
by (simp add: Sup-exp-def cong del: SUP-cong-simp)
}
finally
have p s « wp a (Sup-exp (range M)) s + (1 — p s) x wp b (Sup-exp (range M)) s <
Sup-exp (range (Mis.ps«wpa (Mi)s+ (I —ps)«wpb (Mi)s))s.
moreover
have Sup-exp (range (N\is.psxwpa (Mi)s+ (I —ps)xwpb (Mi)s))s <
ps*wpa (Sup-exp (range M)) s + (I — p s) x wp b (Sup-exp (range M)) s
proof(rule le-funD[OF Sup-exp-least], clarsimp, rule le-funl)
fix i:nat and s::'s
from bM have leSup: M i = Sup-exp (range M)
by (blast intro: Sup-exp-upper)
moreover from sM bM have sSup: sound (Sup-exp (range M))
by (auto intro:Sup-exp-sound)
moreover note healthy-monoD[OF ha] sM
ultimately have wp a (M i) - wp a (Sup-exp (range M)) by(auto)
hence wp a (M i) s < wp a (Sup-exp (range M)) s by (auto)
moreover {
from leSup sSup healthy-monoD|OF hb] sM
have wp b (M i) & wp b (Sup-exp (range M)) by(auto)
hence wp b (M i) s < wp b (Sup-exp (range M)) s by(auto)
}
moreover fromuphave 0 <ps0< 1 —ps
by auto
ultimately
showps«wpa(Mi)s+ (I —ps)xwpb (Mi)s<
p s *wp a (Sup-exp (range M)) s + (1 — p s) * wp b (Sup-exp (range M)) s
by (blast intro:add-mono mult-left-mono)

from sSup ha hb have sound (wp a (Sup-exp (range M)))
sound (wp b (Sup-exp (range M)))

by (auto)

hence As. 0 < wp a (Sup-exp (range M)) s \s. 0 < wp b (Sup-exp (range M)) s
by (auto)

moreover from up have As. 0 <psA\s.0<1—ps
by auto

ultimately show nneg (Ac. p ¢ x wp a (Sup-exp (range M)) ¢ +
(I —pc)*wpb (Sup-exp (range M)) c)
by (blast intro:add-nonneg-nonneg mult-nonneg-nonneg)

114 CHAPTER 4. THE PGCL LANGUAGE

qed
ultimately show p s * wp a (Sup-exp (range M)) s + (I — p s) * wp b (Sup-exp (range
M) s=
Sup-exp (range (Mxs.psx«wpa(Mx)s+ (I —ps)*xwpb(Mx)s))s
by (auto)
qed

Both set-based choice operators are only continuous for finite sets (probabilistic
choice can be extended infinitely, but we have not done so). The proofs for both
are inductive, and rely on the above results on binary operators.

lemma SetPC-Bind:
SetPC a p = Bind p (Ap. SetPC a (\-. p))
by (intro ext, simp add:SetPC-def Bind-def Let-def)

lemma SetPC-remove:
assumes nz: px # O0and nl:px # 1
and fsupp: finite (supp p)
shows SetPC a (A-. p) = PC (a x) (\-. p x) (SetPC a (\-. dist-remove p x))
proof(intro ext, simp add:SetPC-def PC-def)
fixab Ps
from nz have x € supp p by(simp add:supp-def)
hence supp p = insert x (supp p — {x}) by(auto)
hence (> xEsuppp.px+*axabPs) =
(3" x€insert x (suppp — {x}).px*axab Pys)
by (simp)
also from fsupp
have ... =pxxaxabPs+ (O xcsuppp — {x}.px+xaxabPs)
by (blast intro:sum.insert)
also from n/
have .. =pxsxaxabPs+ (I —px)* (> x€suppp — {x}.px*axabPs)/ (I —p
x))
by (simp add:field-simps)
also have ... =pxxaxabPs +
(1—px) « (Syesuppp — {x}. (py / (1 - px)) xayabPs))
by (simp add:sum-divide-distrib)
alsohave ... =pxxaxabPs+
(I —px)* (O yesupp p — {x}. dist-remove pxy«ayabPs))
by (simp add:dist-remove-def)
also from nz nl
have.. =pxxaxabPs +
(1 — p x) = ((3_ yesupp (dist-remove p x). dist-remove pxy * ay ab P s))
by (simp add:supp-dist-remove)
finally show (> xEsuppp.px*axab Ps) =
pxkxaxabPs+
(1 — px) * (> yesupp (dist-remove p x). dist-remove pxy xayab Ps) .
qed

lemma cts-bot:
bd-cts (A(P::'s expect) (s::'s). O::real)

4.3. CONTINUITY 115

proof —
have X: \s::’s. {(P::'s expect) s |P. P € range (AP 5. 0)} = {0} by(auto)
show ?thesis by (intro bd-ctsl, simp add:Sup-exp-def o-def X)

qed

lemma wp-SetPC-nil:
wp (SetPC a (As a. 0)) = (AP s. 0)
by (intro ext, simp add:wp-eval)

lemma SerPC-sgl:
suppp = {x} = SetPCa (A\-.p) = (MabPs.pxxaxabPs)
by (simp add:SetPC-def)

lemma bd-cts-scale:
fixes a::’s trans
assumes ca: bd-cts a
and ha: healthy a
and nnc: 0 <c¢
shows bd-cts (AP s.c xa P's)
proof(intro bd-ctsI ext, simp add:o-def)
fix M::nat = 's expect and d::real and s::'s
assume chain: \i. M it M (Suc i) and sM: \i. sound (M i)
and bM: \i. bounded-by d (M i)

from sM have \i. nneg (M i) by(auto)
with bM have nnd: 0 < d by(auto)

from sM bM have sSup: sound (Sup-exp (range M)) by(auto intro:Sup-exp-sound)
with healthy-scalingD|OF ha| nnc
have ¢ * a (Sup-exp (range M)) s = a (As. ¢ * Sup-exp (range M) s) s

by (auto intro:scalingD)
also {

have A\s. {fs |f.f € range M} = range (\i. M i s) by(auto)

hence a (\s. ¢ * Sup-exp (range M) s) s =

a (As. ¢ x Sup (range (Mi. M is))) s
by (simp add:Sup-exp-def)

}
also {

from bM have Ax s. x € range (Mi. M i s) = x < d by(auto)

with nnc have a (As. ¢ * Sup (range (Ni. M is))) s =

a (As. Sup {c*x |x. x € range (\i. M is)}) s
by (subst cSup-mult, blast+)

}
also {

have X: A\s. {c¢ * x |x. x € range (A\i. M i s)} = range (\i. ¢ x M i s) by(auto)

have a (As. Sup {c *x |x. x € range (\i. M is)}) s =

a (As. Sup (range (Mi. ¢ x M i 5))) s by(simp add:X)

}

also {

116 CHAPTER 4. THE PGCL LANGUAGE

have As. range (\i.cxMis)={fs|f.f € range (\is.cxMis)}
by (auto)
hence (As. Sup (range (Mi. c * M is))) = Sup-exp (range (Nis.cxMis))
by (simp add: Sup-exp-def cong del: SUP-cong-simp)
hence a (\s. Sup (range (Mi.c* M is))) s =
a (Sup-exp (range (\is. cx* M is))) s by(simp)
}
also {
from le-funD[OF chain| nnc
have \i. (As. c* Mis)t (As. ¢ x M (Suci) s)
by (auto intro:le-funl [OF mult-left-mono))
moreover from sM nnc
have Ai. sound (\s. c x Mis)
by (auto intro:sound-intros)
moreover from bM nnc
have Ai. bounded-by (¢ x d) (As.c x M is)
by (auto intro:mult-left-mono)
ultimately
have a (Sup-exp (range (\is.c« M is))) =
Sup-exp (range (a o (Nis.cxMis)))
by (rule bd-ctsD|OF cal)
hence a (Sup-exp (range (Ais.cx*Mis))) s =
Sup-exp (range (ao (Mis.c*Mis)))s
by (auto)
}
also have Sup-exp (range (ao (Mis.c«Mis)))s=
Sup-exp (range (Ax. a (As.c*x M xs))) s
by (simp add:o-def)
also {
from nnc sM
have Ax.a (As.cx*Mxs) = (As.cxa (Mx)s)
by (auto intro:scalingD|OF healthy-scalingD, OF ha, symmetric])
hence Sup-exp (range (Ax. a (As.c* M xs))) s =
Sup-exp (range (Axs.cxa (M x) s)) s
by (simp)
}
finally show ¢ * a (Sup-exp (range M)) s = Sup-exp (range (Axs.c*a (Mx) s)) s.
qed

lemma cts-wp-SetPC-const:
fixes a::'a = 's prog
assumes ca: \x. x € (supp p) = bd-cts (wp (a x))
and ha: A\x. x € (supp p) = healthy (wp (a x))
and up: unitary p
and sump: sum p (supp p) < 1
and fsupp: finite (supp p)
shows bd-cts (wp (SetPC a (A-. p)))
proof(cases supp p = {}, simp add:supp-empty SetPC-def wp-def cts-bot)
assume nesupp: supp p #= {}

4.3. CONTINUITY 117

from fsupp have unitary p — sum p (supp p) <1 —
(VxEsupp p. bd-cts (wp (ax))) —
(VxEsupp p. healthy (wp (a x))) —
bd-cts (wp (SetPC a (A-. p)))
proof(induct supp p arbitrary:p, simp add:supp-empty wp-SetPC-nil cts-bot, clarify)
fix x::'a and F::'a set and p::'a = real
assume fF: finite F
assume insert x F' = supp p
hence pstep: supp p = insert x F by(simp)
hence xin: x € supp p by(auto)
assume up: unitary p and ca: ¥V xEsupp p. bd-cts (wp (a x))
and ha: ¥V xEsupp p. healthy (wp (a x))
and sump: sum p (supp p) < 1
and xni: x ¢ F
assume /H: A\p. F = supp p =
unitary p — sum p (suppp) < 1 —
(Vx€supp p. bd-cts (wp (ax))) —
(V x€supp p. healthy (wp (a x))) —
bd-cts (wp (SetPC a (A-. p)))

from fF pstep have fsupp: finite (supp p) by(auto)
from xin have nzp: p x # 0 by(simp add:supp-def)

have xy-le-sum:
Ny.y € suppp =y #x=px+py<sump (supp p)
proof —
fix y assume yin: y € supp p and yne: y # x
from up have 0 < sum p (supp p — {x,y})
by (auto intro:sum-nonneg)
hencepx +py <px+py+sump (supp p — {x,y})
by (auto)
also {
from yin yne fsupp
have p y + sum p (supp p — {x,y}) = sum p (supp p — {x})
by (subst sum.insert[symmetric|, (blast introl:sum.cong)+)
moreover
from xin fsupp
have p x + sum p (supp p — {x}) = sum p (supp p)
by (subst sum.insert[symmetric], (blast introl:sum.cong)+)
ultimately
have p x + py + sum p (supp p — {x, y}) = sum p (supp p) by(simp)
}
finally show p x + p y < sum p (supp p) .
qed

have nip: N\y.y €suppp —=y#x = px+#1
proof(rule ccontr, simp)
assume px/: p x = |

118 CHAPTER 4. THE PGCL LANGUAGE

fix y assume yin: y € supp p and yne: y # x
from up have 0 < p y by(auto)
with yin have 0 < p y by(auto simp:supp-def)
hence 0 + p x < p y + p x by(rule add-strict-right-mono)
with px/ have I < p x + p y by(simp)
also from yin yne have p x + p y < sum p (supp p)
by (rule xy-le-sum)
finally show False using sump by (simp)
qed

show bd-cts (wp (SetPC a (\-. p)))
proof(cases F = {})
case True with pstep have supp p = {x} by(simp)
hence wp (SetPC a (A-.p)) = (APs.px*wp (ax) Ps)
by (simp add:SetPC-sgl wp-def)
moreover {
from up ca ha xin have bd-cts (wp (a x)) healthy (wp (ax)) 0 <px
by (auto)
hence bd-cts (AP s. p x x wp (ax) P s)
by (rule bd-cts-scale)
}
ultimately show ?hesis by(simp)
next
assume nefF: F # {}
then obtain y where yinF: y € F by(auto)
with xni have yne: y # x by(auto)
from yinF pstep have yin: y € supp p by(auto)

from supp-dist-remove|of p x, OF nzp nlp, OF yin yne|
have supp-sub: supp (dist-remove p x) C supp p by(auto)

from xin ca have cax: bd-cts (wp (a x)) by(auto)
from xin ha have hax: healthy (wp (a x)) by(auto)

from supp-sub ha have hra: ¥ x€supp (dist-remove p x). healthy (wp (a x))
by (auto)

from supp-sub ca have cra: ¥ xesupp (dist-remove p x). bd-cts (wp (a x))
by (auto)

from supp-dist-remove|of p x, OF nzp nilp, OF yin yne| pstep xni
have Fsupp: F = supp (dist-remove p x)
by (simp)

have udp: unitary (dist-remove p x)
proof(intro unitaryI2 nnegl bounded-bylI)
fix y
show 0 < dist-remove p x y
proof(cases y=x, simp-all add:dist-remove-def)
fromuphave 0 <py0<I—px

4.3. CONTINUITY 119

by auto
thusO<py/ (I —px)
by (rule divide-nonneg-nonneg)
qed
show dist-removep xy < I
proof(cases y=x, simp-all add:dist-remove-def
cases yesupp p, simp-all add:nsupp-zero)
assume yne: y # x and yin: y € supp p
hence p x + p y < sum p (supp p)
by (auto intro:xy-le-sum)
also note sump
finally have p y < I — p x by(auto)
moreover from up have p x < I by(auto)
moreover from yin yne have p x # 1 by(rule nlp)
ultimately show p y / (I — p x) < I by(auto)
qed
qed

from xin have pxn0: p x # 0 by(auto simp:supp-def)
from yin yne have pxnl: p x # 1 by(rule nip)

from pxn0 pxnl have sum (dist-remove p x) (supp (dist-remove p x)) =
sum (dist-remove p x) (supp p — {x})
by (simp add:supp-dist-remove)
also have ... = (> yesuppp — {x}.py/ (I —px))
by (simp add:dist-remove-def)
also have ... = (> yesuppp — {x}.py) / (I —px)
by (simp add:sum-divide-distrib)
also {
from xin have insert x (supp p) = supp p by(auto)
with fsupp have p x + (3_yEsupp p — {x}. py) = sum p (supp p)
by (simp add:sum.insert|symmetric])
also note sump
finally have sum p (supp p — {x}) < I — p x by(auto)
moreover {
from up have p x < I by(auto)
with pxnl have p x < 1 by(auto)
hence 0 < I — p x by(auto)
}
ultimately have sum p (suppp — {x}) / (I —px) <1
by (auto)
}

finally have sdp: sum (dist-remove p x) (supp (dist-remove p x)) < I .
from Fsupp udp sdp hra cra IH
have cts-dr: bd-cts (wp (SetPC a (\-. dist-remove p x)))

by (auto)

from up have upx: unitary (\-. p x) by(auto)

120 CHAPTER 4. THE PGCL LANGUAGE

from pxn0 pxnl fsupp hra show ?thesis
by (simp add:SetPC-remove,
blast intro:cts-wp-PC cax cts-dr hax healthy-intros
unitary-sound[OF udp] sdp upx)
qed
qed
with assms show ?thesis by(auto)
qed

lemma cts-wp-SetPC:
fixes a::'a = 's prog
assumes ca: \xs.x € (supp (p s)) = bd-cts (wp (a x))
and ha: N\xs. x € (supp (p s)) = healthy (wp (a x))
and up: \s. unitary (p s)
and sump: \s. sum (p s) (supp (p s)) <1
and fsupp: \s. finite (supp (p s))
shows bd-cts (wp (SetPC a p))
proof —
from assms have bd-cts (wp (Bind p (Ap. SetPC a (A-. p))))
by (iprover intro\:cts-wp-Bind cts-wp-SetPC-const)
thus ?thesis by (simp add:SetPC-Bind[symmetric])
qed

lemma wp-SetDC-Bind:
SetDC a S = Bind S (A\S. SetDC a (\-. S))
by (intro ext, simp add:SetDC-def Bind-def)

lemma SetDC-finite-insert:
assumes fS: finite S
and neS: S # {}
shows SetDC a (A-. insert x S) = ax[] SetDC a (\-. S)
proof (intro ext, simp add: SetDC-def DC-def cong del: image-cong-simp cong add: INF-cong-simp)
fixabPs
from fS have A: finite (insert (axab P s) (M. axab Ps) *S))
and B: finite (((Ax. ax ab P s) *S)) by(auto)
from neS have C: insert (axab Ps) (M. axab Ps) “S) # {}
and D: (Ax.axab Ps) ‘S # {} by(auto)
from A C have Inf (insert (axab Ps) (Ax.axabPs) ‘S)) =
Min (insert (axab Ps) (Ax.axab Ps) “S))
by (auto intro:cInf-eq-Min)
also from B D have ... = min (ax ab P s) (Min (M. axab Ps) ©S))
by (auto intro:Min-insert)
also from B D have ... = min (axab P s) (Inf (Ax.axab Ps) ‘S))
by (simp add:cInf-eq-Min)
finally show (INF xcinsertxS.axab P s) =
min (a x ab P s) (INF x€S.axab P s)
by (simp cong del: INF-cong-simp)
qed

4.3. CONTINUITY 121

lemma SerDC-singleton:
SetDCa (A-. {x})=ax
by (simp add: SetDC-def cong del: INF-cong-simp)

lemma cts-wp-SetDC-const:
fixes a::'a = 's prog
assumes ca: \x. x € S = bd-cts (wp (a x))
and ha: \x. x € S = healthy (wp (a x))
and fS: finite S
and neS: S # {}
shows bd-cts (wp (SetDC a (\-. S)))
proof —
have finite S — S # {} =
(Vx€S. bd-cts (wp (ax))) —
(Vx€ES. healthy (wp (a x))) —
bd-cts (wp (SetDC a (A-. S)))
proof(induct S rule:finite-induct, simp, clarsimp)
fix x::'a and F::'a set
assume fF: finite F
and /H: F # {} = bd-cts (wp (SetDC a (A-. F)))
and cax: bd-cts (wp (a x))
and hax: healthy (wp (a x))
and haF: vV x€F. healthy (wp (a x))
show bd-cts (wp (SetDC a (A-. insert x F)))
proof(cases F = {}, simp add:SetDC-singleton cax)
assume F # {}
with fF cax hax haF IH show bd-cts (wp (SetDC a (\-. insert x F)))
by (auto intro!:cts-wp-DC healthy-intros simp:SetDC-finite-insert)
qed
qed
with assms show ?thesis by (auto)
qed

lemma cts-wp-SetDC:
fixes a::'a = 's prog
assumes ca: \xs. x € Ss = bd-cts (wp (a x))
and ha: \xs.x € S s = healthy (wp (a x))
and fS: \s. finite (S s)
and neS: \s. Ss # {}
shows bd-cts (wp (SetDC a S))
proof —
from assms have bd-cts (wp (Bind S (A\S. SetDC a (\-. S))))
by (iprover intro\:cts-wp-Bind cts-wp-SetDC-const)
thus ?thesis by(simp add:wp-SetDC-Bind[symmetric])
qed

lemma cts-wp-repeat:
bd-cts (wp a) = healthy (wp a) = bd-cts (wp (repeat n a))

122 CHAPTER 4. THE PGCL LANGUAGE

by (induct n, auto intro:cts-wp-Skip cts-wp-Seq healthy-intros)

lemma cts-wp-Embed:
bd-cts t = bd-cts (wp (Embed 1))
by (simp add:wp-eval)

4.3.2 Continuity of a Single Loop Step

A single loop iteration is continuous, in the more general sense defined above for
transformer transformers.

lemma cts-wp-loopstep:
fixes body::'s prog
assumes hb: healthy (wp body)
and cb: bd-cts (wp body)
shows bd-cts-tr (Ax. wp (body ;; Embed x G ,,® Skip)) (is bd-cts-tr ?F)
proof(rule bd-cts-trl, rule le-trans-antisym)
fix M::nat = s trans and b::real
assume chain: \i. le-trans (M i) (M (Suc i))
and fM: . feasible (M i)
show fiv: le-trans (Sup-trans (range (?F o M))) (?F (Sup-trans (range M)))
proof(rule le-transI[OF Sup-trans-least2], clarsimp)
fix P Q::'s expect and ¢
assume sP: sound P
assume nQ: nneg Q and bP: bounded-by (bound-of P) Q
hence sQ: sound Q by (auto)

from fM have fSup: feasible (Sup-trans (range M))
by (auto intro:feasible-Sup-trans)

from sQ fM have M ¢ Q = Sup-trans (range M) Q
by (auto intro:Sup-trans-upper2)
moreover from sQ fM fSup
have sMtP: sound (M t Q) sound (Sup-trans (range M) Q) by(auto)
ultimately have wp body (M t Q) = wp body (Sup-trans (range M) Q)
using healthy-monoD|OF hb] by(auto)
hence \\s. wp body (M t Q) s < wp body (Sup-trans (range M) Q) s
by (rule le-funD)
thus ?F (M t) Q = ?F (Sup-trans (range M)) Q
by (intro le-funl, simp add:wp-eval mult-left-mono)

show nneg (wp (body ;; Embed (Sup-trans (range M)) G »® Skip) Q)
proof(rule nnegl, simp add:wp-eval)
fix s::'s
from fSup sQ have sound (Sup-trans (range M) Q) by(auto)
with ib have sound (wp body (Sup-trans (range M) Q)) by(auto)
hence 0 < wp body (Sup-trans (range M) Q) s by(auto)
moreover from sQ have 0 < Q s by(auto)
ultimately show 0 < «G» s * wp body (Sup-trans (range M) Q) s + (I — «G» s) *
Os

4.3. CONTINUITY 123

by (auto intro:add-nonneg-nonneg mult-nonneg-nonneg)
qed
next
fix P::'s expect assume sP: sound P
thus nneg P bounded-by (bound-of P) P by(auto)
show YV ucrange ((Ax. wp (body ;; Embed x ¢ ,,® Skip)) o M).
V' R. nneg R A bounded-by (bound-of P) R —
nneg (u R) A bounded-by (bound-of P) (u R)
proof(clarsimp, intro conjl nnegl bounded-byl, simp-all add:wp-eval)
fix u::nat and R::'s expect and s::'s
assume nR: nneg R and bR: bounded-by (bound-of P) R
hence sR: sound R by(auto)
with fM have sMuR: sound (M u R) by(auto)
with 1b have sound (wp body (M u R)) by(auto)
hence 0 < wp body (M u R) s by(auto)
moreover from nR have 0 < R s by(auto)
ultimately show 0 < «G» s x wp body (MuR) s + (1 — «G» s) xR s
by (auto intro:add-nonneg-nonneg mult-nonneg-nonneg)

from sR bR fM have bounded-by (bound-of P) (M u R) by(auto)
with sMuR hb have bounded-by (bound-of P) (wp body (M u R)) by(auto)
hence wp body (M u R) s < bound-of P by(auto)
moreover from bR have R s < bound-of P by(auto)
ultimately have «G» s x wp body (MuR) s + (I — «G» s) *x Rs <
«G» s * bound-of P + (I — «G» s) * bound-of P
by (auto intro:add-mono mult-left-mono)
also have ... = bound-of P by(simp add:algebra-simps)
finally show «G» s * wp body (M uR) s + (I — «G» s) * R s < bound-of P .
qed
qed

show le-trans (?F (Sup-trans (range M))) (Sup-trans (range (?F o M)))
proof(rule le-transl, rule le-funl, simp add: wp-eval cong del: image-cong-simp)
fix P::'s expect and s::'s
assume sP: sound P
have {¢ P |t. t € range M} = range (\i. M i P)

by (blast)
hence wp body (Sup-trans (range M) P) s = wp body (Sup-exp (range (M\i. M i P))) s
by (simp add:Sup-trans-def)
also {
from sP fM have Ai. sound (M i P) by(auto)
moreover from sP chain have \i. M i P+ M (Suc i) P by(auto)
moreover {
from sP have bounded-by (bound-of P) P by(auto)
with sP fM have Ai. bounded-by (bound-of P) (M i P) by(auto)
}
ultimately have wp body (Sup-exp (range (Ai. M i P))) s =
Sup-exp (range (M. wp body (M i P))) s
by (subst bd-ctsD[OF cb), auto simp:o-def)

124 CHAPTER 4. THE PGCL LANGUAGE

}
also have Sup-exp (range (\i. wp body (M i P))) s =
Sup {fs|f.f € range (Ni. wp body (M i P))}
by (simp add:Sup-exp-def)
finally have «G» s * wp body (Sup-trans (range M) P) s + (1 — «G» s) x P s =
«G» s x Sup {fs |f.f € range (A\i. wp body (MiP))} + (1 — «G»s) x Ps
by (simp)
also {
from sP fM have Ai. sound (M i P) by(auto)
moreover from sP fM have \i. bounded-by (bound-of P) (M i P) by(auto)
ultimately have Ai. bounded-by (bound-of P) (wp body (M i P)) using hb by (auto)
hence bound: \i. wp body (M i P) s < bound-of P by(auto)
moreover
have {« G»sxx |x.x € {fs|f.f € range (\i. wp body (M i P))}} =
{«G»sxfs|f.f € range (\i. wp body (M i P))}
by (blast)
ultimately
have «G» s * Sup {fs |f. f € range (\i. wp body (M i P))} =
Sup {«G» s x fs|f.f € range (Mi. wp body (M i P))}
by (subst cSup-mult, auto)
moreover {
have {x + (/—«G» s) x P s |x.
x €{«G» sxfs|f.f € range (\i. wp body (M i P))}} =
{«G» s+ fs+ (I—«G» s) x Ps |f.f € range (Ai. wp body (M i P))}
by (blast)
moreover from bound sP have \i. «G» s x wp body (M i P) s < bound-of P
by(cases G s, auto)
ultimately
have Sup {«G» s «fs |f. f € range (\i. wp body (M i P))} + (I—«G» s) x P s =
Sup {«G» s x fs+ (I—«G» s) x Ps|f.f € range (Ai. wp body (M i P))}
by (subst cSup-add, auto)
}
ultimately
have «G» s * Sup {fs |f. f € range (\i. wp body (M i P))} + (I1—«G» s) * P s =
Sup {«G» s x fs+ (I—«G» s) « Ps|f.f € range (\i. wp body (M i P))}
by (simp)
}
also {
have \i. «G» s x wp body (M i P) s + (I1—«G» s) * P s =
((Ax. wp (body ;; Embed x ¢ ,® Skip)) o M) i P's
by (simp add:wp-eval)
also have Ai. ...i <
Sup {fs|f.f € {tP|t.t € range (M. wp (body ;; Embed x i ,&® Skip)) o
M}
proof(intro cSup-upper bdd-abovel , blast, clarsimp simp:wp-eval)
fix i
from sP have bP: bounded-by (bound-of P) P by(auto)
with sP fM have sound (M i P) bounded-by (bound-of P) (M i P) by(auto)
with /b have bounded-by (bound-of P) (wp body (M i P)) by (auto)

4.4. CONTINUITY AND INDUCTION FOR LOOPS 125

with bP have wp body (M i P) s < bound-of P P s < bound-of P by(auto)
hence «G» s * wp body (M i P) s + (I—«G» s) * P s <
«G» s * (bound-of P) + (1—«G» s) x (bound-of P)
by (auto intro:add-mono mult-left-mono)
also have ... = bound-of P by(simp add:algebra-simps)
finally show «G» s x wp body (M i P) s + (I—«G» s) x P s < bound-of P .
qed
finally
have Sup {«G» s« fs + (I—«G» s) x P s |f. f € range (\i. wp body (M i P))} <
Sup {fs|f.f € {t Pt t € range ((Ax. wp (body ;; Embed x . ¢ ,® Skip)) o M)}}
by (blast intro:cSup-least)
}
also have Sup {fs |f.f € {t P |t. t € range ((Ax. wp (body ;; Embed x ;; ,® Skip)) o
M)}} =
Sup-trans (range ((Ax. wp (body ;; Embed x i ,,® Skip)) o M)) P s
by (simp add:Sup-trans-def Sup-exp-def)
finally show «G» s * wp body (Sup-trans (range M) P) s + (1—«G» s) x Ps <
Sup-trans (range ((Ax. wp (body ;; Embed x ¢ ,,® Skip)) o M)) Ps .
qed
ged

end

4.4 Continuity and Induction for Loops
theory LoopInduction imports Healthiness Continuity begin

Showing continuity for loops requires a stronger induction principle than we have
used so far, which in turn relies on the continuity of loops (inductively). Thus, the
proofs are intertwined, and broken off from the main set of continuity proofs. This
result is also essential in showing the sublinearity of loops.

A loop step is monotonic.

lemma wp-loop-step-mono-trans:
fixes body::'s prog
assumes sP: sound P
and hb: healthy (wp body)
shows mono-trans (AQ s. « G» s x wp body Qs + « N G » s x P s)
proof(intro mono-transl le-funl, simp)
fix Q R::'s expect and s::'s
assume sQ: sound Q and sR: sound R and le: Q + R
hence wp body Q + wp body R
by (rule mono-transD|OF healthy-monoD, OF hb))
thus «G» s x wp body Q s < «G» s x wp body R s
by (auto dest:le-funD intro:mult-left-mono)
qed

We can therefore apply the standard fixed-point lemmas to unfold it:

126 CHAPTER 4. THE PGCL LANGUAGE

lemma [fp-wp-loop-unfold:
fixes body::'s prog
assumes hb: healthy (wp body)
and sP: sound P
shows Ifp-exp (AQ 5. «G» s x wp body Q s + «N G» s x P s) =
(As. «G» s * wp body (Ifp-exp (AQ 5. «G» s x wp body Q s + «N G» s * P 5)) s +
«N G»sxPs)
proof(rule lfp-exp-unfold)
from assms show mono-trans (AQ s. «G» s * wp body Q s + «N G» s x P s)
by (blast intro:wp-loop-step-mono-trans)
from assms show As. «G» s * wp body (XAs. bound-of P) s + «N G» s * P s I~ As.
bound-of P
by (blast intro:lfp-loop-fp)
from sP show sound (\s. bound-of P)
by (auto)
fix Q::'s expect
assume sound Q
with assms show sound (\s. «G» s * wp body Q s + «N G» s * P s)
by (intro wp-loop-step-sound[unfolded wp-eval, simplified, folded negate-embed), auto)
qed

lemma wp-loop-step-unitary:

fixes body::'s prog

assumes hb: healthy (wp body)

and uP: unitary P and uQ: unitary Q

shows unitary (As. «G» s x wp body Q s + «N G» s * P s)
proof(intro unitaryl2 nnegl bounded-byl)

fix s::'s

from uQ hb have uwQ: unitary (wp body Q) by(auto)

with uP have 0 < wp body Q s 0 < P s by(auto)

thus 0 < «G» s x wp body Q s + «<N G» s * P s

by (auto intro:add-nonneg-nonneg mult-nonneg-nonneg)

from uP uwQ have wp body Q s < 1 P s < I by(auto)
hence «G» s x wp body Q s + «N G» s * Ps < «G» s * I + «N G» s x 1
by (blast intro:add-mono mult-left-mono)
also have ... = I by(simp add:negate-embed)
finally show «G» s x wp body Qs + «N G» s * Ps < 1.
qed

lemma [fp-loop-unitary:
fixes body::'s prog
assumes hb: healthy (wp body)
and uP: unitary P
shows unitary (Ifp-exp (A\Q s. «G» s * wp body Q s + «N G» s * P s))
using assms by(blast intro:lfp-exp-unitary wp-loop-step-unitary)

From the lattice structure on transformers, we establish a transfinite induction prin-
ciple for loops. We use this to show a number of properties, particularly subdis-

4.4. CONTINUITY AND INDUCTION FOR LOOPS 127

tributivity, for loops. This proof follows the pattern of lemma Ifp_ordinal_induct
in HOL/Inductive.

lemma loop-induct:
fixes body::'s prog
assumes hwp: healthy (wp body)
and hwip: nearly-healthy (wlp body)
— The body must be healthy, both in strict and liberal semantics.
and Limit: \S. [Vx€S. P (fst x) (snd x); ¥V x€ES. feasible (fst x);
Vx€S.V Q. unitary Q — unitary (snd x Q) | =
P (Sup-trans (fst < S)) (Inf-utrans (snd “S))
— The property holds at limit points.
and /H: Atu. [P tu; feasible t; \Q. unitary Q = unitary (u Q) | =
P (wp (body ;; Embed t ¢; ,@ Skip))
(wip (body ;; Embed u ¢ ,&® Skip))
— The inductive step. The property is preserved by a single loop iteration.
and P-equiv: \tt'uu'. [Pt u; equiv-trans t t'; equiv-utrans uu' | = P t'u’
— The property must be preserved by equivalence
shows P (wp (do G — body od)) (wip (do G — body od))
— The property can refer to both interpretations simultaneously. The unifier will happily
apply the rule to just one or the other, however.
proof(simp add:wp-eval)
let ?X t = wp (body ;; Embed t ;; ,,® Skip)
let 7Y t = wip (body ;; Embed t ¢ ,,® Skip)

let ?M = {x. P (fst x) (snd x) A
Seasible (fst x) A
(V Q. unitary Q — unitary (snd x Q)) A
le-trans (fst x) (Ifp-trans ?X) A
le-utrans (gfp-trans ?Y) (snd x)}

have fSup: feasible (Sup-trans (fst * ?M))
proof(intro feasiblel bounded-byI2 nnegl2)
fix Q::'s expect and b::real
assume nQ: nneg Q and bQ: bounded-by b Q
show Sup-trans (fst “ ?2M) Q = As. b
unfolding Sup-trans-def
using nQ bQ by (auto intro!:Sup-exp-least)
show As. 0+ Sup-trans (fst < ?M) Q
proof(cases)
assume empty: ?M = {}
show ?thesis by (simp add:Sup-trans-def Sup-exp-def empty)
next
assume ne: ?M # {}
then obtain x where xin: x € ?M by auto
hence ffx: feasible (fst x) by(simp)
with nQ bQ have Xs. 0t fst x O by(auro)
also from xin have fst x Q & Sup-trans (fst < ?M) Q
apply (intro Sup-trans-upper2[|OF imagel - nQ bQ], assumption)
apply(clarsimp, blast intro: sound-nneg|OF feasible-sound) feasible-boundedD)

128 CHAPTER 4. THE PGCL LANGUAGE

done
finally show As. 0 Sup-trans (fst < ?M) Q.
qed
qed

have ulnf: \P. unitary P = unitary (Inf-utrans (snd ‘ ?M) P)
proof(cases ?M = {})
fix P
assume empty: ?M = {}
show ?thesis P by (simp only:empty, simp add:Inf-utrans-def’)
next
fix P::’s expect
assume uP: unitary P
and ne: ?M # {}
show ?thesis P
proof(intro unitaryl2 nnegl2 bounded-byl2)
from ne obtain x where xin: x € ?M by auto
hence sxin: snd x € snd * ?M by(simp)
hence le-utrans (Inf-utrans (snd ‘< ?M)) (snd x)
by (intro Inf-utrans-lower, auto)
with uP
have Inf-utrans (snd * ?M) Pt~ snd x P by(auto)
also {
from xin uP have unitary (snd x P) by(simp)
hence snd x P As. I by(auto)

}
finally show Inf-utrans (snd < ?M) P As. 1.

have \s. O & Inf-trans (snd < ?M) P
unfolding Inf-trans-def
proof(rule Inf-exp-greatest)
from sxin show {7 P |t. t € snd * ?M} # {} by(auto)
show VPe{rP|t.t €snd ‘ ?M}. Xs. O P
proof(clarsimp)
fix z::'s trans
assume YV Q. unitary Q — unitary (t Q)
with uP have unitary (¢t P) by(auto)
thus As. 0t ¢ P by(auto)
qed
qed
also {
from ne have X: (snd ‘ ?M = {}) = False by(simp)
have Inf-trans (snd * ?M) P = Inf-utrans (snd ‘ ?M) P
unfolding Inf-utrans-def by(subst X, simp)
}
finally show \s. O & Inf-utrans (snd < ?M) P .
qed
qed

4.4. CONTINUITY AND INDUCTION FOR LOOPS 129

have wp-loop-mono: At u. [le-trans t u; \P. sound P —> sound (t P);
AP. sound P => sound (u P) | = le-trans (?X t) (?X u)
proof(intro le-transl le-funl, simp add:wp-eval)
fix ¢ u::'s trans and P::'s expect and s::'s
assume le: le-trans t u
and st: \P. sound P = sound (t P)
and su: A\P. sound P = sound (u P)
and sP: sound P
hence sound (t P) sound (u P) by(auto)
with healthy-monoD|OF hwp) le sP have wp body (t P) = wp body (u P) by(auto)
hence wp body (1 P) s < wp body (u P) s by(auto)
thus «G» s x wp body (t P) s < «G» s * wp body (u P) s by(auto intro:mult-left-mono)
qed

have wip-loop-mono: N\t u. [le-utrans t u; \P. unitary P = unitary (t P);
AP. unitary P = unitary (u P) | = le-utrans (?Y t) (?Y u)
proof(intro le-utransl le-funl, simp add:wp-eval)
fix ¢ u::'s trans and P::'s expect and s::'s
assume le: le-utrans t u
and ut: \P. unitary P => unitary (t P)
and uu: \P. unitary P = unitary (u P)
and uP: unitary P
hence unitary (t P) unitary (u P) by(auto)
with le uP have wip body (t P) = wip body (u P)
by (auto intro:nearly-healthy-monoD[OF hwip))
hence wip body (t P) s < wip body (u P) s by(auto)
thus «G» s x wip body (t P) s < «G» s * wip body (u P) s
by (auto intro:mult-left-mono)
qed

from hwp have hX: \t. healthy t = healthy (?X t)
by (auto intro:healthy-intros)

from hwlp have hY: \t. nearly-healthy t => nearly-healthy (?Y t)
by (auto intro!:healthy-intros)

have PLimit: P (Sup-trans (fst * ?M)) (Inf-utrans (snd ‘ ?M))
by (auto intro:Limit)

have feasible-Ifp-loop:
feasible (Ifp-trans ?X)
proof(intro feasiblel bounded-byI2 nnegl2,
simp-all add:wp-Loop1[simplified wp-eval| soundI2 hwp)
fix P::'s expect and b::real
assume bP: bounded-by b P and nP: nneg P
hence sP: sound P by (auto)
show Ifp-exp (AQ's. «G» s xwpbody Qs + «N G»s*Ps)t As. b
proof(intro lfp-exp-lowerbound le-funl)
fix s::'s

130 CHAPTER 4. THE PGCL LANGUAGE

from bP nP have nnb: 0 < b by(auto)
hence sound (\s. b) bounded-by b ()s. b) by(auto)
with awp have bounded-by b (wp body (\s. b)) by(auto)
with bP have wp body (As. b) s < b P s < b by(auto)
hence «G» s x wp body (As. b) s + «<N G» s *x Ps < «G» s+ b+ «N G»sxb
by (auto intro:add-mono mult-left-mono)
thus «G» s x wp body (As. b) s + «<N G» s« Ps<b
by (simp add:negate-embed algebra-simps)
from nnb show sound (As. b) by(auto)
qed
from iwp sP show \s. O 1= Ifp-exp (AQ's. « G» s x wpbody Qs + « N G» 5% Ps)
by (blast intro!:lfp-exp-greatest lfp-loop-fp)
qed

have unitary-gfp:
NP. unitary P = unitary (gfp-trans ?Y P)
proof(intro unitaryl2 nnegl2 bounded-byl2,
simp-all add:wlp-Loop1[simplified wp-eval] hwlip)
fix P::'s expect
assume uP: unitary P
show As. O gfp-exp (A\Q s. « G» sxwlpbody Qs + «N G»s*Ps)
proof(rule gfp-exp-upperbound|OF le-funl))
fix s::'s
from hwlp uP have 0 < wip body (\s. 0) s 0 < P s by(auto dest:unitary-sound)
thus 0 < «G» s * wip body (As. 0) s + «N G» s x P s
by (auto intro:add-nonneg-nonneg mult-nonneg-nonneg)
show unitary ()s. 0) by(auto)
qed
show gfp-exp (AQ s. « G» sxwipbody Qs + «N G»s* Ps) Xs. 1
by (auto intro:gfp-exp-least)
qed

have fX:
/\t. feasible t = feasible (?X t)
proof(intro feasiblel nnegl bounded-byl, simp-all add:wp-eval)
fix 7::'s trans and Q::’s expect and b::real and s::'s
assume ft: feasible t and bQ: bounded-by b Q and nQ: nneg Q
hence nneg (t Q) bounded-by b (¢ Q) by(auto)
moreover hence stQ: sound (¢t Q) by(auto)
ultimately have wp body (¢ Q) s < b using hwp by(auto)
moreover from bQ have Q s < b by(auto)
ultimately have «G» s x wp body (1 Q) s + (I — «G» s) * Q5 <
«G» s+ b+ (] —«G»s) * b
by (auto intro:add-mono mult-left-mono)
thus «G» s x wp body (t Q) s + (I — «G» s) « Qs <b
by (simp add:algebra-simps)

from nQ stQ hwp have 0 < wp body (t Q) s 0 < Q s by(auto)
thus 0 < «G» s x wp body (t Q) s + (I — «G» s) x Qs

4.4. CONTINUITY AND INDUCTION FOR LOOPS 131

by (auto intro:add-nonneg-nonneg mult-nonneg-nonneg)
qed

have uY:
Nt P. (\P. unitary P = unitary (t P)) = unitary P => unitary (?Y t P)
proof(intro unitaryl2 nnegl bounded-byl, simp-all add:wp-eval)
fix t::'s trans and P::’s expect and s::'s
assume ut: \P. unitary P = unitary (t P)
and uP: unitary P
hence utP: unitary (t P) by(auto)
with Awlp have ubtP: unitary (wip body (t P)) by(auto)
with uP have 0 < P s 0 < wip body (t P) s by(auto)
thus 0 < «G» s x wip body (t P) s + (1—«G» s) * P s
by (auto intro:add-nonneg-nonneg mult-nonneg-nonneg)

from uP ubtP have P s < 1 wip body (t P) s < 1 by(auto)
hence «G» s x wip body (t P)s+ (]—«G» s) *xPs<«G»sxl+ (I—«G»s)x*1
by (blast intro:add-mono mult-left-mono)
also have ... = I by(simp add:algebra-simps)
finally show «G» s * wip body (t P) s + (1—«G» s) x Ps < 1.
qed

have fw-Ifp: le-trans (Sup-trans (fst < ?M)) (Ifp-trans ?X)
using feasible-nnegD|OF feasible-Ifp-loop]
by (intro le-transI|OF Sup-trans-least2), blast+)
hence le-trans (?X (Sup-trans (fst < ?M))) (?X (Ifp-trans ?X))
by (auto intro:wp-loop-mono feasible-sound|OF fSup)
feasible-sound|OF feasible-Ifp-loop])
also have equiv-trans ... (Ifp-trans ?X)
proof(rule iffD1[OF equiv-trans-comm, OF Ifp-trans-unfold), iprover intro:wp-loop-mono)
fix 1::'s trans and P::'s expect
assume st: \Q. sound Q = sound (t Q)
and sP: sound P
show sound (?X t P)
proof(intro soundI2 bounded-byl nnegl, simp-all add:wp-eval)
fix s::'s
from sP st hwp have 0 < P s 0 < wp body (t P) s by(auto)
thus 0 < «G» s x wp body (t P) s + (I — «G» s) x P s
by (blast intro:add-nonneg-nonneg mult-nonneg-nonneg)
from sP st have bounded-by (bound-of (t P)) (¢ P) by(auto)
with sP st hwp have bounded-by (bound-of (t P)) (wp body (t P)) by(auto)
hence wp body (t P) s < bound-of (t P) by(auto)
moreover from sP st hwp have P s < bound-of P by(auto)
moreover have «G» s < I I — «G» s < I by(auto)
moreover from sP st hwp have 0 < wp body (¢ P) s 0 < P s by(auto)
moreover have (0::real) < 1 by(simp)
ultimately show «G» s x wp body (t P) s + (I — «G» s) x P s <
1 % bound-of (t P) + 1 % bound-of P
by (blast intro:add-mono mult-mono)

132 CHAPTER 4. THE PGCL LANGUAGE

qed
next
let ?fp = AR s. bound-of R
show le-trans (?X ?fp) ?fp by(auto intro:healthy-intros hwp)
fix P::’s expect assume sound P
thus sound (?fp P) by(auto)
qed
finally have le-lfp: le-trans (?X (Sup-trans (fst * ?M))) (Ifp-trans ?X) .

have fiv-gfp: le-utrans (gfp-trans ?Y) (Inf-utrans (snd * ?M))
by (auto intro:Inf-utrans-greatest unitary-gfp)

have equiv-utrans (gfp-trans ?Y) (?Y (gfp-trans ?Y))
by (auto intro!:gfp-trans-unfold wip-loop-mono uY)
also from fw-gfp have le-utrans (?Y (gfp-trans ?Y)) (?Y (Inf-utrans (snd ‘ ?M)))
by (auto intro:wip-loop-mono ulnf unitary-gfp)
finally have ge-gfp: le-utrans (gfp-trans ?Y) (?Y (Inf-utrans (snd ‘ ?M))) .
from PLimit fX uY fSup ulnf have P (?X (Sup-trans (fst * ?M))) (?Y (Inf-utrans (snd
2M)))
by (iprover intro:IH)
moreover from fSup have feasible (?X (Sup-trans (fst * ?M))) by(rule fX)
moreover have \P. unitary P = unitary (?Y (Inf-utrans (snd * ?M)) P)
by (auto intro:uY ulnf)
moreover note le-lfp ge-gfp
ultimately have pair-in: (?X (Sup-trans (fst * ?M)), ?Y (Inf-utrans (snd * ?M))) € ?M
by (simp)

have ?X (Sup-trans (fst < ?M)) € fst < ?M
by (rule imagel [OF pair-in, of fst, simplified])
hence le-trans (?X (Sup-trans (fst < ?M))) (Sup-trans (fst < ?M))
proof(rule le-transI[OF Sup-trans-upper2|where t=2X (Sup-trans (fst * ?M))
and S=fst < ?M]])
fix P::'s expect
assume sP: sound P
thus nneg P by(auto)
from sP show bounded-by (bound-of P) P by(auto)
from sP show Y ucfst * ?M. ¥V Q. nneg Q A bounded-by (bound-of P) Q —
nneg (u Q) N bounded-by (bound-of P) (u Q)
by (auto)
qed
hence le-trans (Ifp-trans ?X) (Sup-trans (fst * ?M))
by (auto intro:lfp-trans-lowerbound feasible-sound|OF fSup))
with fw-Ifp have eqt: equiv-trans (Sup-trans (fst * ?M)) (Ifp-trans ?X)
by (rule le-trans-antisym)

have ?Y (Inf-utrans (snd < ?M)) € snd ‘ ?’M
by (rule imagel |OF pair-in, of snd, simplified])

hence le-utrans (Inf-utrans (snd * ?M)) (?Y (Inf-utrans (snd < ?M)))
by (intro Inf-utrans-lower, auto)

4.4. CONTINUITY AND INDUCTION FOR LOOPS 133

hence le-utrans (Inf-utrans (snd ‘ ?M)) (gfp-trans ?Y)
by (blast intro:gfp-trans-upperbound ulnf’)
with fw-gfp have equ: equiv-utrans (Inf-utrans (snd * ?M)) (gfp-trans ?Y)
by (auto intro:le-utrans-antisym)
from PLimit eqt equ show P (Ifp-trans ?X) (gfp-trans ?Y) by(rule P-equiv)
qed

4.4.1 The Limit of Iterates

The iterates of a loop are its sequence of finite unrollings. We show shortly that
this converges on the least fixed point. This is enormously useful, as we can appeal
to various properties of the finite iterates (which will follow by finite induction),
which we can then transfer to the limit.

definition iterates :: 's prog = ('s = bool) = nat = 's trans
where iterates body G i = ((Ax. wp (body ;; Embed x ¢; ,,® Skip)) ™ i) (AP 5. 0)

lemma iterates-0[simp):
iterates body G 0 = (AP s. 0)
by (simp add:iterates-def)

lemma iterates-Suc[simp]:
iterates body G (Suc i) = wp (body ;; Embed (iterates body G i) (¢,® Skip)
by (simp add:iterates-def’)

All iterates are healthy.

lemma iterates-healthy:
healthy (wp body) = healthy (iterates body G i)
by (induct i, auto intro:healthy-intros)

The iterates are an ascending chain.

lemma iterates-increasing:
fixes body::'s prog
assumes hb: healthy (wp body)
shows le-trans (iterates body G i) (iterates body G (Suc i))
proof(induct i)
show le-trans (iterates body G 0) (iterates body G (Suc 0))
proof(simp add:iterates-def , rule le-transI)
fix P::'s expect
assume sound P
with hb have sound (wp (body ;; Embed (AP 5. 0) i »® Skip) P)
by (auto intro':wp-loop-step-sound)
thus \s. 0+ wp (body ;; Embed (AP s. 0) G »® Skip) P
by (auto)
qed

fix i
assume /H: le-trans (iterates body G i) (iterates body G (Suc i))
have equiv-trans (iterates body G (Suc i))

134 CHAPTER 4. THE PGCL LANGUAGE

(wp (body ;; Embed (iterates body G i) . G »,® Skip))
by (simp)
also from iterates-healthy|OF hb]
have le-trans ... (wp (body ;; Embed (iterates body G (Suc i)) G »® Skip))
by (blast intro:wp-loop-step-mono|OF hb IH))
also have equiv-trans ... (iterates body G (Suc (Suc i)))
by (simp)
finally show le-trans (iterates body G (Suc i)) (iterates body G (Suc (Suc i))) .
qed

lemma wp-loop-step-bounded:
fixes z::'s trans and Q::'s expect
assumes nQ: nneg Q
and bQ: bounded-by b Q
and ht: healthy t
and hb: healthy (wp body)
shows bounded-by b (wp (body ;; Embed t i ,® Skip) Q)
proof(rule bounded-byl, simp add:wp-eval)
fix s::'s
from nQ bQ have sQ: sound Q by(auto)
with bQ ht have sound (t Q) bounded-by b (t Q) by(auto)
with /b have bounded-by b (wp body (¢ Q)) by (auto)
with bQ have wp body (t Q) s < b Q s < b by(auto)
hence «G» s « wp body (t Q) s + (I—«G» s) x O s <
«G» s * b+ (]—«G» S) *b
by (auto intro:add-mono mult-left-mono)
also have ... = b by(simp add:algebra-simps)
finally show «G» s * wp body (t Q) s + (I—«G» s) * Qs < b.
qed

This is the key result: The loop is equivalent to the supremum of its iterates. This
proof follows the pattern of lemma continuous_Ifp in HOL/Library/Continuity.

lemma [fp-iterates:
fixes body::'s prog
assumes hb: healthy (wp body)
and cb: bd-cts (wp body)
shows equiv-trans (wp (do G — body od)) (Sup-trans (range (iterates body G)))
(is equiv-trans ?X ?Y)
proof(rule le-trans-antisym)
let ?F = M\x. wp (body ;; Embed x i ,,® Skip)
let ?bot = \(P::'s = real) s::'s. 0::real

have HF: \i. healthy ((?F ™ i) ?bot)
proof —
fix i from hb show (?thesis i)
by (induct i, simp-all add:healthy-intros)
qed

from iterates-healthy[OF hb)

4.4. CONTINUITY AND INDUCTION FOR LOOPS 135

have \i. feasible (iterates body G i) by(auto)
hence fSup: feasible (Sup-trans (range (iterates body G)))
by (auto intro:feasible-Sup-trans)

{
fix i
have le-trans ((?F ™M i) ?bot) ?X
proof(induct i)
show le-trans ((?F ™ 0) ?bot) ?X
proof(simp, intro le-transI)
fix P::'s expect
assume sound P
with hb healthy-wp-loop
have sound (wp (p x. body ;; x G @ Skip) P)
by (auto)
thus As. 0 wp (p x. body 3; x G »® Skip) P
by (auto)
qed
fix i
assume [H: le-trans ((?F ™M i) ?bot) ?X
have equiv-trans ((?F ™ (Suc i)) ?bot) (?F ((?F ™ i) ?bot)) by(simp)
also have le-trans ... (?F ?X)
proof(rule wp-loop-step-mono|OF hb IH))
fix P::'s expect
assume sP: sound P
with hb healthy-wp-loop
show sound (wp (p x. body ;; x G »P Skip) P)
by (auto)
from sP show sound ((?F " i) ?bot P)
by (rule healthy-sound|OF HF))
qed
also {
from hb have X: le-trans (wp (body ;; Embed (AP s. bound-of P) . G ,® Skip))
(AP s. bound-of P)
by (intro le-transl, simp add:wp-eval, auto intro: lfp-loop-fp[unfolded negate-embed))
have equiv-trans (?F ?X) ?X
apply (simp only: wp-eval)
by (intro iffD1|OF equiv-trans-comm, OF lfp-trans-unfold)
wp-loop-step-mono|OF hb) wp-loop-step-sound|OF hb), (blast|rule X)+)
}
finally show le-trans ((?F ™ (Suc i)) ?bot) ?X .
qed
}
hence A\i. le-trans (iterates body G i) (wp do G — body od)
by (simp add:iterates-def)
thus le-trans ?Y ?X
by (auto introl:le-transI[OF Sup-trans-least2] sound-nneg
healthy-sound|OF iterates-healthy, OF hb]
healthy-bounded-byD|OF iterates-healthy, OF hb]

136 CHAPTER 4. THE PGCL LANGUAGE

healthy-sound|OF healthy-wp-loop] hb)

show le-trans ?X 7Y
proof(simp only: wp-eval, rule lfp-trans-lowerbound)
from b cb have bd-cts-tr ?F by(rule cts-wp-loopstep)
with iterates-increasing|OF hb] iterates-healthy|OF hb)
have equiv-trans (?F ?Y) (Sup-trans (range (?F o (iterates body G))))
by (auto intro!: healthy-feasibleD bd-cts-trD cong del: image-cong-simp)
also have le-trans (Sup-trans (range (?F o (iterates body G)))) ?Y
proof(rule le-transI)
fix P::'s expect
assume sP: sound P
show (Sup-trans (range (?F o (iterates body G)))) P+ ?Y P
proof(rule Sup-trans-least2, clarsimp)
show Y ucrange ((Ax. wp (body ;; Embed x ¢; ,® Skip)) o iterates body G).
V' R. nneg R A bounded-by (bound-of P) R —
nneg (u R) A bounded-by (bound-of P) (u R)
proof(clarsimp, intro conjI)
fix Q::'s expect and i
assume nQ: nneg Q and bQ: bounded-by (bound-of P) Q
hence sound Q by(auto)
moreover from iterates-healthy|OF hb]
have A\P. sound P = sound (iterates body G i P) by(auto)
moreover note hb
ultimately have sound (wp (body ;; Embed (iterates body G i) . ¢ ,,%® Skip) Q)
by (iprover intro:wp-loop-step-sound)
thus nneg (wp (body ;; Embed (iterates body G i) G ,® Skip) Q)
by (auto)
from nQ bQ iterates-healthy|OF hb] hb
show bounded-by (bound-of P) (wp (body ;; Embed (iterates body G i) i ,® Skip)
0)
by (rule wp-loop-step-bounded)
qed
from sP show nneg P bounded-by (bound-of P) P by(auto)
next
fix Q::'s expect
assume nQ: nneg Q and bQ: bounded-by (bound-of P) Q
hence sound Q by (auto)
with fSup have sound (Sup-trans (range (iterates body G)) Q) by(auto)
thus nneg (Sup-trans (range (iterates body G)) Q) by(auto)

fix i
show wp (body ;; Embed (iterates body G i) ,® Skip) O
Sup-trans (range (iterates body G)) Q

proof(rule Sup-trans-upper2|OF - - nQ bQ))

from iterates-healthy[OF hb)

show Y ucrange (iterates body G).

V' R. nneg R A bounded-by (bound-of P) R —
nneg (u R) N bounded-by (bound-of P) (u R)

4.4. CONTINUITY AND INDUCTION FOR LOOPS 137

by (auto)

have wp (body ;; Embed (iterates body G i) ¢ ,® Skip) = iterates body G (Suc i)
by (simp)

also have ... € range (iterates body G)
by (blast)

finally show wp (body ;; Embed (iterates body G i) G »® Skip) €
range (iterates body G) .
qed
qed
qed
finally show le-trans (?F ?Y) ?Y .

fix P::'s expect
assume sound P
with fSup show sound (?Y P) by(auto)
qed
qed

Therefore, evaluated at a given point (state), the sequence of iterates gives a se-
quence of real values that converges on that of the loop itself.

corollary loop-iterates:
fixes body::'s prog
assumes hb: healthy (wp body)
and cb: bd-cts (wp body)
and sP: sound P
shows (\i. iterates body G i Ps) — wp (do G — body od) P s
proof —
let ?X = {fs|f.f € {¢t P |t. t € range (iterates body G)}}
have closure-Sup: Sup ?X € closure ?X
proof(rule closure-contains-Sup, simp, clarsimp)
fix i
from sP have bounded-by (bound-of P) P by(auto)
with iterates-healthy[OF hb] sP have \j. bounded-by (bound-of P) (iterates body G j
P)
by (auto)
thus iterates body G i P s < bound-of P by(auto)
qed

have (\i. iterates body G i P s) —— Sup {fs |f. f € {t P |t. t € range (iterates body
G)}}
proof(rule LIMSEQ-I)
fix r::real assume posr: 0 < r
with closure-Sup obtain y where yin: y € ?X and ey: dist y (Sup ?X) <r
by (simp only:closure-approachable, blast)
from yin obtain i where yir: y = iterates body G i P s by(auto)
{
fix j
have | < j — le-trans (iterates body G i) (iterates body G j)
proof(induct j, simp, clarify)

138 CHAPTER 4. THE PGCL LANGUAGE

fix k
assume [H: | < k — le-trans (iterates body G i) (iterates body G k)
and le: i < Suc k
show le-trans (iterates body G i) (iterates body G (Suc k))
proof(cases i = Suc k, simp)
assume [# Suc k
with /e have i < k by(auto)
with 7H have le-trans (iterates body G i) (iterates body G k) by(auto)
also note iterates-increasing[OF hb)
finally show le-trans (iterates body G i) (iterates body G (Suc k)) .
qed
qed
}
with sP have V j>i. iterates body G i P s < iterates body G j P s
by (auto)
moreover {
from sP have bounded-by (bound-of P) P by(auto)
with iterates-healthy|OF hb] sP have \j. bounded-by (bound-of P) (iterates body G j
P)
by (auto)
hence A\;j. iterates body G j P s < bound-of P by(auto)
hence /\;j. iterates body G j P s < Sup ?X
by (intro cSup-upper bdd-abovel , auto)
}
ultimately have \j. i <j —
norm (iterates body G j P s — Sup ?X) <
norm (iterates body G i P s — Sup ?X)
by (auto)
also from ey yit have norm (iterates body Gi P s — Sup ?X) <r
by (simp add:dist-real-def)
finally show 3 no. ¥V n>no. norm (iterates body Gn P s —
Sup {fs|f.f € {t Pt t € range (iterates body G)}}) <r
by (auto)
qed
moreover
from 1b cb sP have wp do G — body od P s = Sup-trans (range (iterates body G)) P s
by (simp add:equiv-transD|OF Ifp-iterates))
moreover have ... = Sup {fs |[f.f € {t P |t. t € range (iterates body G)}}
by (simp add:Sup-trans-def Sup-exp-def’)
ultimately show ?thesis by (simp)
qed

The iterates themselves are all continuous.

lemma cts-iterates:
fixes body::'s prog
assumes hb: healthy (wp body)
and cb: bd-cts (wp body)
shows bd-cts (iterates body G i)
proof(induct i, simp-all)

4.4. CONTINUITY AND INDUCTION FOR LOOPS 139

have range (\(n::nat) (s::'s). 0::real) = {Xs. O::real}
by (auto)
thus bd-cts (AP (s::'s). 0)
by (intro bd-ctsl, simp add:o-def Sup-exp-def)
next
fix i
assume /H: bd-cts (iterates body G i)
thus bd-cts (wp (body ;; Embed (iterates body G i) ¢ »,&® Skip))
by (blast intro:cts-wp-PC cts-wp-Seq cts-wp-Embed cts-wp-Skip
healthy-intros iterates-healthy cb hb)
qed

Therefore so is the loop itself.

lemma cts-wp-loop:
fixes body::'s prog
assumes 1b: healthy (wp body)
and cb: bd-cts (wp body)
shows bd-cts (wp do G — body od)
proof(rule bd-ctsI)
fix M::nat = s expect and b::real
assume chain: N\i. M it M (Suc i)
and sM: \i. sound (M i)
and bM: \i. bounded-by b (M i)

from sM bM iterates-healthy|OF hb]
have \j i. bounded-by b (iterates body G i (M j)) by(blast)
hence iB: \j i s. iterates body G i (M j) s < b by(auto)

from sM bM have sSup: sound (Sup-exp (range M))
by (auto intro:Sup-exp-sound)
with [fp-iterates|OF hb cb]
have wp do G — body od (Sup-exp (range M)) =
Sup-trans (range (iterates body G)) (Sup-exp (range M))
by (simp add:equiv-transD)
also {
from chain sM bM
have A\i. iterates body G i (Sup-exp (range M)) = Sup-exp (range (iterates body G i o
M)
by (blast intro:bd-ctsD cts-iterates|OF hb cb])
hence {t (Sup-exp (range M)) |t. t € range (iterates body G)} =
{Sup-exp (range (t o M)) |t. t € range (iterates body G)}
by (auto intro:sym)
hence Sup-trans (range (iterates body G)) (Sup-exp (range M)) =
Sup-exp {Sup-exp (range (t o M)) |t. t € range (iterates body G)}
by (simp add:Sup-trans-def)
}
also {
have As. {fs|f. 3t.f = (As. Sup {fs|f.f € range (t o M)}) A
t € range (iterates body G)} =

140 CHAPTER 4. THE PGCL LANGUAGE

range (\i. Sup (range (). iterates body G i (M j) s)))
(is \s. ?Xs = ?Ys)
proof(intro antisym subsetl)

fix s x

assume x € ?X s

then obtain r where rwx: x = Sup {fs |f. f € range (t o M)}

and ¢ € range (iterates body G) by(auto)

then obtain i where ¢ = iterates body G i by(auto)

with rwx have x = Sup {fs |[f. f € range (). iterates body G i (M j))}
by (simp add:o-def)

moreover have {fs |f. f € range (). iterates body G i (M j))} =

range ()j. iterates body G i (M j) s) by(auto)

ultimately have x = Sup (range (). iterates body G i (M j) s))
by (simp)

thus x € range (\i. Sup (range (Nj. iterates body G i (M j) s)))
by (auto)

next

fix s x

assume x € ?Ys

then obtain i where A: x = Sup (range (). iterates body G i (M j) s))
by (auto)

have \s. {fs |[f.f € range (). iterates body Gi (M j))} =
range (). iterates body G i (M j) s) by(auto)
hence B: (\s. Sup (range (). iterates body G i (M j) s))) =
(As. Sup {f's |f. f € range (iterates body Gio M)})
by (simp add:o-def)

have C: iterates body G i € range (iterates body G) by(auto)

have 3f. x =fs A
(3t.f=Ns. Sup {fs|f.f €range (toM)}) A
t € range (iterates body G))
by (iprover intro:A B C)
thus x € ?X s by(simp)
qed
hence Sup-exp {Sup-exp (range (t o M)) |t. t € range (iterates body G)} =
(As. Sup (range (Xi. Sup (range (). iterates body G i (M j) s)))))
by (simp add:Sup-exp-def)
}
also have (\s. Sup (range (\i. Sup (range (). iterates body G i (M j) 5))))) =
(As. Sup (range (A\(iy). iterates body G i (M j) s)))

(is 2X = ?Y)
proof(rule ext, rule antisym)
fix s::'s

show 7Y s < ?X s
proof(rule cSup-least, blast, clarify)
fix i j::nat
from iB have iterates body G i (M j) s < Sup (range (). iterates body G i (M j) s))

4.4. CONTINUITY AND INDUCTION FOR LOOPS 141

by (intro cSup-upper bdd-abovel , auto)
also from iB have ... < Sup (range (\i. Sup (range (). iterates body G i (M j) s))))
by (intro cSup-upper cSup-least bdd-abovel , (blast intro:cSup-least)+)
finally show iterates body G i (M j) s <
Sup (range (Mi. Sup (range (). iterates body G i (M j) s)))) .
qed
have Aij. iterates body G i (M j) s <
Sup (range (A(i, j). iterates body G i (M j) s))
by (rule cSup-upper, auto intro:iB)
thus ?Xs < ?Ys
by (intro cSup-least, blast, clarify, simp, blast intro:cSup-least)
qed
also have ... = (\s. Sup (range (\j .Sup (range ()\i. iterates body G i (M j) 5)))))
(is 72X =?Y)
proof(rule ext, rule antisym)
fix s::'s
have \ij. iterates body Gi (M j) s <
Sup (range (\(i, j). iterates body G i (M j) s))
by (rule cSup-upper, auto intro:iB)
thus ?Y s < ?X s
by (intro cSup-least, blast, clarify, simp, blast intro:cSup-least)
show ?X s < ?Ys
proof(rule cSup-least, blast, clarify)
fix i j::nat
from iB have iterates body G i (M j) s < Sup (range (Ai. iterates body G i (M j) s))
by (intro cSup-upper bdd-abovel , auto)
also from iB have ... < Sup (range ()\j. Sup (range (Ai. iterates body G i (M j) s))))
by (intro cSup-upper cSup-least bdd-abovel, blast, blast intro:cSup-least)
finally show iterates body G i (M j) s <
Sup (range (Nj. Sup (range (\i. iterates body G i (M j) s)))) .
qed
qed
also {
have As. range (\j. Sup (range (\i. iterates body G i (M j) 5))) =
{fs|f.f €range (AP s.Sup {fs|f.-Jt.f =tP A
t € range (iterates body G)}) o M)} (is A\s. ?X s = ?Y)
proof(intro antisym subsetl)
fix s x
assume x € ?X s
then obtain j where rwx: x = Sup (range (\i. iterates body G i (M j) s)) by(auto)
moreover {
have As. range (\i. iterates body G i (M j) s) =
{fs|f.3t.f =1t (MJ) A\t € range (iterates body G)}
by (auto)
hence (\s. Sup (range (\i. iterates body G i (M j) 5))) €
range (AP s. Sup {fs |f.
dt. f =1t P At € range (iterates body G)}) o M)
by (simp add: o-def cong del: SUP-cong-simp)
}

142 CHAPTER 4. THE PGCL LANGUAGE

ultimately show x € ?Y s by(auto)
next
fix s x
assume x € ?Y's
then obtain P where rwx: x =P s
and Pin: P € range (AP s. Sup {fs |f.
3t.f =t P At € range (iterates body G)}) o M)
by (auto)
then obtain j where P = (\s. Sup {fs |f. 3t.f =1t (Mj) A
t € range (iterates body G)})
by (auto)
also {
have As. {fs |f. 3t.f =1 (M) At € range (iterates body G)} =
range (\i. iterates body G i (M j) s) by(auto)
hence (As. Sup {fs |f. 3t.f =1t (M j) A\t € range (iterates body G)}) =
(As. Sup (range (\i. iterates body G i (M) s)))
by (simp)
}
finally have x = Sup (range (\i. iterates body G i (M j) s))
by (simp add:rwx)
thus x € ?X s by(simp)
qed
hence (\s. Sup (range (N\j .Sup (range (\i. iterates body G i (M j) 5))))) =
Sup-exp (range (Sup-trans (range (iterates body G)) o M))
by (simp add: Sup-exp-def Sup-trans-def cong del: SUP-cong-simp)
}
also have Sup-exp (range (Sup-trans (range (iterates body G)) o M)) =
Sup-exp (range (wp do G — body od o M))
by (simp add:o-def equiv-transD|OF lfp-iterates, OF hb cb, OF sM])
finally show wp do G — body od (Sup-exp (range M)) =
Sup-exp (range (wp do G — body od o M)) .
qed

lemmas cts-intros =
cts-wp-Abort cts-wp-Skip
cts-wp-Seq cts-wp-PC
cts-wp-DC cts-wp-Embed
cts-wp-Apply cts-wp-SetDC
cts-wp-SetPC cts-wp-Bind
cts-wp-repeat

end

4.5 Sublinearity

theory Sublinearity imports Embedding Healthiness LoopInduction begin

4.5. SUBLINEARITY 143

4.5.1 Nonrecursive Primitives

Sublinearity of non-recursive programs is generally straightforward, and follows
from the alebraic properties of the underlying operations, together with healthiness.

lemma sublinear-wp-Skip:
sublinear (wp Skip)
by (auto simp:wp-eval)

lemma sublinear-wp-Abort:
sublinear (wp Abort)
by (auto simp:wp-eval)

lemma sublinear-wp-Apply:

sublinear (wp (Apply f))
by (auto simp:wp-eval)

lemma sublinear-wp-Seq:
fixes x::'s prog
assumes slx: sublinear (wp x) and sly: sublinear (wp y)
and hx: healthy (wp x) and hy: healthy (wp y)
shows sublinear (wp (x ;; y))
proof(rule sublinearl, simp add:wp-eval)
fix P::'s = real and Q::'s = real and s::'s
and a::real and b::real and c::real
assume sP: sound P and sQ: sound Q
and nna: 0 < aand nnb: 0 < b and nnc: 0 < ¢

with six hy have a x wpx (wpy P) s + bxwpx (wpy Q) s © ¢ <
wpx (As.axwpyPs+bxwpyQsSc)s
by (blast intro:sublinearD)
also {
from sP sQ nna nnb nnc sly
have A\s.axwpyPs+bxwpyQsSc<
wpy(As.axPs+b+xQsOc)s

by (blast intro:sublinearD)

moreover from sP sQ hy

have sound (wp y P) and sound (wp y Q) by(auto)

moreover with nna nnb nnc

have sound (As.axwpyPs+bxwpyQs©OSc)
by (auto introl:sound-intros tminus-sound)

moreover from sP sQ nna nnb nnc

have sound (A\s.a* Ps+b* QsOc)
by (auto intro!:sound-intros tminus-sound)

moreover with /iy have sound (wpy (As.a+xPs+bx Qs c))
by (blast)

ultimately

have wpx (As.axwpyPs+bxwpyQsOc)s<

wpx(wpy(As.axPs+b*xQsSc))s

by (blast intro!:le-funD|OF mono-transD|OF healthy-monoD|OF hx]]])

144 CHAPTER 4. THE PGCL LANGUAGE

}

finally show a x wpx (wpy P) s+ bxwpx (wpy Q) s © ¢ <
wpx(wpy(As.axPs+bxQsSc))s.

qed

lemma sublinear-wp-PC:
fixes x::'s prog
assumes six: sublinear (wp x) and sly: sublinear (wp y)
and uP: unitary P
shows sublinear (wp (x p® y))
proof(rule sublinearl, simp add:wp-eval)
fix R::'s = real and Q::'s = real and s::'s
and a::real and b::real and c::real
assume sR: sound R and sQ: sound Q
and nna: 0 < aand nnb: 0 < b and nnc: 0 < ¢

havea x (Ps«wpx Qs+ (I —Ps)«wpyQs)+
bx(PsxwpxRs+ (I —Ps)xwpyRs)Sc=
(PsxaxwpxQs+ (I —Ps)xaxwpyQs)+
(PsxbxwpxRs+ (I —Ps)xbxwpyRs)Sc¢
by (simp add:field-simps)
also
have ... = (Ps*xaxwpxQs+PsxbxwpxRs)+
(I—=Ps)yxaxwpyQs—+ (I —Ps)xbxwpyRs)OSc
by (simp add:ac-simps)
also
have...=Psx* (axwpxQs+b*xwpxRs)+
(I—Ps)x(axwpyQs+bxwpyRs)S
(Psxc+ (I —Ps)x*c)
by (simp add:field-simps)
also
have ... < (Psx(a*wpxQs—+b*xwpxRs)OPsx*c)+
(I—=Ps)x(axwpyQs+bxwpyRs)S (I —Ps)x*c)
by (rule tminus-add-mono)
also {
from uPhave 0 < Psand0<] —Ps
by auto
hence (Ps* (axwpxQs+bxwpxRs)SPsx*c)+
(I —Ps)x(axwpyQs+bxwpyRs)S (I —Ps)xc)=
Psx(axwpxQs+bxwpxRsoc)+
(I—Ps)x(axwpyQs+bxwpyRs Sc)
by (simp add:tminus-left-distrib)
}
also {
from sQ sR nna nnb nnc slx
haveaxwpxQs+bxwpxRsoc<
wpx(As.axQs+bxRsOc)s
by (blast)
moreover

4.5. SUBLINEARITY 145

from sQ sR nna nnb nnc sly
haveaxwpyQs+bxwpyRsoS c<
wpy (As.axQs+bxRsSc)s
by (blast)
moreover
fromuPhave O < Psand0<] —Ps
by auto
ultimately
have Psx (axwpxQs+b+xwpxRsoc) +
(I—Ps)x(axwpyQs+bxwpyRs ©¢) <
Psxwpx(As.axQs+bxRsSc)s+
(I—=—Ps)xwpy(XAs.axQs+bxRsOc)s
by (blast intro:add-mono mult-left-mono)
}
finally
show ax (PsxwpxQs—+ (I —Ps)xwpyQs)+
bx(PsxwpxRs+ (I —Ps)xwpyRs)Sc<
Psxwpx(As.axQs+bxRsSc)s+
(I—Ps)xwpy(As.axQs+bxRsOSc)s.
qed

lemma sublinear-wp-DC:
fixes x::'s prog
assumes slx: sublinear (wp x) and sly: sublinear (wp y)
shows sublinear (wp (x[] y))
proof(rule sublinearl, simp only:wp-eval)
fix R::'s = real and Q::'s = real and s::'s
and a::real and b::real and c::real
assume sR: sound R and sQ: sound Q
and nna: 0 < aand nnb: 0 < b and nnc: 0 < ¢

from nna nnb
have a « min (wpx Qs) (wpy Qs) +
bxmin(wpxRs)(wpyRs)©c=
min (axwpxQs)(axwpyQs)+
min (bxwpxRs) (bxwpyRs)©c
by (simp add:min-distrib)
also
have ... <min (axwpx Qs+ b*wpxRs)
(axwpyQs+bxwpyRs)Oc
by (auto intro!:tminus-left-mono)
also
have ... =min (axwpxQs+bxwpxRs6c)
(axwpyQs+bxwpyRsOc)
by (rule min-tminus-distrib)
also {
from six sQ sR nna nnb nnc
havea«wpxQs+bxwpxRsSc<
wpx(As.axQs+bxRsSc)s

146 CHAPTER 4. THE PGCL LANGUAGE

by (blast)
moreover
from sly sQ sR nna nnb nnc
havea xwpyQs+bxwpyRsS c <
wpy (As.axQs+bxRsOSc)s
by (blast)
ultimately
have min (a x wpx Qs+ bxwpxRsSc)
(axwpyQs+bxwpyRsSc) <
min (wpx (As.axQs+b*xRsOSc)s)
wpy(As.axQs+bxRsSc)s)
by (auto)
}
finally show a * min (wpx Q's) (wpy Q's) +
bxmin(wpxRs) (wpyRs)Oc<
min (wpx (As.axQs+bxRsSc)s)
(wpy(As.axQs+bxRsSc)s).
qed

As for continuity, we insist on a finite support.

lemma sublinear-wp-SetPC:
fixes p::'a = 's prog
assumes sip: \s a. a € supp (P s) = sublinear (wp (p a))
and sum: N\s. (> acsupp (Ps). Psa) <1
and nnP: A\sa.0<Psa
and fin: \s. finite (supp (P s))
shows sublinear (wp (SetPC p P))
proof(rule sublinearl, simp add:wp-eval)
fix R::’s = real and Q::'s = real and s::'s
and a::real and b::real and c::real
assume sR: sound R and sQ: sound Q
and nna: 0 < aand nnb: 0 < b and nnc: 0 < ¢
have a x (> a’esupp (Ps). Psa’xwp (pa’) Qs) +
bx (> a'ésupp (Ps).Psa’xwp (pa’)Rs)Sc=
(> a’esupp (Ps).Psa’x(axwp(pa’)Qs+bxwp(pa’)Rs))Sc
by (simp add:field-simps sum-distrib-left sum.distrib)
also have ... <
O a’esupp (Ps).Psa’x(axwp(pa’)Qs+bxwp(pa’)Rs)) O
(> a'esupp (Ps). Psa’xc)
proof(rule tminus-right-antimono)
have (> a’esupp (Ps). Psa’xc) < (D> a’€supp (Ps). Psa’) xc
by (simp add:sum-distrib-right)
also from sum and nnc have ... < I x ¢
by (rule mult-right-mono)
finally show (> a’csupp (P s). Psa’* c) < ¢ by(simp)
qed
also from fin
have ... < (> a’esupp (Ps).Psa’x (axwp (pa’) Qs+ bxwp (pa’)Rs) ©Psa’x

¢)

4.5. SUBLINEARITY 147

by (blast intro:tminus-sum-mono)
also have ... = (3 a’esupp (Ps). Psa’x (axwp (pa’) Qs+ b*xwp (pa’)RsSc))
by (simp add:nnP tminus-left-distrib)
also {
from slp sQ sR nna nnb nnc
have N\a’.a’ € supp (Ps) = axwp (pa’)Qs+bxwp(pa’)RsSc<
wp(pay(As.axQs+bxRsSc)s
by (blast)
with nnP
have (> a’€supp (Ps). Psa’x (axwp (pa’) Qs+ b+xwp (pa’)RsSc)) <
(> a’esupp (Ps).Psa’«wp (pa’) (As.axQs+bxRsSc)s)
by (blast intro:sum-mono mult-left-mono)
}
finally
show a x (> a'€supp (Ps). Psa’«xwp (pa’) Qs) +
bx (> a'eésupp (Ps).Psa’xwp(pa’)Rs)Sc<
(S a’esupp (Ps).Psa’«wp (pa’)(As.axQs+bxRsSc)s).
qed

lemma sublinear-wp-SetDC:
fixes p::'a = 's prog
assumes slp: \s a. a € S s = sublinear (wp (p a))
and hp: Asa.a € Ss = healthy (wp (p a))
and ne: \s.Ss# {}
shows sublinear (wp (SetDC p S))
proof(rule sublinearl, simp add:wp-eval, rule cInf-greatest)
fix P::’s = real and Q::’s = real and s::’s and x y
and a::real and b::real and c::real
assume sP: sound P and sQ: sound Q
and nna: 0 < aand nnb: 0 < b and nnc: 0 < ¢

from ne show (\pr.wp (ppr) (As.axPs+bxQsSc)s) ‘Ss#{} bylauto)

assume yin:y € (Apr.wp (ppr) (As.a*xPs+bxQsSc)s) ‘Ss
then obtain x where xin: x € Ssand rwy: y=wp (px) (As.axPs+b*xQsOc)s
by (auto)

from xin hp sP nna
have a * Inf (Ma. wp (pa) Ps) ‘Ss)<axwp(px)Ps
by (intro mult-left-mono|OF cInf-lower] bdd-belowI[where m=0), blast+)
moreover from xin hp sQ nnb
have b « Inf (Aa.wp (pa) Qs) “Ss) <bxwp (px) Qs
by (intro mult-left-mono[OF cInf-lower| bdd-belowI|where m=0], blast+)
ultimately
have a * Inf ((Aa. wp (pa) Ps) “Ss) +
bxInf (Aa.wp(pa)Qs) ‘Ss)ec<
axwp (px)Ps+bxwp(px)QsSc
by (blast intro:tminus-left-mono add-mono)

148 CHAPTER 4. THE PGCL LANGUAGE

also from xin slp sP sQ nna nnb nnc
have ... <wp (px) (A\s.axPs+bxQsSc)s
by (blast)

finally show a « Inf ((Aa.wp (pa) Ps) “Ss)+bxInf (Aa.wp (pa)Qs) ‘Ss)Oc<
y
by (simp add:rwy)
qed

lemma sublinear-wp-Embed:
sublinear t = sublinear (wp (Embed t))
by (simp add:wp-eval)

lemma sublinear-wp-repeat:
[sublinear (wp p); healthy (wp p) | = sublinear (wp (repeat n p))
by (induct n, simp-all add:sublinear-wp-Seq sublinear-wp-Skip healthy-wp-repeat)

lemma sublinear-wp-Bind:
[A\s. sublinear (wp (a (fs))) | = sublinear (wp (Bind f a))
by (rule sublinearl, simp add:wp-eval, auto)

4.5.2 Sublinearity for Loops

We break the proof of sublinearity loops into separate proofs of sub-distributivity
and sub-additivity. The first follows by transfinite induction.

lemma sub-distrib-wp-loop:
fixes body::'s prog
assumes sdb: sub-distrib (wp body)
and hb: healthy (wp body)
and nhb: nearly-healthy (wlp body)
shows sub-distrib (wp (do G — body od))
proof —
have V P 5. sound P — wp (do G — body od) P s © 1 <
wp (do G — body od) (As. Ps© 1) s
proof(rule loop-induct|OF hb nhb], safe)
fix S::('s trans x 's trans) set and P::’s expect and s::'s
assume saS: Vx€S. VP s. sound P — fstxPs© 1 <fstx (A\s. Ps© 1) s
and sP: sound P
and fS: VxeS. feasible (fst x)

from sP have sPm: sound (As. P s © 1) by(auto intro:tminus-sound)

have nnSup: \s. 0 < Sup-trans (fst *S) (As. Ps© 1) s
proof(cases S={}, simp add:Sup-trans-def Sup-exp-def)

fix s

assume S # {}

then obtain x where xin: xS by(auto)

with /S sPm have 0 < fst x (As. P s © 1) s by(auto)

also from xin fS sPm have ... < Sup-trans (fst ‘S) (A\s.Ps© 1) s

4.5. SUBLINEARITY 149

by (auto intro!: le-funD[OF Sup-trans-upper2])
finally show ?thesis s .
qed

have A\xs. fstx Ps < (fstx Ps © 1) + 1 by(simp add:tminus-def)
also from saS sP
have Axs.xeS= (fstxPso 1)+ 1 <fstx(As.Ps©1)s+ 1
by (auto intro:add-right-mono)
also {
from sP have sound (\s. P s © 1) by(auto intro:tminus-sound)
with fS have Axs. xeS = fstx (As. Pso l)s+ 1<
Sup-trans (fst *S) (A\s. Ps S 1) s+ 1
by (blast intro!: add-right-mono le-funD|OF Sup-trans-upper2))
}
finally have le: A\s. Vx€S. fst x P s < Sup-trans (fst *S) (A\s. Ps© 1) s + 1
by (auto)
moreover from nnSup have nn: N\s. 0 < Sup-trans (fst *S) (A\s. Ps S 1) s+ 1
by (auto intro:add-nonneg-nonneg)
ultimately
have leSup: Sup-trans (fst *S) P s < Sup-trans (fst ‘S) (As. Ps© 1)s+ 1
unfolding Sup-trans-def
by (intro le-funD|OF Sup-exp-least], auto)

show Sup-trans (fst *S) Ps © 1 < Sup-trans (fst ‘S) (As. Ps© 1) s
proof(cases Sup-trans (fst *S) P s < 1, simp-all add:nnSup)

from /eSup have Sup-trans (fst ‘S)Ps— 1 <

Sup-trans (fst ‘S) (As. Ps© 1) s+ 1—1

by (auto)

thus Sup-trans (fst < S) Ps — 1 < Sup-trans (fst *S) (As. P s © 1) s by(simp)
qed

next

fix t::'s trans and P::’s expect and s::'s
assume /[H: VP s. sound P —tPsS 1 <t(Ma.Pa©l)s

and ft: feasible t

and sP: sound P

from sP have sound (\s. P s © 1) by(auto intro:tminus-sound)
with ft have s2: sound (t (As. P s © 1)) by(auto)

from sP fi have sound (¢ P) by(auto)

hence s3: sound (Xs. t P s © 1) by(auto intro!:tminus-sound)

show wp (body ;; Embed t ; ,® Skip) Ps© 1 <
wp (body ;; Embed t @ Skip) (Aa. Pa© 1) s

proof(simp add:wp-eval)

have «G» s« wp body (t P) s+ (I — «G» s) *x Ps S 1 =

«G» sk wpbody (tP)s+ (I — «G»s) * PsS («G» s + (I — «G» s))
by(simp)
also have ... < («G» s * wp body (t P) s © «G» s) +
((1 — «G» s) *PsO (] — «G» 5))

150 CHAPTER 4. THE PGCL LANGUAGE

by (rule tminus-add-mono)
also have ... = «G» s * (Wp body (t P) =)]) + (] — «G» s) * (PS &)])
by (simp add:tminus-left-distrib)
also {
from ft sP have wp body (t P) s © 1 <wp body (As.tPs© 1) s
by (auto intro:sub-distribD|OF sdb))
also {
from /H sP have As. t Ps © I =1t (As. P s © 1) by(auto)
with sP ft s2 s3 have wp body (As. t Ps © 1) s <wpbody (t (A\s. Ps© 1)) s
by (blast intro:le-funD][OF mono-transD, OF healthy-monoD, OF hb))
}
finally have «G» s « (wp body (tP) s © 1)+ (I — «G» s) % (Ps & 1) <
«G» s * wp body (t ()\S. PsoS 1)) s+ (] — «G» S) * (PS S])
by (auto intro:add-right-mono mult-left-mono)
}
finally show «G» s wp body (t P) s + (I — «G» s) * Ps © 1 <
«G» sxwpbody (t (As. Pso1))s+ (I —«G»s)x(Psol).
qed
next
fix 7 t"::'s trans and P::'s expect and s::'s
assume /[H: VP s. sound P — tPs© 1<t(Xa.PacSl)s
and eq: equiv-trans t t' and sP: sound P

from sP have t'Ps © 1 =t P s © I by(simp add:equiv-transD|OF eq|)
also from sP IH have ... <1 (\s. P s © 1) s by(auto)
also {
from sP have sound (\s. P s © 1) by(simp add:tminus-sound)
hence r (A\s. Ps © 1) s =t' (As. P s © I) s by(simp add:equiv-transD|OF eq))
}
finally show t' Ps S 1 <t'(As. PsS 1) s.
qed
thus ?thesis by (auto introl:sub-distribl)
qed

For sub-additivity, we again use the limit-of-iterates characterisation. Firstly, all
iterates are sublinear:

lemma sublinear-iterates:
assumes hb: healthy (wp body)
and sb: sublinear (wp body)
shows sublinear (iterates body G i)
by (induct i, auto intro!:sublinear-wp-PC sublinear-wp-Seq sublinear-wp-Skip sublin-
ear-wp-Embed
assms healthy-intros iterates-healthy)

From this, sub-additivity follows for the limit (i.e. the loop), by appealing to the
property at all steps.
lemma sub-add-wp-loop:

fixes body::'s prog
assumes sb: sublinear (wp body)

4.5. SUBLINEARITY 151

and cb: bd-cts (wp body)
and hwp: healthy (wp body)
shows sub-add (wp (do G — body od))
proof
fix P Q::'s expect and s::'s
assume sP: sound P and sQ: sound Q

from hwp cb sP have (\i. iterates body G i P s) — wp do G — body od P s
by (rule loop-iterates)
moreover
from hwp cb sQ have (\i. iterates body Gi Q s) —— wp do G — body od Q s
by (rule loop-iterates)
ultimately
have (\i. iterates body G i P s + iterates body G i Q s) ——
wp do G — body od P s + wp do G — body od Q s
by (rule tendsto-add)
moreover {
from sublinear-subadd|OF sublinear-iterates, OF hwp sb,
OF healthy-feasibleD|OF iterates-healthy, OF hwp]] sP sQ
have A\i. iterates body G i P s + iterates body G i Q s < iterates body G i (As. Ps + Q
s) s
by (rule sub-addD)
}
moreover {
from sP sQ have sound (\s. P s + Q s) by(blast intro:sound-intros)
with iwp cb have (\i. iterates body G i (As. Ps + Q's) s) ——
wpdo G — bodyod (A\s. Ps+ Qs) s
by (blast intro:loop-iterates)
}
ultimately
show wp do G — body od P s + wp do G — body od Q s < wp do G — body od (Xs.
Ps+Qs)s
by (blast intro:LIMSEQ-le)
qed

lemma sublinear-wp-loop:
fixes body::'s prog
assumes hb: healthy (wp body)
and nhb: nearly-healthy (wlp body)
and sb: sublinear (wp body)
and cb: bd-cts (wp body)
shows sublinear (wp (do G — body od))
using sublinear-sub-distrib|OF sb| sublinear-subadd|OF sb]
hb healthy-feasibleD|OF hb)
by (iprover intro:sd-sa-sublinear|OF - - healthy-wp-loop|OF hb]]
sub-distrib-wp-loop sub-add-wp-loop assms)

lemmas sublinear-intros =
sublinear-wp-Abort

152 CHAPTER 4.

sublinear-wp-Skip
sublinear-wp-Apply
sublinear-wp-Seq
sublinear-wp-PC
sublinear-wp-DC
sublinear-wp-SetPC
sublinear-wp-SetDC
sublinear-wp-Embed
sublinear-wp-repeat
sublinear-wp-Bind
sublinear-wp-loop

end

4.6 Determinism

theory Determinism imports WellDefined begin

THE PGCL LANGUAGE

We provide a set of lemmas for establishing that appropriately restricted programs
are fully additive, and maximal in the refinement order. This is particularly useful

with data refinement, as it implies correspondence.

4.6.1 Additivity

lemma additive-wp-Abort:
additive (wp (Abort))
by (auto simp:wp-eval)

wlp Abort is not additive.

lemma additive-wp-Skip:
additive (wp (Skip))
by (auto simp:wp-eval)

lemma additive-wp-Apply:

additive (wp (Apply f))
by (auto simp:wp-eval)

lemma additive-wp-Segq:
fixes a::'s prog
assumes adda: additive (wp a)
and addb: additive (wp b)
and wb: well-def b
shows additive (wp (a ;; D))
proof(rule additivel , unfold wp-eval o-def)
fix P::'s = real and Q::'s = real and s::'s
assume sP: sound P and sQ: sound Q

note hb = well-def-wp-healthy|OF wb]

4.6. DETERMINISM

from addb sP sQ

have wp b (As. Ps+ Qs)=(As.wpbPs+wpbQys)
by (blast dest:additiveD)

with adda sP sQ hb

showwpa (wpb (As.Ps+ Qs))s=

wpa(wpbP)s+ (wpa(wpbQ))s
by (auto intro:fun-cong[OF additiveD))
qed

lemma additive-wp-PC:
[additive (wp a); additive (wp b) | = additive (wp (a p® b))
by (rule additivel , simp add:additiveD field-simps wp-eval)

DC 1is not additive.

lemma additive-wp-SetPC:
[Axs.x € supp (p s) = additive (wp (a x)); \\s. finite (supp (p 5)) | =
additive (wp (SetPC a p))
by (rule additivel ,
simp add:wp-eval additiveD distrib-left sum.distrib)

lemma additive-wp-Bind:
[A\x. additive (wp (a (fx))) | = additive (wp (Bind f a))
by (simp add:wp-eval additive-def)

lemma additive-wp-Embed.:
[additive t | = additive (wp (Embed t))
by (simp add:wp-eval)

lemma additive-wp-repeat:
additive (wp a) = well-def a = additive (wp (repeat n a))
by (induct n, auto simp:additive-wp-Skip intro:additive-wp-Seq wd-intros)

lemmas fa-intros =
additive-wp-Abort additive-wp-Skip
additive-wp-Apply additive-wp-Seq
additive-wp-PC additive-wp-SetPC
additive-wp-Bind additive-wp-Embed
additive-wp-repeat

4.6.2 Maximality

lemma max-wp-Skip:
maximal (wp Skip)
by (simp add:maximal-def wp-eval)

lemma max-wp-Apply:

maximal (wp (Apply f))
by (auto simp:wp-eval o-def)

153

154 CHAPTER 4. THE PGCL LANGUAGE

lemma max-wp-Segq:
[maximal (wp a); maximal (wp b) | = maximal (wp (a ;; b))
by (simp add:wp-eval maximal-def)

lemma max-wp-PC:
[maximal (wp a); maximal (wp b) | = maximal (wp (a p® b))
by (rule maximall , simp add:maximalD field-simps wp-eval)

lemma max-wp-DC:
[maximal (wp a); maximal (wp b) | = maximal (wp (a[] b))
by (rule maximall, simp add:wp-eval maximalD)

lemma max-wp-SetPC:
[Asa.a € supp (Ps) = maximal (wp (p a)); \s. O acsupp (Ps).Psa)=1] =
maximal (wp (SetPC p P))
by (auto simp:maximalD wp-def SetPC-def sum-distrib-right[symmetric])

lemma max-wp-SetDC:
fixes p::'a = 's prog
assumes mp: A\s a. a € S s = maximal (wp (p a))
and ne: \s. Ss # {}
shows maximal (wp (SetDC p S))
proof (rule maximall, rule ext, unfold wp-eval)
fix c::real and s::'s
assume 0 < ¢
hence Inf ((Aa. wp (pa) (A\-.c)s) ‘Ss)=Inf (M\-.c) ‘Ss)
using mp by(simp add:maximalD cong:image-cong)
also {
from ne obtain a where a € S s by blast
hence Inf ((M\-.¢) ‘Ss)=c
by (auto simp add: image-constant-conv cong del: INF-cong-simp)
}
finally show Inf ((Aa. wp (pa) (A-.¢)s) ‘Ss)=c.
qed

lemma max-wp-Embed:
maximal t => maximal (wp (Embed 1))
by (simp add:wp-eval)

lemma max-wp-repeat:
maximal (wp a) = maximal (wp (repeat n a))
by (induct n, simp-all add:max-wp-Skip max-wp-Seq)

lemma max-wp-Bind:
assumes ma: /\s. maximal (wp (a (fs)))
shows maximal (wp (Bind f a))

proof(rule maximall, rule ext, simp add:wp-eval)
fix c::real and s

4.6. DETERMINISM 155

assume 0 < ¢
with ma have wp (a (fs)) (A-. ¢) = (\-. ¢) by(blast)
thus wp (a (fs)) (A-. ¢) s = ¢ by(auto)

qed

lemmas max-intros =
max-wp-Skip max-wp-Apply
max-wp-Seq max-wp-PC
max-wp-DC max-wp-SetPC
max-wp-SetDC max-wp-Embed
max-wp-Bind max-wp-repeat

A healthy transformer that terminates is maximal.

lemma healthy-term-max:
assumes ht: healthy t
and rrm: As. 1+t (Xs. 1)
shows maximal t
proof(intro maximall ext)
fix c::real and s
assume nnc: 0 < ¢

have 1 (As. ¢) s =1 (As. I * ¢) s by(simp)

also from nnc healthy-scalingD[OF h|

have ... = ¢ 7 (As. 1) s by(simp add:scalingD)

also {
from /it have ¢ (As. 1) & As. 1 by(auto)
with rm have ¢ (As. 1) = (As. 1) by(auto)
hence c x t (As. 1) s = ¢ by(simp)

}

finally show ¢ (\s. ¢) s=c.

qed

4.6.3 Determinism

lemma det-wp-Skip:
determ (wp Skip)
using max-intros fa-intros by (blast)

lemma det-wp-Apply:

determ (wp (Apply f))
by (intro determl fa-intros max-intros)

lemma det-wp-Segq:
determ (wp a) — determ (wp b) —> well-def b —> determ (wp (a 3; b))
by (intro determl fa-intros max-intros, auto)

lemma det-wp-PC:
determ (wp a) = determ (wp b) = determ (wp (a p® b))
by (intro determl fa-intros max-intros, auto)

156 CHAPTER 4. THE PGCL LANGUAGE

lemma det-wp-SetPC:
(A\x s.x € supp (p s) = determ (wp (a x))) =
(As. finite (supp (p 5))) =
(As. sum (p's) (supp (p 5)) = 1) =
determ (wp (SetPC a p))
by (intro determl fa-intros max-intros, auto)

lemma det-wp-Bind:
(N\x. determ (wp (a (fx)))) = determ (wp (Bind f a))
by (intro determl fa-intros max-intros, auto)

lemma det-wp-Embed:
determ t = determ (wp (Embed t))
by (simp add:wp-eval)

lemma det-wp-repeat:
determ (wp a) = well-def a = determ (wp (repeat n a))
by (intro determl fa-intros max-intros, auto)

lemmas determ-intros =
det-wp-Skip det-wp-Apply
det-wp-Seq det-wp-PC
det-wp-SetPC det-wp-Bind
det-wp-Embed det-wp-repeat

end

4.7 Well-Defined Programs.

theory WellDefined imports
Healthiness
Sublinearity
LooplInduction

begin

The definition of a well-defined program collects the various notions of healthiness
and well-behavedness that we have so far established: healthiness of the strict and
liberal transformers, continuity and sublinearity of the strict transformers, and two
new properties. These are that the strict transformer always lies below the liberal
one (i.e. that it is at least as strict, recalling the standard embedding of a predicate),
and that expectation conjunction is distributed between then in a particular manner,
which will be crucial in establishing the loop rules.

4.7.1 Strict Implies Liberal

This establishes the first connection between the strict and liberal interpretations
(wp and wip).

4.7. WELL-DEFINED PROGRAMS. 157

definition
wp-under-wlp :: 's prog = bool
where
wp-under-wlp prog =V P. unitary P — wp prog P wlp prog P

lemma wp-under-wlpl[intro):
[A\P. unitary P = wp prog P\ wip prog P | = wp-under-wip prog
unfolding wp-under-wlp-def by(simp)

lemma wp-under-wlpD|dest|:
[wp-under-wlp prog; unitary P | = wp prog P & wip prog P
unfolding wp-under-wlp-def by (simp)

lemma wp-under-le-trans:
wp-under-wlp a = le-utrans (wp a) (wlp a)
by (blast)

lemma wp-under-wip-Abort:
wp-under-wlp Abort
by (rule wp-under-wlipl, unfold wp-eval, auto)

lemma wp-under-wlp-Skip:
wp-under-wlp Skip
by (rule wp-under-wlipl, unfold wp-eval, blast)

lemma wp-under-wip-Apply:

wp-under-wlp (Apply f)
by (auto simp:wp-eval)

lemma wp-under-wlip-Seq:
assumes h-wlp-a: nearly-healthy (wip a)
and h-wp-b: healthy (wp b)
and h-wlp-b: nearly-healthy (wip D)
and wp-u-a: wp-under-wlp a
and wp-u-b: wp-under-wlp b
shows wp-under-wlp (a ;; D)
proof(rule wp-under-wlpl, unfold wp-eval o-def)
fix P::'a = real assume uP: unitary P
with -wp-b have unitary (wp b P) by(blast)
with wp-u-a have wp a (wp b P) = wip a (wp b P) by(auto)
also {
from wp-u-b and uP have wp b P = wip b P by(blast)
with h-wlp-a and h-wip-b and h-wp-b and uP
have wip a (wp b P) = wip a (wip b P)
by (blast intro:nearly-healthy-monoD|OF h-wip-a))
}
finally show wp a (wp b P) = wip a (wlp b P) .
qed

158 CHAPTER 4. THE PGCL LANGUAGE

lemma wp-under-wip-PC:
assumes /i-wp-a: healthy (wp a)
and h-wip-a: nearly-healthy (wlp a)
and h-wp-b: healthy (wp b)
and h-wip-b: nearly-healthy (wlp D)
and wp-u-a: wp-under-wlp a
and wp-u-b: wp-under-wlp b
and uP: unitary P
shows wp-under-wip (a p® b)
proof(rule wp-under-wipl, unfold wp-eval, rule le-funl)
fix Q::'a = real and s
assume uQ: unitary Q
from uP have P s < I by(blast)
hence 0 < I — P s by(simp)
moreover
from uQ and wp-u-b have wp b Q s < wip b Q s by(blast)
ultimately
have (I — Ps)«wpbQs< (I —Ps)xwlpbQs
by (blast intro:mult-left-mono)

moreover {
from uQ and wp-u-a have wp a Q s < wip a Q s by(blast)
withuP have Psxwpa Qs < Ps+xwlpaQs
by (blast intro:mult-left-mono)

}

ultimately
show Ps+«wp aQs+ (I —Ps)xwp bQs <
PsxwlpaQs+ (I —Ps)xwlpbQs
by (blast intro: add-mono)
qed

lemma wp-under-wilp-DC:
assumes wp-u-a: wp-under-wlp a
and wp-u-b: wp-under-wlp b
shows wp-under-wip (a[] b)
proof(rule wp-under-wipl, unfold wp-eval, rule le-funl)
fix Q::'a = real and s
assume uQ: unitary Q

from wp-u-a uQ have wp a Q s < wip a Q s by(blast)
moreover
from wp-u-b uQ have wp b Q s < wilp b Q s by(blast)
ultimately
show min (wpa Qs) (wpb Qs) <min (wipa Qs) (wipb Qs)
by (auto)
qed

lemma wp-under-wip-SetPC:

4.7. WELL-DEFINED PROGRAMS. 159

assumes wp-u-f: s a.a € supp (P s) = wp-under-wlp (f a)
andnP: Asa.ac€supp(Ps)=—0<Psa
shows wp-under-wip (SetPC f P)
proof(rule wp-under-wipl, unfold wp-eval, rule le-funl)
fix Q::'a = real and s
assume uQ: unitary Q

from wp-u-f uQ nP
show (> acsupp (Ps). Psaxwp (fa) Qs) < (> acSsupp (Ps).Psaxwlp (fa) Qs)
by (auto intro!:sum-mono mult-left-mono)
qed

lemma wp-under-wlp-SetDC:
assumes wp-u-f: Asa.a € Ss = wp-under-wlp (f a)
and if: Asa.a € Ss= healthy (wp (fa))
andnS: As.Ss#{}
shows wp-under-wip (SetDC f S)
proof(rule wp-under-wlipl, rule le-funl, unfold wp-eval)
fix Q::'a = real and s
assume uQ: unitary Q

show Inf ((Aa. wp (fa) Qs) “Ss) <Inf (Aa.wip (fa) Qs) “Ss)
proof(rule cInf-mono)

from nS show (Aa. wip (fa) Q s) *S s # {} by(blast)

fix x assume xin: x € (Aa. wip (fa) Qs) “Ss

then obtain a where ain: a € S s and xrw: x = wip (fa) Q' s
by (blast)

with wp-u-f uQ

have wp (fa) O s < wlp (fa) Q s by(blast)

moreover from ain have wp (fa) Qs € (Aa. wp (fa) Qs) ‘S's
by (blast)

ultimately show 3ye (\a. wp (fa) Qs) ‘Ss.y<x
by (auto simp:xrw)

next
fix y assume yin: y € (Aa. wp (fa) Qs) “Ss
then obtain a where ain: a € S s and yrw: y = wp (fa) O s

by (blast)

with if uQ have unitary (wp (fa) Q) by(auto)
with yrw show 0 < y by(auto)

qed

qed

lemma wp-under-wlp-Embed:
wp-under-wlp (Embed t)
by (rule wp-under-wlipl, unfold wp-eval, blast)

lemma wp-under-wlp-loop:

160 CHAPTER 4. THE PGCL LANGUAGE

fixes body::'s prog
assumes hwp: healthy (wp body)
and hwlip: nearly-healthy (wlp body)
and wp-under: wp-under-wlp body
shows wp-under-wlp (do G — body od)
proof(rule wp-under-wiplI)
fix P::'s expect
assume uP: unitary P hence sP: sound P by(auto)

let 2X Qs =«G» s*wpbody Qs+ «N G»s*Ps
let ?Y Qs = «G» s * wlp body Qs + «N G» s x P s

show wp (do G — body od) Pt wip (do G — body od) P
proof(simp add:hwp hwip sP uP wp-Loopl wlp-Loopl, rule gfp-exp-upperbound)
thm [fp-loop-fp
from hwp sP have [fp-exp ?X = ?X (Ifp-exp ?X)
by (rule Ifp-wp-loop-unfold)
hence Ifp-exp ?X = ?X (Ifp-exp ?X) by(simp)
also {
from hwp uP have wp body (Ifp-exp ?X) = wip body (Ifp-exp ?X)
by (auto intro:wp-under-wlpD|OF wp-under| Ifp-loop-unitary)
hence ?X (Ifp-exp ?X) & ?Y (Ifp-exp ?X)
by (auto intro:add-mono mult-left-mono)
}
finally show Ifp-exp ?X t ?Y (Ifp-exp ?X) .
from hwp uP show unitary (Ifp-exp ?X)
by (auto intro:lfp-loop-unitary)
qed
qed

lemma wp-under-wlp-repeat:
[healthy (wp a); nearly-healthy (wlp a); wp-under-wip a | =
wp-under-wlp (repeat n a)
by (induct n, auto intro:wp-under-wlp-Skip wp-under-wlp-Seq healthy-intros)

lemma wp-under-wlp-Bind:
[\s. wp-under-wlp (a (fs)) | = wp-under-wlp (Bind f a)
unfolding wp-under-wlp-def by(auto simp:wp-eval)

lemmas wp-under-wlp-intros =
wp-under-wlp-Abort wp-under-wlp-Skip
wp-under-wlp-Apply wp-under-wlp-Seq
wp-under-wlp-PC wp-under-wilp-DC
wp-under-wip-SetPC wp-under-wlp-SetDC
wp-under-wlp-Embed wp-under-wlp-loop
wp-under-wlp-repeat wp-under-wlp-Bind

4.7. WELL-DEFINED PROGRAMS. 161

4.7.2 Sub-Distributivity of Conjunction

definition
sub-distrib-pconj :: 's prog = bool
where
sub-distrib-pconj prog =
YV P Q. unitary P — unitary Q —>
wip prog P && wp prog Q + wp prog (P && Q)

lemma sub-distrib-pconjl[intro:
IAP Q. [unitary P; unitary Q | => wip prog P && wp prog Q & wp prog (P && Q) |
_
sub-distrib-pconj prog
unfolding sub-distrib-pconj-def by (simp)

lemma sub-distrib-pconjD|dest:
AP Q. [sub-distrib-pconj prog; unitary P; unitary Q | =
wip prog P && wp prog Q = wp prog (P && Q)
unfolding sub-distrib-pconj-def by (simp)

lemma sdp-Abort:
sub-distrib-pconj Abort
by (rule sub-distrib-pconjl, unfold wp-eval, auto intro:exp-conj-rzero)

lemma sdp-Skip:
sub-distrib-pconj Skip
by (rule sub-distrib-pconjl, simp add:wp-eval)

lemma sdp-Seq:
fixes a and b
assumes sdp-a: sub-distrib-pconj a
and sdp-b: sub-distrib-pconj b
and h-wp-a: healthy (wp a)
and h-wp-b: healthy (wp b)
and h-wip-b: nearly-healthy (wlp b)
shows sub-distrib-pconj (a ;; b)
proof(rule sub-distrib-pconjl, unfold wp-eval o-def)
fix P::'a = real and Q::'a = real
assume uP: unitary P and uQ: unitary Q

with h-wp-b and h-wip-b
have wip a (wip b P) && wp a (wp b Q)+ wp a (wlp b P && wp b Q)
by (blast intro!:sub-distrib-pconjD|OF sdp-a))
also {
from sdp-b and uP and uQ
have wip b P && wp b O~ wp b (P && Q) by(blast)
with h-wp-a h-wp-b h-wip-b uP uQ
have wp a (wip b P && wp b Q) +wp a (wp b (P && Q))
by (blast intro!:mono-transD|OF healthy-monoD, OF h-wp-a) unitary-sound
unitary-intros sound-intros)

162 CHAPTER 4. THE PGCL LANGUAGE

}
finally show wip a (wlp b P) && wpa (wp b Q)-wpa (wp b (P && Q)) .
qed

lemma sdp-Apply:
sub-distrib-pconj (Apply f)
by (rule sub-distrib-pconjl, simp add:wp-eval)

lemma sdp-DC:
fixes a::'s prog and b
assumes sdp-a: sub-distrib-pconj a
and sdp-b: sub-distrib-pconj b
and h-wp-a: healthy (wp a)
and h-wp-b: healthy (wp b)
and h-wip-b: nearly-healthy (wlp D)
shows sub-distrib-pconj (a[] b)
proof(rule sub-distrib-pconjl, unfold wp-eval, rule le-funl)
fix P::’s = real and Q::'s = real and s::'s
assume uP: unitary P and uQ: unitary Q

have ((As. min (wlp a P s) (wip b P 5)) &&
(As.min (wpa Qs) (wpbQs)))s<
min (wlpaPs.&wpaQs)(wlpbPs.&wpbQs)
unfolding exp-conj-def by(rule min-pcony)
also {
have (As.wlpa Ps .&wpaQs)=wlpaP&&wpaQ
by (simp add:exp-conj-def)
also from sdp-a uP uQ have ... - wp a (P && Q)
by (blast dest:sub-distrib-pconjD)
finally have wipa Ps & wpa Qs <wpa (P && Q) s
by (rule le-funD)
moreover {
have (As. wipbPs . &wpbQs)=wlpb P && wpb Q
by (simp add:exp-conj-def)
also from sdp-b uP uQ have ... - wp b (P && Q)
by (blast)
finally have wip b Ps & wp b Qs <wp b (P && Q) s
by (rule le-funD)
}
ultimately
have min (wipa P s .&wpa Qs) (wWlpbPs.&wpbQs)<
min (wp a (P && Q) s) (wp b (P && Q) s) by(auto)
}
finally
show ((As. min (wlpa P s) (wlp b P 5)) &&
(As.min (wpaQs) (wpbQs)))s<
min (wp a (P && Q) s) (wp b (P && Q) s) .
qed

4.7. WELL-DEFINED PROGRAMS.

lemma sdp-PC:
fixes a::'s prog and b
assumes sdp-a: sub-distrib-pconj a
and sdp-b: sub-distrib-pconj b
and h-wp-a: healthy (wp a)
and h-wp-b: healthy (wp b)
and h-wip-b: nearly-healthy (wlp b)
and uP: unitary P
shows sub-distrib-pconj (a p® b)
proof(rule sub-distrib-pconjl, unfold wp-eval, rule le-funl)
fix Q::'s = real and R::'s = real and s::'s
assume uQ: unitary Q and uR: unitary R

have nnA: 0 < Psand nnB: Ps < I
using uP by auto
note nn = nnA nnB

have (As. Psxwlpa Qs+ (I — Ps)xwipb Qs) &&
(As.Ps* wpaRs+ (I —Ps)* wpbRs))s=
(PsswlpaQs+ (1 —Ps)xwlpbQs)+
(Ps* wpaRs+ (I —Ps)* wpbRs)) o1
by (simp add:exp-conj-def pconj-def)
alsohave...=Psx (wlpaQs+wpaRs)+
(I—Ps)x(wlpbQs+wpbRs)S 1
by (simp add:field-simps)
alsohave ...=Psx (wlpaQs+wpaRs)+
(I—Ps)x(wlpbQs+wpbRs) S
(Ps+(I—Py))
by (simp)
alsohave ... < (Psx (wlpaQs+wpaRs)©Ps)+
(I—Ps)x(wipbQs+wpbRs)S (I —Pys))
by (rule tminus-add-mono)
alsohave..=(Ps s« (wlpaQs+wpaRsol))+
(I-Ps)x(wipbQs+wpbRso 1))
by (simp add:nn tminus-left-distrib)
alsohave ...=Psx (wlpaQ&&wpaR)s)+
(I—Ps)x((wlpbQ&&wpbR)s)
by (simp add:exp-conj-def pconj-def)
also {
from sdp-a sdp-b uQ uR
have Ps+ (wipa Q && wpaR) s <Ps+xwpa (Q&&R) s

and (/ —Ps)x« (wipbQ&&wpbR)s< (I —Ps)xwpb(Q&&R)s

by (simp-all add: entailsD mult-left-mono nn sub-distrib-pconjD)
hence Ps« ((wlpaQ&& wpaR)s)+
(I—Ps)x((wlpbQ&& wpbR)s) <
Psxwpa(Q&&R)s+ (I —Ps)«wpb(Q&&R) s
by (auto)
}
finally show ((As. Ps«wlpa Qs+ (I —Ps)xwlpb Qs) &&

163

164 CHAPTER 4. THE PGCL LANGUAGE

(As.Psx wpaRs+ (I —Ps)* wpbRs))s<
Psxwpa(Q&&R)s+ (I —Ps)xwpb(Q&&R)s.
qed

lemma sdp-Embed:
[AP Q. [unitary P; unitary Q| =t P && t Qb t (P && Q)] =
sub-distrib-pconj (Embed t)
by (auto simp:wp-eval)

lemma sdp-repeat:
fixes a::'s prog
assumes sdpa: sub-distrib-pconj a
and hwp: healthy (wp a) and hwip: nearly-healthy (wlp a)
shows sub-distrib-pconj (repeat n a) (is ?X n)
proof(induct n)
show ?X 0 by(simp add:sdp-Skip)
fix n assume /H: ?X n
show ?X (Suc n)
proof(rule sub-distrib-pconjl, simp add:wp-eval)
fix P::’s = real and Q::'s = real
assume uP: unitary P and uQ: unitary Q
from assms have hwlpa: nearly-healthy (wlp (repeat n a))
and hwpa: healthy (wp (repeat n a))
by (auto intro:healthy-intros)
from uP and hwlpa have unitary (wlp (repeat n a) P) by(blast)
moreover from uQ and hwpa have unitary (wp (repeat n a) Q) by(blast)
ultimately
have wip a (wip (repeat n a) P) && wp a (wp (repeat n a) Q)
wp a (wip (repeat n a) P && wp (repeat n a) Q)
using sdpa by (blast)
also {
from hwlip have nearly-healthy (wlp (repeat n a)) by(rule healthy-intros)
with uP have sound (wip (repeat n a) P) by(auto)
moreover from hwp uQ have sound (wp (repeat n a) Q)
by (auto intro:healthy-intros)
ultimately have sound (wlp (repeat n a) P && wp (repeat n a) Q)
by (rule exp-conj-sound)
moreover {
from uP uQ have sound (P && Q) by(auto intro:exp-conj-sound)
with hwp have sound (wp (repeat n a) (P && Q))
by (auto intro:healthy-intros)
}
moreover from uP uQ IH
have wip (repeat n a) P && wp (repeat n a) Q i~ wp (repeat n a) (P && Q)
by (blast)
ultimately
have wp a (wip (repeat n a) P && wp (repeat n a) Q)
wp a (wp (repeat n a) (P && Q))
by (rule mono-transD[OF healthy-monoD, OF hwp))

4.7. WELL-DEFINED PROGRAMS.

}
finally show wip a (wip (repeat n a) P) && wp a (wp (repeat n a) Q)
wp a (wp (repeat n a) (P && Q)) .
qed
qed

lemma sdp-SetPC:
fixes p::'a = 's prog
assumes sdp: \s a. a € supp (P s) = sub-distrib-pconj (p a)
and fin: \s. finite (supp (P s))
and nnp: A\sa.0<Psa
and sub: \s. sum (P s) (supp (Ps)) <1
shows sub-distrib-pconj (SetPC p P)
proof(rule sub-distrib-pconjl, simp add:wp-eval, rule le-funl)
fix Q::'s = real and R::'s = real and s::'s
assume uQ: unitary Q and uR: unitary R
have ((As. > a€supp (Ps). Psaxwip (pa) Qs) &&
(As. > a€supp (Ps).Psax wp(pa)Rs))s=

(> acsupp (Ps).Psaxwlp (pa)Qs)+ (> acsupp (Ps).Psa*wp (pa)R

1
by (simp add:exp-conj-def pconj-def)
also have ... = (> a€supp (Ps). Psax (wip (pa) Qs+ wp (pa)Rs)) © 1
by (simp add: sum.distrib field-simps)
also from sub
have ... < (3 acsupp (Ps). Psax (wlp (pa) Qs+ wp (pa)Rs)) ©
(>-acsupp (Ps). Psa)
by (rule tminus-right-antimono)
also from fin
have ... < (> acsupp (Ps).Psax (wlp (pa) Qs +wp (pa)Rs) ©Psa)
by (rule tminus-sum-mono)
also from nnp
have ... = (3" a€supp (Ps). Psax (wlp (pa) Qs +wp (pa) RsS 1))
by (simp add:tminus-left-distrib)
also have ... = (3 acsupp (Ps). Psax (wip (pa) Q && wp (pa) R) s)
by (simp add:pconj-def exp-conj-def)
also {
from sdp uQ uR
have A\a. a € supp (Ps) = wip (pa) Q && wp (pa) Rt wp (p a) (O && R)
by (blast intro:sub-distrib-pconjD)
with nnp
have (> acsupp (Ps). Psax* (wlp (pa) Q&& wp (pa)R) s) <
(> acsupp (Ps).Psax (wp (pa) (Q&&R)) s)
by (blast intro:sum-mono mult-left-mono)
}
finally show ((As. > acsupp (Ps). Psaxwlp (pa) O s) &&
(As. > acsupp (Ps). Psaxwp (pa)Rs))s <
(O acsupp (Ps).Psaxwp (pa) (Q&&R)s) .
qed

165

$) S

166 CHAPTER 4. THE PGCL LANGUAGE

lemma sdp-SetDC:
fixes p::'a = 's prog
assumes sdp: \s a. a € S s = sub-distrib-pconj (p a)
and hwp: A\s a. a € S s = healthy (wp (p a))
and hwlp: \s a. a € S s = nearly-healthy (wlp (p a))
and ne: \s.Ss#{}
shows sub-distrib-pconj (SetDC p §)
proof(rule sub-distrib-pconjI, rule le-funl)
fix P::’s = real and Q::'s = real and s::'s
assume uP: unitary P and uQ: unitary Q

from uP hwip

have A\x. x € (A\a. wip (p a) P) S s = unitary x by(auto)

hence \y.y € (Aa. wip (pa) Ps) ‘S s = 0 <y by(auto)

hence N\a.a € Ss = wip (SetDCp S)Ps<wlp (pa) Ps
unfolding wp-eval by (intro cInf-lower bdd-belowl, auto)

moreover {
from uQ hwp have Aa.a € Ss = 0 <wp (p a) Q s by(blast)
hence N\a.a € Ss==wp (SetDCpS)Qs<wp(pa)Qs
unfolding wp-eval by (intro cInf-lower bdd-belowl, auto)

}

ultimately

have A\a.a € Ss = wlp (SetDCp S) P s+ wp (SetDCp S) Qs S 1 <

wlp (pa) Ps+wp (pa) Qso 1

by (auto intro:tminus-left-mono add-mono)

also have Aa. wlp (pa) Ps+wp (pa) Qs 1= (wlp (pa) P&& wp (pa) Q) s
by (simp add:exp-conj-def pconj-def)

also from sdp uP uQ

have N\a.aeSs= ...a<wp(pa) (P&& Q) s
by (blast)

alsohave Aa. ...a=wp (pa) (As.Ps+Q0sS1)s
by (simp add:exp-conj-def pconj-def)

finally

show (wip (SetDC p S) P && wp (SetDCp S) Q) s < wp (SetDCp S) (P && Q) s
unfolding exp-conj-def pconj-def wp-eval
using ne by (blast intro!:cInf-greatest)

qed

lemma sdp-Bind:
[\s. sub-distrib-pconj (p (fs)) | = sub-distrib-pconj (Bind f p)
unfolding sub-distrib-pconj-def wp-eval exp-conj-def pconj-def
by (blast)

For loops, we again appeal to our transfinite induction principle, this time taking
advantage of the simultaneous treatment of both strict and liberal transformers.

lemma sdp-loop:
fixes body::'s prog
assumes sdp-body: sub-distrib-pconj body
and hwlip: nearly-healthy (wlp body)

4.7. WELL-DEFINED PROGRAMS. 167

and hwp: healthy (wp body)
shows sub-distrib-pconj (do G — body od)
proof(rule sub-distrib-pconjl, rule loop-induct|OF hwp hwip))
fix P Q::'s expect and S::(s trans x s trans) set
assume uP: unitary P and uQ: unitary Q
and ffst: V x€S. feasible (fst x)
and usnd: V¥V x€S.V Q. unitary Q — unitary (snd x Q)
and /H: Vx€S. snd x P && fst x Q t fst x (P && Q)

show Inf-utrans (snd * S) P && Sup-trans (fst ©S) Q -
Sup-trans (fst < S) (P && Q)
proof(cases)
assume S = {}
thus ?thesis
by (simp add:Inf-trans-def Sup-trans-def Inf-utrans-def
Inf-exp-def Sup-exp-def exp-conj-def)
next
assume ne: S # {}

let ?fs = 1 + Sup-trans (fst * S) (P && Q) s — Inf-utrans (snd ‘S) P s

from ne obtain ¢ where fin: 1 € fst S by(auto)
from ne obtain u where uin: u € snd ‘S by(auto)

from tin ffst uP uQ have utPQ: unitary (t (P && Q))
by (auto intro:exp-conj-unitary)
hence As. 0 <t (P && Q) s by(auto)
also {
from ffst tin have le: le-utrans t (Sup-trans (fst ©S))
by (auto intro:Sup-trans-upper)
with uP uQ have As. 1 (P && Q) s < Sup-trans (fst * S) (P && Q) s
by (auto intro:exp-conj-unitary)
}
finally have nn-rhs: As. 0 < Sup-trans (fst *S) (P && Q) s .

have AR. Inf-utrans (snd * S) P && Rt Sup-trans (fst *S) (P && Q) = R < ?f
proof(rule contrapos-pp, assumption)

fix R

assume - R < ?f

then obtain s where — R s < ?fs by(auto)

hence gr: ?fs < R s by(simp)

from nn-rhs have gl: I < I + Sup-trans (fst *S) (P && Q) s by(auro)
hence Sup-trans (fst < S) (P && Q) s = Inf-utrans (snd *S) P s .& ?f's
by (simp add:pconj-def)
also from g/ have ... = Inf-utrans (snd ‘S) Ps + ?2fs — 1
by(simp)
also from gt have ... < Inf-utrans (snd “S) Ps+ Rs — 1
by (simp)

168 CHAPTER 4. THE PGCL LANGUAGE

also {
with g1 have I < Inf-utrans (snd ‘S) Ps+ R s
by (simp)
hence Inf-utrans (snd *S) P s + R s — 1 = Inf-utrans (snd ‘S) Ps & R s
by (simp add:pconj-def)
}
finally
have — (Inf-utrans (snd “S) P && R) s < Sup-trans (fst * S) (P && Q) s
by (simp add:exp-conj-def)
thus — Inf-utrans (snd * S) P && Rt Sup-trans (fst © S) (P && Q)
by (auto)
qed

moreover have Vtefst * S. Inf-utrans (snd * S) P && t Q ¥ Sup-trans (fst © S) (P &&
0)
proof
fix r assume tin: t € fst S
then obtain x where xin: x € S and fx: ¢ = fst x by(auto)

from xin have snd x € snd * S by(auto)
with uP usnd have Inf-utrans (snd ‘ S) Pt snd x P
by (auto intro:le-utransD|OF Inf-utrans-lower])
hence Inf-utrans (snd “ S) P && fst x Q I snd x P && fst x Q
by (auto intro:entails-frame)
also from xin IH have ... I fst x (P && Q)
by (auto)
also from xin ffst exp-conj-unitary|OF uP uQ)
have ... = Sup-trans (fst * S) (P && Q)
by (auto intro:le-utransD]|OF Sup-trans-upper)
finally show Inf-utrans (snd “S) P && t Q b= Sup-trans (fst * S) (P && Q)
by (simp add:fx)
qed
ultimately have br: Vtcfst “S. t Q & ?f by(blast)

have Sup-trans (fst ©S) Q = Sup-exp {t Q |t. t € fst * S}
by (simp add:Sup-trans-def’)
also have ... - 7f
proof(rule Sup-exp-least)
from bz show VRe{t Q |t. t € fst ‘' S}. Rt ?f by(blast)
from ne obtain 1 where fin: ¢ € fst * S by(auto)
with ffst uQ have unitary (t Q) by(auto)
hence As. 0~ ¢ O by(auto)
also from tin bt have ... & ?f by(auto)
finally show nneg (As. I + Sup-trans (fst *S) (P && Q) s —
Inf-utrans (snd *S) P s)
by (auto)
qed
finally have Inf-utrans (snd ‘ S) P && Sup-trans (fst “S) Q +
Inf-utrans (snd * S) P && ?f

4.7. WELL-DEFINED PROGRAMS. 169

by (auto intro:entails-frame)
also from nn-rhs have ... = Sup-trans (fst < S) (P && Q)
by (simp add:exp-conj-def pconj-def)
finally show ’thesis .
qed

next
fix P Q::'s expect and ¢ u::'s trans
assume uP: unitary P and uQ: unitary Q
and ft: feasible t
and uu: A\Q. unitary Q = unitary (u Q)
and /H: u P && t Q1 (P && Q)
show wip (body ;; Embed u i ,,® Skip) P &&
wp (body ;; Embedt ; ,,® Skip) Ot
wp (body ;; Embed t ., Skip) (P && Q)
proof(rule le-funl, simp add:wp-eval exp-conj-def pconj-def)
fix s::'s
have « G» s x wip body (uP)s+ (I —«G»s)*Ps+
(«G»sxwpbody (1Q)s+ (I —«G»s)xQs)O 1=
(« G» s wlp body (uP) s + « G » s x wp body (t Q) s) +
(I —«G»s)«Ps+ (I —«G»s)xQs)O («G» s+ (I —«G»s))
by (simp add:ac-simps)
also have ... <
(«G»s*wlpbody (uP)s+ «G»sxwpbody (t Q) s © «G» s) +
(I —«G»s)«xPs+ (1 —«G»s)xQsO (I —«G»s))
by (rule tminus-add-mono)
also have ... =
«G»sx (wlpbody (uP)s+wpbody (tQ)sS 1)+
(I—«G»s)*x(Ps+Qsol)
by (simp add:tminus-left-distrib distrib-left)
also {
from uP uQ ft uu
have wip body (u P) && wp body (t Q) b wp body (u P && t Q)
by (auto intro:sub-distrib-pconjD|OF sdp-body))
also from 7H unitary-sound|OF uP] unitary-sound[OF uQ)] ft
unitary-sound[OF uu[OF uP))
have ... <wp body (t (P && Q))
by (blast intro!:mono-transD|OF healthy-monoD, OF hwp| exp-conj-sound)
finally have wip body (u P) s + wp body (t Q) s © 1 <
wpbody (t(As. Ps+Qs©1))s
by (auto simp:exp-conj-def pconj-def)
hence « G » s * (wlp body (u P) s + wp body (t Q) s © 1) +
(I—«Gr»s)x(Ps+Q0sel)<
«G»sxwpbody (t(As.Ps+QsO1))s+
(I—«G»s)x(Ps+Qso1)
by (auto intro:add-right-mono mult-left-mono)
}
finally
show « G » s« wip body (uP) s+ (I —«G»s)«Ps+

170 CHAPTER 4. THE PGCL LANGUAGE

(«G»sxwpbody (1Q)s+ (1 —«G»s)xQs)O1<
«G»sxwpbody (t(As.Ps+Qso1))s+
(I—«G»s)x(Ps+Q0sO1).
qed
next
fix P Q::'s expect and 1 t' u u'::'s trans
assume unitary P unitary Q
equiv-trans t t' equiv-utrans u u’
uP&&tQkt(P&& Q)
thus u’ P &&t' Q 1/ (P && Q)
by (simp add:equiv-transD unitary-sound equiv-utransD exp-conj-unitary)
qed

lemmas sdp-intros =
sdp-Abort sdp-Skip sdp-Apply
sdp-Seq sdp-DC sdp-PC
sdp-SetPC sdp-SetDC sdp-Embed
sdp-repeat sdp-Bind sdp-loop

4.7.3 The Well-Defined Predicate.

definition
well-def :: 's prog = bool
where
well-def prog = healthy (wp prog) A nearly-healthy (wlp prog)
A wp-under-wlp prog N\ sub-distrib-pconj prog
A sublinear (wp prog) A bd-cts (wp prog)

lemma well-deflintro]:
[healthy (wp prog); nearly-healthy (wip prog);
wp-under-wlp prog; sub-distrib-pconj prog; sublinear (wp prog);
bd-cts (wp prog) | =
well-def prog
unfolding well-def-def by(simp)

lemma well-def-wp-healthy|dest|:
well-def prog => healthy (wp prog)
unfolding well-def-def by(simp)

lemma well-def-wlp-nearly-healthy|dest:
well-def prog = nearly-healthy (wip prog)
unfolding well-def-def by(simp)

lemma well-def-wp-under|dest):
well-def prog = wp-under-wlp prog
unfolding well-def-def by(simp)

lemma well-def-sdp|dest]:
well-def prog = sub-distrib-pconj prog

4.7. WELL-DEFINED PROGRAMS. 171

unfolding well-def-def by(simp)

lemma well-def-wp-sublinear|dest|:
well-def prog = sublinear (wp prog)
unfolding well-def-def by(simp)

lemma well-def-wp-cts[dest]:
well-def prog = bd-cts (wp prog)
unfolding well-def-def by(simp)

lemmas wd-dests =
well-def-wp-healthy well-def-wlp-nearly-healthy
well-def-wp-under well-def-sdp
well-def-wp-sublinear well-def-wp-cts

lemma wd-Abort:
well-def Abort
by (blast intro:healthy-wp-Abort nearly-healthy-wip-Abort
wp-under-wlp-Abort sdp-Abort sublinear-wp-Abort
cts-wp-Abort)

lemma wd-Skip:
well-def Skip
by (blast intro:healthy-wp-Skip nearly-healthy-wlp-Skip
wp-under-wlp-Skip sdp-Skip sublinear-wp-Skip
cts-wp-Skip)

lemma wd-Apply:
well-def (Apply f)
by (blast intro:healthy-wp-Apply nearly-healthy-wlp-Apply
wp-under-wip-Apply sdp-Apply sublinear-wp-Apply
cts-wp-Apply)

lemma wd-Seq:
[well-def a; well-def b | = well-def (a ;; b)
by (blast intro:healthy-wp-Seq nearly-healthy-wlp-Seq
wp-under-wlp-Seq sdp-Seq sublinear-wp-Seq
cts-wp-Seq)

lemma wd-PC:
[well-def a; well-def b; unitary P | => well-def (a p® b)
by (blast intro:healthy-wp-PC nearly-healthy-wip-PC
wp-under-wip-PC sdp-PC sublinear-wp-PC
cts-wp-PC)

lemma wd-DC:
[well-def a; well-def b | = well-def (a[] b)
by (blast intro:healthy-wp-DC nearly-healthy-wip-DC
wp-under-wlp-DC sdp-DC sublinear-wp-DC

172 CHAPTER 4. THE PGCL LANGUAGE

cts-wp-DC)

lemma wd-SetDC:
[Axs.x€Ss= well-def (ax); \s.Ss#{};
N\s. finite (S s) | = well-def (SetDC a S)
by (simp add: cts-wp-SetDC ex-in-conv healthy-intros(17) healthy-intros(18) sdp-intros(8)
sublinear-intros(8) well-def-def wp-under-wlip-intros(8))

lemma wd-SetPC:
[Axs.x € (supp (p s)) = well-def (a x); \s. unitary (p s); \s. finite (supp (p s));
Ns. sum (p s) (supp (p s)) < 1] = well-def (SetPC a p)
by (iprover introl:well-defl healthy-wp-SetPC nearly-healthy-wlp-SetPC
wp-under-wlp-SetPC sdp-SetPC sublinear-wp-SetPC cts-wp-SetPC
dest:wd-dests unitary-sound sound-nneg[OF unitary-sound) nnegD)

lemma wd-Embed:
fixes ::'s trans
assumes ht: healthy t and st: sublinear t and ct: bd-cts t
shows well-def (Embed t)
proof(intro well-defl)
from At show healthy (wp (Embed t)) nearly-healthy (wip (Embed t))
by (simp add:wp-def wip-def Embed-def healthy-nearly-healthy)+
from st show sublinear (wp (Embed t)) by (simp add:wp-def Embed-def)
show wp-under-wlp (Embed t) by (simp add:wp-under-wlp-def wp-eval)
show sub-distrib-pconj (Embed t)
by (rule sub-distrib-pconjl
auto intro:le-funl[OF sublinearD|OF st, where a=1 and b=1 and c=1, simplified)|
simp:exp-conj-def pconj-def wp-def wip-def Embed-def)
from ct show bd-cts (wp (Embed t))
by (simp add:wp-def Embed-def)
qed

lemma wd-repeat:
well-def a => well-def (repeat n a)
by (blast intro:healthy-wp-repeat nearly-healthy-wlp-repeat
wp-under-wlp-repeat sdp-repeat sublinear-wp-repeat cts-wp-repeat)

lemma wd-Bind:
[\s. well-def (a (fs)) | = well-def (Bind fa)
by (blast intro:healthy-wp-Bind nearly-healthy-wip-Bind
wp-under-wlp-Bind sdp-Bind sublinear-wp-Bind cts-wp-Bind)

lemma wd-loop:
well-def body = well-def (do G — body od)
by (blast intro:healthy-wp-loop nearly-healthy-wip-loop
wp-under-wlp-loop sdp-loop sublinear-wp-loop cts-wp-loop)

lemmas wd-intros =

4.8. THE LOOP RULES 173

wd-Abort wd-Skip wd-Apply
wd-Embed wd-Seq wd-PC
wd-DC wd-SetPC wd-SetDC
wd-Bind wd-repeat wd-loop

end

4.8 The Loop Rules

theory Loops imports WellDefined begin

Given a well-defined body, we can annotate a loop using an invariant, just as in the
classical setting.

4.8.1 Liberal and Strict Invariants.

A probabilistic invariant generalises a boolean one: it entails itself, given the loop
guard.

definition

wp-inv :: ('s = bool) = 's prog = ('s = real) = bool
where

wp-inv G body I +— (V5. «G» s x I s < wp body I s)

lemma wp-invl:
AL (\s. «G» s x Is < wp body I s) => wp-inv G body I
by (simp add:wp-inv-def’)

definition

wip-inv :: ('s = bool) = 's prog = ('s = real) = bool
where

wip-inv G body I +— (V5. «G» s x [s < wip body I 5)

lemma wip-invl:
N (\s. «G» s x I s < wip body I s) => wilp-inv G body I
by (simp add:wlp-inv-def)

lemma wip-invD:
wip-inv G body I => «G» s x I s < wip body I s
by (simp add:wlp-inv-def)

For standard invariants, the multiplication reduces to conjunction.

lemma wp-inv-stdD:
assumes inv: wp-inv G body «I»
and hb: healthy (wp body)
shows «G» && «I» = wp body «I»
proof(rule le-funl)
fix s

174 CHAPTER 4. THE PGCL LANGUAGE

show («G» && «I») s < wp body «I» s
proof(cases G s)
case False
with hb show ?thesis
by (auto simp:exp-conj-def’)
next
case True
hence («G» && «I») s = «G» s x «I» s
by (simp add:exp-conj-def)
also from inv have «G» s x «I» s < wp body «I» s
by (simp add:wp-inv-def’)
finally show ?thesis .
qed
qed

4.8.2 Partial Correctness

Partial correctness for loops|[, , Lemma 7.2.2, §7, p. 185].

lemma wip-Loop:
assumes wd: well-def body
and ul: unitary I
and inv: wip-inv G body 1
shows I < wip do G — body od (As. «N G» s x I 5)
(is I < wlp do G — body od ?P)
proof —
let 2/ Qs = «G» s * wlp body Q s + «N G» s * ?P s
have I I~ gfp-exp ?f
proof(rule gfp-exp-upperbound|OF - ul))
have [= (\s. («G» s + «N G» s) x I 5) by(simp add:negate-embed)
also have ... = (\s. «G» s x I s + «N G» s x [5)
by (simp add:algebra-simps)
also have ... = ()\s. «G» § * («G» S *]s) + «N G» s * («N G» § * IS))
by (simp add:embed-bool-idem algebra-simps)
also have ... = (As. «G» s« wip body I s + «N G» s x («<N G» s %I 5))
using inv by(auto dest:wlp-invD intro:add-mono mult-left-mono)
finally show I I~ (As. «G» s x wip body I s + «N G» s * (<N G» s x I 5)) .
qed
also from ul well-def-wlp-nearly-healthy|OF wd] have ... = wip do G — body od ?P
by (auto intro:wip-Loop1[symmetric| unitary-intros)
finally show ?thesis .
qed

4.8.3 Total Correctness

The first total correctness lemma for loops which terminate with probability 1]
, , Lemma 7.3.1, §7, p. 186].

lemma wp-Loop:
assumes wd: well-def body

4.8. THE LOOP RULES 175

and inv: wip-inv G body 1
and unit: unitary 1
shows I && wp (do G — body od) (As. 1) = wp (do G — body od) (As. «N G» s * I
)
(is I && ?T + wp ?loop ?X)
proof —

We first appeal to the liberal loop rule:

from assms have I && ?T t+ wip ?loop ?X && ?T
by (blast intro:exp-conj-mono-left wlp-Loop)

Next, by sub-conjunctivity:

also {
from wd have sdp-loop: sub-distrib-pconj (do G — body od)
by (blast intro:sdp-intros)

from wd unit have wip ?loop ?X && ?T t wp ?loop (?X && (Xs. 1))
by (blast intro:sub-distrib-pconjD sdp-intros unitary-intros)

}

Finally, the conjunction collapses:

finally show ?thesis
by (simp add:exp-conj-1-right sound-intros sound-nneg unit unitary-sound)
qed

4.8.4 Unfolding

lemma wp-loop-unfold:
fixes body :: 's prog
assumes sP: sound P
and h: healthy (wp body)
shows wp (do G — body od) P =
(As. «N G» s % P s + «G» s x wp body (wp (do G — body od) P) s)
proof (simp only: wp-eval)
let ?X 1 = wp (body ;; Embed t i ,,® Skip)
have equiv-trans (Ifp-trans ?X)
(wp (body ;; Embed (lfp-trans ?X) G »® Skip))
proof(intro lfp-trans-unfold)
fix 1::'s trans and P::’s expect
assume st: Q. sound Q = sound (t Q)
and sP: sound P
with 4 show sound (?X t P)
by (rule wp-loop-step-sound)
next
fix ¢ u::'s trans
assume le-trans t u (/\P. sound P = sound (¢ P))
(A\P. sound P = sound (u P))
with i show le-trans (wp (body ;; Embed t i ,,® Skip))
(wp (body ;; Embed u ; ,,® Skip))

176 CHAPTER 4. THE PGCL LANGUAGE

by (iprover intro:wp-loop-step-mono)
next
let 7v = AP 5. bound-of P
from h show le-trans (wp (body ;; Embed ?v i ,,® Skip)) ?v
by (intro le-transl, simp add:wp-eval lfp-loop-fp[unfolded negate-embed))
fix P::’s expect
assume sound P thus sound (?v P) by(auto)
qed
also have equiv-trans ...
(AP s. «<N G» s x P s + «G» s * wp body (wp (Embed (Ifp-trans ?X)) P) s)
by (rule equiv-transl, simp add:wp-eval algebra-simps negate-embed)
finally show [fp-trans ?X P =
(As. «N G» s * P s + «G» s * wp body (lfp-trans ?X P) s)
using sP unfolding wp-eval by (blast)
qed

lemma wp-loop-nguard:
[healthy (wp body); sound P; = G s | = wp do G — body od P s = P s
by (subst wp-loop-unfold, simp-all)

lemma wp-loop-guard:
[healthy (wp body); sound P; G s | =
wp do G — body od P s = wp (body ;; do G — body od) P s
by (subst wp-loop-unfold, simp-all add:wp-eval)

end

4.9 The Algebra of pGCL

theory Algebra imports WellDefined begin

Programs in pGCL have a rich algebraic structure, largely mirroring that for GCL.
We show that programs form a lattice under refinement, witha [| band a | | b as
the meet and join operators, respectively. We also take advantage of the algebraic
structure to establish a framwork for the modular decomposition of proofs.

4.9.1 Program Refinement

Refinement in pGCL relates to refinement in GCL exactly as probabilistic entail-
ment relates to implication. It turns out to have a very similar algebra, the rules of
which we establish shortly.

definition
refines :: 's prog = 's prog = bool (infix <> 70)
where
prog € prog’ =V P. sound P — wp prog P % wp prog' P

lemma refinesl|[intro|:

4.9. THE ALGEBRA OF PGCL 177

[AP. sound P —> wp prog P wp prog’' P | = prog C prog’
unfolding refines-def by(simp)

lemma refinesD|dest]:
[prog C prog'’; sound P | = wp prog P+ wp prog’' P
unfolding refines-def by(simp)

The equivalence relation below will turn out to be that induced by refinement. It is
also the application of equiv-trans to the weakest precondition.

definition
pequiv :: 's prog = s prog = bool (infix <> 70)
where
prog ~ prog’ =V P. sound P — wp prog P = wp prog’ P

lemma pequivi[intro:
[AP. sound P => wp prog P = wp prog' P | = prog ~ prog’
unfolding pequiv-def by (simp)

lemma pequivD|dest,simp]:
[prog ~ prog'; sound P | = wp prog P = wp prog’ P
unfolding pequiv-def by(simp)

lemma pequiv-equiv-trans:
a ~ b «— equiv-trans (wp a) (wp b)
by (auto)

4.9.2 Simple Identities

The following identities involve only the primitive operations as defined in Sec-
tion 4.1.1, and refinement as defined above.

Laws following from the basic arithmetic of the operators seperately

lemma DC-comm|[ac-simps):

al[lb=b[]a
unfolding DC-def by (simp add:ac-simps)

lemma DC-assoc|ac-simps]:

all1(b1c)=(al1b)[]c
unfolding DC-def by (simp add:ac-simps)

lemma DC-idem:

alla=a
unfolding DC-def by(simp)

lemma AC-comm|[ac-simps|:

al]b=>bl]a
unfolding AC-def by(simp add:ac-simps)

178 CHAPTER 4. THE PGCL LANGUAGE

lemma AC-assoc|ac-simps]:

all (bl c)=(allb)]c
unfolding AC-def by(simp add:ac-simps)

lemma AC-idem:

alla=a
unfolding AC-def by(simp)

lemma PC-quasi-comm:
ap@b:b(/\s.]—ps)@a
unfolding PC-def by (simp add:algebra-simps)

lemma PC-idem:
apba=a
unfolding PC-def by(simp add:algebra-simps)

lemma Seg-assoc|ac-simps]:
A (B C)=A3 B3 C
by (simp add:Seq-def o-def)

lemma Abort-refines(intro:
well-def a = Abort C a
by (rule refinesl, unfold wp-eval, auto dest!:well-def-wp-healthy)

Laws relating demonic choice and refinement

lemma left-refines-DC:

(a[1b)Ca

by (auto introl:refinesl simp:wp-eval)

lemma right-refines-DC:
(a[1b)Eb
by (auto intro!:refinesl simp:wp-eval)

lemma DC-refines:
fixes a::’s prog and b and ¢
assumes rab: a = b and rac: a C ¢
showsa C (b[] ¢)
proof
fix P::’s = real assume sP: sound P
with assms have wpa P-wp b Pand wpa P+ wp ¢ P
by (auto dest:refinesD)
thuswpa Pt wp (b[] ¢) P
by (auto simp:wp-eval intro:min.boundedl)
qed

lemma DC-mono:
fixes a::'s prog

4.9. THE ALGEBRA OF PGCL 179

assumes rab: a C b and red: ¢ T d
shows (a[] c) T (b[] d)
proof(rule refinesl, unfold wp-eval, rule le-funl)
fix P::’s = real and s::'s
assume sP: sound P
with assms havewpa Ps <wpbPsandwpcPs<wpdPs
by (auto)
thus min (wpa Ps) (wpcPs)<min(wpbPs)(wpdPs)
by (auto)
qed

Laws relating angelic choice and refinement

lemma left-refines-AC:

aC(al]b)

by (auto intro!:refinesl simp:wp-eval)

lemma right-refines-AC:
bC (al]|b)
by (auto intro!:refinesl simp:wp-eval)

lemma AC-refines:
fixes a::’s prog and b and ¢
assumes rac: a = cand rbec: b C ¢
shows (a| |) C ¢
proof
fix P::’s = real assume sP: sound P
with assms have As.wpaPs<wpcPs
and As. wpbPs<wpcPs
by (auto dest:refinesD)
thus wp (a| | b)) P+wpc P
unfolding wp-eval by (auto)
qed

lemma AC-mono:
fixes a::'s prog
assumes rab: a C b and red: ¢ C d
shows (a| | ¢) T (b|] d)
proof(rule refinesl, unfold wp-eval, rule le-funl)
fix P::’s = real and s::'s
assume sP: sound P
with assms havewpa Ps <wpbPsandwpcPs<wpdPs
by (auto)
thus max (wpa Ps) (wpcPs) <max (wpbPs) (wpdPs)
by (auto)
qed

Laws depending on the arithmetic of a ,&® b and a [| b together
lemma DC-refines-PC:

180 CHAPTER 4. THE PGCL LANGUAGE

assumes unit: unitary p
shows (a[] b) C (a p® b)
proof(rule refinesl, unfold wp-eval, rule le-funl)
fix s and P::'a = real assume sound: sound P
from unit have nn-p: 0 < p s by(blast)
from unit have p s < I by(blast)
hence nn-np: 0 < I — p s by(simp)
show min (wpa Ps) wpbPs)<psxwpaPs+ (I —ps)«wpbPs
proof(caseswpa Ps <wpbPs,
simp-all add:min.absorbl min.absorb2)
case True note le = this
havewpaPs=(ps+ (I —ps)) *wpaP sby(simp)
alsohave ... =psxwpaPs+ (I —ps)*wpaPs
by (simp only: distrib-right)
also {
from /e and nn-np have (I —ps)«wpaPs<(l —ps)*xwpbPs
by (rule mult-left-mono)
henceps«wpaPs+ (I —ps)*swpaPs<
psxwpaPs+ (I —ps)xwpbPs
by (rule add-left-mono)
}
finally showwpaPs<psxwpaPs+ (I —ps)«wpbPs.
next
case False
then have le: wp b P s < wp a P s by(simp)
havewpbPs=(ps+ (I —ps)) «wpDb P sby(simp)
alsohave ...=ps«xwpbPs+ (I —ps)*wpbPs
by (simp only:distrib-right)
also {
from /e and nn-phavep sxwpbPs<psxwpaPs
by (rule mult-left-mono)
hencepsxwpbPs+ (I —ps)*wpbPs<
psxwpaPs+ (I —ps)xwpbPs
by (rule add-right-mono)
}
finally showwp b Ps<psxwpaPs+ (I —ps)xwpbPs.
qed
qed

Laws depending on the arithmetic of a ,® b and a | | b together

lemma PC-refines-AC:
assumes unit: unitary p
shows (a ,@® b) C (a| | b)

proof(rule refinesl, unfold wp-eval, rule le-funl)
fix s and P::'a = real assume sound: sound P

from unit have p s < I by(blast)
hence nn-np: 0 < I — p s by(simp)

4.9. THE ALGEBRA OF PGCL 181

showps«wpaPs+ (I —ps)*xwpbPs<
max (wpaPs) (wpbPs)
proof(caseswpaPs <wpbPs)
case True note leab = this
with unit nn-np
havepsxwpaPs+ (I —ps)«wpbPs<
psxwpbPs+ (I —ps)xwpbPs
by (auto intro:add-mono mult-left-mono)
alsohave... =wp b Ps
by (auto simp:field-simps)
also from leab
have ... = max (wpaPs) (wpbPs)
by (auto)
finally show ’thesis .
next
case False note leba = this
with unit nn-np
haveps+«wpaPs+ (I —ps)xwpbPs<
pskwpaPs+ (I —ps)xwpaPs
by (auto intro:add-mono mult-left-mono)
alsohave ... =wpaPs
by (auto simp:field-simps)
also from leba
have ... = max (wpa Ps) (wp D Ps)
by (auto)
finally show ’thesis .
qed
qed

Laws depending on the arithmetic of a | | » and a [] b together
lemma DC-refines-AC:

(a[1b)C (al]b)

by (auto intro!:refinesl simp:wp-eval)

Laws Involving Refinement and Equivalence

lemma pr-trans(trans):
fixes A::'a prog
assumes prAB:AC B
and prBC: BC C
shows A C C
proof
fix P::'a = real assume sP: sound P
with prAB have wp A P = wp B P by(blast)
also from sP and prBC have ... - wp C P by(blast)
finally show wp A P~ ...
qed

182 CHAPTER 4. THE PGCL LANGUAGE

lemma pequiv-refifintro!,simp):
a~a
by (auto)

lemma pequiv-comm|ac-simps|:
a~b+—b~a
unfolding pequiv-def
by (rule iffl, safe, simp-all)

lemma pequiv-pr|dest:
a~b=—=albh
by (auto)

lemma pequiv-trans|intro,trans):
[a~b;b~c]=a~c
unfolding pequiv-def by (auto intro\:order-trans)

lemma pequiv-pr-trans(intro,trans|:
[a~b;pbCc]=aCc
unfolding pequiv-def refines-def by (simp)

lemma pr-pequiv-trans|intro,trans|:
[aCh;b~c]=aLCc
unfolding pequiv-def refines-def by (simp)

Refinement induces equivalence by antisymmetry:
lemma pequiv-antisym:

[aCh;bCa]=a~b
by (auto intro:antisym)

lemma pequiv-DC:
[a~c;b~d] = (a[] D) ~(c[]d)

by (auto intro!:DC-mono pequiv-antisym simp:ac-simps)
lemma pequiv-AC:

[a~c;b~d] = (a|] D)~ (c|]d)
by (auto intro\:AC-mono pequiv-antisym simp:ac-simps)

4.9.3 Deterministic Programs are Maximal

Any sub-additive refinement of a deterministic program is in fact an equivalence.
Deterministic programs are thus maximal (under the refinement order) among sub-

additive programs.

lemma refines-determ:
fixes a::'s prog
assumes da: determ (wp a)
and wa: well-def a
and wb: well-def b

4.9. THE ALGEBRA OF PGCL 183

anddr:aC b
shows a >~ b

Proof by contradiction.

proof(rule pequivl, rule contrapos-pp)
from wb have feasible (wp b) by(auto)
with wb have sab: sub-add (wp b)
by (auto dest: sublinear-subadd|OF well-def-wp-sublinear))
fix P::'s = real assume sP: sound P

Assume that a and b are not equivalent:

assume ne: wpa P #wp b P

Find a point at which they differ. As a T b, wp b P s must by strictly greater than wp a P s
here:

hence ds. wpaPs<wpbPs

proof(rule contrapos-np)
assume —(3s.wpaPs<wpbPs)
hence Vs. wp b P s < wp a P s by(auto simp:not-less)
hence wp b P+ wp a P by(auto)
moreover from sP dr have wp a P & wp b P by(auto)
ultimately show wp a P = wp b P by(auto)

qed

then obtain s where less: wp a P s < wp b P s by(blast)

Take a carefully constructed expectation:

let ?Pc = As. bound-of P — P s

have sPc: sound ?Pc

proof(rule soundl)
from sP have As. 0 < P s by(auto)
hence \s. ?Pc s < bound-of P by(auto)
thus bounded ?Pc by (blast)
from sP have \s. P s < bound-of P by(auto)
hence /\s. 0 < ?Pc s

by auto

thus nneg ?Pc by(auto)

qed

We then show that wp b violates feasibility, and thus healthiness.

from sP have 0 < bound-of P by(auto)
with da have bound-of P = wp a (As. bound-of P) s
by (simp add:maximalD determ-maximalD)
also have ... =wpa (As. ?2Pcs+ Ps) s
by (simp)
also from da sP sPc have ... =wpa ?Pcs+wpaPs
by (subst additiveD|OF determ-additiveD)], simp-all add:sP sPc)
also from sPc dr have ... <wp b ?Pcs+wpaPs
by (auto)
also from less have ... <wp b ?Pcs +wp b Ps

184 CHAPTER 4. THE PGCL LANGUAGE

by (auto)

also from sab sP sPc have ... <wp b (As. ?Pcs + P s) s
by (blast)

finally have —wp b (\s. bound-of P) s < bound-of P
by (simp)

thus —bounded-by (bound-of P) (wp b (\s. bound-of P))
by (auto)

next

However,

fix P::'s = real assume sP: sound P
hence nneg (\s. bound-of P) by(auto)
moreover have bounded-by (bound-of P) (\s. bound-of P) by (auto)
ultimately
show bounded-by (bound-of P) (wp b (As. bound-of P))
using wb by (auto dest!:well-def-wp-healthy)
qed

4.9.4 The Algebraic Structure of Refinement

Well-defined programs form a half-bounded semilattice under refinement, where
Abort is bottom, and a [| b is inf. There is no unique top element, but all fully-
deterministic programs are maximal.

The type that we construct here is not especially useful, but serves as a convenient
way to express this result.

quotient-type 's program =
's prog / partial : Aa b. a ~ b A\ well-def a N\ well-def b
proof(rule part-equivpl)
have Skip ~ Skip and well-def Skip by (auto intro:wd-intros)
thus Jx. x ~ x A well-def x N\ well-def x by (blast)
show symp (Aa b. a ~ b A well-def a N well-def b)
proof(rule sympl, safe)
fix a::'a prog and b
assume a ~ b
hence equiv-trans (wp a) (wp b)
by (simp add:pequiv-equiv-trans)
thus b ~ a by(simp add:ac-simps pequiv-equiv-trans)
qed
show transp (Aa b. a ~ b A\ well-def a N\ well-def b)
by (rule transpl, safe, rule pequiv-trans)
qed

instantiation program :: (type) semilattice-inf begin
lift-definition

less-eq-program :: 'a program = 'a program = bool is refines
proof(safe)

fix a::'a prog and b ¢ d

assume a ~ b hence b ~ a by (simp add:ac-simps)

4.9. THE ALGEBRA OF PGCL 185

also assume a C ¢
also assume ¢ ~ d
finally show b C d .
next
fix a::'a prog and b ¢ d
assume a ~ b
also assume b C d
also assume ¢ ~ d hence d ~ ¢ by(simp add:ac-simps)
finally show a C c.
qed

lift-definition
less-program :: 'a program = 'a program = bool
isXab.aCbhbAN—-bCa
proof(safe)
fix a::'a prog and b ¢ d
assume a ~ b hence b ~ a by(simp add:ac-simps)
also assume a C ¢
also assume ¢ ~ d
finally show b C d .
next
fix a::'a prog and b ¢ d
assume a ~ b
also assume b C d
also assume ¢ ~ d hence d ~ ¢ by(simp add:ac-simps)
finally show a C c.
next
fix a b and c::'a prog and d
assume ¢ ~ d
also assume d C b
also assume a ~ b hence b ~ a by(simp add:ac-simps)
finally have c C a.
moreover assume - ¢ C a
ultimately show Fulse by(auto)
next
fix a b and c::'a prog and d
assume ¢ ~ d hence d ~ ¢ by(simp add:ac-simps)
also assume c C a
also assume a ~ b
finally have d C b .
moreover assume - d C b
ultimately show Fulse by(auto)
qed

lift-definition

inf-program :: 'a program = 'a program = 'a program is DC
proof(safe)

fixab cd:'s prog

assume a ~ b and c >~ d

186 CHAPTER 4. THE PGCL LANGUAGE

thus (a[] ¢) =~ (b[] d) by(rule pequiv-DC)
next

fix a c::'s prog

assume well-def a well-def ¢

thus well-def (a[] c) by(rule wd-intros)
next

fix a c::'s prog

assume well-def a well-def ¢

thus well-def (a[] c) by(rule wd-intros)
qed

instance
proof
fix x y::'a program
show (x <y)=(x<yA-y<x)
by (transfer, simp)
show x < x
by (transfer, auto)
show infxy <x
by (transfer, rule left-refines-DC)
show infxy <y
by(transfer, rule right-refines-DC)
assume x <yandy < xthusx =y
by (transfer, iprover intro:pequiv-antisym)
next
fix x y z::'a program
assume x <yandy < z
thusx <z
by (transfer, iprover intro:pr-trans)
next
fix x y z::'a program
assume x < yand x < z
thus x <infyz
by (transfer, iprover intro:DC-refines)
qed
end

instantiation program :: (type) bot begin
lift-definition

bot-program :: 'a program is Abort

by (auto intro:wd-intros)

instance ..
end

lemma eqg-det: \a b::'s prog. [a >~ b; determ (wp a) | = determ (wp b)
proof(intro determl additivel maximall)
fix a b::'s prog and P::'s = real
and Q::'s = real and s::'s

4.9. THE ALGEBRA OF PGCL 187

assume da: determ (wp a)
assume sP: sound P and sQ: sound Q
andeq:a~b
hence wp b (As. Ps+ Qs)s=
wpa(As.Ps+Qs)s
by (simp add:sound-intros)
also from da sP sQ
have ... =wpaPs+wpaQs
by (simp add:additiveD determ-additiveD)
also from eq sP sQ
have ... =wpbPs+wpb Qs
by (simp add:pequivD)
finally show wp b (As. Ps+ Qs)s=wpbPs+wpbQs.
next
fix a b::'s prog and c::real
assume da: determ (wp a)
assume a ~ b hence b ~ a by(simp add:ac-simps)
moreover assume nn: 0 < ¢
ultimately have wp b (\-. ¢) =wp a (A-. ¢)
by (simp add:pequivD const-sound)
also from da nn have ... = (\-. ¢)
by (simp add:determ-maximalD maximalD)
finally show wp b (\-. ¢) = (M. ¢) .
qed

lift-definition
pdeterm :: 's program = bool
is \a. determ (wp a)
proof(safe)
fix a b::'s prog
assume a ~ b and determ (wp a)
thus determ (wp b) by(rule eq-det)
next
fix a b::'s prog
assume a =~ b hence b ~ a by(simp add:ac-simps)
moreover assume deferm (wp b)
ultimately show determ (wp a) by(rule eq-det)
qed

lemma determ-maximal:
[pdeterma;a<x] = a=x
by (transfer, auto intro:refines-determ)

4.9.5 Data Refinement

A projective data refinement construction for pGCL. By projective, we mean that
the abstract state is always a function () of the concrete state. Refinement may be
predicated (G) on the state.

188 CHAPTER 4. THE PGCL LANGUAGE

definition
drefines :: ('"b = 'a) = ('b = bool) = 'a prog = 'b prog = bool
where
drefines p GAB =Y P Q. (unitary P A unitary Q A (P+wp A Q)) —
(«G» && (Pop)-wp B (Q o))

lemma drefinesD[dest):
[drefines ¢ G A B; unitary P; unitary Q; PHwp A Q| =
«G» && (P o @) -wp B (Q o ¢)
unfolding drefines-def by (blast)

We can alternatively use G as an assumption:

lemma drefinesD?2:
assumes dr: drefines p GA B
and uP: unitary P
and uQ: unitary Q
and wpA: P-wp A Q

and G: Gs
shows (Pop)s<wpB(Qoy)s
proof —

from uP have 0 < (P o ¢) s unfolding o-def by(blast)
with G have (P o) s = («G» && (P o ¢)) s
by (simp add:exp-conj-def)
also from assms have ... <wp B (Q o ¢) s by(blast)
finally show (Po) s <
qed

This additional form is sometimes useful:

lemma drefinesD3:
assumes dr: drefines ¢ G a b
and G: Gs
and uQ: unitary Q
and wa: well-def a
shows wpa Q (ps) <wpb(Qop)s
proof —
let 2Ls'=wpaQs’
from uQ wa have sL: sound ?L by (blast)
from uQ wa have bL: bounded-by 1 ?L by(blast)

have 7Lt ?L by(simp)
with sL and bL and assms
show ’thesis
by (blast intro:drefinesD2|OF dr, where P="?L, simplified))
qed

lemma drefinesl|intro):
[AP Q. [unitary P; unitary Q; P wp A Q] =
«G» && (Pop)-wpB(Qoy)] =
drefines p GA B

4.9. THE ALGEBRA OF PGCL 189

unfolding drefines-def by (blast)

Use G as an assumption, when showing refinement:

lemma drefinesI2:
fixes A::'a prog
and B::'b prog
and ¢:'b='a
and G:'b = bool
assumes wB: well-def B
and withAs:
AP Q s. [unitary P; unitary Q;
Gs;PFwpAQ] = (Poyp)s<wpB(Qoy)s
shows drefines o GA B
proof
fix P and Q
assume uP: unitary P
and uQ: unitary Q
and wpA: P-wp A Q

hence \s. Gs = (Pop)s<wpB(Qoy)s
using withAs by (blast)
moreover
from uQ have unitary (Q o ¢)
unfolding o-def by(blast)
moreover
from uP have unitary (P o ¢)
unfolding o-def by (blast)
ultimately
show «G» && (Po o) = wp B(Q o)
using wB by (blast intro:entails-pconj-assumption)
qed

lemma dr-strengthen-guard:
fixes a::'s prog and b::'t prog
assumes fg: \s. Fs = G s
and drab: drefines o Ga b
shows drefines o Fa b
proof(intro drefinesI)
fix P Q::'s expect
assume uP: unitary P and uQ: unitary Q
and wp: P+wpa Q
from fg have \s. «F» s < «G» s by(simp add:embed-bool-def)
hence («F» && (P o ¢)) + («G» && (P o ¢)) by(auto intro:pconj-mono le-funl
simp:exp-conj-def’)
also from drab uP uQ wp have ... = wp b (Q 0) by(auto)
finally show «F» && (Po o) wp b (Qo).
qed

Probabilistic correspondence, pcorres, is equality on distribution transformers, mod-

190 CHAPTER 4. THE PGCL LANGUAGE

ulo a guard. It is the analogue, for data refinement, of program equivalence for
program refinement.

definition
pcorres :: ('b = 'a) = ('b = bool) = 'a prog = 'b prog = bool
where
pcorres ¢ GA B +—
(V Q. unitary Q — «G» && (wp A Q 0 p) = «G» && wp B (Q 0 v))

lemma pcorresl:
[AQ. unitary Q = «G» && (wp A Q 0 p) = «G» && wp B (Q 0 ¢) | =
pcorres ¢ GA B
by (simp add:pcorres-def)

Often easier to use, as it allows one to assume the precondition.

lemma pcorresl2[intro):
fixes A::'a prog and B::'b prog
assumes withG: \Q s. [unitary Q;Gs | = wp A Q (¢ s)=wpB(Qo) s
and wA: well-def A
and wB: well-def B
shows pcorres p GA B
proof(rule pcorresl, rule ext)
fix Q::'a = real and s::'b
assume uQ: unitary Q
hence uQ: unitary (Q o) by(auto)
show («G» && (wp A Qo)) s = («G» && wp B (Q o p)) s
proof(cases G s)
case True note this
moreover
from well-def-wp-healthy|OF wA] uQ have 0 < wp A Q (¢ s) by(blast)
moreover
from well-def-wp-healthy|OF wB] uQy have 0 < wp B (Q o ¢) s by(blast)
ultimately show ?thesis
using uQ by(simp add:exp-conj-def withG)
next
case False note this
moreover
from well-def-wp-healthy|OF wA] uQ have wp A Q (¢ s) < 1 by(blast)
moreover
from well-def-wp-healthy|OF wB] uQyp have wp B (Q 0) s < 1
by (blast dest!:healthy-bounded-byD intro:sound-nneg)
ultimately show ?hesis by(simp add:exp-conj-def)
qed
qed

lemma pcorresD:
[pcorres ¢ G A B; unitary Q | = «G» && (wp A Q 0) = «G» && wp B (Q 0 ¢)
unfolding pcorres-def by(simp)

Again, easier to use if the precondition is known to hold.

4.9. THE ALGEBRA OF PGCL 191

lemma pcorresD2:
assumes pc: pcorres p GA B
and uQ: unitary Q
and wA: well-def A and wB: well-def B
and G: G s
shows wp A QO (ps) =wp B (Qo) s
proof —
from uQ well-def-wp-healthy[OF wA] have 0 < wp A Q (¢ s) by(auto)
with Ghave wp A Q (p s) = «G» s .& wp A Q (i 5) by(simp)
also {
from pc uQ have «G» && (wp A Q 0) = «G» && wp B (Q 0)
by (rule pcorresD)
hence «G» s & wp A Q (ps) =«G»s .&wpB(Qoy)s
unfolding exp-conj-def o-def by (rule fun-cong)
}
also {
from uQ have sound Q by (auto)
hence sound (Q o) by(auto intro:sound-intros)
with well-def-wp-healthy|OF wB] have 0 < wp B (Q o0 ¢) s by(auto)
with G have «G» s .& wp B (Q 0 v) s =wp B (Q 0 ¢) s by(simp)
}
finally show ?thesis .
qed

4.9.6 The Algebra of Data Refinement

Program refinement implies a trivial data refinement:

lemma refines-drefines:
fixes a::'s prog
assumes rab: a C b and wb: well-def b
shows drefines (As.s) Gab

proof(intro drefinesI2 wb, simp add:o-def)
fix P::'s = real and Q::'s = real and s::'s
assume sQ: unitary Q
assume P wp a Q hence P s < wp a Q s by(auto)
also from rab sQ have ... < wp b Q s by(auto)
finally show Ps <wp b Qs.

qed

Data refinement is transitive:

lemma dr-trans(trans):
fixes A::’a prog and B::'b prog and C::'c prog
assumes drAB: drefines p GA B
and drBC: drefines o' G' B C
and Gimp: N\s. G's = G (¢'5s)
shows drefines (9 0 ') G'A C
proof(rule drefinesI)
fix P::'a = real and Q::'a = real and s::'a
assume uP: unitary P and uQ: unitary Q

192 CHAPTER 4. THE PGCL LANGUAGE

and wpA: P=wp A QO

have «G» && «G o ¢'» = «G'»
proof(rule ext, unfold exp-conj-def)
fix x
show «G"» x .& «G 0 ©'» x = «G'» x (is ?X)
proof(cases G’ x)
case Fulse then show ?X by (simp)
next
case True
moreover
with Gimp have (G o ') x by(simp add:o-def)
ultimately
show ?X by(simp)
qed
qed

with uP
have «G’» && (P o (¢ 0 ¢')) = «G™ && ((«G» && (P o ¢)) 0 ¢)
by (simp add:exp-conj-assoc o-assoc)

also {
from uP uQ wpA and drAB
have «G» && (Po) Fwp B(Q o)
by (blast intro:drefinesD)

with drBC and uP uQ
have «G’» && ((«G» && (Po) o Y= wp C ((Q o ¢) 0 ¢')
by (blast intro:unitary-intros drefinesD)

}

finally
show «G’» && (Po (po ') Fwp C(Qo (¢ o ¢’))
by (simp add:o-assoc)
qed

Data refinement composes with program refinement:

lemma pr-dr-trans|trans):
assumes prAB: AC B
and drBC: drefines ¢ G B C
shows drefines p GA C
proof(rule drefinesI)
fix P and O
assume uP: unitary P
and uQ: unitary Q
and wpA: P=wp A QO

note wpA
also from uzQ and prAB have wp A Q i~ wp B Q by(blast)

4.9. THE ALGEBRA OF PGCL 193

finally have P+~ wp B Q.

with uP uQ drBC

show «G» && (P o @) = wp C (Q o ¢) by(blast intro:drefinesD)
qed

lemma dr-pr-trans|trans):
assumes drAB: drefines p GA B
assumes prBC: BC C
shows drefines o GA C
proof(rule drefinesI)
fix P and QO
assume uP: unitary P
and uQ: unitary Q
and wpA: PHwp A QO

with drAB have «G» && (P o) = wp B (Q o ¢) by(blast intro:drefinesD)
also from uQ prBC have ... - wp C (Q o ¢) by(blast)
finally show «G» && (Po p) - ...

qed

If the projection ¢ commutes with the transformer, then data refinement is reflex-
ive:

lemma dr-refl:
assumes wa: well-def a
and comm: \Q. unitary Q = wpa Qo ot wpa (Qo ¢)
shows drefines p Gaa
proof(intro drefinesI2 wa)
fix P and Q and s
assume wp: Pt wp a Q
assume uQ: unitary Q

have (P o) s = P (¢ s) by(simp)

also from wp have ... < wp a Q (¢ s) by(blast)

also {
from comm uQ have wp a Q 0 o = wp a (Q o ¢) by(blast)
hence (wp a Q o ¢) s <wpa (Q o ¢) s by(blast)
hence wp a O (¢ s) < ... by(simp)

}

finally show (Pop)s<wpa(Qoy)s.

qed

Correspondence implies data refinement

lemma pcorres-drefine:
assumes corres: pcorres o GA C
and wC: well-def C
shows drefines p GA C
proof
fix P and Q
assume uP: unitary P and uQ: unitary Q

194 CHAPTER 4. THE PGCL LANGUAGE

and wpA: P=wp A QO
from wpA have P o ¢ = wp A Q 0 ¢ by(simp add:o-def le-fun-def)
hence «G» && (P o @) = «G» && (wp A Q 0 @)
by (rule exp-conj-mono-right)
also from corres uQ
have ... = «G» && (wp C (Q 0 ¢)) by(rule pcorresD)

also
have ...I=wp C (Q o)
proof(rule le-funl)

fix s

from uQ have unitary (Q o ¢) by(rule unitary-intros)
with well-def-wp-healthy|OF wC] have nn-wpC: 0 < wp C (Q o ¢) s by(blast)
show («G» && wp C (Qo ¢)) s<wp C(Qop)s
proof(cases G s)
case True
with nn-wpC show ?thesis by(simp add:exp-conj-def)
next
case False note this
moreover {
from uQ have unitary (Q o) by(simp)
with well-def-wp-healthy|[OF wC] have wp C (Q 0 ¢) s < 1 by(auto)
}
moreover note nn-wpC
ultimately show ?thesis by (simp add:exp-conj-def)
qed
qed
finally show «G» && (Po o) Fwp C (Qo).
qed

Any data refinement of a deterministic program is correspondence. This is the
analogous result to that relating program refinement and equivalence.

lemma drefines-determ:
fixes a::'a prog and b::'b prog
assumes da: determ (wp a)
and wa: well-def a
and wb: well-def b
and dr: drefines ¢ Ga b
shows pcorres ¢ Ga b

The proof follows exactly the same form as that for program refinement: Assuming that
correspondence doesn’t hold, we show that wp b is not feasible, and thus not healthy,
contradicting the assumption.

proof(rule pcorresl, rule contrapos-pp)
from wb show feasible (wp b) by(auto)

note iia = well-def-wp-healthy|OF wa]
note hb = well-def-wp-healthy|OF wb)

from wb have sublinear (wp b) by(auto)

4.9. THE ALGEBRA OF PGCL 195

moreover from hb have feasible (wp b) by(auto)
ultimately have sab: sub-add (wp b) by(rule sublinear-subadd)

fix Q::'a = real

assume uQ: unitary Q

hence uQ: unitary (Q o) by(auto)

assume ne: «G» && (wp a Q 0) # «G» && wp b (Q 0 ¢)
hence ne”: wpa Q o v # wp b (Q o) by(auto)

From refinement, « G » && (wp a Q o) lies below « G » && wp b (Q o).

from ha uQ
have gle: «G» && (wpa Q o v) = wp b (Q o) by(blast intro:drefinesD[OF dr])
have le: «G» && (wpa Q 0 p) = «G» && wp b (Q 0)
unfolding exp-conj-def
proof(rule le-funl)
fix s
from gle have «G» s .& (wpa Qo p)s<wpb(Qop)s
unfolding exp-conj-def by(auto)
hence «G» 5 .& («G» s & (wpa Qo p)s) <«G»s.&wpb(Qop)s
by (auto intro:pconj-mono)
moreover from uQ ha have wp a Q (v s) <1
by (auto dest:healthy-bounded-byD)
moreover from uQ ha have 0 < wp a Q (¢)
by (auto)
ultimately
show « G»s & (wpaQoyp)s<«Gr»s.&wpb(Qoy)s
by (simp add:pconj-assoc)
qed

If the programs do not correspond, the terms must differ somewhere, and given the previous
result, the second must be somewhere strictly larger than the first:

have nle: 3s. («G» && (wpa Qo)) s < («G» && wp b (Q 0 ¢)) s
proof(rule contrapos-np|OF ne], rule ext, rule antisym)
fix s
from le show («G» && (wpa Q o ¢)) s < («G» && wp b (Q 0 ¢)) s
by (blast)
next
fix s
assume — (Is. («G» && (wpa Qo p)) s < («G» && wp b (Q 0 ¢)))
thus («G» && (wp b (Q o @))) s < («G» && (wpa Qo)) s
by (simp add:not-less)
qed
from this obtain s where less-s:
(«G» && (wpa Qo p)) s < («G» &&wpb(Qoy))s
by (blast)

The transformers themselves must differ at this point:

hence larger:wpa Q (ps) <wp b (Qop)s
proof(cases G s)

196 CHAPTER 4. THE PGCL LANGUAGE

case True
moreover from iia uQ have 0 <wp a Q (¢ s)
by (blast)
moreover from b uQp have 0 <wp b (Q o) s
by (blast)
moreover note less-s
ultimately show ?thesis by (simp add:exp-conj-def)
next
case False
moreover from ia uQ have wpa Q (¢ s) <1
by (blast)
moreover {
from uQ have bounded-by 1 (Q o)
by (blast)
moreover from unitary-sound[OF uQ)|
have sound (Q o ¢) by(auto)
ultimately have wp b (Q 0 @) s < 1
using 1b by (auto)
}
moreover note less-s
ultimately show ?thesis by (simp add:exp-conj-def)
qed
from less-s have («G» && (wpa Q o ¢)) s # («G» && wp b (Q 0 ¢)) s
by (force)

G must also hold, as otherwise both would be zero.

hence G-s: G s
proof(rule contrapos-np)
assume nG: - G s
moreover from iia uQ have wp a Q (v s) < 1
by (blast)
moreover {
from uQ have bounded-by 1 (Q o)
by (blast)
moreover from unitary-sound|OF uQ)|
have sound (Q o ¢) by(auto)
ultimately have wp b (Q 0) s < 1
using /b by(auto)
}
ultimately
show («G» && (wpa Qo)) s = («G» && wp b (Q o)) s
by (simp add:exp-conj-def)
qed

Take a carefully constructed expectation:

let ?Qc = As. bound-of Q — Q's
have bQc: bounded-by 1 ?Qc
proof(rule bounded-byI)

fix s

4.9. THE ALGEBRA OF PGCL 197

from uQ have bound-of Q < I and 0 < Q s by(auto)
thus bound-of Q — Q s < 1 by(auto)

qed

have sQc: sound ?Qc

proof(rule soundl)
from bQc show bounded ?Qc by (auto)

show nneg ?Qc
proof(rule nnegl)
fix s
from uQ have Q s < bound-of Q by(auto)
thus 0 < bound-of Q — Q s by(auto)
qed
qed

By the maximality of wp a, wp b must violate feasibility, by mapping s to something strictly
greater than bound-of Q.

from 1Q have 0 < bound-of Q by(auto)
with da have bound-of Q = wp a (As. bound-of Q) (¢ s)
by (simp add:maximalD determ-maximalD)
also have wp a (\s. bound-of Q) (¢ s) =wpa (As. Qs+ ?Qcs) (¢s)
by (simp)
also {
from da have additive (wp a) by(blast)
with uQ sQc
have wp a (As. Qs + ?Qc s) (¢ s) =
wpaQ (¢ s)+wpa ?Qc (¢ s) by(subst additiveD, blast+)
}
also {
from ha and sQc and bQc
have «G» && (wp a ?Qc o) = wp b (?Qc 0 @)
by (blast intro!:drefinesD]|OF dr])
hence («G» && (wpa ?Qc o)) s <wpb (?Qco p) s
by (blast)
moreover from sQc and ha
have 0 < wp a (\s. bound-of Q — Q s) (p)
by (blast)
ultimately
have wp a ?Qc (ps) <wp b (?Qco) s
using G-s by (simp add:exp-conj-def)
hence wpa Q (ps) +wpa ?Qc(ps)<wpaQ (¢s)+wpb(?0Ocop)s
by (rule add-left-mono)
also with larger
have wpa Q (¢ s) +wp b (?Qco) s <
wpb(Qow)s+wpb(?Qcop)s
by (auto)
finally
have wpa Q (¢ s) +wpa ?Qc (¢ 5) <
wpb(Qow)s+wpb (?0Qcop)s.

198 CHAPTER 4. THE PGCL LANGUAGE

}
also from sab and unitary-sound[OF uQ] and sQc
have wp b (Q o @) s+wp b (?Qc 0 ¢) s <
wpb(As. (Qow)s+ (?Qcop)s)s
by (blast)
also have ... = wp b (\s. bound-of Q) s
by (simp)
finally
show — feasible (wp b)
proof(rule contrapos-pn)
assume fb: feasible (wp b)
have bounded-by (bound-of Q) (As. bound-of Q) by(blast)
hence bounded-by (bound-of Q) (wp b (As. bound-of Q))
using uQ by(blast intro:feasible-boundedD|OF fb))
hence wp b (As. bound-of Q) s < bound-of Q by(blast)
thus — bound-of Q < wp b (Xs. bound-of Q) s by(simp)
qed
qed

4.9.7 Structural Rules for Correspondence

lemma pcorres-Skip:
pcorres o G Skip Skip
by (simp add:pcorres-def wp-eval)

Correspondence composes over sequential composition.

lemma pcorres-Seq:
fixes A::'b prog and B::'c prog
and C::'b prog and D::'c prog
and p::'c= b
assumes pcAB: pcorres ¢ GA B
and pcCD: pcorres ¢ HC D
and wA: well-def A and wB: well-def B
and wC: well-def C and wD: well-def D
and p3p2: \Q. unitary Q = «I» && wp B Q = wp B («H» && Q)
and pIp3: \s.Gs =>1Is
shows pcorres p G (A;;C) (B;;D)
proof(rule pcorresI)
fix Q::'b = real
assume uQ: unitary Q
with well-def-wp-healthy|OF wC] have uCQ: unitary (wp C Q) by(auto)
from uQ well-def-wp-healthy|OF wD] have uDQ: unitary (wp D (Q 0 ¢))
by (auto dest:unitary-comp)

have p3pl: AR S. [unitary R; unitary S; «I» && R = «I» && S | =
«G» && R = «G» && S
proof(rule ext)
fix R::'c = real and S::’c = real and s::'c
assume a3: «I» && R = «I» && S

4.9. THE ALGEBRA OF PGCL 199

and uR: unitary R and uS: unitary S
show («G» && R) s = («G» && §) s
proof(simp add:exp-conj-def , cases G s)
case False note this
moreover from uR have R s < I by(blast)
moreover from uS have S s < I by(blast)
ultimately show «G» s & Rs = «G» s .& S's
by (simp)
next
case True note pl = this
with p/p3 have I s by(blast)
with fun-cong|OF a3, where x=s| have | & Rs=1.& Ss
by (simp add:exp-conj-def)
with p/ show «G» s & Rs =«G» s .& S's
by (simp)
qed
qed

show «G» && (wp (A;;C) Q 0) = «G» && wp (B;;D) (Q 0)
proof(simp add:wp-eval)
from uCQ pcAB have «G» && (wp A (wp C Q) o) =
«G» && wp B (wp C Q) o)
by (auto dest:pcorresD)
also have «G» && wp B (wp C Q) o p) =
«G» && wp B (wp D (Q 0 ¢))
proof(rule p3plI)
from uCQ well-def-wp-healthy|OF wB] show unitary (wp B (wp C Q o ¢))
by (auto intro:unitary-comp)
from uDQ well-def-wp-healthy[OF wB] show unitary (wp B (wp D (Q o ¢)))
by (auto)

from uQ have « H » && (wp C Qo) =« H » && wp D (Q o @)
by (blast intro:pcorresD|OF pcCD))
thus « I » && wp B (wp C Qo) = «I» && wp B (wp D (Q o ¢))
by (simp add:p3p2 uCQ uDQ)
qed
finally show «G» && (wp A (wp C Q) o) = «G» && wp B (wp D (Q 0)) .
qed
qed

4.9.8 Structural Rules for Data Refinement

lemma dr-Skip:
fixes p::'c = b
shows drefines p G Skip Skip
proof(intro drefinesI2 wd-intros)
fix P::'b = real and Q::'b = real and s::'c
assume P - wp Skip Q
hence (P o) s < wp Skip Q (¢ s) by(simp, blast)

200 CHAPTER 4. THE PGCL LANGUAGE

thus (P o) s < wp Skip (Q 0) s by(simp add:wp-eval)
qed

lemma dr-Abort:

fixes p::'c = b

shows drefines ¢ G Abort Abort
proof(intro drefinesI2 wd-intros)

fix P::'b = real and Q::'b = real and s::'c

assume P -~ wp Abort Q

hence (P o) s < wp Abort Q (¢ s) by(auto)

thus (P o) s < wp Abort (Q o ¢) s by(simp add:wp-eval)
qed

lemma dr-Apply:

fixes p::'c = b

assumes commutes: fop=pog

shows drefines ¢ G (Apply f) (Apply g)
proof(intro drefinesI2 wd-intros)

fix P::'b = real and Q::'b = real and s::'c

assume wp: P = wp (Apply f) O

hence P I (Q o f) by(simp add:wp-eval)

hence P (¢ s) < (Q of) (¢ s) by(blast)

also have ... = Q0 ((fo ¢) s) by(simp)

also with commutes

have ... = ((Q 0 ¢) 0 g) s by(simp)

also have ... = wp (Apply g) (Qo) s

by (simp add:wp-eval)

finally show (P o) s < wp (Apply g) (Q 0) s by(simp)

qed

lemma dr-Seq:
assumes drAB: drefines p PA B
and drBC: drefines ¢ Q C D
and wpB: «P» - wp B «O»
and wB: well-def B
and wC: well-def C
and wD: well-def D
shows drefines p P (A;;C) (B;;D)
proof
fix R and S
assume uR: unitary R and uS: unitary S
and wpAC: Rt wp (A;;C) S

from uR
have «P» && (R 0 @) = «P» && («P» && (R o ¢))
by (simp add:exp-conj-assoc)

also {

4.10. STRUCTURED REASONING 201

from well-def-wp-healthy]OF wC] uR uS
and wpAC|[unfolded eval-wp-Seq o-def]
have «P» && (Ro @) =wp B (wp CS o)
by (auto intro:drefinesD|OF drAB))
with wpB well-def-wp-healthy|OF wC| uS
sublinear-sub-conj|OF well-def-wp-sublinear, OF wB|
have «P» && («P» && (R o ¢)) F wp B («Q» && (wp C S0 ¢))
by (auto intro!:entails-combine dest!:unitary-sound)

}

also {
from uS well-def-wp-healthy|OF wC]
have «Q» && (wp CSo p)-wp D (So ¢)
by (auto intro!:drefinesD[OF drBC))
with well-def-wp-healthy|OF wB| well-def-wp-healthy|OF wC)|
well-def-wp-healthy|OF wD)] and unitary-sound[OF uS]
have wp B («O» && (wp CSo @) =wp B (wp D (S0 ¢))
by (blast intro!:mono-transD)

}

finally
show «P» && (R o ¢) = wp (B;;D) (S0 ¢)
unfolding wp-eval o-def .
qed

lemma dr-repeat:
fixesp:: ‘a='b
assumes dr-ab: drefines o G a b
and Gpr: «G» I~ wp b «G»
and wa: well-def a
and wb: well-def b
shows drefines ¢ G (repeat n a) (repeat n b) (is ?X n)
proof(induct n)
show ?X 0 by(simp add:dr-Skip)

fix n

assume [H: ?X n

thus ?X (Suc n) by(auto introl:dr-Seq Gpr assms wd-intros)
qed

end

4.10 Structured Reasoning
theory StructuredReasoning imports Algebra begin

By linking the algebraic, the syntactic, and the semantic views of computation, we
derive a set of rules for decomposing expectation entailment proofs, firstly over the
syntactic structure of a program, and secondly over the refinement relation. These

202 CHAPTER 4. THE PGCL LANGUAGE

rules also form the basis for automated reasoning.

4.10.1 Syntactic Decomposition

lemma wp-Abort:
(As. 0) = wp Abort Q
unfolding wp-eval by(simp)

lemma wip-Abort:
(As. 1) = wip Abort Q
unfolding wp-eval by(simp)

lemma wp-Skip:
Pt wp Skip P
unfolding wp-eval by(blast)

lemma wip-Skip:
Pt wip Skip P
unfolding wp-eval by (blast)

lemma wp-Apply:

Qoftwp(Applyf) Q
unfolding wp-eval by(simp)

lemma wip-Apply:

Qo f &= wip (Apply f) Q
unfolding wp-eval by(simp)

lemma wp-Seq:
assumes ent-a: P wpa Q
and ent-b: Q- wp b R
and wa: well-def a
and wb: well-def b
and s-Q: sound Q
and s-R: sound R
shows Pt wp (a ;; b) R
proof —
note ha = well-def-wp-healthy|OF wal
note hb = well-def-wp-healthy|OF wb]
note ent-a
also from ent-b ha hb s-Q s-R have wp a Q+ wp a (wp b R)
by (blast intro:healthy-monoD?2)
finally show ?thesis by (simp add:wp-eval)
qed

lemma wip-Seq:
assumes ent-a: P+ wip a Q
and ent-b: Q- wip b R
and wa: well-def a

4.10. STRUCTURED REASONING 203

and wb: well-def b
and u-Q: unitary Q
and u-R: unitary R
shows P~ wip (a ;; b) R
proof —
note ha = well-def-wlp-nearly-healthy|OF wal
note hb = well-def-wlp-nearly-healthy[OF wb]
note ent-a
also from ent-b ha hb u-Q u-R have wip a Q + wip a (wlp b R)
by (blast intro:nearly-healthy-monoD|OF ha))
finally show ?thesis by (simp add:wp-eval)
qed

lemma wp-PC:
(As.PsxwpaQs+(I—Ps)xwpbQs)twp(apdb)Q
by (simp add:wp-eval)

lemma wip-PC:
(As.PsxwlpaQs+ (I —Ps)xwlpbQs)twlp (ap®b)Q
by (simp add:wp-eval)

A simpler rule for when the probability does not depend on the state.

lemma PC-fixed:
assumes wpa: Pt aab R
and wpb: Qb ab R
andnp: 0 <pandbp:p <1
shows (As.pxPs+ (I —p)«Qs) (a(
unfolding PC-def
proof(rule le-funl)
fix s
from wpa and nphavep x Ps <p*xaabR s
by (auto intro:mult-left-mono)
moreover {
from bp have 0 < I — p by(simp)
with wpb have (1 —p)* Qs < (I —p)*xbabRs
by (auto intro:mult-left-mono)
}
ultimately show p x Ps + (I —p) x Qs <
pxaabRs+ (I —p)xbabRs
by (rule add-mono)
qed

As. p)EB b)abR

lemma wp-PC-fixed:
[PHwpaR, OF-wpbR,0O<p;p<Ii]=
As.pxPs+ (I —p) *Qs)H—wp(a()\s.p)@b)R
by (simp add:wp-def PC-fixed)

lemma wip-PC-fixed:
[PrwipaR, QOFwlpbR,0<p;p<I1]=

204 CHAPTER 4. THE PGCL LANGUAGE

Ms.pxPs+ (I —p)*Qs)twip (a ()\s.p)@b)R
by (simp add:wlp-def PC-fixed)

lemma wp-DC:

(As.min (wpa Qs) (wpbQs))wp(al]b)Q
unfolding wp-eval by(simp)

lemma wip-DC:
(As. min (wlpa Qs) (wipb Qs))bwip (a[] D) QO
unfolding wp-eval by(simp)

Combining annotations for both branches:

lemma DC-split:
fixes a::'s prog and b
assumes wpa: P+ aab R
and wpb: Qb ab R
shows (As. min (Ps) (Qs)) ¥+ (a[] b)abR
unfolding DC-def
proof(rule le-funl)
fix s
from wpa wpb
have Ps < aab R sand Qs < b ab R s by(auto)
thus min (P s) (Q s) < min (aabR s) (b ab R s) by(auto)
qed

lemma wp-DC-split:
[Pt wpprog R; Q- wp prog’ R] =
(As. min (P s) (Q s)) & wp (prog[] prog’) R
by (simp add:wp-def DC-split)

lemma wip-DC-split:
[P+ wip prog R; Q = wip prog’ R | =
(As. min (P s) (Qs)) = wip (prog [] prog’) R
by (simp add:wlp-def DC-split)

lemma wp-DC-split-same:

[Pt wp prog Q; Pt wp prog’ Q| = P = wp (prog ['] prog’) O
unfolding wp-eval by (blast intro:min.boundedI)

lemma wip-DC-split-same:

[Pt wip prog Q; Pt wip prog’ Q] = Pt~ wip (prog [| prog’) Q
unfolding wp-eval by (blast intro:min.boundedI)

lemma SetPC-split:
fixes f::'x = 'y prog
and p::'y = 'x = real
assumes rec: \xs.x € supp (ps) = Pxtfxab Q

and nnp: \s. nneg (p s)
shows (As. > x €supp (ps).psxxPxs)t SetPCfpabQ

4.10. STRUCTURED REASONING 205

unfolding SetPC-def
proof(rule le-funl)
fix s
from rec have A\x. x € supp (p s) = Pxs < fxab Q s by(blast)
moreover from nnp have A\x. 0 < p s x by(blast)
ultimately have Ax. x € supp (ps) = psx«Pxs<psxxfxabQs
by (blast intro:mult-left-mono)
thus (> x €supp (ps).psxxPxs) < (O xc€supp(ps).psx*fxabQs)
by (rule sum-mono)
qed

lemma wp-SetPC-split:
[Axs.x€supp (ps)= Pxtwp (fx) Q; \s. nneg (ps)] =

(As. > x€supp (ps).psx«Pxs)twp (SetPCfp)Q
by (simp add:wp-def SetPC-split)

lemma wip-SetPC-split:
[Axs.x€supp (ps)= Pxtwip (fx) Q; A\s. nneg (ps) | =

(As. > x€supp (ps).psxxPxs) - wlp (SetPC fp) Q
by (simp add:wlp-def SetPC-split)

lemma wp-SetDC-split:
[Asx.xeSs=Pltwp (fx) O; \s.Ss#{}] =
Pt wp (SetDCfS) O
by (rule le-funl, unfold wp-eval, blast intro!:cInf-greatest)

lemma wip-SetDC-split:
[Asx.xeSs= Pltwlp (fx) O; \s. Ss £ {} | =
Pt wip (SetDCfS) Q
by (rule le-funl, unfold wp-eval, blast intro!:cInf-greatest)

lemma wp-SetDC:
assumes wp: Asx.xe€Ss= Pxtwp (fx) Q0
and ne: \s. Ss # {}
and sP: Ax. sound (P x)
shows (As. Inf (Ax. Pxs) ‘Ss)) = wp (SetDCfS) Q
using assms by (intro le-funl, simp add:wp-eval, blast intro!:cInf-mono)

lemma wip-SetDC:
assumes wp: Asx.x € Ss = Pxt wip (fx) Q
and ne: \s. Ss # {}
and sP: Ax. sound (P x)
shows (As. Inf (Ax. Pxs) ‘Ss)) b wip (SetDCfS) O
using assms by (intro le-funl, simp add:wp-eval, blast intro!:cInf-mono)

lemma wp-Embed:
Pl-tQ= Pt wp (Embed t

) Q
by (simp add:wp-def Embed-def)

206 CHAPTER 4. THE PGCL LANGUAGE

lemma wip-Embed:
PltQ = Pt wip (Embed t) Q
by (simp add:wlp-def Embed-def)

lemma wp-Bind:
[As-Ps<wp(a(fs)) Qs]= Pt wp (Bindfa)Q
by (auto simp:wp-def Bind-def)

lemma wip-Bind.:
[As.-Ps<wlp(a(fs)) Qs] = Pt wip (Bindfa) Q
by (auto simp:wip-def Bind-def)

lemma wp-repeat:
[Pt wpaQ; QF wp (repeat n a) R;
well-def a; sound Q; sound R | = P = wp (repeat (Suc n) a) R
by (auto intro!:wp-Seq wd-intros)

lemma wip-repeat:
[Pt wipaQ; Ot wip (repeat n a) R;
well-def a; unitary Q; unitary R | = P+~ wip (repeat (Suc n) a) R
by (auto intro!:wlp-Seq wd-intros)

Note that the loop rules presented in section Section 4.8 are of the same form, and
would belong here, had they not already been stated.

The following rules are specialisations of those for general transformers, and are
easier for the unifier to match.

lemmas wp-strengthen-post=
entails-strengthen-post[where r=wp a for da]

lemma wip-strengthen-post:
Pt wip a Q = nearly-healthy (wlp a) = unitary R =—> Q &+ R = unitary Q —>
PtHwlpaR
by (blast intro:entails-trans)

lemmas wp-weaken-pre=
entails-weaken-pre[where t=wp a for a]

lemmas wip-weaken-pre=
entails-weaken-pre|where t=wlp a for a|

lemmas wp-scale=
entails-scale|where t=wp a for a, OF - well-def-wp-healthy)

4.10.2 Algebraic Decomposition

Refinement is a powerful tool for decomposition, belied by the simplicity of the
rule. This is an axiomatic formulation of refinement (all annotations of the a are
annotations of b), rather than an operational version (all traces of b are traces of a.

4.11. LOOP TERMINATION 207

lemma wp-refines:
[aCb;PrwpaQ;sound Q] = P+wpbQ
by (auto intro:entails-trans)

lemmas wp-drefines = drefinesD

4.10.3 Hoare triples

The Hoare triple, or validity predicate, is logically equivalent to the weakest-precondition
entailment form. The benefit is that it allows us to define transitivity rules for com-
putational (also/finally) reasoning.

definition

wp-valid :: (‘a = real) = 'a prog = (‘a = real) = bool (-} - {-}p>)
where

wp-valid P prog Q = P+ wp prog O

lemma wp-validl:

Pt wp prog Q = {|P|} prog {0O|}p
unfolding wp-valid-def by(assumption)

lemma wp-validD:
{P} prog {O}p = Pt wp prog O
unfolding wp-valid-def by(assumption)

lemma valid-Seq:
[{Pl a {O}p; {0} b {R[}p; well-def a; well-def b; sound Q; sound R | =
{Pla;; b {R}p
unfolding wp-valid-def by(rule wp-Seq)

We make it available to the computational reasoner:

declare valid-Seq[trans)

end

4.11 Loop Termination
theory Termination imports Embedding StructuredReasoning Loops begin

Termination for loops can be shown by classical means (using a variant, or a mea-
sure function), or by probabilistic means: We only need that the loop terminates
with probability one.

4.11.1 Trivial Termination

A maximal transformer (program) doesn’t affect termination. This is essentially
saying that such a program doesn’t abort (or diverge).

208 CHAPTER 4. THE PGCL LANGUAGE

lemma maximal-Seq-term:
fixes r::’s prog and s::'s prog
assumes mr: maximal (wp r)
and ws: well-def s
andss: (As. 1) = wp s (As. 1)
shows (As. 1) = wp (r;;5) (As. 1)
proof —
note /s = well-def-wp-healthy[|OF ws]
have wp s (As. 1) = (As. 1)
proof(rule antisym)
show (As. 1) = wp s (As. 1) by(rule ts)
have bounded-by 1 (wp s (Xs. 1))
by (auto intro!:healthy-bounded-byD|OF hs])
thus wp s (As. 1) = (As. 1) by(auto intro!:le-funl)
qed
with mr show ?thesis
by (simp add:wp-eval embed-bool-def maximalD)
qed

From any state where the guard does not hold, a loop terminates in a single step.

lemma term-onestep:
assumes wb: well-def body
shows «\ G» I wp do G — body od (Xs. 1)
proof(rule le-funl)
note b = well-def-wp-healthy|OF wb)
fix s
show «N G» s <wp do G — body od (Xs. 1) s
proof(cases G s, simp-all add:wp-loop-nguard hb)
from %b have sound (wp do G — body od (Xs. 1))
by (auto intro:healthy-sound[OF healthy-wp-loop))
thus 0 < wp do G — body od (Xs. 1) s by(auto)
qed
qed

4.11.2 Classical Termination

The first non-trivial termination result is quite standard: If we can provide a natural-
number-valued measure, that decreases on every iteration, and implies termination
on reaching zero, the loop terminates.

lemma loop-term-nat-measure-noinv:
fixes m :: 's = nat and body :: 's prog
assumes wb: well-def body
and guard: \s. ms=0— —-Gs
and variant: \n. «\s. m s = Suc n» = wp body «\s. m s = n»
shows \s. I = wp do G — body od (Xs. 1)
proof —
note hb = well-def-wp-healthy|OF wb)
have An. (Vs.ms=n— 1 <wpdo G — body od (\s. 1) s)

4.11. LOOP TERMINATION 209

proof(induct-tac n)
fix n
showVs.ms=0— 1 <wpdoG— bodyod (Xs. 1) s
proof(clarify)
fix s
assume m s = 0
with guard have — G s by(blast)
with hb show 1 < wp do G — body od (Xs. 1) s
by (simp add:wp-loop-nguard)
qed
assume [H:Vs.ms=n— 1 <wpdo G — body od (Xs. I) s
hence IH:Vs.ms=n— I < wpdo G — body od «)s. True» s
by (simp add:embed-bool-def)
haveVs. ms = Sucn — 1 <wp do G — body od «\s. True» s
proof(intro fold-premise healthy-intros hb, rule le-funl)
fix s
show «\s. m s = Suc n» s < wp do G — body od «\s. True» s
proof(cases G s)
case False
hence 1 = «N G» s by(auto)
also from wb have ... <wp do G — body od (Xs. 1) s
by (rule le-funD|OF term-onestep))
finally show ?thesis by (simp add:embed-bool-def)
next
case True note G = this
from IH' have «\s. m s = n» = wp do G — body od «\s. True»
by (blast intro:use-premise healthy-intros hb)
with variant wb
have «\s. m s = Suc n» = wp (body ;; do G — body od) «\s. True»
by (blast intro:wp-Seq wd-intros)
hence «\s. m s = Suc n» s < wp (body ;; do G — body od) «\s. True» s
by (auto)
also from /b G have ... = wp do G — body od «\s. True» s
by (simp add:wp-loop-guard)
finally show ?thesis .
qed
qed
thusVs.ms=3Sucn — 1 <wpdo G — body od (As. 1) s
by (simp add:embed-bool-def)
qed
thus ?thesis by (auto)
qed

This version allows progress to depend on an invariant. Termination is then deter-
mined by the invariant’s value in the initial state.

lemma loop-term-nat-measure:
fixes m :: 's = natr and body :: 's prog
assumes wb: well-def body
and guard: A\s.ms=0—-Gs

210 CHAPTER 4. THE PGCL LANGUAGE

and variant: \n. «\s. m s = Suc n» && «I» b= wp body «As. m s = n»
and inv: wp-inv G body «I»
shows «/» = wp do G — body od (\s. 1)
proof —
note iib = well-def-wp-healthy|OF wb)
note sch = sublinear-sub-conj|OF well-def-wp-sublinear, OF wb]
have «I» - wp do G — body od «\s. True»
proof(rule use-premise, intro healthy-intros hb)
fix s
have An. (Vs.ms=nAIs— I <wpdoG —> body od «\s. True» s)
proof(induct-tac n)
fix n
showVs.ms=0AN1s— 1 <wpdoG — body od «\s. True» s
proof(clarify)
fix s
assume m s = 0
with guard have — G s by(blast)
with ib show | < wp do G — body od «\s. True» s
by (simp add:wp-loop-nguard)
qed
assume [H:Vs.ms=nAIs — I <wpdo G — body od «\s. True» s
showVs. ms=Sucn ANls— I <wpdoG— body od «\s. True» s
proof(intro fold-premise healthy-intros hb le-funl)
fix s
show «As. ms = Sucn A1ls»s <wpdoG— body od «\s. True» s
proof(cases G s)
case False with hb show ?thesis
by (simp add:wp-loop-nguard)
next
case True note G = this
have «\s. m s = Suc n» && «I» && «G» =
«As. m s = Suc n» && («I» && «I») && «G»
by (simp)
also have ... = («\s. ms = Suc n» && «I») && («I» && «G»)
by (simp add:exp-conj-assoc exp-conj-unitary del:exp-conj-idem)
also have ... = («/\S‘ m s = Suc n» && «]») && («G» && «I»)
by (simp only:exp-conj-comm)
also {
from inv hb have «G» && «I» = wp body «I»
by (rule wp-inv-stdD)
with variant
have («\s. m s = Suc n» && «I») && («G» && «I»)
wp body «As. m s = n» && wp body «I»
by (rule entails-frame)
}
also from scb
have wp body «\s. m s = n» && wp body «I» I
wp body («As. m s = n» && «I»)
by (blast)

4.11. LOOP TERMINATION 211

finally have «\s. m s = Suc n» && « I » && « G» t
wp body (« As.ms=n»&& «I»).
moreover {
from /H have «\s. ms =n A I s» = wp do G — body od «\s. True»
by (blast intro:use-premise healthy-intros hb)
hence «\s. m s = n» && «I» = wp do G — body od «\s. True»
by (simp add:exp-conj-std-split)
}
ultimately
have «\s. ms = Sucn» && « I » && « G» I+
wp (body ;; do G — body od) «\s. True»
using wb by (blast intro:wp-Seq wd-intros)
hence («As. ms=Sucn Al s» && « G») s <
wp (body ;; do G — body od) «As. True» s
by (auto simp:exp-conj-std-split)
with G have «<\s. ms=Sucn ANls»s <
wp (body ;; do G — body od) «\s. True» s
by (simp add:exp-conj-def)
also from /b G have ... = wp do G — body od «\s. True» s
by (simp add:wp-loop-guard)
finally show ?thesis .
qed
qed
qed
moreover assume / s
ultimately show / < wp do G — body od «)\s. True» s
by (auto)
qed
thus ?thesis by (simp add:embed-bool-def)
qed

4.11.3 Probabilistic Termination

Any loop that has a non-zero chance of terminating after each step terminates with
probability 1.

lemma termination-0-1:
fixes body :: 's prog
assumes wb: well-def body
— The loop terminates in one step with nonzero probability
and onestep: (As. p) & wp body «N G»
andnzp: 0<p
— The body is maximal i.e. it terminates absolutely.
and mb: maximal (wp body)
shows As. I = wp do G — body od (Xs. 1)
proof —
note b = well-def-wp-healthy|OF wb)
note sb = healthy-scalingD[OF hb)
note sab = sublinear-subadd|OF well-def-wp-sublinear, OF wb, OF healthy-feasibleD,
OF hb]

212 CHAPTER 4. THE PGCL LANGUAGE

from £b have hloop: healthy (wp do G — body od)
by (rule healthy-intros)
hence swp: sound (wp do G — body od (Xs. 1)) by(blast)

p is no greater than 1, by feasibility.

from onestep have onestep”: \s. p < wp body «N G» s by(auto)
also {

from /b have unitary (wp body «N G») by(auto)

hence A\s. wp body «N G» s < 1 by(auto)

}
finally have pl: p < 1.

This is the crux of the proof: that given a lower bound below 1, we can find another, higher
one.
have new-bound: Nk. 0 < k =k <1 = (As. k) = wp do G — body od (\s. 1) =
(As.px (I—k) + k) =wp do G — body od (As.)
proof(rule le-funl)
fix ks
assume X: \s. k= wp do G — body od (Xs. 1)
and k0: 0 < kand kl: k < I

from k7 have nzlk: 0 < I — k by(auto)
with pl have p « (1—k) + k<1« (1—k) + k
by (blast intro:mult-right-mono add-mono)
hencep * (1 — k) +k <1
by (simp)

The new bound is p * (I — k) + k.

hence p * (1—k) + k < «N G» s + «G» s x (p * (I1—k) + k)
by (cases G s, simp-all)

By the one-step termination assumption:

also from onestep’ nzlk
have ... < «N G» s + «G» s * (wp body «N G» s * (I1—k) + k)
by (simp add: mult-right-mono ordered-comm-semiring-class.comm-mult-left-mono)

By scaling:

also from nz/k
have ... = «N G» 5 + «G» s * (wp body (As. «N G» s x (1—k)) s + k)
by (simp add:right-scalingD|OF sb])

By the maximality (termination) of the loop body:

also from mb k0
have ... = «N G» s + «G» s * (wp body (As. «N G» s (1—k)) s + wp body (Xs. k) s)
by (simp add:maximalD)

By sub-additivity of the loop body:

also from k0 nzlk

4.11. LOOP TERMINATION 213

have ... < «N G» s + «G» s x (wp body (As. «<N G» s * (1—k) + k) s)

by (auto intro!:add-left-mono mult-left-mono sub-addD|OF sab) sound-intros)
also
have ... = «N G» s + «G» s * (wp body (As. «<N G» s + «G» s % k) s)

by (simp add:negate-embed algebra-simps)

By monotonicity of the loop body, and that k is a lower bound:

also from k0 hloop le-funD|OF X]
have ... < «N G» s +
«G» s * (wp body (As. «<N G» s + «G» s * wp do G — body od (Xs. 1) 5) s)
by (iprover intro:add-left-mono mult-left-mono le-funl embed-ge-0
le-funD|OF mono-transD, OF healthy-monoD, OF hb]
sound-sum standard-sound sound-intros swp)

Unrolling the loop once and simplifying:

also {
have A\s. «<N G» s + «G» s x wp body (wp do G — body od (Xs. 1)) s =
«N G» s+ «G» s % («N G» s + «G» s x wp body (wp do G — body od (Xs. 1)) s)
by (simp only:distrib-left mult.assoc[symmetric] embed-bool-idem embed-bool-cancel)
also have As. ... s = <\ G» s + «G» s * wp do G — body od ()s. 1) s
by (simp add:fun-cong[OF wp-loop-unfold[symmetric, where P=X\s. 1, simplified, OF
b))
finally have X: As. «<N G» s + «G» s x wp body (wp do G — body od (Xs. 1)) s =
«N G» s+ «G» s x wpdo G — body od (Xs. 1) s .
have «N G» s + «G» s * (Wp body ()\s. «N G» s + «G» s *
wp do G — body od (As. 1) s) s) =
«N G» s + «G» s % (Wp body ()\s. «N G» s + «G» 5 *
wp body (wp do G — body od (Xs. 1)) s) s)
by (simp only:X)
}

Lastly, by folding two loop iterations:

also
have «\ G» 5 + «G» s x (wp body (As. «<N G» 5 + «G» s x
wp body (wp do G — body od (As. 1)) s) s) =
wp do G — body od (Xs. 1) s
by (simp add:wp-loop-unfold|OF - hb, where P=M\s. 1, simplified, symmetric]
fun-cong|OF wp-loop-unfold|OF - hb, where P=X\s. 1, simplified, symmetric]))
finally show p x (I—k) + k < wp do G — body od (Xs. I) s .
qed

If the previous bound lay in [0, 1), the new bound is strictly greater. This is where we
appeal to the fact that p is nonzero.

from nzp have inc: Nk. 0<k—= k<= k<px (I —k)+k
by (auto intro:mult-pos-pos)

The result follows by contradiction.

show ’thesis
proof(rule ccontr)

214 CHAPTER 4. THE PGCL LANGUAGE

If the loop does not terminate everywhere, then there must exist some state from which the
probability of termination is strictly less than one.

assume — ’thesis
hence — (V5. I <wp do G — body od (Xs. 1) s) by(auto)
then obtain s where point: — 1 < wp do G — body od ()s. 1) s by(auto)

let ?k = Inf (range (wp do G — body od (Xs. 1)))

from hloop
have Inflb: \s. 2k < wp do G — body od (Xs. 1) s
by (intro cInf-lower bdd-belowl, auto)
also from point have wp do G — body od (Xs. 1) s < I by(auto)

Thus the least (infimum) probabilty of termination is strictly less than one.

finally have k1: 7k < I .

hence 7k < I by(auto)

moreover from /loop have k0: 0 < ?k
by (intro cInf-greatest, auto)

The infimum is, naturally, a lower bound.

moreover from Inflb have (\s. ?k) = wp do G — body od (Xs. 1) by(auto)
ultimately

We can therefore use the previous result to find a new bound, ...

have As.px (I — ?k) + ?k <wp do G — body od (As. 1) s
by (blast intro:le-funD][OF new-bound))

..which is lower than the infimum, by minimality, .. .

hence p * (I — ?k) + 2k < ?k
by (blast intro:cInf-greatest)

.. yet also strictly greater than it.

moreover from k0 kI have ?k < p x (I — ?k) + ?k by(rule inc)

We thus have a contradiction.

ultimately show False by (simp)
qed
qed

end

4.12 Automated Reasoning

theory Automation imports StructuredReasoning
begin

This theory serves as a container for automated reasoning tactics for pGCL, imple-
mented in ML. At present, there is a basic verification condition generator (VCG).

4.12. AUTOMATED REASONING

named-theorems wd

theorems to automatically establish well—definedness
named-theorems pwp-core

core probabilistic wp rules, for evaluating primitive terms
named-theorems pwp

user—supplied probabilistic wp rules
named-theorems pwip

user—supplied probabilistic wlp rules

ML-file pVCG.ML>

method-setup pvcg =

Scan.succeed (fn ctxt => SIMPLE-METHOD' (pVCG.pVCG-tac ctxt))>

Probabilistic weakest preexpectation tactic
declare wd-intros[wd)]

lemmas core-wp-rules =
wp-Skip wlp-Skip
wp-Abort wlp-Abort
wp-Apply wlip-Apply
wp-Seq wilp-Seq
wp-DC-split wip-DC-split
wp-PC-fixed wlp-PC-fixed
wp-SetDC wip-SetDC
wp-SetPC-split wip-SetPC-split

declare core-wp-rules[pwp-core|

end

215

216 CHAPTER 4. THE PGCL LANGUAGE

Additional Material

4.13 Miscellaneous Mathematics

theory Misc
imports
HOL—Analysis.Multivariate-Analysis
begin lemma sum-UNIV:
fixes S::'a::finite set
assumes complete: \x. x¢S —> fx =0
shows sum 'S = sum f UNIV
proof —
from complete have sum S = sum f (UNIV — S) + sum f S by(simp)
also have ... = sum f UNIV
by (auto intro: sum.subset-diff [symmetric))
finally show ?thesis .
qed

lemma clnf-mono:
fixes A::'a::conditionally-complete-lattice set
assumes lower: A\b.b € B=—JacA.a <b
and bounded: Na.a € A = c<a
and ne: B # {}
shows InfA < Inf B
proof(rule cInf-greatest|OF ne))
fix b assume bin: b € B
with lower obtain a where ain: a € A and le: a < b by(auto)
from ain bounded have Inf A < a by(intro cInf-lower bdd-belowl, auto)
also note /e
finally show InfA <b.
qed

lemma max-distrib:
fixes c::real
assumes nn: 0 < ¢
shows ¢ * max a b = max (c * a) (¢ * b)
proof(cases a < b)
case True
moreover with nn have ¢ x a < ¢ x b by(auto intro:mult-left-mono)
ultimately show ?thesis by (simp add:max.absorb2)

217

218 ADDITIONAL MATERIAL

next
case False then have b < a by(auto)
moreover with nn have ¢ x b < ¢ x a by(auto intro:mult-left-mono)
ultimately show ?thesis by (simp add:max.absorbl)

qed

lemma mult-div-mono-left:
fixes c::real
assumes nnc: 0 < c and nzc: ¢ # 0
and inv: a < inverse ¢ x b
showscxa <b
proof —
from nnc inv have ¢ x a < (c * inverse ¢) * b
by (auto simp:mult.assoc intro:mult-left-mono)
also from nzc have ... = b by(simp)
finally show c xa < b.
qed

lemma mult-div-mono-right:
fixes c::real
assumes nnc: 0 < c and nzc: ¢ # 0
and inv: inverse c x a < b
showsa <cxb
proof —
from nzc have a = (c x inverse c¢) x a by(simp)
also from nnc inv have (c x inverse c¢) xa < c* b
by(auto simp:mult.assoc intro:mult-left-mono)
finally showa < cxb.
qed

lemma min-distrib:
fixes c::real
assumes nnc: 0 < ¢
shows ¢ x min a b = min (¢ x a) (c x b)
proof(cases a < b)
case True moreover with nnchavec xa <cx* b
by (blast intro:mult-left-mono)
ultimately show ?hesis by (auto)
next
case Fulse hence b < a by(auto)
moreover with nnchavec x b <cxa
by (blast intro:mult-left-mono)
ultimately show ?hesis by (simp add:min.absorb2)
qed

lemma finite-set-least:
fixes S::'a::linorder set
assumes finite: finite S
and ne: S # {}

4.13. MISCELLANEOUS MATHEMATICS 219

shows dxeS. VyeS. x <y
proof —
have S = {} vV (Fx€S.VyeS. x <y)
proof(rule finite-induct, simp-all add:assms)
fix x::'a and S::'a set
assume [H: S = {} V (3xeS. VyeS. x <y)
show (VyeS. x <y) Vv (Ix'eS.x' <x A (VyeS. x' <y))
proof(cases S={})
case True then show ?thesis by(auto)
next
case Fualse with IH have 3x€S. VyeS. x < y by(auto)
then obtain z where zin: z € S and zmin: Vy€eS. z < y by(auto)
thus ?thesis by(cases z < x, auto)
qed
qed
with ne show ?thesis by(auto)
qed

lemma cSup-add:

fixes c::real

assumes ne: S # {}

and bS: A\x. xeS = x<b

shows Sup S + ¢ =Sup {x + ¢ |x.x € S}
proof(rule antisym)

from ne bS show Sup {x + ¢ |x. x € S} < Sup S + ¢

by (auto introl:cSup-least add-right-mono cSup-upper bdd-abovel)

have Sup S < Sup {x + c|x.x €S} — ¢

proof(intro cSup-least ne)
fix x assume xin: x € §
from bS have A\x. x€S = x + ¢ < b + ¢ by(auto intro:add-right-mono)
hence bdd-above {x + ¢ |x. x € S} by(intro bdd-abovel, blast)
with xin have x + ¢ < Sup {x + ¢ |x. x € S} by(auto intro:cSup-upper)
thus x < Sup {x + ¢ |x. x € S} — ¢ by(auto)

qed

thus Sup S + ¢ < Sup {x + ¢ |x. x € S} by(auto)

qed

lemma cSup-mult:
fixes c::real
assumes ne: S # {}
and bS: \x. xeS = x<b
and nnc: 0 <c¢
shows ¢ * Sup S = Sup {c * x |x. x € S}
proof(cases)
assume ¢ = 0
moreover from ne have 3x. x € S by(auto)
ultimately show ?thesis by(simp)
next

220 ADDITIONAL MATERIAL

assume cnz: ¢ # 0
show ?thesis
proof(rule antisym)
from bS have baS: bdd-above S by (intro bdd-abovel, auto)
with ne nnc show Sup {c xx |x. x € S} <c*Sup S
by (blast intro!:cSup-least mult-left-mono[OF cSup-upper])
have Sup S < inverse ¢ * Sup {c x x |x. x € S}
proof(intro cSup-least ne)
fix x assume xin: x€S
moreover from bS nnc have \x. x€S = ¢ * x < ¢ * b by(auto intro:mult-left-mono)
ultimately have ¢ * x < Sup {c * x |x. x € §}
by (auto intro!:cSup-upper bdd-abovel)
moreover from nnc have 0 < inverse ¢ by(auto)
ultimately have inverse ¢ x (¢ * x) < inverse ¢ x Sup {c * x |x. x € S}
by (auto intro:mult-left-mono)
with cnz show x < inverse ¢ * Sup {c * x |x. x € S}
by (simp add:mult.assoc[symmetric])
qed
with nnc have ¢ x Sup S < ¢ * (inverse ¢ * Sup {c x x |x. x € §})
by (auto intro:mult-left-mono)
with cnz show ¢ * Sup § < Sup {c * x |x. x € S}
by (simp add:mult.assoc[symmetric])
qed
qed

lemma closure-contains-Sup:
fixes S :: real set
assumes neS: S # {} and bS: VxeS. x <B
shows Sup S € closure S
proof —
let ?T = uminus ‘S
from neS have neT: ?T # {} by(auto)
from bS have bT: Vx€?T. —B < x by(auto)
hence bbT: bdd-below ?T by(intro bdd-belowl, blast)

have Sup S = — Inf ?T
proof(rule antisym)
from neT bbT
have \x. x€S = Inf (uminus ‘' S) < —x
by (blast intro:cInf-lower)
hence A\x. x€S = —1 * —x < —1 « Inf (uminus *S)
by (rule mult-left-mono-neg, auto)
hence leninf: A\x. x€S = x < — Inf (uminus ‘S)
by (simp)
with neS bS show Sup S < — Inf ?T
by (blast intro:cSup-least)

have — Sup S < Inf ?T
proof(rule cInf-greatest|OF neT))

4.13. MISCELLANEOUS MATHEMATICS 221

fix x assume x € uminus ‘S
then obtain y where yin: y € S and rwx: x = —y by(auto)
from yin bS have y < Sup S
by (intro cSup-upper bdd-belowl, auto)
hence —7 « Sup S < —1 xy
by (simp add:mult-left-mono-neg)
with rwx show — Sup S < x by(simp)
qed
hence —7 % Inf ?T < —1 % (— Sup S)
by (simp add:mult-left-mono-neg)
thus — Inf ?T < Sup S by(simp)
qed
also {
from neT bbT have Inf ?T € closure ?T by(rule closure-contains-Inf)
hence — Inf ?T € uminus ‘ closure ?T by(auto)
}
also {
have linear uminus by (auto intro:linearl)
hence uminus ‘ closure ?T C closure (uminus * ?T)
by (rule closure-linear-image-subset)
}
also {
have uminus ‘ ?T C S by(auto)
hence closure (uminus “ ?T) C closure S by(rule closure-mono)
}
finally show Sup S € closure S .
qed

lemma tendsto-min:
fixes x y::real
assumes fa: a —— x
andtb: b —— y
shows (\i. min (a i) (bi)) —— minxy
proof(rule LIMSEQ-I, simp)
fix e::real assume pe: 0 < e

from ta pe obtain noa where balla: ¥ n>noa. abs (an — x) < e
by (auto dest:LIMSEQ-D)

from b pe obtain nob where ballb: ¥ n>nob. abs (bn —y) < e
by (auto dest:LIMSEQ-D)

fix n
assume ge: max noa nob < n
hence gea: noa < n and geb: nob < n by(auto)
have abs (min (an) (bn) —minxy) <e
proof cases

assume le: min (an) (bn) <minxy

show ?thesis

222 ADDITIONAL MATERIAL

proof cases
assumean <bn
hence rwmin: min (a n) (b n) = a n by(auto)
with le have a n < min x y by(simp)
moreover from gea balla have abs (a n — x) < e by(simp)
moreover have min x y < x by(auto)
ultimately have abs (a n — min x y) < e by(auto)
with rwmin show abs (min (a n) (b n) — min xy) < e by(simp)
next
assume —an<bn
hence b n < a n by(auto)
hence rwmin: min (a n) (b n) = b n by(auto)
with le have b n < min x y by(simp)
moreover from geb ballb have abs (bn — y) < e by(simp)
moreover have min x y <y by(auto)
ultimately have abs (b n — min x y) < e by(auto)
with rwmin show abs (min (a n) (b n) — minxy) < e by(simp)
qed
next
assume —min (an) (bn) <minxy
hence le: min x y < min (a n) (b n) by(auto)
show ?thesis
proof cases
assume x <y
hence rwmin: min x y = x by(auto)
with le have x < min (a n) (b n) by(simp)
moreover from gea balla have abs (a n — x) < e by(simp)
moreover have min (a n) (b n) < a nby(auto)
ultimately have abs (min (a n) (b n) — x) < e by(auto)
with rwmin show abs (min (a n) (b n) — minxy) < e by(simp)
next
assume - x <y
hence y < x by(auto)
hence rwmin: min x y = y by(auto)
with /e have y < min (a n) (b n) by(simp)
moreover from geb ballb have abs (b n —y) < e by(simp)
moreover have min (a n) (b n) < b nby(auto)
ultimately have abs (min (a n) (bn) —y) < e by(auto)
with rwmin show abs (min (a n) (b n) — minxy) < e by(simp)
qed
qed
}
thus 3no. Vn>no. |min (a n) (b n) — min x y| < e by(blast)
qed

definition supp :: ('s = real) = s set
where supp f = {x. fx # 0}

definition dist-remove :: ('s = real) = 's = 's = real

4.13. MISCELLANEOUS MATHEMATICS 223

where dist-remove p x = (A\y. ify=x then O elsepy / (I — p x))

lemma supp-dist-remove:
px# 0= px+# 1= supp (dist-remove p x) = supp p — {x}
by (auto simp:dist-remove-def supp-def)

lemma supp-empty:

supp f ={} = fx=0
by (simp add:supp-def’)

lemma nsupp-zero:

x¢suppf = fx=0
by (simp add:supp-def)

lemma sum-supp:
fixes f::'a::finite = real
shows sum f (supp f) = sum f UNIV
proof —
have sum f (UNIV — supp f) =0
by (simp add:supp-def’)
hence sum f (supp) = sum f (UNIV — supp f) + sum f (supp)
by (simp)
also have ... = sum f UNIV
by (simp add:sum.subset-diff [symmetric))
finally show ?thesis .
qed

4.13.1 Truncated Subtraction

definition

tminus :: real = real = real (infixl <> 60)
where

x6&y=max(x—y)0

lemma minus-le-tminus(intro! simp):
a—b<aob
unfolding tminus-def by(auto)

lemma rminus-cancel-1:
0<a=—a+161=a
unfolding tminus-def by (simp)

lemma tminus-zero-imp-le:
x8y<0=x<y
by (simp add:tminus-def’)

lemma tminus-zero[simp):
0<x=—x60=x
by (simp add:tminus-def’)

224 ADDITIONAL MATERIAL

lemma tminus-left-mono:
a<b=—aoc<bsoc
unfolding tminus-def
by(case-tac a < ¢, simp-all)

lemma rminus-less:
[0<a;0<b]=acSb<a
unfolding tminus-def by (force)

lemma tminus-left-distrib:
assumes nna: 0 < a
showsa*x (bSc)=axbSaxc
proof(cases b < c)
case True note le = this
hence a * max (b — ¢) 0 = 0 by(simp add:max.absorb2)
also {
from nna le have a x b < a x ¢ by(blast intro:mult-left-mono)
hence 0 = max (a x b — a x ¢) 0 by(simp add:max.absorbl)
}
finally show ?thesis by (simp add:tminus-def)
next
case False hence le: ¢ < b by(auto)
hence a * max (b — ¢) 0 = a x (b — ¢) by(simp only:max.absorbl)
also {
from nna le have a x ¢ < a x b by(blast intro:mult-left-mono)
hence a * (b — ¢) = max (a * b — a * ¢) 0 by(simp add:max.absorbl field-simps)
}
finally show ?thesis by (simp add:tminus-def)
qed

lemma tminus-le[simp):
b<a=—aoSb=a-5>b
unfolding tminus-def by(simp)

lemma tminus-le-alt|simp):
a<b=—aoSb=0
by (simp add:tminus-def)

lemma tminus-nle[simp):
“b<a=—acSb=0
unfolding tminus-def by (simp)

lemma tminus-add-mono:

(a+Db) & (c+d) < (aSc) + (bed)
proof(cases 0 < a — ¢)

case True note pac = this

show ’thesis

proof(cases 0 < b — d)

4.13. MISCELLANEOUS MATHEMATICS 225

case True note pbd = this
from pac and pbd have (c + d) < (a + b) by(simp)
with pac and pbd show ?thesis by (simp)
next
case False with pac show ?thesis
by(cases ¢ + d < a + b, auto)
qed
next
case False note nac = this
show ?thesis
proof(cases 0 < b — d)
case True with nac show ?thesis
by(cases ¢ +d < a + b, auto)
next
case False note nbd = this
with nac have —(c + d) < (a + b) by(simp)
with nac and nbd show ?thesis by (simp)
qed
qed

lemma tminus-sum-mono:
assumes fS: finite S
shows sum fS © sum g S < sum (Ax.fx© gx) S
(is ?X S)
proof(rule finite-induct)
from fS show finite S .

show ?X {} by(simp)

fix x and F

assume fF: finite F and xniF: x ¢ F
and /H: 7’X F

havefx + sumfF o gx+sumgF <

(fxogx)+ (sumfF © sum gF)

by (rule tminus-add-mono)

also from /H have ... < (fxo gx) + (D_xeF.fxS gx)
by (rule add-left-mono)

finally show ?X (insert x F)
by (simp add:sum.insert|OF fF xniF))

qed

lemma tminus-nneg|simp,introl:
0<a5b
by(cases b < a, auto)

lemma tminus-right-antimono:
assumes clb: ¢ < b
showsacb<aoc

proof(cases b < a)

226

case True
moreover with clb have ¢ < a by(auto)
moreover note clb
ultimately show ?thesis by (simp)
next
case Fulse then show ?thesis by (simp)
qed

lemma min-tminus-distrib:
minabSc=min(aoc)(bOc)
unfolding tminus-def by(auto)

end

ADDITIONAL MATERIAL

Bibliography

David Cock. Verifying probabilistic correctness in Isabelle with pGCL. In Pro-
ceedings of the 7th Systems Software Verification, pages 1-10, Sydney, Australia,
November 2012. doi: 10.4204/EPTCS.102.15.

David Cock. Practical probability: Applying pGCL to lattice scheduling. In Pro-
ceedings of the 4th International Conference on Interactive Theorem Proving,
pages 1-16, Rennes, France, July 2013. doi: 10.1007/978-3-642-39634-2_23.

David Cock. From probabilistic operational semantics to information theory - side
channels with pGCL in isabelle. In Proceedings of the 5th International Confer-
ence on Interactive Theorem Proving, pages 1-15, Vienna, Austria, July 2014a.
Springer.

David Cock. Leakage in Trustworthy Systems. PhD thesis, University of New
South Wales, 2014b.

Edsger W. Dijkstra. Guarded commands, nondeterminacy and formal derivation
of programs. Communications of the ACM, 18(8):453-457, August 1975. ISSN
0001-0782. doi: 10.1145/360933.360975.

Joe Hurd, Annabelle Mclver, and Carroll Morgan. Probabilistic guarded com-
mands mechanized in hol. Theoretical Computer Science, 346(1):96 — 112,
2005. ISSN 0304-3975. doi: 10.1016/].tcs.2005.08.005. URL http://www.
sciencedirect.com/science/article/pii/S0304397505004767.

Annabelle Mclver and Carroll Morgan. Abstraction, Refinement and Proof for
Probabilistic Systems. Springer, 2004.

Steve Selvin. A problem in probability (letter to the editor). American Statistician,
29(1):67, Feb 1975.

227

http://www.sciencedirect.com/science/article/pii/ S0304397505004767
http://www.sciencedirect.com/science/article/pii/ S0304397505004767

	Overview
	Introduction to pGCL
	Language Primitives
	The Basics
	Assertion and Annotation
	Probability
	Nondeterminism
	Properties of Expectations

	Loops
	Guaranteed Termination
	Probabilistic Termination

	The Monty Hall Problem
	The State Space
	The Game
	A Brute Force Solution
	A Modular Approach

	Semantic Structures
	Expectations
	Bounded Functions
	Non-Negative Functions.
	Sound Expectations
	Unitary expectations
	Standard Expectations
	Entailment
	Expectation Conjunction
	Rules Involving Conjunction.
	Rules Involving Entailment and Conjunction Together

	Expectation Transformers
	Comparing Transformers
	Healthy Transformers
	Sublinearity
	Determinism
	Modular Reasoning
	Transforming Standard Expectations

	Induction
	The Lattice of Expectations
	The Lattice of Transformers
	Tail Recursion

	The pGCL Language
	A Shallow Embedding of pGCL in HOL
	Core Primitives and Syntax
	Unfolding rules for non-recursive primitives

	Healthiness
	The Healthiness of the Embedding
	Healthiness for Loops

	Continuity
	Continuity of Primitives
	Continuity of a Single Loop Step

	Continuity and Induction for Loops
	The Limit of Iterates

	Sublinearity
	Nonrecursive Primitives
	Sublinearity for Loops

	Determinism
	Additivity
	Maximality
	Determinism

	Well-Defined Programs.
	Strict Implies Liberal
	Sub-Distributivity of Conjunction
	The Well-Defined Predicate.

	The Loop Rules
	Liberal and Strict Invariants.
	Partial Correctness
	Total Correctness
	Unfolding

	The Algebra of pGCL
	Program Refinement
	Simple Identities
	Deterministic Programs are Maximal
	The Algebraic Structure of Refinement
	Data Refinement
	The Algebra of Data Refinement
	Structural Rules for Correspondence
	Structural Rules for Data Refinement

	Structured Reasoning
	Syntactic Decomposition
	Algebraic Decomposition
	Hoare triples

	Loop Termination
	Trivial Termination
	Classical Termination
	Probabilistic Termination

	Automated Reasoning

	Additional Material
	Miscellaneous Mathematics
	Truncated Subtraction

